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fully connected Deep Neural Networks. Our results show that MINNs can han-
dle functional data defined on general domains of any shape, while ensuring
reduced training times, lower computational costs, and better generalization
capabilities, thus making MINNs very well-suited for demanding applications
such as Reduced Order Modeling and Uncertainty Quantification for PDEs.
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1 Introduction

Deep Neural Networks (DNNs) are one of the fundamental building blocks in
modern Machine Learning. Originally developed to tackle classification tasks,
they have become extremely popular after reporting striking achievements in
fields such as computer vision [21] and language processing [30]. Not only, an
in-depth investigation of their approximation properties has also been carried
out in the last decade [5,8,16,18]. In particular, DNNs have been recently em-
ployed for learning (nonlinear) operators in high-dimensional spaces [9,15,20,
24], because of their unique properties, such as the ability to blend theoretical
and data-driven approaches. Additionally, the interest in using DNNs to learn
high-dimensional operators arises from the potential repercussions that these
models would have on fields such as Reduced Order Modeling.

Consider for instance a parameter dependent PDE problem, where each
parameter instance µ leads to a solution uµ. In this framework, multi-query
applications such as optimal control and statistical inference are prohibitive
to implement, as a numerical solver has to be run any time a new solution
is to be computed. Therefore, learning the operator that maps µ → uµ is
a task of key interest, as it would allow one to replace the numerical solver
with a much cheaper surrogate. To this end, DNNs are a valid and power-
ful alternative that have recently shown either comparable or superior results
with respect to other state-of-the-art approaches, e.g. [3,12,13]. More in gen-
eral, other works have recently exploited physics-informed machine learning
for efficient reduced order modeling of parametrized PDEs [7,29]. Also, DNN
models have the practical advantage of being highly versatile as, differently
from other techniques such as splines and wavelets, they can easily adapt to
both high-dimensional inputs, as in image recognition, and outputs, as in the
so-called generative models.

However, when the dimensions into play become very high, there are some
practical issues that hinder the use of as-is DNN models. In fact, classical dense
architectures tend to have too many degrees of freedom, making them harder
to train, computationally demanding and prone to overfitting. As a remedy,
alternative architectures such as Convolutional Neural Networks (CNNs) and
Graph Neural Networks (GNNs) have been employed over the years. These
architectures can handle very efficiently data defined respectively over hyper-
cubes (CNNs) or graphs (GNNs). Nevertheless, these models do not provide a
complete answer, especially when the high-dimensionality arises from the dis-
cretization of a functional space such as L2(Ω), where Ω ⊂ Rd is some bounded
domain, possibly non convex. In fact, CNNs cannot handle general geometries
and they might become inappropriate as soon as Ω is not an hypercube, al-
though some preliminary attempts to generalize CNN in this direction have
recently appeared [14]. Conversely, GNNs have the benefit of considering their
inputs and outputs as defined over the vertices of a graph. This appears to be
a promising feature, since a classical way to discretize spatial domains is to
use meshing strategies, and meshes are ultimately graphs. However, GNNs are
heavily based on the graph representation itself, and their construction does
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not exploit the existence of an underlying spatial domain. In particular, GNNs
do not work at different fidelity levels, which would be a desirable property
as it would favor mesh independence (the existence of a mesh should be an
auxiliary tool and not a limitation).

Inspired by these considerations, we introduce a novel class of sparse archi-
tectures, which we refer to as Mesh-Informed Neural Networks (MINNs), to
tackle the problem of learning a (nonlinear) operator

G ∶ V →W,

where V and W are some functional spaces, e.g. V =W ⊆ L2(Ω). The defini-
tion of G may involve both local and nonlocal operations, such as derivatives
and integrals, and it may as well imply the solution to a Partial Differential
Equation (PDE).

We cast the above problem in a setting that is more familiar to the Deep
Learning literature by introducing a so-called high-fidelity discretization. This
is an approach that has become widely adopted by now, and it involves the
discretization of the functional spaces along the same lines of Finite Element
methods, as in [3,12,22]. In short, one introduces a mesh having vertices
{xi}Nh

i=1 ⊂ Ω, and defines Vh ⊂ L2(Ω) as the subspace of piecewise-linear La-
grange polynomials, where h > 0 is the stepsize of the mesh (the idea can be
easily generalized to higher order finite elements, as we show later on). Since
each v ∈ Vh is uniquely identified by its nodal values, we have Vh ≅ RNh , and
the original operator to be learned can be replaced by

Gh ∶ Vh ≅ RNh → Vh ≅ RNh .

The idea is now to approximate Gh by training some DNN Φ ∶ RNh → RNh .
As we argued previously, dense architectures are unsuited for such a purpose
because of their prohibitive computational cost during training, due to the
computational resources needed to optimize the network as well as to the
amount of training data required to avoid overfitting.

To overcome this bottleneck, we propose Mesh-Informed Neural Networks.
These are ultimately based on an apriori pruning strategy, whose purpose is to
inform the model with the geometrical knowledge coming from Ω. As we will
demonstrate later in the paper, despite their simple implementation, MINNs
show reduced training times and better generalization capabilities, making
them able to learn operators even in poor data regimes. Also, they allow for a
novel interpretation of the so-called hidden layers in a way that may simplify
the practical problem of designing DNN architectures.

The rest of the paper is devoted to the presentation of MINNs and it is or-
ganized as follows. In Section 2, we set some notation and formally introduce
Mesh-Informed Neural Networks from a theoretical point of view. There, we
also discuss their implementation and comment on the parallelism between
MINNs and other emerging approaches such as DeepONets [24] and Neural
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Operators [20]. We then devote Section 3 to the numerical experiments, where
we test MINNs against classical fully connected models, with applications to
nonlinear operators and nonlinear PDEs. After validating our approach, we
take the chance in Section 4 to present an application where MINNs are em-
ployed to answer a practical problem of Uncertainty Quantification related
to the microcirculation of oxygen in biological tissues. Finally, we draw our
conclusions and discuss future developments in Section 5.

2 Mesh-Informed Neural Networks

In the present section we present Mesh-Informed Neural Networks, a novel
class of architectures specifically built to handle discretized functional outputs,
and thus of particular interest in PDE applications. Preliminary to that, we
introduce some notation and recall some of the basic concepts behind classical
DNNs.

2.1 Notation and preliminaries

Deep Neural Networks are a powerful class of approximators that is ultimately
based on the composition of affine and nonlinear transformations. Here, we
focus on DNNs having a so-called feedforward architecture. We report below
some basic definitions.

Definition 1 Let m,n ≥ 1 and ρ ∶ R → R. A layer with activation ρ is a map
L ∶ Rm → Rn of the form L(v) = ρ (Wv + b), for some W ∈ Rn×m and b ∈ Rn.

In the literature, W and b are usually referred to as weight and bias of
the layer, respectively. Note that the definition above contains an abuse of
notation, as ρ is evaluated over an n-dimensional vector: we understand the
latter operation component-wise, that is ρ([x1, . . . , xn]) ∶= [ρ(x1), . . . , ρ(xn)].

Definition 2 Let m,n ≥ 1. A neural network of depth l ≥ 0 is a map Φ ∶ Rm →
Rn obtained via composition of l + 1 layers, Φ = Ll+1 ○ . . . L1.

The layers of a neural network do not need to share the same activation
function and usually the output layer, Ll+1, does not have one. Architectures
with l = 1 are known as shallow networks, while the adjective deep is used when
l ≥ 2. We also allow for the degenerate case in which the network reduces to
a single layer (l = 0). The classical pipeline for building a neural network
model starts by fixing the architecture, that is the number of layers and their
input-output dimensions. Then, the weights and biases of all layers are tuned
accordingly to some procedure, which typically involves the optimization of a
loss function computed over a given training set.
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2.2 Mesh-Informed layers

We consider the following framework. We are given a bounded domain Ω ⊂ Rd,
not necessarily convex, and two meshes having respectively stepsizes h,h′ > 0
and vertices

{xj}Nh

j=1, {x
′
i}

Nh′

i=1 ⊂ Ω.

The two meshes can be completely different and they can be either struc-
tured or unstructured. To each mesh we associate the corresponding space of
piecewise-linear Lagrange polynomials, namely Vh, Vh′ ⊂ L2(Ω). Our purpose
is to introduce a suitable notion of mesh-informed layer L ∶ Vh → Vh′ that ex-
ploits the apriori existence of Ω. In analogy to Definition 1, L should have Nh

neurons at input and Nh′ neurons at output, since Vh ≅ RNh and Vh′ ≅ RNh′ .
However, thinking of the state spaces as either comprised of functions or vec-
tors is fundamentally different: while we can describe the objects in Vh as
regular, smooth or noisy, these notions have no meaning in RNh , and simi-
larly for Vh′ and RNh′ . Furthermore, in the case of PDE applications, we are
typically not interested in all the elements of Vh and Vh′ , rather we focus on
those that present spatial correlations coherent with the underlying physics.
Starting from these considerations, we build a novel layer architecture that can
meet our specific needs. In order to provide a rigorous definition, and directly
extend the idea to higher order finite element spaces, we first introduce some
preliminary notation. For the sake of simplicity, we will restrict to simplicial
finite elements.

Definition 3 Let Ω ⊂ Rd be a bounded domain. Let M = {Ki}i∈I be a
collection of d-simplices in Ω, that is K ⊂ Ω for each K ∈M. For each element
K ∈M, define the quantities

hK ∶= diam(K), RK ∶= sup {diam(S) ∣ S is a ball contained in K} .

We say thatM is an admissible mesh of stepsize h > 0 over Ω if the following
conditions hold.

1. The elements are exhaustive, that is

dist(Ω, ⋃
K∈M

K) ≤ h

where dist(A,B) = supx∈A infy∈B ∣x − y∣ is the distance between A and B.

2. Any two distinct elements K,K ′ ∈ M have disjoint interiors. Also, their
intersection is either empty or results in a common face of dimension s < d.

4. The elements are non degenerate and their maximum diameter equals h,
that is

min
K∈M

RK > 0 and max
K∈M

hK = h.
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Fig. 1: Comparison of a dense layer (cf. Definition 1) and a mesh-informed layer (cf. Def-
inition 5). The dense model features 3 neurons at input and 5 at output. All the neurons
communicate: consequently the weight matrix of the layer has 15 active entries. In the
mesh-informed counterpart, neurons become vertices of two meshes (resp. in green and red)
defined over the same spatial domain Ω. Only nearby neurons are allowed to communicate.
This results in a sparse model with only 9 active weights.

In that case, the quantity

σ = min
K∈M

hK

RK
< +∞,

is said to be the aspect-ratio of the mesh.

Definition 4 Let Ω ⊂ Rd be a bounded domain and let M = {Ki}i∈I be
a mesh of stepsize h > 0 defined over Ω. For any positive integer q, we write
Xq

h(M) for the finite element space of piecewise-polynomials of degree at most
q, that is

Xq
h(M) ∶= {v ∈ C(Ω) s.t. v∣K is a polynomial of degree at most q ∀K ∈M}.

Let Nh = dim(Xq
h(M)). We say that a collection of nodes {xi}Nh

i=1 ⊂ Ω and a

sequence of functions {φi}Nh

i=1 ⊂ X
q
h(M) define a Lagrangian basis of Xq

h(M)
if

φj(xi) = δi,j i, j = 1, . . . ,Nh.

We write Πh,q(M) ∶Xq
h(M)→ RNh for the function-to-nodes operator,

Πh,q(M) ∶ v → [v(x1), . . . , v(xNh
)],

whose inverse is

Π−1h,q(M) ∶ c→
Nh

∑
i=1

ciφi.

We now have all we need to introduce our concept of mesh-informed layer.
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Definition 5 Let Ω ⊂ Rd be a bounded domain. Let M and M′ be two
meshes of stepsizes h and h′ respectively. Let Vh =Xq

h(M) and Vh′ =Xq′

h′(M)
be the input and output spaces respectively. Denote by {xj}Nh

j=1 and {x′i}
Nh′

i=1
the nodes associated to a Lagrangian basis of Vh and Vh′ respectively. A mesh-
informed layer with activation function ρ ∶ R → R and support r > 0 is a map
L ∶ Vh → Vh′ of the form

L =Π−1h′,q′(M′) ○ L̃ ○Πh,q(M)

where L̃ ∶ RNh → RN ′h is a layer with activation ρ whose weight matrix W
satisfies the additional sparsity constraint below,

∣xj − x′i∣ > r Ô⇒ Wi,j = 0.

As a matter of fact, the projections Πh,q(M) and Π−1h′,q′(M′) have the sole
purpose of making the definition rigorous. What actually defines the mesh-
informed layer L are the sparsity patterns imposed to L̃. In fact, the idea
is that these constraints should help the layer in producing outputs that are
more coherent with the underlying spatial domain (cf. Figure 1). In light of
this intrinsic duality between L and L̃, we will refer to the weights and biases
of L as to those that are formally defined in L̃. Also, for better readability,
from now on we will use the notation

L ∶ Vh
rÐ→ Vh′ ,

to emphasize that L is a mesh-informed layer with support r. We note that
dense layers can be recovered by letting r ≥ diam(Ω), while lighter architecture
are obtained for smaller values of r. The following result provides an explicit
upper bound on the number of nonzero entries in a mesh-informed layer.

Proposition 1 Let Ω ⊂ Rd be a bounded domain. Let M and M′ be two
meshes having respectively stepsizes h,h′ and aspect-ratios σ,σ′. Let

hmin ∶= min
K∈M

hK , h′min ∶= min
K′∈M′

hK′

be the smallest diameters within the two meshes respectively. Let L ∶ Vh
rÐ→ Vh′

be a mesh-informed layer of support r > 0, where Vh ∶= Xq
h(M) and Vh′ ∶=

Xq′

h′(M′). Then,

∣∣W∣∣0 ≤ C (σσ′
r

hminh′min

)
d

where ∣∣W∣∣0 is the number of nonzero entries in the weight matrix of L, while
C = C(Ω,d, q, q′) > 0 is a constant depending only on Ω, d, q and q′.
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Proof Let Nh ∶= dim(Vh), Nh′ ∶= dim(Vh′) and let {xj}Nh

j=1,{x′i}
Nh′

i=1 be the
Lagrangian nodes in the two meshes respectively. Let ω ∶= ∣B(0,1)∣ be the
volume of the unit ball in Rd. Since minK′ RK′ ≥ h′min/σ′, the volume of an
element in the output mesh is at least

vmin(h′) ∶= (h′min/σ′)dω.

It follows that, for any x ∈ Ω, the ball B(x, r) can contain at most

ne(r, h′) ∶=
ωrd

vmin(h′)
= ( σ′r

h′min

)
d

elements of the output mesh. Therefore, the number of indices i such that
∣x′i−xj ∣ ≤ r is at most ne(r, h′)c(d, q′), where c(d, q′) ∶= (d+q′)!/(q′!d!) bounds
the number of degrees of freedom within each element. Finally,

∣∣W∣∣0 ≤ Nhne(r, h′)c(d, q′) ≤

≤ c(d, q)∣Ω∣
vmin(h)

ne(r, h′)c(d, q′) =
c(d, q)c(d, q′)∣Ω∣

ω
⋅ ( σσ′r

hminh′min

)
d

⊓⊔

Starting from here, we define MINNs by composition, with a possible in-
terchange of dense and mesh-informed layers. Consider for instance the case in
which we want to define a Mesh-Informed Neural Network Φ ∶ Rp → Vh ≅ RNh

that maps a low-dimensional input, say p ≪ Nh, to some functional output.
Then, using our notation, one possible architecture could be

Φ ∶ Rp ÐÐÐ→ V4h

≅
RN4h

r = 0.5ÐÐÐÐ→ V2h

≅
RN2h

r = 0.25ÐÐÐÐ→ Vh

≅
RNh

, (1)

The above scheme defines a DNN of depth l = 2, as it is composed of 3 layers.
The first layer is dense (Definition 1) and has the purpose of preprocessing
the input while mapping the data onto a coarse mesh (stepsize 4h). Then,
the remaining two layers perform local transformations in order to return the
desired output. Note that the three meshes need not to satisfy any hierar-
chy. Also, the corresponding finite element spaces need not to share the same
polynomial degree. Clearly, (1) can be generalized by employing any number of
layers, as well as any sequence of stepsizes h1, . . . , hn and supports r1, . . . , rn−1.
The choice of the hyperparameters remains problem specific, but a good rule
of thumb is to decrease the supports as the mesh becomes finer, so that the
network complexity is kept under control (cf. Proposition 1).
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2.3 Implementation details

The practical implementation of mesh-informed layers is straightforward and
can be done as follows. Given Ω ⊂ Rd, h,h′ > 0, let X ∈ RNh×d and X′ ∈ RNh′×d

be the matrices containing the degrees of freedom associated to the chosen
finite element spaces, that is Xj,. ∶= [Xj,1, . . . ,Xj,d] are the coordinates of the
jth node in the input mesh, and similarly for X′. In order to build a mesh-
informed layer of support r > 0, we first compute all the pairwise distances
Di,j ∶= ∣Xj,. −X′i,.∣2 among the nodes in the two meshes. This can be done
efficiently using tensor algebra, e.g.

D =
d

∑
l=1
(eNh′

⊗X.,l −X′.,l ⊗ eNh
)○2

where X.,l is the lth column of X, ek ∶= [1, . . . ,1] ∈ Rk, ⊗ is the tensor product
and ○2 is the Hadamard power. We then extract the indices {(ik, jk)}dofk=1 for
which Dik,jk ≤ r2 and initialize a weight vector w ∈ Rdof. This allows us to
declare the weight matrix W in sparse format by letting the nonzero entries be
equal towk at position (ik, jk), so that ∣∣W∣∣0 = dof. Preliminary to the training
phase, we fill the values of w by considering an adaptation of the so-called He
initialization. More precisely, we sample independently the values w1, . . . ,wdof

from a normal distribution having mean zero and variance 1/∣∣W∣∣0.

2.4 How MINNs relate to existing Deep Learning literature

It is worth to comment on the differences and similarities that MINNs share
with other Deep Learning approaches. We discuss them below.

2.4.1 Relationship to CNNs and GNNs

Mesh-Informed architectures can work at different resolutions simultaneously,
in a way that is very similar to CNNs. However, their construction comes
with multiple advantages. First of all, Definition 5 adapts to any geometry,
while convolutional layers typically operate on square or cubic input-output.
Furthermore, convolutional layers use weight sharing, meaning that all parts
of the domain are treated in the same way. This may not be an optimal
choice in some applications, such as those involving PDEs, as we may want
to differentiate our behavior over Ω (for instance near of far away from the
boundaries).

Conversely, MINNs share with GNNs the ability to handle general ge-
ometries. As a matter of fact, we mention that these architectures have been
recently applied to mesh-based data, see e.g. [10,17,28,31]. With respect to
GNNs, the main advantage of MINNs lies in their capacity to work at differ-
ent fidelity levels. This fact, which essentially comes from the presence of an
underlying spatial domain, has at least two advantages: it favors resolution
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independence and it increases the interpretability of hidden layers (now the
number of neurons is not arbitrary but comes from the chosen discretization).
In this sense, MINNs exploit meshing strategies as auxiliary tools and they
appear to be a natural choice for learning discretized functional outputs.

2.4.2 Relationship to DeepONets and Neural Operators

Recently, some new DNN models have been proposed for operator learning.
One of these are DeepONets [24], a mesh-free approach that is based on an
explicit decoupling between the input and the space variable. More precisely,
DeepONets consider a representation of the following form

(Ghf)(x) ≈ Ψ(f) ⋅ ϕ(x),

where ⋅ is the dot product, Ψ ∶ Vh → Rm is the so-called trunk-net, and
ϕ ∶ Ω → Rm is the branch-net. DeepONets have been shown capable of learn-
ing nonlinear operators and are now being extended to include apriori physical
knowledge, see e.g. [29]. We consider MINNs and DeepONets as two funda-
mentally different approaches that answer different questions. DeepONets were
originally designed to process input data coming from sensors and, being mesh-
free, they are particularly suited for those applications where the output is only
partially known or observed. In contrast, MINNs are rooted on the presence of
a high fidelity model Gh and are thus better suited for tasks such as reduced
order modeling. Another difference lies in the fact that DeepONets include ex-
plicitly the dependence on the space variable x. This can then make it harder
to process general domains and include additional information such as bound-
ary data. Conversely, MINNs can easily handle this kind of issues thanks to
their global perspective.

In this sense, MINNs are much closer to the so-called Neural Operators, a
novel class of DNN models recently proposed by Kovachki et al. [20]. Neural
Operators are an extension of classical DNNs that was developed to operate
between infinite dimensional spaces. These models are ultimately based on
Hilbert-Schmidt operators, meaning that their linear part, that is ignoring
activations and biases, is of the form

W ∶ f → ∫
Ω
k(⋅,x)f(x)dx (2)

where k ∶ Ω ×Ω → R is some kernel function that has to be identified during
the training phase. Clearly, the actual implementation of Neural Operators
is carried out in a discrete setting and integrals are replaced with suitable
quadrature formulas.

The construction of Neural Operators is of full generality, to the point
that other approaches such as DeepONets [24] can be seen as a special case.
Similarly, we note that MINNs also form a special class of Neural Operators.
Indeed, a rough Monte Carlo-type estimate of (2) would yield

(Lf)(x′i) = ∫
Ω
k(x′i,x)f(x)dx ≈

∣Ω∣
Nh
∑
j

k(x′i,xj)f(xj).
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If we let {xj}j and {x′i}i be the nodes in the two meshes, then the constraint
in Definition 5 becomes equivalent to the requirement that k is supported
somewhere near the diagonal, that is supp(k) ⊆ {(x,x + ε) with ∣ε∣ ≤ r}.

We believe that these parallels are extremely valuable, as they indicate the
existence of a growing scientific community with common goals and interests.

3 Numerical experiments

We provide empirical evidence that the sparsity introduced by MINNs can be
of great help in learning maps that involve functional data, such as nonlinear
operators, showing a reduced computational cost and better generalization
capabilities. We first detail the setting of each experiment alone, specifying
the corresponding operator to be learned and the adopted MINN architecture.
Then, at the end of the current Section, we discuss the numerical results.

Throughout all our experiments, we adopt a standardized approach for
designing and training the networks. In general, we always employ the 0.1-
leakyReLU activation for all the hidden layers, while we do not use any acti-
vation at the output. Every time a mesh-informed architecture is introduced,
we also consider its dense counterpart, obtained without imposing the spar-
sity constraints. Both networks are then trained following the same criteria,
so that a fair comparison can be made. As loss function, we always consider
the mean square error computed with respect to the L2 norm, that is

Ef∼P∣∣Ghf −Φ(f)∣∣2L2(Ω) (3)

where Gh is the (discretized) operator to be learned and Φ is the DNN model.
Here, P is some given probability distribution over the input space Θ, which
we allow to be either finite or infinite dimensional.

The optimization of the loss function is performed via the L-BFGS opti-
mizer, with learning rate always equal to 1 and no batching. What may change
from case to case are the network architecture, the number of epochs, and the
size of the training set. After training, we compare mesh-informed and dense
architectures by evaluating their performance on 500 unseen samples (test set),
which we use to compute an unbiased estimate of the relative error below,

Ef∼P [
∣∣Ghf −Φ(f)∣∣L2(Ω)
∣∣Ghf ∣∣L2(Ω)

] . (4)

All the code was written in Python 3, mainly relying on Pytorch for the im-
plementation of DNNs. Instead, we employed the FEniCS library for defining
meshes and, when needed, solving PDEs.
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a) b) c) d)

Fig. 2: Domains considered for the numerical experiments in Section 3. Panel a): upto
boundaries, Ω is the difference of two circles, B(0,1) and B(x0,0.7), where x0 = (−0.75,0).
Panel b): A polygonal domain obtained by removing the rectangles [−0.75,0.75] × [0.5,1.5]
and [−0.75,0.75] × [−1.5,−0.5] from (−2,2) × (−1.5,1.5). Panel c): the unit circle B(0,1).
Panel d): Ω is obtained by removing a square, namely [−0.4,0.4]2, from the unit circle
B(0,1).

3.1 Description of the benchmark operators

Learning a parametrized family of functions

Let Ω be the domain defined as in Figure 2a. For our first experiment, we
consider a variation of a classical problem concerning the calculation of the
so-called signed distance function of Ω. This kind of functions are often en-
countered in areas such as computer vision [26] and real-time rendering [1]. In
particular, we consider the following operator,

G ∶ Θ ⊂ R3 → L2(Ω)

G ∶ µ→ uµ(x) ∶= min
y∈∂Ω,
y2>µ1

∣y −Aµ3x∣ex1µ2

where µ = (µ1, µ2, µ3) is a finite dimensional vector, and Aµ3 = diag(1, µ3). In
practice, the value of uµ(x) corresponds to the (weighted) distance between
the dilated point Aµ3x and the truncated boundary ∂Ω ∩ {y ∶ y2 > µ1}.

As input space we consider Θ ∶= [0,1] × [−1,1] × [1,2], endowed with the
uniform probability distribution. Since the input is finite-dimensional, we can
think of G as to the parametrization of a 3-dimensional hypersurface in L2(Ω).
We discretize Ω using P1 triangular finite elements with mesh stepsize h = 0.02,
resulting in the high-fidelity space Vh ∶=≅ R13577. To learn the discretized
operator Gh, we employ the following MINN architecture

R3 → R100 → V9h
r=0.4ÐÐÐ→ V3h

0.2ÐÐ→ Vh.

The corresponding dense counterpart, which servers as benchmark, is obtained
by removing the sparsity constraints (equivalently, by letting the supports go
to infinity). We train the networks on 50 samples and for a total of 50 epochs.
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Learning a local nonlinear operator

As a second experiment, we learn a nonlinear operator that is local with respect
to the input. Let Ω be as in Figure 2b. We consider the infinitesimal area
operator G ∶H1(Ω)→ L2(Ω),

G ∶ u→
√
1 + ∣∇u∣2.

Note in fact that, if we associate to each u ∈H1(Ω) the cartesian surface

Su ∶= {(x1, x2, u(x1, x2)} ⊂ R3,

then Gu yields a measure of the area that is locally spanned by that surface,
in the sense that

∫
Su

ϕ(s)ds = ∫
Ω
ϕ(u(x)) (Gu) (x)dx

for any continuous map ϕ ∶ Su → R. Over the input space Θ ∶= H1(Ω) we
consider the probability distribution P induced by a Gaussian process with
mean zero and covariance kernel

Cov(x,y) = 1

∣Ω∣ exp(−
1

2
∣x − y∣2) .

We discretize Ω using a triangular mesh of stepsize h = 0.045 and P1 finite
elements, which results in a total of Nh = 11266 vertices. To sample from
the Gaussian process we truncate its Karhunen-Loeve expansion at k = 100.
Conversely, the output is computed numerically by exploiting the high-fidelity
mesh as a reference.

To learn Gh we use the MINN architecture below,

Vh
r=0.15ÐÐÐÐ→ V3h

r=0.3ÐÐÐ→ V3h
r=0.15ÐÐÐÐ→ Vh,

which we train for 50 epochs over 500 snapshots.

Learning a nonlocal nonlinear operator

Since MINNs are based on local operations, it is of interest to assess whether
they can also learn nonlocal operators. To this end, we consider the problem
of learning the so-called Hardy-Littlewood Maximal Operator G ∶ L2(Ω) →
L2(Ω),

(Gf) (x) ∶= sup
r>0 ⨏∣y−x∣<r

∣f(y)∣dy

which is known to be a continuous nonlinear operator from L2(Ω) onto itself
[25]. Here, we let Ω ∶= B(0,1) ⊂ R2 be the unit circle. Over the input space
Θ ∶= L2(Ω) we consider the probability distribution P induced by a Gaussian
process with mean zero and covariance kernel

Cov(x,y) = exp (−∣x − y∣2) .
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As a high-fidelity reference, we consider a discretization of Ω via P1 trian-
gular finite elements of stepsize h = 0.033, resulting in a state space Vh with
Nh = 7253 degrees of freedom. As for the previous experiment, we sample
from P by considering a truncated Karhunen-Loeve expansion of the Gaus-
sian process (100 modes). Conversely, the true output u→ Gh(u) is computed
approximately by replacing the suprema over r with a maxima across 50 eq-
uispaced radii in [h,2]. To learn Gh we use a MINN of depth 2 with a dense
layer in the middle,

Vh
r=0.25ÐÐÐÐ→ V2h → V2h

r=0.25ÐÐÐÐ→ Vh.

The idea is that nonlocality can still be enforced through the use of fully
connected blocks, but this are only inserted at the lower fidelity levels to
reduce the computational cost. We train the architectures over 500 samples
and for a total of 50 epochs.

Learning the solution operator of a nonlinear PDE

For our final experiment, we consider the case of a parameter dependent PDE,
which is a framework of particular interest in the literature of Reduced Order
Modeling. In fact, learning the solution operator of a PDE model by means
of neural networks allows one to replace the original numerical solver with
a much cheaper and efficient surrogate, which enables expensive multi-query
tasks such as PDE constrained optimal control, Uncertainty Quantification or
Bayesian Inversion.

Here, we consider a steady version of the so-called porous media equation,
defined as follows

−∇ ⋅ (∣u∣2∇u) + u = f.
The PDE is understood in the domain Ω defined in Figure 2d, and it is com-
plemented with homogeneous Neumann boundary conditions. We define G to
be the data-to-solution operator that maps f → u. This time, we endow the
input space with the push-forward distribution #P induced by the square
map f → f2, where P is the probability distribution associated to a Gaussian
random field with mean zero and covariance kernel

Cov(x,y) = 1

1 + ∣x − y∣2 .

To sample from the latter distribution we exploit a truncated Karhunen-Loeve
expansion of the random field. We set the truncation index to k = 20 as that
is sufficient to fully capture the volatility of the field. For the high-fidelity
discretization, we consider a mesh of stepsize h = 0.03 and P1 finite elements,
resulting in Nh = 5987. Finally, we employ the MINN architecture below,

Vh
r=0.4ÐÐÐ→ V4h → V2h

r=0.2ÐÐÐ→ Vh,

which we train over 500 snapshots and for a total of 100 epochs. Note that, as in
our third experiment, we employ a dense block at the center of the architecture.
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Operator Nh Architecture Test error Gen. error

manifold

Low-dimensional
13’577

Dense

Mesh-Informed

4.78%

4.14%

4.07%

3.08%

Local area operator 11’266
Dense

Mesh-Informed

3.89%

1.49%

2.54%

1.36%

H-L maximal operator 7’253
Dense

Mesh-Informed

6.70%

3.65%

3.09%

1.49%

Nonlinear PDE solver 5’987
Dense

Mesh-Informed

18.53%

4.29%

6.56%

3.03%

Table 1: Comparison of Mesh-Informed Neural Networks and Fully Connected DNNs for
the test cases in Section 3. Nh = number of vertices in the (finest) mesh. Gen. error =
Generalization error, defined as the gap between training and test errors. All reported errors
are intended with respect to the L2-norm, see Equation (4).

This is because the solution operator to a boundary value problem is typically
nonlocal (consider for instance the so-called Green formula for the Poisson
equation).

3.2 Numerical results

Table 1 reports the numerical results obtained across the four experiments.
In general, MINNs perform better with respect to their dense counterpart,
with relative errors that are always below 5%. As the operator to be learned
becomes more and more involved, fully connected DNNs begin to struggle,
eventually reaching an error of 18% in the PDE example. In contrast, MINNs
are able to keep up and maintain their performance. This is also due to the
fact that, having less parameters, MINNs are unlikely to overfit, instead they
can generalize well even in poor data regimes (cf. last column of Table 1).
Consider for instance the first experiment, which counted as little as 50 training
samples. There, the dense model returns an error of 4.78%, of which 4.07%
is due to the generalization gap. This means that the DNN model actually
surpassed the MINN performance over the training set, as their training errors
are respectively of 4.78%−4.07% = 0.71% and 4.14%−3.08% = 1.06%. However,
the smaller generalization gap allows the sparse architecture to perform better
on unseen inputs.

Figures 3 to 6 reports some examples of approximation on unseen input
values. There, we note that dense models tend to have noisy outputs (Figures
4 and 6) and often miscalculate the range of values spanned by the output
(Figures 3 and 5). Conversely, MINNs always manage to capture the main
features present in the actual ground truth.

Nonetheless, Mesh-Informed Neural Networks also allow for a significant
reduction in the computational cost, as reported in Table 2. In general, MINNs
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Fig. 3: Comparison of DNNs and MINNs when learning a low-dimensional manifold µ →
uµ ∈ L2(Ω), cf. Section 3.1. The reported results correspond to the approximations obtained
on an unseen input value µ∗ = [0.42,0.04,1.45].

Fig. 4: Comparison of DNNs and MINNs when learning the local operator u →
√
1 + ∣∇u∣2,

cf. Section 3.1. The reported results correspond to the approximations obtained for an input
instance outside of the training set.

Fig. 5: Comparison of DNNs and MINNs when learning the Hardy-Littlewood Maximal
Operator, cf. Section 3.1. The pictures correspond to the results obtained for an unseen
input instance.

are ten to a hundred times lighter with respect to fully connected DNNs. While
this is not particularly relevant once the architecture is trained (the most heavy
DNN weights as little as 124 Megabytes), it makes a huge difference during the
training phase. In fact, additional resources are required to optimize a DNN
model, as one needs to keep track of all the operations and gradients in order
to perform the so-called backpropagation step. This poses a significant limita-
tion to the use of dense architectures, as the entailed computational cost can
easily exceed the capacity of modern GPUs. For instance, in our experiments,
fully connected DNNs required more than 2 GB of memory during training,
while, depending on the operator to be learned, 10 to 250 MB were suffi-
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Fig. 6: Comparison of DNNs and MINNs when learning the solution operator f → u of
a nonlinear PDE, cf. Section 3.1. The reported results correspond to the approximations
obtained for an input instance f outside of the training set.

Architecture dof Training speed Memory usage

(static) (training)

Dense

Mesh-Informed

21.7M

00.3M

123.5 s/ep

031.5 s/ep

86.9 Mb

01.3 Mb

3.49 Gb

0.01 Gb

Dense

Mesh-Informed

31.0M

00.3M

195.3 s/ep

060.5 s/ep

124.1 Mb

001.0 Mb

4.96 Gb

0.04 Gb

Dense

Mesh-Informed

12.8M

01.0M

83.0 s/ep

33.9 s/ep

51.2 Mb

03.9 Mb

2.05 Gb

0.16 Gb

Dense

Mesh-Informed

12.5M

01.4M

130.7 s/ep

070.0 s/ep

50.0 Mb

05.4 Mb

2.00 Gb

0.22 Gb

Table 2: Comparison of Mesh-Informed Neural Networks and Fully Connected DNNs in
terms of their computational cost. dof = degrees of freedom, i.e. number of parameters to
be optimized during the training phase. Memory usage (static) = bytes required to store
the architecture. Memory usage (optimization) = bytes required to run a single epoch of the
training phase. s/ep = seconds per epoch, M = millions, Mb = Megabytes, Gb = Gigabytes.

cient for MINNs. Clearly, one could also alleviate the computational burden
by exploiting cheaper optimization routines, such as first order optimizers and
batching strategies, however this typically prevents the network from actually
reaching the global minimum of the loss function. In fact, we recall that the
optimization of a DNN architecture is, in general, a non-convex and ill-posed
problem. Of note, despite being 10 to 100 times lighter, MINNs are only 2 to
4 times faster during training. We believe that these results can be improved,
possibily by optimizing the code used to implement MINNs.

4 An application to Uncertainty Quantification

We finally consider an application to Uncertainty Quantification (UQ) involv-
ing a partial differential equation. UQ is an essential aspect of robust mod-
elling, which often involves expensive numerical and statistical routines. In
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this Section, we provide an example on how MINNs can alleviate these costs
by serving as model surrogates in the computational pipeline. In particular,
starting from a suitable PDE model, we address a problem concerning oxygen
transfer in biological tissues.

4.1 Model description

Oxygen is a fundamental constituent of most biological processes. In humans,
oxygen is delivered by the circulatory system from the lungs to the rest of the
body. At the small scales, cells receive oxygen from the vascular network of
capillaries that spread all over the body. An efficient oxygen transfer is funda-
mental to ensure a healthy micro-environment and abnormal values in oxygen
concentration are often associated to pathological scenarios. In particular, low
oxygen supply, the so-called hypoxia, plays an important role in the develop-
ment and treatment of tumors. It has been shown that hypoxic tissue opposes
a resistance to chemotherapy and radiotherapy [6,27]. These issues are caused
by perturbed properties of the tumor blood vessels in terms of morphology
and phenotype. Here, we aim at developing a methodology to assess the role
of vascular morphology on tissue hypoxia. More precisely, we wish to address
the following question: how does the topology of the vascular network relate to
the size of the tissue under hypoxia? We answer this question in the simplified
setting that we describe below.

Within an idealized setting, we consider a portion of a vascularized tissue
Ω ∶= {x ∈ R2 ∶ ∣x∣ < 1}. Let Λ ⊂ Ω be a graph representing the vascular network
of capillaries (cf. Figure 7) and let u ∶ Ω → [0,1] be the oxygen concentration
in the tissue, normalized to the unit value. We model the oxygen transfer from
the network to the tissue with the following equations,

⎧⎪⎪⎨⎪⎪⎩

−α∆u + u = (1 − u)δΛ in Ω

−α∇u ⋅ n = βu on ∂Ω

where α = 0.1 and β = 0.01 are respectively a fixed diffusion and resistance
coefficient, while δΛ is the unique singular measure for which

∫
Ω
v(x)δΛ(dx) =

1

∣Λ∣ ∫Λ v(s)ds

for all v ∈ C(Ω). Here, we denote by ∣Λ∣ ∶= ∫Λ 1ds the total length of the vascular
graph. The first equation in (4.1) describes the diffusion and consumption
of oxygen, balanced accordingly to the amount released from the vascular
network on the right hand side. Finally, the model is closed using resistance
boundary conditions of Robin type.
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Fig. 7: Forward UQ problem (Section 4). Topology of the microvascular network Λ (left)
and corresponding oxygen distribution in the tissue u = uΛ (right). The top and the bottom
rows corresponds respectively to a poorly and a highly vascularized tissue (resp. λ = 1 and
λ = 3). Globally, the two networks provide the same amount of oxygen (cf. Equation 5), but
their topology significantly affects the values of u in the tissue. In the first case (top row),
nearly 31% of the tissue has an oxygen level below the threshold value u∗ ∶= 0.1. Conversely,
only 3% of the tissue reports a low oxygen concentration in the second example.

We understand (4.1) in the weak sense, meaning that define u = uΛ as the
unique solution to the problem below

∫
Ω
α∇u(x) ⋅ ∇v(x)dx + ∫

Ω
u(x)v(x)dx + ∫

∂Ω
βu(s)v(s)ds =

= 1

∣Λ∣ ∫Λ(1 − u(s))v(s)ds (5)

where the above is to be satisfied for all v ∈H1(Ω).

4.2 Uncertainty quantification setting

As we mentioned previously, we are interested in the relationship between Λ
and u. To this end, we introduce the parameter space

Θ ∶= {Λ ⊂ Ω ∶ Λ is the union of finitely many segments}

which consists of all vascular networks. Note that, due to the normalizing factor
1/∣Λ∣ in (5), all the vascular networks actually provide the same global amount
of oxygen. However, as we will see later on, only those vascular graphs that
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are sufficiently spread across the domain can ensure a proper oxygen supply
to the whole tissue (cf. Figure 7). In other words, we explore the influence of
the distribution of the network, rather than its density, on the oxygen level.

The next subsection is devoted to prescribing a suitable discretization of (5)
to work with, and to introduce a class of probability measures {Pλ}λ defined
over Θ. The idea is the following. We will use a macro-scale parameter λ to
describe the general perfusion of the tissue. Higher values of λ will correspond
to a highly vascularized tissue. This means that the topology of the vascular
network will still be uncertain, but the corresponding probability distribution
Pλ will favor dense graphs. Conversely, lower values of λ will describe scenarios
where capillaries are more sparse (see Figure 7, top vs bottom row). This will
then bring us to consider the family of random variables

Qλ ∶=
1

∣Ω∣ ∣{uΛ < 0.1}∣ with Λ ∼ Pλ, (6)

that measure the portion of the tissue under the oxygen threshold 0.1, which
we take as the value under which hypoxia takes place. Our interest will be
to estimate the probability density function of each Qλ and to provide a ro-
bust approximation of their expected value E [Qλ]. While these tasks can be
achieved using classical Monte Carlo, the computational cost is enormous as
it implies solving equation (5) repeatedly. To alleviate this burden, we will
replace the original PDE solver with a suitable MINN architecture trained to
learn the map Λ→ uΛ.

4.3 Discretization and implementation details

For the random generation of vascular networks we exploit Voronoi diagrams
[2]. Let P ∶= {P ⊂ Ω ∣ P finite} be the collection of all points tuples in Ω. To
any P ∈ P, we associate the vascular graph Λ(P ) defined by the edges of the
Voronoi cells generated by P . In this way, we obtain a correspondence P → Θ
given by P → Λ(P ), that we can exploit to prescribe probability measures over
Θ. To this end, let λ > 0 and let Xλ be a Poisson point process over Ω having a
uniform intensity of 10λ. We denote by P̃λ the probability measure induced by
Xλ over P. Then, we define Pλ ∶=#P̃λ as the push-forward measure obtained
via the action P → Λ(P ). This ensures the wished behavior: higher values of λ
tend to generate more points in the domain and, consequently, denser graphs.

We now proceed to discretize the variational problem. As a first step, we
note that the vascular graph Λ is not given in terms of a parametrization, which
makes it harder to compute integrals of the form ∫Λ v(s)ds. As an alternative,
we consider the smoothed approximation below,

∫
Λ
v(s)ds ≈ ∫

Ω
v(x)ϕΛ(x)dx, (7)

where

ϕΛ ∶=
1

ϵ2
max{ϵ − dist(x, Λ),0} .
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Fig. 8: Results for the UQ problem in Section 4. Left panel: expected probability of low
oxygenation, E[Qλ], as a function of the vascularization level λ. Confidence bands are com-
puted pointwise using a 99% confidence level. Right panel: probability distribution of Qλ

for different values of λ. Colors fade from red to purple as λ grows.

Here, ϵ > 0 is a smoothness parameter that we fix to ϵ = 0.05. It is not hard
to prove that, for each v ∈ C(Ω) fixed, the right-hand side of equation (7)
converges to the left hand-side as ϵ→ 0. We refer to the appendix for a detailed
proof. Then, our operator of interest becomes G ∶ ϕΛ → uΛ, and we can proceed
with our usual discretization via P1 Finite Elements. To this end, we discretize
the domain using a triangular mesh of stepsize h = 0.03, which results in
Nh = 7253 degrees of freedom. Then, we allow λ to vary uniformely in [1,10] and
we generate a total of 4500 training snapshots accordingly to the probability
distributions introduced previously. We exploit these snapshots to train the
MINN model below,

Vh
r=0.1ÐÐÐ→ V3h → V3h

r=0.1ÐÐÐ→ Vh,

where the architecture has been defined in analogy to the one employed for the
nonlinear PDE in Section 3.1. The network is trained for a total of 50 epochs
and using the same criteria presented in Section 3.

4.4 Results

Once trained, the Mesh-Informed Neural Network reported an average L2-
error of 4.99%, with errors below 10% for 488 out of 500 test instances. We
considered these results satisfactory and we proceeded to sample a total of
100’000 solutions using our DNN model. More precisely, we considered 100
equally spaced values of λ in [1,10], and for each of those we sampled 1’000
independent solutions. From there, we obtained an i.i.d. sample of size 1’000
for each of the Qλi , where λi = {1 + i/11}99i=0. Results are in Figure 8.

The left panel of Figure 8 shows the approximation of the map λ → E[Qλ].
As the tightness of the 99% confidence bands suggests, the estimate is rather
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robust. Spurious oscillations are most likely due to the numerical errors intro-
duced by the MINN model, rather than from statistical noise. Coherently with
the physical interpretation of λ, we see that the probability of low oxygenation
decreases with the vascular density. Interestingly, although the total intensity
of the source term is normalized to the same level in any configuration, the
networks with higher gaps between neighboring edges are prone to spots of low
oxygen concentration. Not only, the decay appears to be exponential. Further
investigations seem to confirm this intuition, as we obtain an R2-coefficient
of 0.987 when trying to relate λ and logE[Qλ] via linear regression. Con-
versely, the right panel of Figure 8 shows how the probability distribution of
Qλ changes according to λ. The densities are more spread out when λ is near
1, while they shrink towards zero as λ increases. This is coherent with the
physical intuition, and we would expect the density of Qλ to converge to a
Dirac delta as λ→ +∞.

In real scenarios where the physical complexity of a vascularized tissue
is appropriately described as in [27], this analysis would be computationally
viable only with the employment of the MINN model as a surrogate for the
numerical solver. In the case presented here, both the full order model and
the surrogate model are computationally inexpensive. However, the former
required around 2 minutes to generate 1’000 PDE solutions. Conversely, the
trained DNN model was able to provide the same number of solutions in as
little as 3 milliseconds, corresponding to a speed up factor of approximately
40. For multiphysics models where a simulation of a single point in the pa-
rameter space could cost hours of wall computational time, such gain could
enable approaches that would be otherwise unreasonable. Even in the present
simplified setting, such a boost also makes up for the computational effort
required to train the network. In fact: (i) collecting the training snapshots
took 575.96 seconds, (ii) training the MINN model required 125.32 seconds,
(iii) generating the 100’000 new solutions took 0.3 seconds. In contrast, the
numerical solver would generate at most ≈ 5’500 solutions within the same
amount of time. These considerations support the interest in further develop-
ing model order reduction techniques based on deep neural networks that are
robust for general spatial domains, such as MINNs. In fact, we are currently
developing model reduction techniques applied to realistic models of the vas-
cular microenvironment that leverage on the DL-ROM framework, previously
developed in [11–13], combined with the efficiency of MINNs.

5 Conclusions

In this paper, we have introduced Mesh-Informed Neural Networks (MINNs),
a novel class of sparse DNN models that can be used to learn general opera-
tors between infinite dimensional spaces. The approach is based on an apriori
pruning strategy that is obtained by embedding the hidden states into discrete
functional spaces of different fidelities. Despite being very easy to implement,
MINNs show remarkable advantages with respect to dense architectures, such
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as a massive reduction in the computational costs and an increased ability to
generalize over unseen samples. This is coherent with the results available in
the pruning literature [4], even though the setting differs from the one consid-
ered thereby.

We have tested MINNs over a large variety of scenarios, going from low
dimensional manifolds to parameter dependent PDEs, showing that these ar-
chitectures can learn nonlinear operators for general shapes of the underlying
spatial domain. This opens a wide new range of research directions that we
wish to investigate further in future works. For instance, one could test the use
of MINNs in more sophisticated Deep Learning based Reduced Order Models
for PDEs (DL-ROMs), such as those in [11–13,23]. Finally, considering how
MINNs are actually built, it may be interesting to see whether one can take
advantage of multi-fidelity strategies during the training phase, as in [19].
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Appendix

Lemma 1 Let Ω be a Lipschitz domain. Let Λ ⊂ Ω be the union of finitely many segments,
where each segment intersects ∂Ω in at most two points (the extremes). For any fixed
v ∈ C(Ω) one has

1

ϵ2
∫
Ω
v(x)max{ϵ − dist(x, Λ),0}dx→ ∫

Λ
v(s)ds as ϵ ↓ 0+.

Proof Let φϵ
Λ be the (unscaled) kernel

φϵ
Λ(x) ∶=max{ϵ − dist(x, Λ),0}.

By definition, we note that φϵ
Λ vanishes outside of the set Λ +B(0, ϵ) ∶= {x + ϵv ∣ x ∈ Λ, v ∈

B(0,1)}. We now proceed in three steps.

Step 1. We start by proving that the lemma holds whenever Λ is composed by a single
segment. Without loss of generality, we let Λ = [0,1] × {0}. For the sake of simplicity, we
further assume that Λ ∩ ∂Ω = ∅. The case in which Λ has an extreme on the boundary can
be handled similarly by exploiting the Lipschitz regularity of ∂Ω. Let ϵ < dist(Λ,∂Ω), so
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that Λ +B(0, ϵ) ⊂ Ω. By direct computation we have

∫
Ω
v(x)φϵ

Λ(x)dx =
1

ϵ2
∫
Λ+B(0,ϵ)

v(x)φϵ
Λ(x)dx =

= 1

ϵ2
∫
Aϵ∪Bϵ

v(x)φϵ
Λ(x)dx +

1

ϵ2
∫
[0,1]×[−ϵ,ϵ]

v(x)φϵ
Λ(x)dx

where Aϵ and Bϵ are two half circles of radius ϵ respectively centered at the extremes of
the segment Λ. It is easy to see that the first contribute vanishes as ϵ ↓ 0+. In fact, since
∣∣φϵ

Λ∣∣∞ = ϵ,
∣ 1
ϵ2
∫
Aϵ∪Bϵ

v(x)φϵ
Λ(x)dx∣ ≤

1

ϵ2
∣∣v∣∣∞ ⋅ ϵ∣Aϵ ∪Bϵ∣ = πϵ∣∣v∣∣∞.

Conversely, for the second term we have

∫
1

0

1

ϵ2
∫

ϵ

−ϵ
v(x1, x2)φϵ

Λ(x1, x2)dx2dx1 = ∫
1

0

1

ϵ2
∫

ϵ

−ϵ
v(x1, x2)(ϵ − ∣x2∣)dx2dx1 =

= ∫
1

0

1

ϵ2
∫

1

−1
v(x1, ϵz)(ϵ − ϵ∣z∣)ϵdzdx1 = ∫

1

0
∫

1

−1
v(x1, ϵz)(1 − ∣z∣)dzdx1.

By letting ϵ ↓ 0+ we then get

∫
1

0
∫

1

−1
v(x1,0)(1 − ∣z∣)dzdx1 = (∫

Λ
v(s)ds)(∫

1

−1
(1 − ∣z∣)dz) = ∫

Λ
v(s)ds.

Step 2. Let Λ = L1 ∪ ⋅ ⋅ ⋅ ∪Ln be given by the union of n segments. For any i = 1, . . . , n, let
L̂i ∶= {x ∈ Ω ∣ dist(x, Li) < dist(x, Λ ∖Li)}. We prove the following auxiliary result,

∣(Ω ∖ L̂i) ∩ (Li +B(0, ϵ))∣ = o(ϵ2).

To see this, we note that, upto sets of measure zero,

(Ω ∖ L̂i) ∩ (Li +B(0, ϵ)) = (L̂1 ∪ . . . L̂i−1 ∪ L̂i+1 ∪ . . . L̂n) ∩ (Li +B(0, ϵ)).

It is then sufficient to prove that ∣L̂j ∩ (Li + B(0, ϵ))∣ = o(ϵ2) for all j independently. If
Li ∩Lj = ∅, the proof is trivial. Conversely, if the two segments intersect, let θ be the angle

between the two lines. It is easy to see that the intersection L̂j ∩ (Li +B(0, ϵ)) is contained
in a triangle of height ϵ and width ϵ/ tan(θ/2) + ϵ tan(θ/2). The conclusion follows.

Step 3. Let Λ = L1 ∪ ⋅ ⋅ ⋅ ∪ Ln and define the regions L̂1, . . . L̂n as in the previous step.
Fix any v ∈ C(Ω). Then

1

ϵ2
∫
Ω
v(x)φϵ

Λ(x)dx =
1

ϵ2

n

∑
i=1
∫
L̂i

v(x)φϵ
Λ(x)dx =

n

∑
i=1

1

ϵ2
∫
L̂i

v(x)φϵ
Li
(x)dx.

Therefore, we can prove the original claim by showing that 1
ϵ2 ∫L̂i

v(x)φϵ
Li
(x)dx→ ∫Li

v(s)ds
for each i. At this purpose, fix any i = 1, . . . , n. We have

∣ 1
ϵ2
∫
Ω
v(x)φϵ

Li
(x)dx − 1

ϵ2
∫
L̂i

v(x)φϵ
Li
(x)dx∣ ≤ 1

ϵ2
∫
Ω∖L̂i

∣v(x)∣∣φϵ
Li
(x)∣dx ≤

≤ 1

ϵ2
∣∣v∣∣∞ ⋅ ϵ∣(Ω ∖ L̂i) ∩ (Li +B(0, ϵ))∣ = o(ϵ)

and the conclusion follows from Step 1. ⊓⊔
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