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Abstract

Many applications in computational physics involve approximating problems with microstructure,
characterized by multiple spatial scales in their data. However, these numerical solutions are often
computationally expensive due to the need to capture fine details at small scales. As a result, sim-
ulating such phenomena becomes unaffordable for many-query applications, such as parametrized
systems with multiple scale-dependent features. Traditional projection-based reduced order mod-
els (ROMs) fail to resolve these issues, even for second-order elliptic PDEs commonly found in
engineering applications. To address this, we propose an alternative nonintrusive strategy to build
a ROM, that combines classical proper orthogonal decomposition (POD) with a suitable neural
network (NN) model to account for the small scales. Specifically, we employ sparse mesh-informed
neural networks (MINNs), which handle both spatial dependencies in the solutions and model
parameters simultaneously. We evaluate the performance of this strategy on benchmark problems
and then apply it to approximate a real-life problem involving the impact of microcirculation in
transport phenomena through the tissue microenvironment.

Keywords: reduced order modeling, finite element approximation, neural networks, deep
learning, embedded microstructure, microcirculation

1. Introduction

The repeated solution of differential problems required to describe, forecast, and control the
behavior of a system in multiple virtual scenarios is a computationally extensive task if relying
on classical, high-fidelity full order models (FOMs) such as, e.g., the finite element method, when
very fine spatial grids and/or time discretizations are employed to capture the detailed behavior
of the solution. The presence of multiple (spatial and/or temporal) scales affecting problem’s
data and its input parameters – such as, e.g., material properties or source terms included in the
physical model – makes this task even more involved, and is a common issue whenever dealing
with, e.g., biological models [1, 2, 3], structural mechanics [4, 5] as well as environmental flows
[6, 7], just to make a few examples. Reduced order modeling techniques provide nowadays a wide
set of numerical strategies to solve parametrized differential problems in a rapid and reliable way.
For instance, in the case of problems where the microstructure is characterized by slender fibers
immersed into a continuum, reduced order models based on dimensional reduction of the fibers
have been successfully adopted, in the framework of mixed dimensional problem formulations,
see, e.g., [8, 9, 10]. However, given the increasing complexity of the problems that need to be
addressed, mixed dimensional formulations are no longer sufficient; indeed, they actually represent
the starting point for a second level of model reduction that is addressed by our work.

Physics-based ROMs such as, e.g., the reduced basis (RB) method [11, 12], provide a mathe-
matically rigorous framework to build ROMs involving a linear trial subspace, or reduced basis –
obtained, e.g., through proper orthogonal decomposition (POD) on a set of FOM snapshots – to
approximate the solution manifold, and a (Petrov-)Galerkin projection to derive the expression
of the ROM. Provided the problem operators depend affinely on the input parameters, a suitable
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offline-online splitting ensures a very fast assembling and solution of the ROM during the online
testing stage, once the linear subspace and the projected reduced operators have been computed
and stored during the offline training stage.

The presence of involved, spatially-dependent, input parameters representing, e.g., diffusivity
fields or distributed force fields within the domain where the problem is set, usually makes the
offline-online splitting not so straightforward because of their high dimension and (potentially,
highly) nonlinear nature of the parameter-to-solution map. To be consistent with the usual for-
mulation of ROMs, we will refer, throughout the paper, to space-varying fields representing some
problem inputs as to input parameters, despite these latter usually denote vectors of quantities.
These features might impact on the reducibility of problems with microstructure with linear ROMs
at least in two ways: (i) linear trial subspaces might have large dimension, thus not really reduc-
ing the complexity of the problem; (ii) classical hyper-reduction techniques, such as the (discrete)
empirical interpolation method (DEIM) [13, 14, 15, 16] or the energy-conserving sampling and
weighting (ECSW) method [17, 18], usually employed to speed up the ROM assembling, can also
suffer from severe computational costs, and result in intrusive procedures.

To overcome these drawbacks, alternative data-driven methods can be used for the approx-
imation of the RB coefficients without resorting to (Galerkin) projection. In these cases, the
FOM solution is projected onto the RB space and the combination coefficients are approximated
by means of a surrogate model, exploiting, e.g., radial basis function (RBF) approximation [19],
polynomial chaos expansions [20], artificial neural networks (NNs) [21, 22, 23], or Gaussian process
regression (GPR) [24, 25, 26, 27]. The high-fidelity solver is thus used only offline to generate the
data required to build the reduced basis, and then to train the surrogate model. Non-intrusive
POD-based approaches using RBFs to interpolate the ROM coefficients have been proposed in,
e.g., [19, 28, 29]. In a seminal contribution, Hesthaven and Ubbiali [21] have instead employed
NNs to build a regression model to compute the coefficients of a POD-based ROM, in the case of
steady PDEs; a further extension to time-dependent nonlinear problems, i.e., unsteady flows, has
been addressed in [30]; see also, e.g., [31, 32] for the use of alternative machine learning strate-
gies to approximate the POD coefficients. We will refer hereon to this class of approaches as to
POD-NN methods. POD with GP regression have been used to build ROMs by Guo et al. in [24]
to address steady nonlinear structural analysis, as well as for time-dependent problems [25]. A
detailed comparison among non-intrusive ROMs employing RBF, ANN, and GP regressions can
be found in, e.g., [33]; see instead [34, 35] for an alternative use of NNs to perform regression in
the context of multi-fidelity methods, capable of leveraging models with different fidelities. These
latter may involve data-driven projection-based [36, 37] ROMs or more recently developed deep
learning-based ROMs [38, 39, 40, 41]. In these latter cases, POD has been replaced by (e.g.,
convolutional) autoencoders to enhance dimensionality reduction of the solution manifold, relying
on (deep) feedforward NNs to learn the reduced dynamics onto the reduced trial manifold.

Despite the advantages they provide compared with dense architectures – in terms of costs
and size of the optimization problem to be solved during training – convolutional NNs cannot
handle general geometries and they might become inappropriate as soon as the domain where the
problem is set is not an hypercube, although some preliminary attempts to generalize CNN in
this direction have recently appeared [42]. In the case of problems with microstructure, this issue
usually arises when attempting at reducing the dimensionality of spatially distributed parameters
using DNNs rather than POD as, e.g., the DEIM would do – provided a linear subspace built
through POD is still employed to reduce the solution manifold. For this reason, in this paper we
rely on Mesh-Informed Neural Networks (MINNs), a class of architectures recently introduced in
[43] and specifically tailored to handle mesh based functional data. The driving idea behind MINNs
is to embed hidden layers into discrete functional spaces of increasing complexity, obtained through
a sequence of meshes defined over the underlying spatial domain. This approach leads to a natural
pruning strategy, whose purpose is to inform the model with the geometrical knowledge coming
from the domain. As shown through several examples in [43], MINNs offer reduced training times
and better generalization capabilities, making them a competitive alternative to other operator
learning approaches, such as DeepONets [44] and Fourier Neural Operators [45]. Our purpose is
to employ MINNs to enable the design of sparse architectures aiming at feature extraction from
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space-varying parameters that define the problem’s microstructure.
In this paper we propose a new strategy to tackle parametrized problems with microstructure,

combining a POD-NN method to build a reduced order model in a nonintrusive way and MINNs to
build a closure model capable of integrating in the resulting approximation the information com-
ing from mesh based functional data, in order to avoid to deal with a very large number of POD
modes in presence of complex microstructures. Such a problem arises, e.g., when describing oxygen
transfer in the microcirculation by including blood flow and hematocrit transport coupled with
the interstitial flow, oxygen transport in the blood and the tissue, described by the vascular-tissue
exchange. The presence of microvasculature, described in terms of a (varying) graph-like structure
within the domain, requires the use of a NN-based strategy to reduce the dimensionality of such
data, thus calling into play MINNs, yielding a strategy we refer to as a POD-MINN method. To
account for the neglected scales at the POD level, and correct the POD-MINN approximation to
enhance its accuracy without further increasing its dimension, we equip the POD-MINN method
with a closure model, ultimately yielding a strategy we refer to as a POD-MINN+ approximation.

The structure of the paper is as follows. In Sect. 2 we formulate the class of problems with
microstructure we focus on in this paper, introducing their high-fidelity approximation by the finite
element method, recalling how classical projection-based ROMs are formulated, and showing their
main limitations. In Sect. 3 we describe how to take advantage of mesh-informed neural networks
to tackle problems with microstructure, while in Sect. 4 we address the POD-MINN and the POD-
MINN+ methods, showing results obtained in a series of simple numerical test cases. Finally, in
Sect. 5 we consider the application of the proposed strategy to an oxygen transfer problem taking
place in the microcirculation, and draw some conclusions in Sect. 6.

2. Formulation and approximation of PDEs with embedded microstructure

2.1. Problem setup
We start by describing, in general terms, the essential properties of a problem governed by a

parametrized PDE affected by a microstructure. With the term microstructure we refer to some
features, primarily of the forcing terms of the equations, that induce the coexistence of multiple
characteristic scales in the solution. Despite this is a particular case of multiscale problem, devel-
oping ROMs for multiscale problems in the spirit of upscaling and/or numerical homogenization
is not the scope of this work – this aspect has been addressed, at least under some simplifying
assumptions, by several authors in the framework of reduced basis methods, see, e.g., [46, 47, 48].
Conversely, here we aim to develop a ROM that fully captures all the scales of the solution.

We restrict to steady problems governed by second order elliptic equations and we assume
that the microstructure may influence the parameters of the operator, the forcing terms and the
boundary conditions, whereas the domain is fixed and do not depend on parameters. Under these
assumptions, in this paper we address parametrized PDEs of the form{

Lµuµ = fµ in Ω,

Bµuµ = gµ on ∂Ω,
(1)

where the solution uµ depends on the parameter vector µ = (µM ,µm) ∈ P = PM × Pm, with
dim(PM ) = nM and dim(Pm) = nm. In other words, uµ = u(µ). Both notations will be used in
what follows, with a preference to the most compact one when the context allows it. By the dis-
tinction between macroscale parameters – denoted by µM – and microscale parameters – denoted
instead by µm – we highlight that problem parameters satisfy a scale separation property. For
example, in the biophysical application discussed at the end of this work, the physical parameters
of the operator are affected by the macroscale parameter µM , namely Lµ = LµM

, while the ge-
ometry of the microstructure determines the forcing terms of the problem, that is, fµ = fµm

and
gµ = gµm

. As a consequence of these assumptions, we focus on the particular case of the abstract
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problem (1), that can be rewritten as follows,{
LµM

uµ = fµm
in Ω,

Bµm
uµ = gµm

on ∂Ω.
(2)

In this particular context, we implicitly assume that the physical parameters belong to a low-
dimensional space, whereas the geometry of the microstructure features high dimensionality –
that is, nm ≫ nM . Moreover, for the sake of presentation, in this section we assume that the
operator LµM

appearing in problem (2) is linear, although our methodology will also be applied
to a nonlinear oxygen transfer problem, whose formulation is briefly described in Sect. 2.2.

2.2. An example of problem with microstructure inspired to microcirculation
We also address in this paper a mathematical model for oxygen transfer in the microcirculation

on the basis of a comprehensive model described in [3, 49] that includes blood flow and hemat-
ocrit transport coupled with the interstitial flow, oxygen transport in the blood and the tissue,
described by the vascular-tissue exchange. Indeed, our proposed methodology can be applied to
any field described by the general microcirculation model, such as fluid pressure, velocity, oxygen
concentration (or partial pressure), despite we only focus, in this paper, on the oxygen transport.
The non-intrusive character of the POD-MINN (and POD-MINN+) method indeed allows us to
approximate a single field, despite the coupled nature of the general model. Note that if we relied
on a classical projection-based ROM we had to approximate all the variables simultaneously, thus
requiring to face a much higher degree of complexity when constructing the ROM.

The general model describes the flow in two different domains, the tissue domain (Ω ⊂ R3 with
dim(Ω) = 3), where the unknowns are the fluid pressure pt, the fluid velocity vt, and the oxygen
concentration Ct, and the vascular domain (Λ ⊂ R3 with dim(Λ) = 1), which is a metric graph
describing a network of connected one-dimensional channels, where the unknowns are the blood
pressure pv, the blood velocity vv, and the vascular oxygen concentration Cv. The model for
the oxygen transport employs the velocity fields vv and vt to describe blood flow in the vascular
network and the plasma flow in the tissue. The governing equations of the oxygen transfer model
read as follows:

∇ · (−Dt∇Ct + vt Ct) + Vmax
Ct

Ct + αt pm50

= ϕO2
δΛ on Ω

πR2 ∂

∂s

(
−Dv

∂Cv

∂s
+ vv Cv + vv k1 H

Cγ
v

Cγ
v + k2

)
= −ϕO2

on Λ

ϕO2
= 2πR PO2

(Cv − Ct) + (1− σO2
)

(
Cv + Ct

2

)
ϕv on Λ

ϕv = 2πRLp

(
(pv − pt)− σ(πv − πt)

)
Cv = Cin on ∂Λin

−Dv
∂Cv

∂s
= 0 on ∂Λout

−Dt∇Ct · n = βO2
(Ct − C0,t) on ∂Ω.

(3)

In particular, the first equation governs the oxygen in the tissue, the second describes how the
oxygen is transported by the blood stream, and the third defines the oxygen transfer between
the two domains Ω and Λ. In particular, the model for the flux ϕO2

is obtained assuming
that the vascular wall acts as a semipermeable membrane. This model is complemented with
a set of boundary conditions reported in the last three equations: at the vascular inlets ∂Λin
we prescribe the oxygen concentration; at the vascular endpoints ∂Λout null diffusive flux is en-
forced; and for the boundary of the tissue domain ∂Ω we simulate the presence of an adjacent
tissue domain with a boundary conductivity βO2

and a far-field concentration C0,t. The symbols
Dt, Dv, Vmax, αt, pm50

, k1, k2, C
γ
v , PO2

, σO2
, Lp, σ, πv, πt are constants independent of the solution

of the model. For a detailed description of the physical meaning of these quantities see, e.g., [49].
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Comparing model (2) with (3), we observe that the operator LµM
consists of the left hand side

of the first equation, where the macroscale parameters are the physical parameters of the operator
∇ · (−Dt∇Ct + vt Ct) + VmaxCt/(Ct + αt pm50

), such as for example Vmax that modulates the
oxygen consumption by the cells in the tissue domain. Because of the last term, such operator
is nonlinear. The solution uµ corresponds to the concentration Ct, and the flux ϕO2

δΛ plays the
role of the forcing term fµm . As δΛ denotes a Dirac δ-function distributed on Λ, the term ϕO2δΛ
represents an incoming mass flux for the oxygen concentration Ct, supported on the vascular
network Λ. In other words, it is a concentrated source defined in Ω, acting as a microscale
forcing term. According to the third equation, the intensity of the oxygen flux depends on both
concentrations, namely ϕO2

= ϕO2
(Cv, Ct). In turn, the vascular oxygen concentration Cv is

governed by the second equation and by the inflow boundary conditions Cv = Cin on ∂ΛIN . This
condition plays the role of Bµmuµ = gµm on ∂Ω in problem (2), and as it depends on the inlet
points of the vascular network on the domain boundary, it is classified as a microscale model. In
conclusion, we can establish the following connections between problems (2) and (3):

uµ ≈ Ct,

LµM
uµ ≈ ∇ · (−Dt∇Ct + vt Ct) + Vmax

Ct

Ct + αt pm50

,

fµm
≈ ϕO2

(Cv, Ct)δΛ,

Bµm
uµ ≈ Cv|∂ΛIN

,

gµm
≈ Cin|∂ΛIN

.

We remark that problem (3) is just an example among many other relevant problems character-
ized by a microstructure, such as flows through perforated or fractured domains, or the mechanics
of fiber-reinforced materials, just to mention a few. Our proposed methodology does not depend
on the specific problem and can be applied with suitable adaptations to all these problems thanks
to its non-intrusive nature.

2.3. Numerical approximation by the finite element method
We consider the finite element method (FEM) as the high-fidelity FOM for the problem de-

scribed in the previous section, as well as for the other test cases we propose. The central hy-
pothesis underlying this work is that the FEM approximation of the microscale problem resolving
all the scales of the microstructure is computationally too expensive for real-life applications. For
the sake of simplicity, we present our methodology referring to the general, abstract problem (1).
Before introducing its finite element discretization, we address the variational formulation of (1)
that, given a suitable Hilbert space (V, ∥ · ∥) depending on the boundary conditions imposed on
the problem at hand, reads as follows: for any µ ∈ P ⊂ Rnp , find uµ ∈ V such that

aµ(uµ, v) = Fµ(v), ∀v ∈ V, (4)

being aµ : V × V 7→ R and Fµ : V 7→ R two parameter-dependent operators. Depending on the
formulation of choice, Problems (1) and (4) naturally define a parameter-to-solution map, that is,
a map that assigns to each input parameter µ ∈ P the corresponding solution uµ = u(µ), i.e. ,

uµ : P 7→ V ; µ 7→ u(µ).

This also allows us to define the solution manifold S = {uµ = u(µ) : µ ∈ P}.
The high-fidelity FOM consists of the Galerkin projection of problem (4) onto a Finite Element

(FE) space Vh of dimension Nh = dim(Vh), suitably chosen depending on the characteristics of
the problem at hand. Assuming for simplicity a fully conformal approximation, given Vh ⊂ V , we
aim to find uµ,h ∈ Vh such that

aµ(uµ,h, vh) = Fµ(vh) ∀vh ∈ Vh. (5)
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As pointed out for the continuous case, problem (5) defines a mapping P 7→ Vh that identifies
the discrete solution manifold Sh = {uµ,h : µ ∈ P}. From the discrete standpoint, problem (5) is
equivalent to a (large) system of algebraic equations of the form

Aµ,huµ,h = Fµ,h

where uµ,h ∈ RNh is the vector of degrees of freedom of the FE approximation. The need to, e.g.,
sample adequately the statistical variability of the microstructure, and assess its impact on the
problem solution, would ultimately require to repeatedly query such FOM, whence the need of a
rapid and reliable ROM.

2.4. Projection-based model order reduction
For second order elliptic PDEs, projection-based ROMs represent a consolidated approach that

has been successful in many areas of application [50]. The main idea is to generate the ROM by
projecting the FOM onto a low-dimensional linear subspace of Vh. Precisely, the reduced basis
(RB) method aims at building a subspace Vrb ⊂ Vh through the linear combination of a set of
nrb ≪ Nh basis functions, being nrb independent of h and Nh:

Vrb = span{ψ1, . . . , ψnrb
}.

The RB approximation urbµ,h ∈ Vrb is then defined as the solution to the Galerkin projection of
the FOM onto the RB space, that is,

aµ(u
rb
µ,h, vrb) = Fµ(vrb), ∀vrb ∈ Vrb. (6)

Equivalently, by expanding the RB solution over the reduced basis, the latter can be expressed as

urbµ,h =

nrb∑
i=1

u
(i)
µ,rbψi(x) (7)

where uµ,rb = [u
(1)
µ,rb, . . . , u

(nrb)
µ,rb ]

T are the reduced coefficients, which, in practice, are obtained by
solving the algebraic counterpart of (6), namely

Aµ,rbuµ,rb = Fµ,rb. (8)

Overall, equations (6), (7) and (8) illustrate different ways to represent the ROM approximation
of the FOM solution. Precisely, uµ,rb ∈ Rnrb are the reduced coefficients that identify the ROM
solution while urb

µ,h ∈ RNh is the representation of the same solution in the high-fidelity (FEM)
space. We note that, although they have the same dimension, uµ,h and urb

µ,h do not coincide.
We stress that this projection determines an approximation of the FOM solution uµ,h onto a

linear subspace of the discrete solution manifold Sh. As a consequence the corresponding error
behaves – at least, theoretically – following the decay of the Kolmogorov nrb-width [12]. Indeed,
a fast-decaying Kolmogorov nrb-width reflects the approximability of the solution manifold by
finite-dimensional linear spaces.

From an algebraic standpoint, the reduced basis is encoded in the matrix V = [ψ1 | . . . | ψnrb
] ∈

RNh×nrb , where ψi ∈ RNh are the FOM degrees of freedom of the i-th basis ψi, so that (7) can
be equivalently rewritten as urb

µ,h = Vuµ,rb and the RB problem can be assembled projecting the
FOM matrix and right hand side onto the reduced space,

Aµ,rb = VTAµ,hV, Fµ,rb = VTFµ,h. (9)

For a special category of problems, characterized by an affine parameter dependence, the algorithm
presented to build and solve (8) can be split into a parameter-independent offline and a parameter-
dependent online stage [12]. However, if the affine parameter dependence does not hold, suitable
hyper reduction techniques must be called into play to restore it, at least in an approximate way;
nevertheless, this is not a focus of this work.
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Regarding the construction of the subspace Vrb, a classical choice is to rely on POD, starting
from a collection of FOM solutions, named snapshots, for suitably chosen parameters µ(i), such
that the span of these functions, span{uh(µ(i))}Ni=1 is a reasonable approximation of the discrete
solution manifold Sh. By collecting the snapshots FOM degrees of freedom as the columns of a
data matrix

S = [uh(µ
(1))| . . . |uh(µ

(i))| . . . |uh(µ
(N))],

the singular value decomposition of S,

S = W
[

D̃ 0
0 0

]
ZT

ensures the existence of three matrices W ∈ RNh×Nh , D̃ = diag[σ1, . . . , σR], being σ1 ≥ . . . ≥ σi ≥
. . . ≥ σR the singular values of S and R is its rank, and Z ∈ RN×N . The columns of W and Z are
named the left and right singular vectors, respectively. The POD basis is then defined as the set of
the first nrb left singular vectors of S; their collection provides the matrix W̃(nrb) that represents
the best nrb-rank approximation of S with respect to the following error [12],

E(W̃(nrb);S) = min
M∈RNh×Nh

N∑
j=1

∥S(:, j)−MMTS(:, j)∥2RNh
.

In conclusion, a POD-Galerkin ROM consists of solving (8) using the matrix V = W̃(nrb) to define
the reduced space.

2.5. Limitations of linear methods and nonlinear model order reduction
Despite mathematically rigorous, POD-Galerkin ROMs might feature some limitations when

applied to problems with microstructure, as shown by some simple numerical test cases that we
shall discuss in this section. As a prototype problem, we consider (1) with an operator independent
on the parameters, i.e. Lµ = −∆, with homogeneous Dirichlet boundary conditions, and the
action of the microstructure entirely carried out by the right hand side fµ = fµm

. We consider
a unit square domain Ω = (−1, 1)2 partitioned using a 50×50 computational mesh Th of uniform
triangular elements. For the sake of simplicity, we discretize the problem using piecewise linear,
continuous, Lagrangian finite elements Vh = X1

h(Ω), and consider two representative instances of
the following characteristics of the microstructure: (i) a problem with continuously variable scales,
and (ii) a problem with scale separation.

Problem with continuously variable scales. To model this feature of the microstructure, we consider

fµm(x, y) = p(x)p(y), with p(z) =

n∑
k=1

(αz
k sin(kπz) + βz

k cos(kπz))

and µm = {αz
k, β

z
k}nk=1 with n = 6 and z = x, y, for a total of 24 parameters modulating the linear

combination of 144 trigonometric functions. For the application of the POD-Galerkin method to
this test case, we sample the parameter space assuming a uniform probability distribution U [−1, 1]
for all parameter, selecting a total amount of N = 1000 snapshots to build the data matrix S.
Equivalent results are obtained for a larger data matrix S made of 2000 snapshots– therefore, we
keep N = 1000 as a reference value for the forthcoming tests.

Since we are interested to assess the capability of the POD basis to approximate the solution
manifold, in this case we do not calculate the actual solution of (8), rather we consider the
projection error obtained when projecting the FOM solution onto the POD basis for an increasing
dimension nrb of the reduced basis, that is,

EPOD(nrb;uµ,h) =
∥(I− V(nrb)VT (nrb))uµ,h∥2,Nh

∥uµ,h∥2,Nh

(10)
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Figure 1: Decay of the singular values of S and the convergence rate of the projection error with respect to nrb for
a problem with continuously variable scales. The red line in the left panel denotes the threshold of n = 144 POD
modes.

where V(nrb) denotes the matrix encoding the linear approximation space spanned by nrb POD
basis functions and ∥v∥p,N =

(∑N
i=1 |vi|p

)1/p is the p-norm in the generic vector space RN . We
note that the solution of this problem depends linearly on the parameters, as a result if we apply
the POD-Galerkin method with at least 144 basis functions, we shall represent exactly the discrete
solution manifold – in other words, EPOD(nrb = 144;uµ,h) = 0 for any uµ,h ∈ RNh . Actually,
the desired behavior of the ROM would be to achieve a satisfactory approximation with much
less than 144 basis functions. The decay of the singular values of S and the convergence rate of
the projection error with respect to nrb, measured for a parameter value and corresponding finite
element function not included in the snapshot matrix, are reported in Figure 1.

These results immediately show that, due to the slow decay of the singular values, the perfor-
mance of the POD-Galerkin method cannot be satisfactory in this case.

Problem with scale separation. In this second test case, we discuss the behavior of the POD-
Galerkin method for a problem where the forcing term is made of the superimposition of trigono-
metric functions with different frequencies, with a gap in the frequency spectrum. In the same
computational setting described before, we consider the function

f(x, y) = fµM
(x, y) + fµm(x, y), with fµM

(x, y) = pL(x)pL(y), fµm(x, y) = pH(x)pH(y)

and

PL(z) =

2∑
k=1

(αz
k sin(kπz) + βz

k cos(kπz)), PH(z) =

8∑
k=5

(α̃z
k sin(kπz) + β̃z

k cos(kπz)),

for a total of 8 coefficients encoding the low frequency scales and 16 parameters for the high
frequency scales, all sampled using a uniform probability function αz

k, β
z
k , α̃

z
k, β̃

z
k ∼ U [−1, 1]).

These parameters modulate the forcing term made by the linear combination of 80 trigonometric
modes.

The purpose of this test case is to investigate whether the POD basis with a number of entries
comparable to the dimension of the low frequency source terms can approximate well the whole
solution space. Figure 2 shows that the decay of the singular values reflects the gap in the frequency
spectrum. However, after a reasonably good performance of the POD method in approximating
the effect of the low frequencies on the solution, a large region of stagnation of the approximation
properties can be highlighted.

Therefore, it is mandatory to include the effect of the microscale in the ROM approximation
space, with a subsequent increase of the number of POD modes required to achieve a satisfactory
approximation of the FOM.
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Figure 2: Decay of the singular values of S and the convergence rate of the projection error with respect to nrb for
a problem with scale separation. The vertical lines in the left panel denote the number of parameters of the low
frequency function (n = 16) and the total number of parameters (n = 80).

2.5.1. Non intrusive, nonlinear reduced order modeling
The previous examples show that a Kolmogorov barrier arises due to the presence of the mi-

crostructure, this latter limiting the decay of the error achieved with projection-based ROMs that
seek linear approximations in spaces. The main objective of this work is to overcome these lim-
itations resorting to nonlinear model order reduction, implemented by combining a linear ROM
approximation with nonlinear maps built through deep feedforward NNs, thus introducing a non-
linear, and non intrusive, ROM.

Nonlinear ROMs encompass a wide class of strategies aiming at replacing the linear approxi-
mation hypothesis encoded in (7) with more general, nonlinear maps. Rather than replacing the
linear combination of POD modes with fully nonlinear approximations, as done, e.g., through deep
learning-based ROMs [40, 38, 39], we express our approximation following the approach proposed
in [51], as

ũrbµ,h =

ñrb∑
i=1

ũ
(i)
µ,rbψ̃i(x, α̃(µ)), (11)

where the main difference with respect to (7) is that the basis functions ψ̃i now depend on the
parameters of the problem through some features, named α̃(µ). Stated differently, the nonlinear
approximation (11) is a linear combination of functions ψ̃i(x, α̃(µ)), i = 1, . . . , ñrb that depend
through α̃(µ) on the element uµ,h being approximated; this is indeed different from the linear
approximation (7), where the basis functions are fixed and independent of which element uµ,h

of the (discrete) solution manifold is approximated. As we will see in the following, proceeding
in this way can be extremely helpful in order to break the Kolmogorov barrier, leading to lower
errors for the same number of degrees of freedom.

For the particular case of problems with microstructure, we put into action this general nonlin-
ear ROM framework by using the nonlinear features as an additive correction, named closure, to
the linear approximation obtained through (7). This consists in seeking a reduced approximation
of the FOM based on the following representation,

ũrbµ,h =

nrb∑
i=1

u
(i)
µ,rbψi(x) + ũµ,rbψ̃(x, α̃(µ)), (12)

where the function ψ̃(x, α̃(µ)) will be learned through artificial NNs (introduced in detail in the
next section), mapping the parameter space into the full order FOM space, namely N : P →
RNh ≡ Vh. In other terms, the linear approximation space is replaced by Ṽrb = Vrb +N (P).

The presence of the microstructure poses however an additional challenge to the one of the
Kolmogorov barrier discussed so far. Indeed, space-varying parameters deserve a similar dimen-
sionality reduction as done for the state solution, given their dimension comparable to the number
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of high-fidelity FOM degrees of freedom. Moreover, the potentially involved nature of space-
varying parameters makes the use of classical hyper reduction techniques – that would employ,
e.g., a linear POD basis to approximate those data in order to comply with the ROM require-
ments – not feasible. For this reason, we resort to the use of NN-based approximations, exploiting
a particular class of networks, the so-called mesh informed neural networks (MINNs) previously
proposed by the authors [43], to handle mesh based functional data in a very efficient way; the
resulting strategy, involving a POD-based dimensionality reduction for the state solution, and a
MINN-based approximation of space-varying fields, will be referred to as POD-MINN method.
A mesh informed architecture is also employed to approximate the ROM coordinates, similarly
to the POD-NN approach [21], but extended here to the case of MINNs to handle the high-
dimensional input data. The final approximation, obtained when the closure model is applied to
the POD-MINN approximation, will be referred to as POD-MINN+.

In the next two sections we describe the formulation, the implementation details and the
performance of these methodologies applied to problems with microstructure. Then, we will apply
them to a real-life problem modeling that, despite some simplifying assumptions, is capable of
representing the effect on microcirculation on the tissue microenvironment, involving multiple
spatial scales and reaching very tiny detail levels.

3. Mesh-informed neural networks

Artificial neural networks (ANN) are parametrized functions between two (typically high-
dimensional) vector spaces that have been recently employed also for the approximation of PDEs
in several contexts. In this section, we discuss how they can be designed and exploited in partic-
ular case of problems with microstructure, to obtain non-intrusive and accurate ROMs. Before
addressing mesh-informed neural networks, representing a key tool of our methodology, we briefly
review feedforward neural networks for the sake of notation.

3.1. The architecture and the training of feedforward neural networks
ANNs are computational models obtained by stacking compositions of nonlinear transforma-

tions, acting on a collection of nodes called neurons, that are organized into building blocks
called layers, these latter linked together through weighted connections. Given two vector spaces
Vm ⊂ Rm and Rn, a layer L that takes a vector in Rm as input and uses the activation function
ρ, is a map of the form

L : Rm → Rn such that L(v) = ρ(Wv + b),

where W ∈ Rn×m and b ∈ Rm are the weight matrix and the bias of the layer, respectively. The
activation function ρ, to be selected, is applied to the linear combination componentwise for each
neuron of the same layer and ensures the nonlinearity of the approximation. The topology of
the connections between the neurons determines the architecture of the ANN. The most common
and known example is the feedforward neural network, defined as the composition of multiple
layers Li : Rni → Rni+1 , with i = 1, . . . , l, where Ll+1 is the output layer and the remaining
ones are called hidden layers. A feedforward neural network produces a map of the form N :=
Ll+1 ◦Ll . . . ◦L1, so that, denoting with Wi the weight matrices between the i-th and the i+1-th
layer, bi the corresponding bias and ρ the activation function (generally the same for each layer):

N (v;W1, . . . ,Wl+1,b1, . . . ,bl+1) = ρl+1(Wl+1ρl(. . .W2ρ1(W1v + b1) + b2 . . .) + bl+1).

For the sake of clarity, we make a distinction between the notation related to an NN seen as an
operator – that is, a parametrized function denoted with N and depending on the input vector
v ∈ Rn1 , the weights and biases Wi,bi for i = 1, . . . , l + 1 – from the output of the same neural
network, that is, a vector w ∈ Rnl+1 . To lighten the notation, we denote the hyperparameters of
the neural network, namely the collection of weights and biases, with the general symbol θ. The
choice of the activation function is left to the user and is problem-dependent. Furthermore, it can
be neglected in the output layer [52, 53].
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After determining the architecture of the neural network, the hyperparameters for the training
process are set and tuned. Hinging upon the choice of the activation function for each layer, the
initial state is provided: weights and biases are set to zero or randomly initialized in order to retain
the variance of the activation across every layer, avoiding the exponential decrease or increase of
the magnitude of input signals. In the context of supervised learning, the training of a neural
network consists of tuning its weights and biases, simply put θ, by means of the minimization of a
suitable loss function E that measures the discrepancy between a given dataset and the predictions
of the neural network. The minimization is typically performed by means of a gradient descent
algorithm [54], such as the L-BFGS method [55] (a quasi-Newton optimizer) or ADAM [56].

The computational costs of the training are heavily linked to the complexity of the neural
network, that depends on its depth (the number of layers), on the number of neurons within each
layer and on possible constraints on the weighted and biases. Regarding the latter, the architecture
is dense if no constraints are imposed. In the following subsection, we discuss a different approach,
that introduces sparsity in the weights matrix to efficiently approximate FE functions, exploiting
their mesh-based information.

3.2. Mesh-informed neural networks for the approximation of finite element functions
Despite their incredible expressivity, plain NN architectures based on dense layers can incur

into major limitations, especially when dealing with high-dimensional data. In fact, when the
dimensions into play become fairly large, dense architectures quickly become intractable, as they
result in models that are harder to optimize and often prone to overfitting (thus also requiring
more data for their training). Unfortunately, within our context, these issues arise quite naturally.
In fact, the geometrical features of the microstructure are encoded at a high-fidelity level: conse-
quently, any architecture working with the microstructure information must be powerful enough
to handle an input of dimension O(Nh), with Nh ≫ 1.

To overcome this difficulty, we rely on a particular class of sparse architectures called Mesh-
Informed Neural Networks (MINNs), originally proposed in [43] as a way to handle high-dimensional
data generated by FE discretizations. MINNs are obtained through an a priori pruning strategy
that promotes local operations rather than global ones. We can summarize the general idea un-
derlying MINNs as follows. Let RNh ∼= Vh and RMh′ ∼= Vh′ be two vector spaces, each associated
to a given FE discretization. The two may refer to different discretizations in terms of mesh step
size or polynomial degree, but they must be defined over a common spatial domain Ω.

Let
{xj}Nh

j=1 ⊂ Ω and {x′
i}

Mh′
i=1 ⊂ Ω,

be the coordinates of the nodes for the two FE spaces, respectively. Then, following the definition
in [43], a mesh-informed layer with support r > 0 is a DNN layer L : RNh → RMh′ whose weight
matrix W satisfies the sparsity constraint below

Wi,j = 0 ∀i, j, such that d(xj ,x
′
i) > r,

where d : Ω×Ω → [0,+∞) is a suitable distance function defined over the spatial domain, such as,
e.g., the Euclidean distance d(x,x′) := |x − x′| – this choice, however, is not restrictive, making
then possible to use also a geodesic distance. Here, the intuition is that each entry component j
at input (resp. output) has been associated to some node xj representing a degree of freedom in
the FEspace at input (resp. output). Then, this interpretation allows one to construct a sparse
DNN model whose weight matrix ultimately acts as a local operator in terms of the corresponding
FE spaces. In general, for simplicial meshes in Ω ⊂ Rd, it can be shown that the weight matrix
of a mesh-informed layer with support r > 0 has at most O(rdNhMh′) nonzero entries [43]. The
advantage of such construction is that it reduces the number of hyparameters to be optimized
during the training stage without affecting the overall expressivity of the model.

In particular, training a MINN model can be far less demanding than doing the same with its
dense counterpart; furthermore, the sparsity constraints naturally introduced in a MINN can have
a beneficial impact on the generalization capabilities of the architecture, see, e.g., [43] for further
details.
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In light of these considerations, for what concerns our purposes, we shall exploit both mesh-
informed and dense layers: the choice will depend, from time to time, on the nature of the data at
hand. To distinguish between MINNs and general dense neural networks, we denote by M those
architectures that feature the use of mesh-informed layers.

4. Non-intrusive and nonlinear ROMs: POD-MINN and POD-MINN+ strategies

In this section we illustrate a strategy to use mesh-informed neural networks for the con-
struction of non-intrusive ROMs for problems with microstructure, detailing the approximation
introduced in equation (12). We remark that we will exploit MINNs in two distinct steps:

1. in the first step, directly inspired to [21], MINNs are used to approximate the map from the
parameters of the problem to the reduced coefficients using the network

Mrb : P → Rnrb , µ 7→ ûµ,rb;

2. in the second step, MINNs are exploited for the closure model, namely a nonlinear correction
to the previous ROM (based on a linear approximation space). To this purpose, we introduce
the MINN Mc such that

Mc : P → RNh , µ 7→ ũµ,c.

The overall framework is summarized in Figure 3. We recall that parameters affecting the
differential problem feature a scale separation property, with macroscale parameters showing a
small dimensional and, conversely, microscale parameters that are instead high-dimensional – that
is, nm ≫ nM . Approximating quantities depending on the former can thus be done through plain
feedforward neural networks, while we decide to encode the latter through a mesh-informed neural
network to approximate spatially-dependent parametric fields related to the microscale. We shall
detail how in the upcoming subsection.

Figure 3: A sketch of the POD-MINN+ method. The macroscale parameters, µM , and the microscale ones, µm,
are fed to two separate architectures, Nrb,M and Mrb,m, whose outputs are later combined to approximate the
RB coefficients, cf. Eq. (15). The coefficients are then expanded over the POD basis, V, and the ROM solution is
further corrected with a closure term computed by a third network, Mc, that accounts for the small scales.
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4.1. Approximation of the POD coefficients using mesh informed neural networks
We observe that the best approximation of the FOM solution uµ,h – whose degrees of freedom

are collected in the vector uµ,h ∈ RNh – in the POD space is given by its projection

VVTuµ,h =

nrb∑
i=1

(
VTuµ,h

)(i)
ψi(x).

The expression above defines a mapping

π : P ⊂ Rp → Rnrb , µ 7→ VTuµ,h, (13)

whose approximation could provide a way to generate, onto the POD space, the solution of the
problem for unseen values of the input parameters. As shown in [21], if the dimension of the
reduced space is small enough, it is possible to effectively approximate the map π by means of
a neural network. Since for the case of our interest the parameter space P includes the high-
dimensional data necessary to encode the microscale parameters µm, we use a MINN instead of a
generic feedforward neural network.

We remark that this method overrides the projection step of the FOM onto the reduced space,
(9), and the solution of the reduced problem (8). As a consequence, it turns out to be a completely
non-intrusive reduced order modeling strategy that will be particularly advantageous to handle
problems that do not enjoy an affine decomposition of the FOM operators, or in which one is
interested to approximate only a subset of the variables involved in its formulation.

The dataset to train the network Mrb is the representation in the reduced space of the FOM
solutions collected into the data matrix S. In other words, the training set are the input-output
couples {µ(i),VTS(:, i)}Ni=1, where µ(i) are the parameter values used to calculate the FOM solution
vector S(:, i) = uµ(i),h = uh(µ

(i)). This dataset is used to define the loss function,

E(Mrb;θrb) =
1

N

N∑
i=1

∥VTS(:, i)−Mrb(µ
(i);θrb)∥2,nrb

,

and the (perfectly) trained neural network is the one characterized by the paramaters θ∗rb that
minimize the loss, precisely θ∗rb = argminθE(Mrb;θrb).

Once the network has been trained, the model can be used in an online phase similarly to
the baseline reduced basis approach: given a new set of parameters µ, the mapping through the
network ûµ,rb = Mrb(µ;θ

∗
rb) and a subsequent linear transformation, Vûµ,rb, enable the approxi-

mation of the FOM solution uµ,h(µ). The approximation provided by Nrb can be represented by
the following function,

ûrbµ,h(x) =

nrb∑
i=1

û
(i)
µ,rbψi(x) =

Nh∑
j=1

û
rb,(j)
µ,h ϕj(x), (14)

where ûrb
µ,h = Vûµ,rb ∈ RNh is the vector collecting its degrees of freedom in the FEM space.

The POD-MINN method is based on specific architectures designed with the purpose to manage
differently the parameters related to the micro and macro scales, as they belong to spaces with
different dimension. The first step, Mrb combines a MINN that manages the high-dimensional
information about µm with a DNN that deals with µM , leading to the following formulation of
an input-output map that approximates the reduced coefficients:

Mrb(µ;θrb) = Mrb,m(µm;θm)Nrb,M (µM ;θM ), (15)

where:

• The output of Nrb,M : RnM → Rk is a vector yµM
= Nrb,M (µM ) ∈ Rk;
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• The network Mrb,m : Rnm → Rnrb×k gives back a matrix Xµm ∈ Rnrb×k.

We note that the network Mrb approximates the mapping π defined in (13). The final output is
then represented by

ûµ,rb = Xµm
· yµM

,

where · emphasizes the presence of a matrix-vector multiplication. The training of the network
defined in (15) is done all at once using the loss function E(Mrb;θrb). The respective weights and
biases, collected in the vectors θm and θM , are drawn from the normalized initialization proposed
in [57].

Although the approach proposed here provides an efficient way to recover the main features of
the FOM solution, it is characterised by two main error sources, in fact, regardless of the training
of the network, by orthogonality of V:

∥uµ,h − Vûµ,rb∥22,Nh
= ∥uµ,h − VVTuµ,h∥22,Nh

+ ∥VTuµ,h − ûµ,rb∥22,nrb
.

This is to emphasize that the neural network only provides an estimate of the map π, meaning
that ûµ,rb ≈ VTuµ,h; furthermore, on top of this, the representation of the FOM solution in the
reduced space is affected by a projection error ∥uµ,h−VVTuµ,h∥2,Nh

, identifying a lower bound for
the approximation of the FOM solution that can not be overcome by the POD-MINN approach.
The approximation of problems with microstructure entails the choice of a higher number of
reduced basis functions in order to keep the projection error sufficiently small and, consequently,
the reconstruction error of the solution. We tackle these issues by means of a closure model, as
shown in the following section.

4.2. Mesh informed neural networks for the closure model
Designing a closure model for problems with microstructure is particularly challenging for

the following reasons: (i) the input of the network Mc must necessarily include the microscale
parameters µm that are represented in the high-dimensional FE space relative to the FOM model;
(ii) the output of the closure model is also isomorphic to the FE space of the FOM; (iii) as a
consequence of (ii), the training data of Mc are also high-dimensional. For these reasons, MINNs
play a crucial role for the successful application of the closure model.

Let us denote with ũµ,c the output of the closure model, namely ũµ,c = Mc(µ) ∈ RNh . Then,
following (12), the closure model is easily added to the reduced basis approximation,

ũrbµ,h(x) =

Nh∑
j=1

ũ(j)
µ,cϕj(x) +

nrb∑
i=1

û
(i)
µ,rbψi(x), (16)

where ψi(x) are the reduced bases while ϕj(x) are the standard FE basis functions used in the
FOM model. In vector form, the previous equation is equivalent to

ũrb
µ,h = ũµ,c + Vûµ,rb.

The dataset for training the closure model consists of the FOM snapshots collected in the data
matrix S, more precisely the couples {µ(i),S(:, i)}Ni=1. Moreover, we make the choice to feed the
closure model only with the microscale input parameters. Precisely, we have

Mc(µ;θc) = Mc(µm;θc). (17)

As a result, we look for a network Mc(µm;θc) : Rnm → RNh that minimizes the following loss
function,

E(Mc;θc) =
1

N

N∑
i=1

∥
(
S(:, i)− VMrb(µ

(i);θ∗rb)
)
−Mc(µ

(i)
m ;θc)∥2,Nh

,

where S(:, i)− VMrb(µ
(i);θ∗rb) represents the approximation error generated by the POD-MINN

method, related to the ith-snapshot, which is then corrected by Mc to further reduce it. The
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weights and biases of θc are initialized to zero, since the optimization process starts from an initial
state determined by the POD-MINN reconstruction of the solution.

As result, the POD-MINN+ approximation of the FOM solution is given by the following
expression:

ũrb
µ,h = Vûµ,rb + ũµ,c = VXµm

yµM
+Mc(µm) ≈ uµ,h.

In conclusion, augmenting the POD-MINN trained map through the closure model allows to
retrieve also the variability of local features in the solution manifold that POD-MINN can recover
only considering a large number of reduced basis functions, including the small frequency POD
modes. The method with closure is called POD-MINN+.

4.3. Numerical results obtained with the POD-MINN and POD-MINN+ methods
In this section we analyze the performance of the POD-MINN+ method in the approximation

of the benchmark problems proposed in section 2.5. To assess the performance of the closure
model, we compare the POD-MINN+ reconstruction error with the POD-MINN one and the
projection error generated projecting the FOM solution onto the POD space, defined as in (10).
The former two are defined as follows:

EPOD−MINN (nrb,uµ,h) =
∥uµ,h − V(nrb)ûµ,rb∥2,Nh

∥uµ,h∥2,Nh

, (18)

EPOD−MINN+(nrb,uµ,h) =
∥uµ,h − V(nrb)ûµ,rb − ũµ,c∥2,Nh

∥uµ,h∥2,Nh

. (19)

For both benchmark problems addressed in Sect. 2.5, we consider the same architectures for the
POD-MINN method and the closure model, hinging upon the use of MINNs. The microscale input
parameters µm are the representations of the respective forcing terms f(x, y) in the finite-element
space of the solution Vh, with dimension Nh. Let Th denote the computational mesh (collection of
all geometric elements) related to the space Vh. We remind that we consider a unit square domain
Ω = (−1, 1)2 partitioned using uniform triangles corresponding to a 50×50 grid named Th.

As a first step, related to the POD-MINN approach, we introduce the map approximating
the reduced coefficients defining the architecture Mrb(µm;θrb) : RNh → Rnrb , exploiting a mesh-
informed layer Lrb

1 of support r = 0.6 and a dense layer Lrb
2 :

Lrb
1 : Vh

r=0.6−−−−→ V2h, Lrb
2 : V2h

r=0.6−−−−→ Rnrb

with V2h = X1
2h(Ω) finite-element space defined over the coarser computational mesh T2h (stepsize

2h, 25×25 grid), made by uniform triangles, of the same domain Ω. For the closure model, let
Th′ a coarse mesh in Ω, with h′ > h. We use a MINN architecture Mc(µm;θc) : RNh → RNh ,
composed by 2 mesh-informed layers Lc

i of support r = 0.6:

Lc
1 : Vh

r=0.6−−−−→ Vh′ , Lc
2 : Vh′

r=0.6−−−−→ Vh

where Vh′ = X1
h′(Ω) is the finite-element space defined from a 35×35 computational mesh Th′ of

uniform triangles. As result, the MINNs Mrb(µm;θrb) and Mc(µm;θc) are defined as follows:

Mrb : Vh
r=0.6−−−−→ V2h

r=0.6−−−−→ Rnrb , Mc : Vh
r=0.6−−−−→ Vh′

r=0.6−−−−→ Vh.

For what concerns the training of the neural networks, the N = 1000 snapshot functions, taken
into account to build the data matrix S, are partitioned to provide:

• a training set of Ntrain = 750 samples;

• a validation set consisting of Nvalid = 50 snapshots;

• a test set of Nvalid = 200 snapshots.
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Figure 4: The performance of the POD-MINN+ method applied to the benchmark problems with continuous scales
(top row) and separate scales (bottom row). We compare the errors EPOD−MINN and EPOD−MINN+ defined in
(18), to the one of the POD projection defined as EPOD in (10), measured in the norms p = 2,∞. The case with
p = 2 is reported on the left, the one with p = ∞ is on the right.

The optimization of the loss function is performed through the L-BFGS optimizer with learning
rate equal to 1, without batching. The networks are trained for a total of 250 epochs, using an
early stopping criterion based on the validation error, that is applied if the following conditions
are met: the training error decreases but the validation error increases for at least two consecutive
epochs.

The training times for the POD-MINN+ method in the two benchmark problems vary between
from 98 to 130 seconds for the test case with continuous scales and from 89 to 188 seconds for the
test case with continuously variables scales. As a general trend, we denote that an increase of the
number of POD basis functions entails a decrease of the training time of the closure model.

The comparison between the POD projection error, namely EPOD, and EPODMINN+ when
varying the number of basis functions nrb is reported in Figure 4 for the benchmark problems
with continuously variable scales and with scale separation. These results confirm that the the
POD-MINN approach is not performing well, because it can not provide a better approximation
than the POD projection error. The POD-MINN error is indeed very close to the POD projection,
but this approximation is qualitatively not satisfactory for both the L2 and L∞ norms, unless a
large number of bases is used.

Conversely, the POD-MINN+ method is very effective especially in the regime with a low
number of basis functions. In particular, for the case with continuously variable scales the POD-
MINN+ method reduces of 2 orders of magnitude the POD error in the region nrb < 20, when
it is measured in the 2-norm. For the benchmark problem with the scale separation the gain
increases to more than three orders of magnitude, see Figure 4 (bottom-left panel). This effect is
particularly evident when we approximate this benchmark problem with basis functions only able
to capture the low frequency modes, namely the case nrb ≤ 16. In this regime the closure model
is entirely responsible for the approximation of the high frequency modes. The POD-MINN+
method effectively performs this task with a relative error of 0.1% = 10−3.

We note that the closure model does not improve the rate of convergence with respect to nrb,
it only decreases the magnitude of the error. In general, the error of the POD-Galerkin method
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enjoys an optimal exponential decay with respect to nrb that can not be increased resorting to
the closure model. This observation confirms that the POD-MINN+ method is meaningful for
those problems where the Kolmogorov n-width and consequently the POD projection error decays
slowly with respect to nrb.

5. Application to oxygen transfer in the microcirculation

In this section we present an application of the POD-MINN+ method to model oxygen transfer
at the level of microcirculation, described by (3). After introducing the FOM model and its
discretization, we discuss its parametrization and finally we present the numerical results that
illustrate the advantages of the proposed reduced order model.

5.1. Numerical approximation of oxygen transfer in the microcirculation: the full order model
For the spatial approximation of the problem we use the finite-element method. We consider a

3D domain Ω, identified by a slab of edge 1mm and thickness 0.15mm and discretized through a
20×20×3 structured computational mesh of tetrahedra. For the interstitial domain we introduce
the space of the piecewise linear, continuous, Lagrangian finite-elements Vt,h = X1

h(Ω), with
dimension Nh = 1764. On the other hand, we assume that the 1D vascular network is immersed
in the 3D slab and we discretize it by partitioning each vascular branch Λi into a sufficiently
large number of linear segments. A piecewise linear, continuous, Lagrangian finite-element space
V i
v,h = X1

h(Λi) is employed for each branch Λi, where the index i spans through the vascular
branches i = 1, . . . , Nb. Hence, we approximate the equations in the whole microvascular network
through a finite element space Vv,h =

(⋃Nb

i=1 V
i
v,h

)⋂
C0(Λ).

It is important to clarify that the finite-element approximation of the oxygen transfer model
is performed downstream to the full comprehensive problem for the vascular microenvironment,
described in [3, 49]. As it is shown in Figure 5, indeed, we firstly compute via finite-element
method the velocity and the pressure in the tissue and the vascular network, together with the
discharge hematocrit in the vascular network. We remark that this proposed ROM based on the
POD-MINN+ method could have been equivalently applied to any variable in the domain Ω, such
as the pressure or the velocity fields.

Figure 5: General layout of the full order model for the whole vascular microenvironment.

5.2. The parametrization of the FOM: inputs and outputs
Since the model presented in Section 2 is driven by parametrized PDEs, a crucial aspect of

the problem is the choice of which parameters to include as inputs of the model. We consider the
parameter space P = PM ∪Pm, where the macro- and micro-scale subspaces are selected according
to the results of an earlier sensitivity analysis [58]. We then select three physical parameters
(see Table 1) among those appearing in the model (3), and two geometrical, mesh-based inputs,
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encoding the information related to the 1D vascular networks. The range of variation of each
input parameter is determined consistently with respect to its physiological bounds.

In particular, the vascular architectures are obtained starting from a biomimetic algorithm
that replicate the essential traits of angiogenesis, starting from some parameters that characterize
the density and the distribution of small vessels in a vascularized tissue. These quantities are
the vascular surface per unit volume of tissue, named S/V , and an indicator that governs the
distribution of point seeds used to initialize the angiogenesis algorithm. The definitions and the
range of these hyper-parameters of the vascular model are reported in Table 1. By sampling these
hyper-parameters and applying the angiogenesis algorithm, we obtain a population of admissible
vascular networks with sufficient variability. Figure 6 shows some examples of 1D vascular networks
with different spatial distributions, spanning from regular structures to less ordered ones. For
more details regarding the generation of the embedded microstructures, we refer to [58]. From the
computational standpoint, the vascular networks are represented as metric graphs, the vertices of
which are points in the 3D space. This description is not practical for the purpose of generating a
reduced order model. It is more convenient to transform the vascular graph into two continuous
functions. The main one is the distance function from the nearest point of the vascular network,
defined on Ωt and named d. The second one is used to identify the intersections of the vascular
network with the boundary and it is named η. These are the input functions of the ROM and are
presented below.

Figure 6: Examples of artificial vascular networks with extravascular distance d progressively increasing from left
to right.

5.2.1. Extravascular distance and inlet function
As a way to retrieve an equivalent information of the 1D vascular graph we thus choose to

introduce the extravascular distance i.e. the function mapping each point in the tissue slab to its
distance from the closest point of the vascular network. We represent this function as a linear
and piecewise continuous finite element function in Vt,h. The vector of degrees of freedom of such
discrete function, corresponding to its nodal values, is d ∈ RNh . The vector d plays the role of
the forcing term fµm in the model (2).

Furthermore, it is useful to provide the ROM with the information of the inlet points of the
vascular network on the boundary. To this purpose, we introduce an inlet characteristic function
that assigns a unit value to nodes of the tissue slab grid which are close to the inlets. Again, this
function is defined at the discrete level using the space Vt,h. In practice, a vertex of the finite
element mesh is marked as having non-zero value if and only if one of the surface elements is
intersected by an inlet vessel. The degrees of freedom of this function are denoted by η ∈ RNh .
Figure 8 shows the mesh-based data d and η for a particular instance of the vascular graph.

We point out, without loss of generality, that we can extend this approach encoding the ge-
ometry of the vascular network with high-dimensional data defined over coarser meshes (super-
resolution) or refined ones (sub-resolution) [59].
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5.2.2. Output of the full order model
The output of the FOM is the tissue oxygenation map Ct, one of the state variables of the

oxygen transfer model, measured in mLO2
/mLB . In the equations (2) it represents the high-

fidelity solution uµ. An example of the oxygen map Ct is shown in Figure 7, where we notice that
the embedded vascular microstructure has a significant influence of on the tissue oxygenation. We
also note that for the development of the ROM the variable Ct is suitably rescaled by a factor 300.
We remark that we can exploit the 3D-1D full order model of the vascular microenvironment to
extend the proposed approach for the approximation of other state variables such as the interstitial
pressure in the tissue domain Ωt. On the contrary, the methodology has to be revised if the aim
is to reconstruct outputs defined over the vascular network.

Figure 7: The FOM solution representing the tissue oxygenation map (mLO2
/mLB) is reported on the left panel.

On the right we show the 1D embedded vascular microstructure that visibly influences the oxygen map, over which
the vessel oxygen concentration Cv is represented.

symbol Parameter Unit Range of variation
PO2

O2 wall permeability m/s 3.5× 10−5 − 3.0× 10−4

Vmax O2 consumption rate mLO2/cm
3/s 4.0× 10−5 − 2.4× 10−4

Cv,in O2 concentration at the inlets mLO2
/mLB 2.25× 10−3 − 3.75× 10−3

%
SEEDS(−)

SEEDS(+)
Seeds for angiogenesis [%] 0− 75

S/V Vascular surface per unit volume [m−1] 5 · 103 − 7 · 103

Table 1: The first three rows illustrate the biophysical parameters of the ROM and their ranges of variation. The
last two rows report the hyper-parameters used to initialize the algorithm that generates the vascular network.

5.3. Implementation of the POD-MINN and POD-MINN+ methods
Once defined the macroscale and the microscale parameters, namely µM = [Vmax, Cv,in, PO2

]
and µm = (d,η), we apply a Monte Carlo sampling of the parameter space and collect the
corresponding input-output pairs provided by the FOM model, named {(µ(i)

M ,d(i),η(i));u
(i)
µ,h}Ni=1.

We organize these data into the data matrix S. In particular, for what concerns the microscale
parameter space, the sampling of the vascular networks is performed with respect to the hyper-
parameters introduced in Table 1. Thanks to the chosen settings, the extravascular distance d
and the inlets function η share the same dimension and ordering of the snapshots in the matrix
S, so that the matching between inputs and outputs can be easily established. The entries of the
physical parameters µM are normalized between 0 and 1 with respect to their range of variation
reported in Table 1. The available dataset of N = 1600 FOM snapshots and parameters samples
is partitioned as follows:

• Ntrain = 1220 training data;
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Figure 8: The nodal distance from the nearest vessel of the vascular network is shown on the left. On the right we
plot the indicator function of the vessel inlets on the boundary.

• Nvalid = 100 validation data;

• Ntest = 280 testing data.

We perform a singular value decomposition of the training dataset, building the projection matrix
V, collecting the discrete representation of nrb basis functions. As a preliminary analysis, we study
in Figure 9 the convergence rate of the projection error of the FOM output on the reduced space.
These results immediately show that, since the problem is globally diffusion-driven and overall
well described by the macroscale features at the low frequencies, the decay of the singular values
is relatively quick, meaning that a POD approach is expected to yield good results, as shown in
Figure 9 (left). Nonetheless, by comparing projection errors measured in the the L2 and the L∞

norms, reported in Figure 9 (right), we see that the L∞ error dominates over the L2 one, meaning
that the local effects due to the microstructure still have a big impact on the whole solution.
Rather than including a large number of POD modes, it is therefore preferable to retain just few
of them, and then include a suitable closure model, with the aim to retrieve the local features of
the oxygen map and improve the overall accuracy of the method.

Figure 9: (Left) The decay of the singular values distribution for the microcirculation problem (Right) The POD
projection error of the FOM solution on the reduced basis space varying the number of basis functions.

5.3.1. Architectures and training of the POD-MINN method
In order to implement the POD-MINN method, we exploit two independent MINNs to process

the mesh-based geometrical input data d and η, using the same architectures in both cases.
We recall the formulation of the input-output function Mrb in (15):

Mrb(µ;θrb) = Mrb,m(µm;θm)Nrb,M (µM ;θM ), (20)
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where, in this case, the MINN that takes as input the geometrical parametrization is defined as

Mrb,m(µm;θm) = Mrb,η(η;θη)⊙Mrb,d(d;θd),

splitting the contributions of the single geometrical input parameters, with the inlets function η
weighting the effect of the extravascular distance d through the MINN Mrb,η. Here, we denote
with ⊙ the Hadamard product between two matrices,

(A⊙B)i,j = (A)i,j(B)i,j ∀A,B ∈ Rm×n, m, n ≥ 1.

The neural network Mrb,d(d;θd) : RNh → Rnrb×k is assembled relying on two mesh-informed
layers Lrb,d

1 and Lrb,d
2 of support r = 0.3 and hyperbolic tangent activation function, combined

with a dense layer Lrb,d
3 complemented with a suitable reshape of the output, which results in the

following structure:

• Lrb,d
1 : Vt,h

r=0.3−−−−→ Vt,H ,

• Lrb,d
2 : Vt,H

r=0.3−−−−→ Vt,H ,

• Lrb,d
3 : Vt,H

r=0.3−−−−→ Rnrbk
reshape−−−−−→ Rnrb×k,

where Vt,H = X1
H(Ω) is the finite-element space determined from the computational mesh TH of

tetrahedrons, with stepsize H > h (8×8×3 grid). The network Mrb,d(d;θd) generates a matrix
in Rnrb×k. Each column of such matrix is a vector in the space of the reduced coefficients. These
k = 10 vectors are linearly combined through some hyper-parameters (described below) to obtain
the reduced coefficients that best fit the loss function.

The same considerations holds true for the neural network taking the inlet function η as input,
with the only difference that in the dense layer Lrb,d

3 no activation is applied, while the dense layer
Lrb,η
3 of the MINN Mrb,η is composed with a hyperbolic tangent function. In conclusion:

Mrb,d,Mrb,η : Vt,h
r=0.3−−−−→ Vt,H

r=0.3−−−−→ Vt,H
r=0.6−−−−→ Rnrb×10,

giving back two matrices Xd ∈ Rnrb×10 and Xη ∈ Rnrb×10, respectively.
For what concerns the physical parameters µM ∈ R3, a shallow neural network Nrb,M : R3 →

R10 with two dense layers Lrb,m
1 and Lrb,m

2 is introduced:

Lrb,m
1 : R3 r=0.6−−−−→ R15, Lrb,m

2 : R15 r=0.6−−−−→ R10,

where the input layer is composed with a hyperbolic tangent function and the output one has no
activation. This leads to the architecture

Nrb,M : R3 r=0.6−−−−→ R15 r=0.6−−−−→ R10,

that provides as output a vector yµM
= Nrb,M (µM ) ∈ R10.

In order to obtain the approximation of the reduced coefficients, we hinge on the aforementioned
data structures and we perform the following linear combination

ûµ,rb = (Xη ⊙ Xd)yµM
= XµmyµM

.

The network Mrb of equation (20) is trained for at most 200 epochs, minimizing the loss function

E(Mrb;θrb) =
1

Ntrain

Ntrain∑
i=1

∥VTS(:, i)−Mrb(µ
(i);θrb)∥2,nrb

,

relying on the L-BFGS optimizer with learning rate equal to 1 and no batching and applying the
same early stopping criterion presented in Section 4.3. We initialize the corresponding weights
and biases with the normalized initialization proposed in [57].
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5.3.2. Architectures and training of the closure model (POD-MINN+)
The augmented POD-MINN approach is carried out exploiting a closure model Mc(µm;θc) :

RNh → RNh that is fed only with the geometrical parameters d and η, encoding the microscale
features of the microcirculation problem. As in the previous case, we introduce two distinct
MINNs that handle each of two inputs, i.e. Mc,d and Mc,η, separating their individual effects on
the correction of the POD-MINN model:

Mc(µm;θc) = Mc,η(η;θc,η)⊙Mc,d(d;θc,d).

Each of these MINNs is built with a single mesh-informed layer:

• Lc,d
1 : Vt,h

r=0.5−−−−→ Vt,h, activation function ρd(x) = 0.4 tanh(x);

• Lc,η
1 : Vt,h

r=0.5−−−−→ Vt,h, activation function ρη(x) = 0.05 tanh(x).

The outputs are the vectors zd = Mc,d(d) ∈ RNh and zη = Mc,η(η) ∈ RNh , providing the
following POD-MINN+ approximation:

ũrb
µ,h = Vûµ,rb + ũµ,c = VXµmyµM

+ (zη ⊙ zd) ≈ uµ,h.

To train the closure model the following loss function is minimized:

E(Mc;θc) =
1

Ntrain

Ntrain∑
i=1

(
∥
(
S(:, i)− VMrb(µ

(i);θrb)
)
−Mc(µ

(i)
m ;θc)∥2,Nh

+

∥
(
S(:, i)− VMrb(µ

(i);θrb)
)
−Mc(µ

(i)
m ;θc)∥∞,Nh

)
,

where we have introduced a regularization term to adjust the loss to control the reconstruction
error of the solution in the L∞ norm.

The training consists of at most 200 epochs with the same early stopping criterion previously
mentioned. Also in this case we rely on the L-BFGS optimizer (learning rate equal to 1 and no
batching). Thanks to the fact that the closure model builds upon the POD-MINN method that
is already trained, the weights and biases collected into the vector θc are initialized to zero.

It is crucial to stress that for this real-life problem with complex input data, an approach based
on training directly a parameter-to-solution neural network (based on MINNs) is not feasible. The
combination of the linear projection achieved by the POD-MINN followed by the closure model is
the key feature for the success of the method. We need firstly to perform a POD projection into
a reduced basis space, so that the closure model acts as a correction of an already trained model.

5.3.3. Computational performance
The speed up provided by the POD-MINN (with or without closure) is significant, unlocking

approaches that would be unfeasible for the full order model and allowing to employ the POD-
MINN+ model as a surrogate for the numerical solver of the microcirculation problem. The trained
parameter-to-solution POD-MINN+ model is able to compute a solution in approximately 0.001
seconds, while a single run of the FOM requires a higher wall computational time, that varies from
15 to 35 minutes, depending on the density of the embedded 1D microstructure.

The gain with respect to the FOM is relevant also if we include the training times. In average,
the training time of the POD/MINN method oscillates between 50 and 100 seconds, depending on
the number of basis functions (but the trend is not monotone). The training time for the closure
model is higher, although the optimization process consists of a correction of a trained model,
and it is almost independent of the number of the POD basis functions, varying from 244 to 276
seconds.
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Figure 10: These plots compare the error EPOD−MINN and EPOD−MINN+ defined in (18), to the one of the
POD projection defined as EPOD in (10), measured in the norms p = 2,∞ computed for the oxygen transfer
problem (3). The case with p = 2 is reported on the left, the one with p = ∞ is on the right. The plots are shown
in logarithmic scale.

5.4. Numerical results: comparing linear and nonlinear model order reduction
In order to measure the approximation properties of the POD-MINN+ method, we analyze

the POD projection error EPOD, defined as in (10), and the reconstruction errors EPODMINN

and EPODMINN+. We compare the behaviour of each error varying the number of POD basis
functions nrb in Figure 10.

From a first analysis, we notice the good performance of both methods, being able to capture
featuring good approximation results for the L2 norm of the errors with few POD basis functions.
Indeed oxygen transfer is diffusion dominated and consequently it is well suited for an approxi-
mation methods based on POD. This is confirmed by the fast decay of the singular values of S
described before. On the other hand, a significant difference is detected between the L2 and the
L∞ norm, as the POD-MINN+ shows overall higher accuracy with respect to POD and POD-
MINN. The latter approach fails to retrieve the local effects due to the microscale data. Instead,
the closure model is able to exploit the information about the microscale geometry to improve the
smallest scales, provided that they are resolved by the FOM.

The efficacy of the POD/MINN method is more significant with low number of POD basis
functions, as the closure model approximates the high-frequency modes that are neglected at
POD level: see Table 2 to gain more comprehensive quantitative insights about each proposed
method.

Test Errors

5 POD Modes 10 POD Modes 20 POD Modes

Method ∥ · ∥2,Nh
∥ · ∥∞,Nh

∥ · ∥2,Nh
∥ · ∥∞,Nh

∥ · ∥2,Nh
∥ · ∥∞,Nh

POD 5.33% 16.00% 3.72% 13.45% 2.59% 10.80%

POD-MINN 6.19% 17.21% 4.52% 14.48% 3.75% 12.41%

POD-MINN+ 4.85% 12.03% 3.71% 9.91% 3.28% 8.87%

Table 2: Comparison of POD, POD-MINN, and POD-MINN+ with respect to different choices of the number of
reduced basis functions. We report the errors ∥uµ,h − ûrb

µ,h∥p,Nh
and ∥uµ,h − ũrb

µ,h∥p,Nh
, for the POD-MINN and

POD-MINN+ respectively, in the Euclidean (p = 2) and maximum norm (p = ∞).
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a) FOM solution onstruction b) POD projectionnstruction

c) POD-MINN approximation d) POD-MINN+ approximation

Figure 11: Plots of the high-fidelity FOM solution in a) is compared with the corresponding POD projection in b)
and the reconstructions with the POD-MINN and POD-MINN+ approaches in c) and d) respectively: through the
former method, given a small number of POD basis functions (nrb = 10), it is possible to retrieve only the global
features of the solution at the macroscale, while the local effects associated to the macroscale are captured thanks
to the closure model.

This analysis becomes more evident when we compare in Figure 11 the visualization of a
FOM solution with the three reconstructions, obtained respectively using POD, POD-MINN and
POD-MINN+. It is clear that the POD and POD-MINN methods are over-diffusive, failing in
representing the details of the solution at the smallest scale that are filtered out due to the
projection on the reduced basis space of only nrb = 10 basis functions. On the other hand,
the POD-MINN+ ensures the microstructures are correctly captured, and yields a much more
appreciable description of the true behaviour of the solution over the entire domain.

6. Conclusions

Reduced order modeling plays a crucial role in approximating the behaviour of continuous
media with microstructure. These complex systems exhibit intricate geometries and intricate
physics, making their direct numerical simulation computationally expensive and time-consuming.
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Reduced order modeling offers an efficient approach to capture the essential features of the
system while significantly reducing computational costs. However, well established techniques such
as proper orthogonal decomposition (POD) and reduced basis methods, exploiting the projection of
functions belonging to high-dimensional spaces onto a low-dimensional subspace, fail in preserving
the typical high frequency modes of the true solution in presence of a microstructure. On the other
hand, neural networks possess a remarkable ability to approximate functions in high dimensions.
This flexibility allows neural networks to capture intricate patterns and relationships even in
high-dimensional spaces. Leveraging on these properties, we have developed a correction of the
POD-Galerkin approximation that restores the fine scale details into the reduced solution.

We perform this task in two steps: first we use MINNs to approximate the map from the
parameters of the problem to the reduced POD coefficients, yielding the POD-MINN method;
second we enhance the approach by including an additive closure model, that is a correction
term ultimately providing the POD-MINN+ method. The whole procedure can be defined and
successfully trained thanks to a new family of neural network architectures, called mesh-informed
neural networks (MINNs), which take advantage of the mesh structure by considering connectivity
information between neighboring points or elements in the mesh. This information can be used to
design specialized layers that exploit the spatial relationships within the mesh. By incorporating
the mesh structure into the network architecture, the model can learn more effectively from the
data and capture spatial dependencies that would be difficult to capture using traditional neural
network architectures.

The resulting ROM is accurate, efficient, and non intrusive, thus applicable to many scenarios
where a FOM capable to capture the effect of microstructures is available but extremely expensive
to query. The POD-MINN+ strategy not only accelerates simulations, but is also potentially able
to enhance parametric studies such as sensitivity analysis and uncertainty quantification, making
it a valuable tool for understanding the role of microstructure in many physical systems.
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