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Abstract

We present an accurate and efficient solver for atmospheric dynamics simulations that
allows for non-conforming mesh refinement. The model equations are the conservative
Euler equations for compressible flows. The numerical method is based on an h−adaptive
Discontinuous Galerkin spatial discretization and on a second order Additive Runge Kutta
IMEX method for time discretization, especially designed for low Mach regimes. The solver
is implemented in the framework of the deal.II library, whose mesh refinement capabilities
are employed to enhance efficiency. A number of numerical experiments based on classical
benchmarks for atmosphere dynamics demonstrate the properties and advantages of the
proposed method.
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1 Introduction

Atmospheric dynamics can be described by mathematical models tailored for specific
scales, but use of the fully compressible equations has become the standard in the last
couple of decades, see e.g. the literature review in [31]. The efficient numerical solution
of these equations in presence of gravitational forcing is crucial for weather and climate
predictions and poses several computational challenges.

The Discontinuous Galerkin (DG) discretization has proven itself a valuable tool in
environmental fluid dynamics models, see e.g. [14, 15] or the review in [5]. Discontinuous
finite element h−adaptive approaches were proposed in [19, 22, 35], while p−adaptive DG
methods for Numerical Weather Prediction (NWP) were introduced in [34]. However,
severe time step stability restrictions may be required if the DG method is coupled with
explicit time discretization schemes. The use of implicit and semi-implicit methods, which
has a long tradition in the literature on atmosphere dynamics and numerical weather
prediction, see among many others [3, 4, 11, 12, 21, 30], allows one to relax these restrictions
and employ much longer time steps.

In this work, we will present an application of the h−adaptive DG method recently
proposed in [23] to a number of idealized benchmarks for atmospheric flow modelling. The
proposed numerical approach combines accurate and flexible DG space discretization with
an implicit-explicit (IMEX) time discretization, whose properties and theoretical justifi-
cations are discussed in detail in [23] and briefly recalled in the following. The adaptive
discretization is implemented in the framework of the numerical library deal.II [1, 2], an
open-source environment, which provides non-conforming h−refinement capabilities that
will be exploited in the numerical simulation of atmospheric flows. This choice allows us
to embed the development of codes specific for numerical weather prediction applications
into a framework that is being continuously adapted to novel architectures and extended
to include novel versions of the DG method. As a result, the portability and the continu-
ous development of the resulting code are greatly enhanced. The accuracy of the results
obtained and the performance achieved by the model show that a dynamical core for high
resolution, fine scale atmospheric modelling can be based on a widely used open source
finite element library. It will also be shown that the proposed adaptive implementation
can achieve good parallel efficiency, even without employing specific optimizations.

The paper is structured as follows. The model equations are reviewed in Section 2. The
time and space discretizations are briefly outlined and discussed in Section 3. The validation
of the proposed method and its applications to a number of significant benchmarks with
and without orography are reported in Sections 4, 5, respectively. Some conclusions and
considerations about open issues and future work are presented in Section 6.

2 The model equation

Let Ω ⊂ Rd, 2 ≤ d ≤ 3 be a connected open bounded set with a sufficiently smooth
boundary ∂Ω and denote by x the spatial coordinates and by t the temporal coordinate.
We consider the classical unsteady compressible Euler equations, written in flux form as:

∂ρ

∂t
+∇· (ρu) = 0

∂ (ρu)

∂t
+∇· (ρu⊗ u) +∇p = −ρgk (1)

∂(ρE)

∂t
+∇· [(ρE + p)u] = −ρgk · u

for x ∈ Ω, t ∈ [0, Tf ], supplied with suitable initial and boundary conditions. Here Tf is
the final time, ρ is the density, u is the fluid velocity, p is the pressure, g = 9.81 m s−2

is the acceleration of gravity and k is the upward pointing unit vector in the standard
Cartesian reference frame. The total energy ρE can be rewritten as ρE = ρe+ ρk, where e
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is the internal energy and k = 1
2‖u‖

2 is the kinetic energy. We also introduce the specific
enthalpy h = e+ p

ρ and we notice that one can rewrite the energy flux as

(ρE + p)u =

(
e+ k +

p

ρ

)
ρu = (h+ k) ρu.

The equations can then be rewritten as

∂ρ

∂t
+∇· (ρu) = 0

∂ (ρu)

∂t
+∇· (ρu⊗ u) +∇p = −ρgk (2)

∂(ρE)

∂t
+∇· [(h+ k) ρu] = −ρgk · u.

The above equations are complemented by the equation of state (EOS) for ideal gases,
given by p = ρRT, with R being the specific gas constant and T the absolute temperature.
As explained in [23], the proposed method also allows to handle in the same framework
also more general equations of state for real gases, thus opening the way for example to the
inclusion of effects due to water vapour and moist species. Furthermore, while we describe
here for simplicity only the numerical approximation of the Euler equations, as customary
when describing dynamical cores for atmospheric applications, it was shown again in [23]
how to extend the proposed approach to the viscous case by Strang splitting [33]. This
extension will be required by some of the numerical simulations described in Section 4.

We also introduce the potential temperature θ, which is often preferred in atmospheric
applications as the unknown in the energy equation. For an ideal gas, potential temperature
is defined as

θ = T

(
p0

p

) γ−1
γ

,

where p0 is a reference pressure and γ denotes the specific heats ratio. In the present work,
we consider p0 = 105 Pa.

3 The numerical framework

In the low Mach number limit, pressure gradient terms yield stiff components for the
resulting semidiscretized ODE system. Therefore, following [7, 8], the method proposed
in [23] couples implicitly the energy equation to the momentum one, while the continu-
ity equation is treated in a fully explicit fashion. For the time discretization, an IMplicit
EXplicit (IMEX) Additive Runge Kutta method (ARK) [16] method will be used. These
methods are widely employed for ODE systems that include both stiff and non-stiff com-
ponents, to which the implicit and explicit schemes are applied, respectively. Here, we
consider a variant of the IMEX method proposed in [12], whose coefficients are presented
in the Butcher tableaux reported in Tables 1 and 2 for the explicit and implicit method,
respectively.

0 0
χ χ 0
1 1− α α 0

1
2
− χ

4
1
2
− χ

4
χ
2

Table 1: Butcher tableau of the explicit ARK2 method

We consider χ = 2−
√

2, so that the implicit part of the IMEX scheme coincides with the
TR-BDF2 method considered in [34]. A solver based on this method for the incompressible
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0 0
χ χ

2
χ
2

1 1
2
√

2
1

2
√

2
1− 1√

2
1
2
− χ

4
1
2
− χ

4
χ
2

Table 2: Butcher tableau of the implicit ARK2 method

Navier Stokes equations with an artificial compressibility formulation has been proposed in
[24], highlighting the robustness of the proposed approach in the low Mach number limit.
Notice also that, as discussed in [23], we take α = 0.5, rather than the value originally
chosen in [12], in order to improve the monotonicity of the method.

We now briefly describe the application of this IMEX method outlined above to equa-
tions (2). We present for simplicity only the time semi-discretization, while the reader is
referred to [23] for the description of the fully discrete scheme and the detailed formulation
of the algebraic equations involving the discrete degrees of freedom. As it can be seen from
the Butcher tableaux, the first stage is only formal, yielding ρ(n,1) = ρn for density and all
the other prognostic quantities. The second stage reads as follows

ρ(n,2) = ρn − a21∆t∇· (ρnun)

ρ(n,2)u(n,2) + ã22∆t∇p(n,2) = m(n,2) (3)

ρ(n,2)E(n,2) + ã22∆t∇·
(
h(n,2)ρ(n,2)u(n,2)

)
= e(n,2),

where we have set

m(n,2) = ρnun

− a21∆t∇· (ρnun ⊗ un)− ã21∆t∇pn

− ã21∆tρngk− ã22∆tρ(n,2)gk (4)

e(n,2) = ρnEn − ã21∆t∇· (hnρnun)− a21∆t∇· (knρnun)

− ã21ρ
ngk · un − ã22ρ

(n,2)gk · u(n,2).

For the third stage, one can write formally

ρ(n,3) = ρn − a31∆t∇· (ρnun)− a32∆t∇·
(
ρ(n,2)u(n,2)

)
ρ(n,3)u(n,3) + ã33∆t∇p(n,3) = m(n,3) (5)

ρ(n,3)E(n,3) + ã33∆t∇·
(
h(n,3)ρ(n,3)u(n,3)

)
= e(n,3),

where the right hand sides are defined as

m(n,3) = ρnun

− a31∆t∇· (ρnun ⊗ un)− ã31∆t∇pn

− a32∆t∇·
(
ρ(n,2)u(n,2) ⊗ u(n,2)

)
− ã32∆t∇p(n,2)

− ã31∆tgρnk− ã32∆tgρ(n,2)k− ã33∆tgρ(n,3)k (6)

e(n,3) = ρnEn − ã31∆t∇· (hnρnun)− a31∆t∇· (knρnun)

− ã31∆tρngk · un

− ã32∆t∇·
(
h(n,2)ρ(n,2)u(n,2)

)
− a32∆t∇·

(
k(n,2)ρ(n,2)u(n,2)

)
− ã32∆tρ(n,2)gk · u(n,2) − ã33∆tρ(n,3)gk · u(n,3).
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In each stage, after spatial discretization has been performed, we formally substitute the
momentum into the energy equation and we obtain an equation for the pressure [23].

For what concerns the spatial discretization, we consider a decomposition of the domain
Ω into a family of hexahedra Th (quadrilaterals in the two-dimensional case) and denote
each element by K. The skeleton E denotes the set of all element faces and E = EI ∪ EB,
where EI and EB are the subset of interior and boundary faces, respectively. Suitable jump
and average operators can then be defined as customary for finite element discretizations.
A face Γ ∈ EI shares two elements that we denote by K+ with outward unit normal n+

and K− with outward unit normal n−, whereas for a face Γ ∈ EB we simply denote by n
the outward unit normal. For a scalar function ϕ the jump is defined as

[[ϕ]] = ϕ+n+ + ϕ−n− if Γ ∈ EI [[ϕ]] = ϕn if Γ ∈ EB.

The average is defined as

{{ϕ}} =
1

2

(
ϕ+ + ϕ−

)
if Γ ∈ EI {{ϕ}} = ϕ if Γ ∈ EB.

Similar definitions apply for a vector function ϕ:

[[ϕ]] = ϕ+ · n+ + ϕ− · n− if Γ ∈ EI [[ϕ]] = ϕ · n if Γ ∈ EB

{{ϕ}} =
1

2

(
ϕ+ + ϕ−

)
if Γ ∈ EI {{ϕ}} = ϕ if Γ ∈ EB.

For vector functions, it is also useful to define a tensor jump as:

〈〈ϕ〉〉 = ϕ+ ⊗ n+ + ϕ− ⊗ n− if Γ ∈ EI 〈〈ϕ〉〉 = ϕ⊗ n if Γ ∈ EB.

We introduce the following finite element spaces

Qr =
{
v ∈ L2(Ω) : v|K ∈ Qr ∀K ∈ Th

}
Vr = [Qr]

d ,

where Qr is the space of polynomials of degree r in each coordinate direction. We then
denote by ϕi(x) the basis functions for the space Vr and by ψi(x) the basis functions for
the space Qr, the finite element spaces chosen for the discretization of the velocity and of
the pressure (as well as the density), respectively, so that

u ≈
dim(Vr)∑
j=1

uj(t)ϕj(x) p ≈
dim(Qr)∑
j=1

pj(t)ψj(x).

The shape functions are chosen to be the Lagrange interpolation polynomials for the sup-
port points of (r+1)-order Gauss-Lobatto quadrature rule along each coordinate direction.
Given these definitions, the weak formulation for the momentum equation at each stage
s = 2, 3 of the IMEX scheme can be written in compact form as

A(n,s)U(n,s) + B(n,s)P(n,s) = F(n,s), (7)

where we have set

A
(n,s)
ij =

∑
K

∫
K
ρ(n,s)ϕj ·ϕidΩ (8)

B
(n,s)
ij =

∑
K

∫
K
−ãss∆t∇ ·ϕiψjdΩ

+
∑
Γ∈E

∫
Γ
ãss∆t {{ψj}} [[ϕi]] dΣ (9)

with U(n,s) denoting the vector of the degrees of freedom associated to the velocity field and
P(n,s) denoting the vector of the degrees of freedom associated to the pressure. Moreover,
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ρ(n,s) denotes the approximation of the density at stage s and ãss is the corresponding
coefficient of the Butcher tableaux Table 2 for the implicit part. Notice that the definitions
introduced above entail that centered fluxes are used in the definition of the discrete pres-
sure gradient, while an upwind flux has been employed in the definition of F(n,s) for the
discretization of the terms computed at time level n. Analogously, the weak formulation
for the energy equation can be expressed as

C(n,s)U(n,s) = G(n,s), (10)

where we have set

C
(n,s)
ij =

∑
K

∫
K
−ãss∆th(n,s)ρ(n,s)ϕj · ∇ψidΩ

+
∑
Γ∈E

∫
Γ
ãss∆t

{{
h(n,s)ρ(n,s)ϕj

}}
· [[ψi]] dΣ, (11)

where h(n,s) represents the approximation of the enthalpy at stage s. Formally, we can
then derive U(n,s) = (A(n,s))−1

(
F(n,s) −B(n,s)P(n,s)

)
and obtain the following relation

C(n,s)(A(n,s))−1
(
F(n,s) −B(n,s)P(n,s)

)
= G(n,s). (12)

Again, in the definition of G(n,s) an upwind flux has been employed for the discretization
of the terms computed at time level n. Moreover, taking into account that

ρ(n,s)E(n,s) = ρ(n,s)e(n,s)(p(n,s)) + ρ(n,s)k(n,s),

we decompose G(n,s) and we finally obtain

C(n,s)(A(n,2))−1
(
F(n,s) −B(n,s)P(n,s)

)
= −D(n,s)P(n,2) + G̃(n,s), (13)

where we have set

D
(n,s)
ij =

∑
K

∫
K
ρ(n,s)e(n,s)(ψj)ψidΩ. (14)

The above system can be solved in terms of P(n,s) according to the fixed point procedure
described in [8]. More specifically, setting

P(n,s,0) = P(n,s−1), k(n,s,0) = k(n,s−1),

for l = 1, . . . ,M one solves the equation(
D(n,s,l) −C(n,s,l)(A(n,s))−1B(n,s)

)
P(n,s,l+1) =

G̃(n,s,l) −C(n,s,l)(A(n,s))−1F(n,s,l)

and updates the velocity solving

A(n,s)U(n,s,l+1) = F(n,s,l) −B(n,s)P(n,s,l+1).

Once the iterations have been completed, one sets u(n,s) = u(n,s,M+1) and E(n,s) accord-
ingly. It is important to point out that the scheme outlined above only requires the solution
of linear systems of a size equal to that of the number of discrete degrees of freedom asso-
ciated to a scalar variable, as in [8], which is crucial for the overall efficiency.
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4 Numerical results without orography

The numerical method outlined in the previous Sections has been validated in a number
of benchmarks relevant for atmospheric applications. We define

H = min{diam(K)|K ∈ Th}

and we define two Courant numbers, one based on the speed of sound denoted by C, the
so-called acoustic Courant number, and one based on the local velocity of the flow, the
so-called advective Courant number, denoted by Cu:

C = rc∆t/H, Cu = ru∆t/H (15)

where c is the magnitude of the speed of sound and u is the magnitude of the flow velocity.
Notice that both the Courant numbers depend on the polynomial degree r. In general,
we consider γ = 1.4 and R = 287 J kg−1 K−1 for all the simulations. In this Section, we
will focus on the results obtained in benchmarks without orography, while we will discuss
benchmarks with non trivial orographic profiles in the following Section.

4.1 Inertia-gravity waves

Inertia-gravity waves in a two-dimensional vertical section of the atmosphere constitute a
classical benchmark for atmospheric flow models, see e.g. [4, 21, 28]. In particular, we set

θ̄ = Tref exp

(
N2z

g

)
(16)

where N = 0.01 s−1 denotes the buoyancy frequency and Tref = 300 K. The background
density and pressure are defined as

p̄ = exp

{
1− g2

N2

γ − 1

γ

ρref
pref

[
1− exp

(
−N

2z

g

)]}
(17)

ρ̄ = ρref

(
p

pref

) 1
γ

exp

(
−N

2z

g

)
(18)

with pref = 105 Pa and ρref =
pref
/ RTref . The domain is Ω = (0, 300)× (0, 10) km and we

consider the following perturbation for the potential temperature

θ
′

= 0.01
sin
(πy
H

)
1 +

(
x−xc
a

)2 (19)

with xc = 100 km, a = 5 km and H = 10 km. For what concerns the boundary conditions,
we consider periodic boundary conditions for the horizontal direction and wall boundary
conditions for the vertical direction. A background horizontal velocity u = 20 m s−1 is
imposed. The grid is composed by 300×10 elements with r = 4, while the time step is taken
equal to 3 s yielding C ≈ 4.17 and Cu ≈ 0.24. Figure 1 shows the the potential temperature
perturbation at t = 3000 s, where one can easily notice that inertia-gravity waves propagate
from the initial perturbation also reported in Figure 1. The results compare well with those
available in the literature, see e.g. [21, 34]. Figure 2 shows the one-dimensional profile of
the potential temperature perturbation along z = 5 km, which is symmetric about the
position x = 160 km and in excellent agreement with the results reported in [13].

4.2 Density current

In this section we consider the classical density current benchmark proposed in [32]. The
setup consists of a negative temperature perturbation in a motionless isentropic atmosphere
with background potential temperature θ̄ = 300 K and temperature

T̄ =

(
300− zg γR

γ − 1

)
K
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a)

b)

Figure 1: Inertia-gravity waves benchmark, potential temperature deviation a) t = 0 s, b) t =
3000 s. Contours are plotted from 0.001 K to 0.01 K with interval equal to 1× 10−3 K for a) and
from −0.0015 K to 0.003 K with interval equal to 5× 10−4 K for b).

on the domain Ω = (−25.6, 25.6)×(0, 6.4) km. More in detail, the temperature perturbation
T
′

is defined as

T
′

=

{
0 if r̃ > 1000

−151+cos(πr̃)
2 if r̃ ≤ 1000

(20)

where r̃ =

√[
(x−xc)
xr

]2
+
[

(x−yc)
yr

]2
, xc = 0 m, xr = 4000 m, yc = 3000 m and xr = 2000 m.

Following [32], diffusive terms are included in order to stabilize the flow and, therefore,
the classical Navier-Stokes equations in conservative form are considered. As explained
in [23] and mentioned in Section 2, we resort to an operator splitting approach between
the hyperbolic part and the diffusive terms, whose discretization is carried out by the
implicit part of the IMEX scheme. This choice is commonly made in numerical methods for
atmospherics dynamics, see e.g. [20, 31]. We consider the diffusion coefficient ν = 75 m2/s
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Figure 2: Inertia-gravity waves benchmark, potential temperature deviation at t = 3000 s along
z = 5 km height.

and we set the thermal conductivity value κ such that the Prandtl number is taken to
be Pr = 0.76. The boundary conditions are periodic on the left and right boundaries
and wall boundary conditions on the top and bottom boundaries. The grid is composed
by 1024 × 128 elements with r = 2 leading to a resolution equal to 25 m. The time step
is taken equal to 0.1 s, yielding a maximum Courant number C ≈ 1.4 and Cu ≈ 0.15.
Figure 3 shows the deviation of the potential temperature with respect to the background
value at different times for the subdomain (0, 19.2) × (0, 4.8) km. In view of the negative
buoyancy, the structure falls and reaches the bottom boundary. It then moves to the right,
developing vortices. The front location is located at x = 15 700 m, in agreement with the
results obtained in [3, 21].

4.3 Cold bubble

In this Section, we consider a test case proposed in [26]. The computational domain is
the rectangle (0, 1000) × (0, 2000) m and the initial condition is represented by a thermal
anomaly introduced in an isentropic background atmosphere with constant potential tem-
perature θ̄ = 303 K. The perturbation of potential temperature θ

′
defines the initial datum

and it is given by

θ
′

=

{
A if r̃ ≤ r0

A exp
(
− (r̃−r0)2

σ2

)
if r̃ > r0,

(21)

with r̃2 = (x− x0)2 + (z − z0)2 and x0 = 500 m, z0 = 1250 m, r0 = 50 m, σ = 100 m and
A = −15 K. The expression of the initial profile of the Exner pressure is given by

π = 1− g

cpθ
z,

with cp = γ
γ−1R = 1004.5 J kg−1 K−1 denoting the specific heat at constant pressure. Notice

that, unlike in [26], no artificial viscosity has been added to stabilize the computation. Wall
boundary conditions are imposed at all the boundaries. The time step is taken to be ∆t =
0.08 s, corresponding to a maximum Courant number C ≈ 5.6 and a maximum advective
Courant number Cu ≈ 0.24, whereas the final time is Tf = 200 s. The computational grid
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a) b)

c) d)

Figure 3: Current density benchmark, potential temperature deviation from background at: a)
t = 0 s, b) t = 300 s, c) t = 600 s, d) t = 900 s. Contours are plotted from −16 K to −1 K with
interval equal to 1 K.

is composed by 200×400 elements with r = 1 leading to a resolution equal to 5 m. Figure 4
shows the contours of the potential temperature deviation from the background at t = 0 s,
t = 100 s and t = 200 s and the results are in reasonable agreement with those reported in
[26].

We now demonstrate the h−adaptivity capabilities available in the proposed implemen-
tation. We use as refinement indicator the gradient of the potential temperature. More
specifically, we set

ηK = max
i∈NK

|∇θ|i (22)

where NK denotes the set of nodes over the element K. The initial computational grid
is composed by 50 × 100 elements and only two local refinements are allowed, so as to
control the advective Courant number and to match at the finest refinement level the
resolution of the non adaptive mesh simulation. As one can easily notice from Figure 5,
the refinement criterion is able to track the bubble. The contour plots in Figure 6 show a
reasonable agreement for t = 50 s and t = 100 s, whereas for t = 200 s significant differences
between the simulations with uniform and adaptive grid appear, which are due to the
different development of the Kelvin-Helmholtz instability. The final mesh consists of 19334
elements instead of the 80000 elements of the full resolution mesh and a 25% reduction in
computational time is achieved.

4.4 3D rising bubble

In this Section we consider the 3D rising bubble benchmark proposed in [21]. A neu-
trally stratified isentropic atmosphere is assumed, with θ̄ = 300 K in the domain Ω =
(−500,−500,−500)×(500, 500, 1000) m. A spherical perturbation θ

′
located at (x0, y0, z0) =

(0, 0, 350) m is added to the potential temperature

θ
′

=

{
0.25

[
1 + cos

(
πr
r0

)]
if r̃ ≤ r0

0 if r̃ > r0,
(23)
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a)

b)

c)

Figure 4: Cold bubble benchmark, potential temperature deviation from background at: a)
t = 0 s, b) t = 100 s, c) t = 200 s. Contours are plotted from −15 K to −1 K with interval equal
to 1 K for a) and from −11.5 K to 8 K with interval equal to 1.625 K for b) and c).

with r̃ =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 and r0 = 250 m. Wall boundary conditions are
imposed for all the six boundaries and we take r = 2. In order to enhance the computational
efficiency, we use the h−adaptivity capabilities, with the same refinement indicator (22)
introduced in the previous Section. The initial grid is composed by 24× 24× 36 elements
and we allowed up to two local refinements which would correspond to a uniform mesh
with 96× 96× 144 elements and to a resolution around 5 m. The time step is taken to be
equal to ∆t = 0.4 s, leading to a maximum acoustic Courant number C ≈ 27 and advective
Courant number Cu ≈ 0.22. Figure 7 shows snapshots of the bubble at t = 200 s and
t = 400 s. At the later time, a Kelvin-Helmholtz instability starts to develop, which is
however still insufficiently well resolved by the present mesh. Further refinement levels or
higher polynomial degrees will have to be employed in future simulations to achieve better
accuracy at the later stage. Similar issue for an analogous test case are reported in [6].
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a) b)

Figure 5: Cold bubble benchmark, adaptive mesh at: a) t = 100 s, b) t = 200 s.

The final grid is composed by 62792 elements.
The size of this benchmark makes it a good candidate for a parallel scaling test. An

initial mesh composed by 48 × 48 × 72 elements corresponding to 13436928 dofs for the
velocity and 4478976 dofs for the remaining scalar variables is considered. Two config-
urations are employed: in the first case we keep it fixed, whereas in the second one we
apply h−adaptivity with two local refinements, roughly doubling the number of degrees of
freedom. A strong scaling analysis is performed executing the simulation up to time t = 8 s
and we use from 32 up to 1024 2xCPU x86 Intel Xeon Platinum 8276-8276L @ 2.4Ghz cores
of the HPC infrastructure GALILEO100 at the Italian supercomputing center CINECA.

The results, reported in Figure 8, are quite similar for the two configurations. A good
linear scaling is obtained up to 128 cores, even with superlinear behaviour for the fixed mesh
framework due to cache effects. Starting from 256 cores, the performance of the fixed mesh
configuration exhibits a small degradation and, for a higher number of cores, the speed-up
is less optimal for both configurations, due to overwhelming communication costs. The
apparent better behaviour of the h−adaptive version is due to the fact that more degrees
of freedoms are involved and, therefore, the role of communication costs is less evident.
The result also highlights that the local refining procedure has no significant impact on
the parallel performances and that both efficiency and scalability can be achieved in this
framework. These results are also similar to those obtained in [24] for a fixed grid with
an implicit incompressible solver built in the same framework and for which the employed
method coincides with the implicit part of the IMEX scheme presented in Section 3.
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a) b)

c)

Figure 6: Cold bubble benchmark, potential temperature deviation from background at: a)
t = 50 s, b) t = 100 s, c) t = 200 s. Black line denotes the results with uniform grid, whereas red
line represents the results with h-adaptivity. Contours are plotted from −11.5 to 8 with interval
equal to 1.625 K.

5 Numerical results with orography

We now consider a number of tests concerning idealized flows over orography, that since
the seminal papers [17, 18] have become a standard benchmark for numerical models of
atmospheric flows, see e.g. the results and discussions in [4, 21, 25, 34].

5.1 Hydrostatic flow over a hill

In a first test, the bottom boundary is described by the function

h(x) =
hm

1 +
(
x−xc
ac

)2 , (24)
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a)
b)

c)
d)

Figure 7: 3D rising bubble benchmark, results for y = 0 m; on the left the adaptive meshes
at t = 200 s (a) and t = 400 s (c) are reported, whereas on the right potential temperature
deviations from the background at t = 200 s (b) and t = 400 s (d) are reported.

the so-called versiera di Agnesi, where hm is the height of the hill and ac is the half-
width. The classical Gal-Chen height-based terrain-following coordinate [10] is used to
build the mapping between the reference element and the physical one and to obtain a
terrain following mesh in Cartesian coordinates. We first consider the linear hydrostatic
configuration presented e.g. in [13]. The computational domain is Ω = (0, 240)×(0, 30) km
with hm = 1 m, xc = 120 km and ac = 10 km. The final time is Tf = 45 000 s. The initial
state of the atmosphere consists of a constant mean flow with u = 20 m s−1 and of an
isothermal background profile with temperature T = 250 K. The initial profile of the

14



Figure 8: 3D rising bubble benchmark, strong scaling analysis. The speedup is computed with
respect to the time required with 32 cores.

Exner pressure is given by

π =

(
p0

p

) γ−1
γ

= exp

(
− g

cpT
z

)
.

We recall that cp = γ
γ−1R denotes the specific heat at constant pressure and that here

p0 = 105 Pa; moreover, since in an isothermal configuration the Brunt-Väisälä frequency is
N = g√

cpT
, it can be easily checked that Nac

u >> 1, so that this configuration corresponds to

a hydrostatic regime according to the classification in [25]. For what concerns the boundary
conditions, wall boundary conditions are used for the bottom boundary and non-reflecting
boundary conditions are required by the top boundary and the lateral boundaries. For this
purpose, we introduce a Rayleigh damping profile following [21]

λ =

{
0, if z < zB

λ sin2
[
π
2

(
z−zB
z−zT

)]
if z ≥ zB,

(25)

where zB denotes the height at which the damping starts and zT is the top height of the
considered domain. Analogous definitions apply for the two lateral boundaries. In this
case, we consider λ∆t = 0.3 and we apply the damping layer in the topmost 15 km of the
domain and in the first and last 80 km along the horizontal direction. The grid is composed
by 100× 75 elements with r = 4, yielding a resolution of 600 m along x and 100 m along z,
whereas the time-step is equal to 2.5 s, leading to C ≈ 1.84 and Cu ≈ 0.12. Following [29],
we also define the vertical momentum flux as

m(z) =

∫ ∞
−∞

ρ(z)u
′
(x, z)w

′
(x, z)dx, (26)

where u
′

and w
′

represent the deviation from the background state of the horizontal and
vertical velocity, respectively. This is a very important diagnostic quantity in atmospheric
modelling, used to check that the numerical model is correctly reproducing the orographic
forcing on the main flow. From the linear theory, the analytical momentum flux is given
by

mH = −π
4
ρsusNh

2
m, (27)
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where ρs and us denote the surface background density and velocity, respectively. Figure 9
shows the behaviour over time of the momentum flux normalized by its analytical value. It
can be noticed that the analytical value is approached as the simulation reaches the steady
state.

Figure 9: Linear hydrostatic flow over a hill, evolution of normalized momentum flux.

We consider now the more challenging, nonlinear hydrostatic case considered in [4, 25].
The computational domain is Ω = (0, 512)× (0, 28) km with hm = 800 m, xc = 256 km and
ac = 16 km. The final time is Tf = 60 000 s. The damping layer is applied starting from
z = 11.5 km and in the first and last 172 km along the horizontal direction. The background
velocity is u = 32 m s−1 and the Brunt-Väisälä frequency N is equal to 0.02 s−1. The mesh
is composed by 160× 112 elements with r = 2, yielding a resolution of 1600 m along x and
125 m along z, whereas the time step is equal to 10 s, yielding a maximum Courant number
C ≈ 1.41 and Cu ≈ 0.25. Figure 11 shows the contour plots of both the horizontal velocity
perturbation and vertical velocity, which compare well with those presented e.g. in [25].
The behaviour over time of the normalized momentum flux is reported in Figure 12 and
its value at the surface at t = Tf is approximately equal to 1.22, which is comparable to
the one obtained in [25]. The momentum flux differs from the analytical one because we
are no more in a linear regime. Moreover, as explained in [9], it is strongly dependent on
the position of the absorbing layer. These results confirm the stability and the accuracy of
the proposed numerical scheme also in presence of orography.

5.2 Nonhydrostatic flow over a hill

In this section we consider the nonhydrostatic regime, characterized by Nac
u ≈ 1. The

bottom boundary is again described by the function (24). We first adopt the linear
nonhydrostatic configuration described e.g. in [13]. The computational domain is Ω =
(0, 144) × (0, 30) km with hm = 1 m, xc = 72 km and ac = 1 km. The final time is
Tf = 28 800 s. The initial state of the atmosphere is described by the following poten-
tial temperature and Exner pressure, respectively:

θ = θref exp

(
N2

g
z

)
(28)

π = 1 +
g2

cpθrefN2

[
exp

(
−N

2

g
z

)
− 1

]
, (29)
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a)

a)

Figure 10: Linear hydrostatic flow over a hill at t = Tf , a) horizontal velocity deviation. Contour
values are between −2.5 ·10−2 m s−1 and 2.5 ·10−2 m s−1 with an interval equal to 5 ·10−3 m s−1, b)
vertical velocity. Contour values are between −4 · 10−3 m s−1 and 4 · 10−3 m s−1 with an interval
equal to 5 · 10−4 m s−1.

with θref = 280 K and N = 0.01 s−1. The background velocity u is equal to 10 m s−1.
Following [17], the analytical momentum flux is given by

mNH = 0.457mH (30)

and this value will be used to compute the normalized momentum flux for the present
case. Wall boundary conditions are applied on the bottom boundary and non-reflecting
boundary conditions are employed on the top and lateral boundaries with λ such that
λ∆t = 0.15. The damping layer is applied in the topmost 14 km of the domain and in
the first and last 40 km along the horizontal direction. The mesh is composed by 200× 50
elements with r = 4, yielding a resolution of 180 m along x and 150 m along z, whereas
the time step is equal to 1 s, leading to C ≈ 2.02 and Cu ≈ 0.06. Figure 13 reports the
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a)

b)

Figure 11: Nonlinear hydrostatic flow over a hill at t = Tf , a) horizontal velocity deviation,
values between −23 m s−1 and 28 m s−1 with contour interval of 2 m s−1, b) vertical velocity,
values between −3.9 m s−1 and 3.5 m s−1 with contour interval of 0.5 m s−1.

time evolution of the normalized momentum flux and, as for the linear hydrostatic case in
Section 5.1, the analytical value is approached as the simulation reaches the steady state.

Finally, we consider a nonlinear nonhydrostatic case, see e.g. [34]. The computa-
tional domain is Ω = (0, 40) × (0, 20) km with hm = 450 m, xc = 20 km, ac = 1 km, Tf =
36 000 s, N = 0.02 s−1, θref = 273 K and u = 13.28 m s−1. The damping layer is applied in
the topmost 11 km of the domain and in the first and last 10 km along the horizontal direc-
tion. The mesh is composed by 50× 50 elements with r = 4, yielding a resolution of 200 m
along x and 100 m along z. The time step is equal to 0.5 s, leading to a maximum Courant
number C ≈ 1.13 and Cu ≈ 0.08. Figure 14 shows the contour plots of both horizontal
velocity perturbation and vertical velocity, which are analogous to those reported in [34],
as well as the time evolution of the normalized vertical momentum flux. Notice that the
momentum flux is normalized by the analytical value (27).
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Figure 12: Nonlinear hydrostatic flow over a hill, normalized momentum flux evolution

Figure 13: Linear nonhydrostatic flow over a hill, evolution of normalized momentum flux.

5.3 Schär hill

In this Section, we consider the well known Schär mountain test, which consists of a steady-
state flow over a five-peak mountain chain [21, 27]. The domain is Ω = (−50, 50)×(0, 30) km
with surface temperature Tref = 288 K, constant buoyancy frequency N = 0.01 s−1 and a
background wind ū = 10 m s−1. The mountain profile is defined as

h(x) = hm exp

[(
− x
ac

)2
]

cos2

(
πx

λc

)
, (31)

with hm = 250 m, ac = 5 km and λc = 4 km. The background density and pressure have
the same expression as in (17)-(18) with θref = 288 K and the final time is Tf = 18 000 s.
The damping layer is applied in the topmost 10 km of the domain and in the first and last
10 km along the horizontal direction with λ∆t = 1.2. The mesh is composed by 100 × 50
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a) b)

c)

Figure 14: Nonlinear nonhydrostatic flow over a hill, a) horizontal velocity deviation, values
between −7.2 m s−1 and 9.0 m s−1 with contour interval of 1.16 m s−1 at t = Tf , b) vertical
velocity, values between −4.2 m s−1 and 4.0 m s−1 with contour interval of 0.586 m s−1 at t =
18 000 s, c) normalized momentum flux evolution.

elements with r = 4, leading to a resolution of 250 m along x and of 150 m along z, whereas
the time step is equal to 2.5 s, yielding a maximum acoustic Courant number C ≈ 2.02 and
a maximum advective Courant number Cu ≈ 0.09. Figure 15 shows the contour plots of
both horizontal velocity perturbation and vertical velocity, which are analogous to those
reported in [13, 21].

5.4 3D medium-steep bell-shaped hill

In this Section, we consider the three-dimensional flow over a bell-shaped hill, see e.g. [21].
The computation domain is Ω = (0, 60) × (0, 40) × (0, 20) km. The mountain profile is
defined as

h(x, y) =
hm[

1 +
(
x−xc
ac

)2
+
(
y−yc
ac

)2
]3/2

, (32)

with hm = 400 m, ac = 1 km, xc = 30 km and yc = 20 km. We consider as buoyancy
frequency N = 0.01 s−1 and a background velocity u = 10 m s−1. We are therefore in a
nonhydrostatic regime since Nac

u = 1. The background density and pressure have the same
expression of (17) and (18) with θref = 293.15 K and the final time is Tf = 3600 s. The
damping layer is applied in the topmost 6 km of the domain and in the first and last 20 km
along the lateral boundaries with λ∆t = 1.2. In order to increase the resolution around

20



a)

a)

Figure 15: Schär mountain test case at t = Tf , a) horizontal velocity deviation. Contour values
are between−2 m s−1 and 2 m s−1 with an interval equal to 0.2 m s−1, b) vertical velocity. Contour
values are between −0.5 m s−1 and 0.5 m s−1 with an interval equal to 5 · 10−2 m s−1.

the hill, we consider a non-uniform grid by taking a resolution of 250 m between x = 25 km
and x = 40 km and a resolution of 250 m between y = 12 km and y = 28 km. A uniform
resolution of 500 m is considered along the vertical direction z, as well as for the remaining
part of the lateral boundaries. A snapshot of the grid for the x − y sloice at z = 800 m
is reported in Figure 16. The mesh is composed by 8288 elements with polynomial degree
r = 4, whereas the time step is equal to 2 s, yielding a maximum acoustic Courant number
C ≈ 1.95 and a maximum advective Courant number Cu ≈ 0.1. The results in Figure 17
are in agreement with those reported in [21].
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Figure 16: 3D mountain benchmark, x–y slice at z = 800 m of the computational grid.

6 Conclusions

We have presented an application of semi-implicit discretization of the compressible Euler
equations proposed in [23] to atmospheric dynamics. The method includes non-conforming
h− refinement, as implemented in the framework provided by the numerical library deal.II
[1, 2]. Being based on an open source library enhances code portability and embeds the
development of codes specific for numerical weather prediction applications in the frame-
work of a development project that is being continuously adapted to novel architectures
and extended to include novel versions of the DG method. Simulation of classical bench-
marks demonstrates that the method can simulate accurately small scale flows in presence
of gravity and idealized flows over orography. In future developments, we aim to show the
potential of non-conforming mesh refinement to increase locally the resolution over complex
orography. Moreover, we will consider the inclusion of more complex physical phenomena,
such as for example turbulence, water vapour transport and adiabatic heating, in order
to demonstrate that all the typical features of a high resolution numerical weather predic-
tion model can be included in the proposed adaptive framework without significant loss of
accuracy or efficiency.
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Figure 17: 3D mountain benchmark, x–y slice at z = 800 m of the vertical velocity. The values
are between −1.5 m s−1 and 1.3 m s−1 with contour interval of 0.1 m s−1
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