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Abstract

In this paper we introduce an algorithm based on a sparse grid adaptive refinement,
for the approximation of the eigensolutions to parametric problems arising from elliptic
partial differential equations. In particular, we are interested in detecting the crossing
of the hypersurfaces describing the eigenvalues as a function of the parameters.

The a priori matching is followed by an a posteriori verification, driven by a suitably
defined error indicator. At a given refinement level, a sparse grid approach is adopted
for the construction of the grid of the next level, by using the marking given by the a
posteriori indicator.

Various numerical tests confirm the good performance of the scheme.

Key words: Eigenvalue problem; Parameter-dependent partial differential equation; Model
reduction; Eigenvalue matching; A posteriori error indicator; Sparse grid.
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1 Introduction

Many engineering applications require the knowledge of resonance frequencies of the con-
sidered structure. Prime examples are vibration problems in mechanical engineering, where
the vibration of buildings or bridges at their natural frequencies might cause damage and
structural failure.

During the last decades, computation power has substantially increased. Nevertheless,
the computation effort required for the solution of large-scale eigenproblems is still consid-
erable. The situation gets more difficult when manufacturing imperfections and geometric
or material variability are included in the mathematical model as parameters or random
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fields. In particular, when the solution of the same eigenproblem is of interest for many dif-
ferent values of the parameters, the direct computation of eigenpairs by means of standard
numerical techniques entails an unaffordable computational effort.

Model Order Reduction (MOR) methods aim at reducing the overall computational
effort by producing a surrogate of the parameter-to-eigenpair map, which is accurate and
at the same time fast to be evaluated. They develop in two phases: several snapshots of
eigenpairs (corresponding to an appropriate set of parameter values) are computed during
the offline phase, and used to construct the surrogate, which is then evaluated at any new
parameter value during the online phase.

A very popular ROM method developed during the last few decades is the Reduced
Basis (RB) method (see, e.g., [24, 13]) which constructs the surrogate by projection onto
the set of precomputed snapshots selected either adaptively by means a greedy algorithm
or by Proper Orthogonal Decomposition (POD).

Up to now, a tremendous effort has been made in developing ROM for source problems,
whereas model reduction for parametric/stochastic eigenproblems is still a largely unex-
plored field. The way was paved by the pioneering work [19], where an RB approach is
proposed to approximate the smallest eigenvalue. This methodology has been further devel-
oped to deal with more eigenvalues in [22]. A component-based RB method for eigenvalue
problems is proposed in [26] and an a posteriori estimator for eigenvalues is studied in [15].
All the previously mentioned contributions do not cover the case of multiple eigenpairs.
Instead, in [14], an a posteriori error bound for multiple eigenvalues (but not eigenvectors)
is studied under the assumption of affine parametric dependence of the eigenproblem. Fi-
nally, in [10] a greedy RB method for both affine and non-affine parametric eigenproblems
is proposed, with a focus on the smallest (single) eigenpair, only. The same task (namely,
the approximation of the first eigenpair) in the context of stochastic eigenproblems has
been solved in [12] and [2] by means of the Stochastic Galerkin and Stochastic Collocation
method, respectively.

The aim of the present paper is the development of an algorithm to match (and inter-
polate) snapshots of eigenpairs of symmetric problems as the parameter varies in a given
p-dimensional subset of interestM ⊂ Rp, and as the eigenvalues lie in a fixed window of
interest Iλ ⊂ R. In particular, the issues connected with multiple eigenvalues as well as
crossings of the hypersurfaces described by the eigenvalues as the parameter varies inM
are thoroughly analyzed.

The parameter space is sampled adaptively, following a two-phase procedure. First, a
suitably adapted version of the a priori matching proposed in [21] is applied. Numerical
examples (see Section 4.1) show that this technique might produce an incorrect matching.
Hence, we have developed a novel a posteriori indicator based on the orthogonality of the
snapshots of eigensolutions, which drives the adaptive sampling. The algorithm is first
presented on a one-dimensional (in the parametric space) case, and then extended to the
high-dimensional setting by means of hierarchical locally refined sparse grids.

It is worth mentioning that the a priori matching that we use is connected with
MOR techniques developed in a different framework, namely, the parametric-in-frequency
Helmholtz boundary value problem. In particular, we mention [3, 4, 5, 9], where rational-
based surrogates for the Helmholtz solution map are constructed. Indeed, the roots of
the denominator of the surrogate are approximations to the resonances of the Helmholtz
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problem, which in turn are eigenvalues of the corresponding elliptic problem. A matching
strategy in the same spirit as [21] and the a priori matching of the present paper is stud-
ied in [28]. Moreover, a mode tracking method for the parametrized Maxwell eigenvalue
problem is presented in [11, 29, 27, 16].

Our work is the first step toward a deep understanding of Uncertainty Quantification
for stochastic eigenvalue problems arising from elliptic PDEs with stochastic diffusion co-
efficients. This field of research, even though relatively unexplored, is extremely important
in various application areas.

The paper is organized as follows. In Section 2 we describe the problem of interest.
Section 3 is dedicated to the adaptive algorithm: first we give a general overview of the main
steps of the proposed algorithm, details on all the steps then follow. In Section 4 we present
both one and two dimensional results to validate the proposed strategy. Conclusions are
finally drawn in Section 5.

2 Setting of the Problem

Let us consider the Hilbert triplet

V ⊂ H ' H ′ ⊂ V ′

and a parameter space M ⊂ Rd. It is out of the aims of this work to identify the most
general assumptions on the parameter space. Very often in the applications we have in
mind, it is a tensor product of intervals (like a hypercube). In any case in what follows we
will need that it is connected and that it supports an initial grid with neighboring points
as described later in this section.

For each µ ∈M, we consider two symmetric and bilinear forms

a(·, ·;µ) : V × V → R,
b(·, ·;µ) : H ×H → R.

Furthermore, we make the following assumptions

V compact in H,
a(·, ·;µ) elliptic in V ∀µ ∈M,

b(·, ·;µ) equivalent to the inner product in H ∀µ ∈M.

More general assumptions could be made. However, the features of our strategy are better
described in this simpler setting.

Our aim is to approximate the solutions of the following parametric eigenvalue problem:
for all µ ∈ M, find real eigenvalues λ(µ) and non-vanishing eigenfunctions u(µ) ∈ V such
that

a(u, v;µ) = λ(µ)b(u, v;µ) ∀v ∈ V. (2.1)

Our assumptions ensure that the problem is associated with a compact solution op-
erator so that all eigenvalues {λj(µ)}∞j=1 correspond to finite-dimensional eigenspaces. In
particular, we are interested in detecting the behavior of the hypersurfaces defined by λj(µ)
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in the region M× R. These hypersurfaces may intersect, leading in general to multiple
eigenvalues at one point of intersection. Indeed, the situation can be very complicated
when the dimension d of the parametric space gets large. In the simplest case, d = 1, we
are dealing with intersections of curves.

To better define our problem, we restrict the range of the eigenvalues we are interested
in to an interval Iλ = [λmin, λmax], also referred to as window of interest. Consequently,
we only examine the hypersurfaces in the regionM× Iλ. This implies in particular that
hypersurfaces can enter or exit this region of interest when the corresponding eigenvalues
cross the values of λmin or λmax. It follows then that the number of eigenvalues considered
for µ1 and µ2 inM can be different from each other when µ1 6= µ2.

Problem (2.1) is discretized by finite elements (FEs). That is, we consider a finite
dimensional subspace Vh ⊂ V and for all µ ∈ M we consider the matrix generalized
eigenvalue problem: find real eigenvalues λh(µ) and non-vanishing eigenfunctions uh(µ) ∈
Vh such that

a(uh, v;µ) = λh(µ)b(uh, v;µ) ∀v ∈ Vh. (2.2)

This will be considered as our high-fidelity solution.

3 Description of the adaptive algorithm

Before examining the details of our approach, we give a general overview of the main steps
taken to track the behavior of the hypersurfaces in the region M× Iλ described by the
varying eigenvalues. We assume that we are given a grid in the parametric spaceM and
that we have computed the eigenvalues in the interval Iλ as well as the corresponding
eigenfunctions for each point of the grid.

The first phase consists in the a priori matching of the eigenvalues of each pair of
neighboring parameters µi and µk where the indices i and k are defined based on the
used grid. The matching is performed by considering, in a suitable sense, how close the
eigenvalues and the eigenfunctions are to each other. This phase is prone to error in
particular if the distance between µi and µk is large with respect to the variability of
the eigenvalues. The a priori phase is followed by an a posteriori verification of the
matching. We introduce a suitable a posteriori indicator that is based on the orthogonality
of the eigenfunctions. This phase aims to confirm whether the a priori matching was
performed correctly or not. If not, the corresponding interval is marked for refinement.
Finally, a sparse grid approach is used to drive the refinement strategy, leading to an
adaptive procedure that is terminated when a suitable stopping criterion is met.

The three phases of our adaptive strategy are executed using three interrelated algo-
rithms. Algorithm 3 describes the global refinement procedure. In turn, this algorithm
relies on two additional algorithms. The first one, Algorithm 1, describes the local a priori
matching procedure while the second one, Algorithm 2, enforces the local a posteriori test.

3.1 The a Priori Matching

The FE method (2.2) leads to an algebraic problem as follows: find λ(µ) ∈ R and u(µ) ∈
RN with u(µ) 6= 0 such that A(µ)u(µ) = λ(µ)B(µ)u(µ), where A(µ) and B(µ) are matrices
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in RN×N where N is the dimension of our finite element space. A(µ) and B(µ) are
symmetric and positive definite for all values of µ ∈ M. To avoid heavy notation, we
denote discrete quantities without indicating the space mesh index h (λ instead of λh,
etc.).

We consider two different parameter values µi and µk that are the endpoints of what
we are going to call from now on a local subinterval. For these two points, we generate
the two sets of FE eigenpairs {(λj(µi), uj(µi))}nij=1, {(λ`(µk), u`(µk))}

nk
`=1. Note that the

values ni and nk may be different from each other in particular since we are looking for all
eigenvalues within the window of interest Iλ. We assumed that the bilinear form b(·, ·, µ)
is equivalent to the scalar product in H for all µ ∈M; we denote the associated norm by

‖v‖b,µ = b(v, v, µ)1/2

The eigenfunctions are normalized with respect to this norm so that

‖uj(µi)‖b,µi = ‖u`(µk)‖b,µk = 1.

Definition 3.1. The cost matrixD(i,k) associated with the local subinterval with endpoints
µi and µk has size ni × nk and entries

D
(i,k)
j,` := w1|λj(µi)− λ`(µk)|+ w2 min{‖uj(µi)− u`(µk)‖b,µ̄, ‖uj(µi) + u`(µk)‖b,µ̄}, (3.1)

where w1, w2 ∈ R+ are weights and µ̄ is a fix parameter value between µi and µk.

Remark 3.2. A similar definition to (3.1) can be found in [21]. However, some modifications
are necessary in the present context, since the normalization of the eigenfunctions doesn’t
necessarily imply the same choice of sign. Hence we have to compare both the sum and
the difference of corresponding eigenfunctions.

Once we have introduced the cost matrix, we want to minimize its entries by solving
the following optimization problem: find the permutation σ? = (σ1, . . . , σn̄) ∈ (1, . . . , n̄)!
such that

σ? := argminσ∈(1,...,n̄)!

ni∑
α=1

nk∑
β=1

Di,k
σα,σβ

, (3.2)

with n̄ := min{ni, nk}. Between the several options available to compute the solution
of (3.2), we adopt the the so-called Hungarian Algorithm [17]. The permutation solution
is then used to reorder the eigensolutions so that there is a one-to-one correspondence
between the matched eigensolutions

The structure of our code is reported in the following Algorithm 1, where we assume,
without loss of generality, that ni ≥ nk, i.e., n̄ = nk.

3.2 The a Posteriori Verification

After the a priori matching, we introduce an a posteriori verification phase, which is based
on the following projection matrix.
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Algorithm 1 Local a priori matching

Require: µi, µk ∈M, {(λj(µi), uj(µi))}nij=1, {(λ`(µk), u`(µk))}
nk
`=1, w1, w2 ∈ R+

Ensure: Reordered eigenpairs {(λ?j (µi), u?(µi))}
ni
j=1, {(λ?` (µk), u?` (µk))}

nk
`=1

1: Compute D(i,k) ∈ Rni×nk with weights w1, w2 . See (3.1)
2: Find σ? solution to (3.2) . Hungarian algorithm
3: Set (λ?j (µi), u

?(µi)) = (λj(µi), uj(µi)) for j = 1, . . . , ni
4: Set (λ?` (µk), u

?
` (µk)) = (λσ?` (µk), uσ?` (µk)) for ` = 1, . . . , nk

Definition 3.3. The projection matrix Π(i,k) associated with the local subinterval with
endpoints µi and µk has size ni × nk and its entries are given by

Π
(i,k)
j,` = |b(uj(µi), u`(µk), µ̄)|, (3.3)

with µ̄ being a fixed parameter value between µi and µk.

Ideally, if the matching was performed correctly, the projection matrix should be close
to diagonal: two matching eigenfunctions should be similar to each other and two non-
matching eigenfunctions should be close to orthogonal with respect to the bilinear form
b. In order to check whether the projection matrix is close to diagonal, we make use
of a positive tolerance value tπ. This is used to truncate Π(i,k) — inside a loop over
j = 1, . . . ,min{ni, nk} — in accordance with lines 4-13 of Algorithm 2. Let r1, r2 be
the vectors containing the non-zero elements of the j-th column and j-th row of Π(i,k),
respectively (line 14). If both r1 and r2 contain just one element, the a priori matching
is considered correct. Instead, if their length differs, the interval is marked for refinement
(lines 16-19). Checking the orthogonality of eigenfunctions is a good stopping criterion in
general, but might fail when we are close to multiple eigensolutions. In such a case, the
orthogonality between distinct eigenfunctions depends on the solver and is not immediate
to check in practice. For this reason, we introduce a second positive tolerance value tλ that
is responsible for verifying if two (or more) eigenvalues belong to a cluster. This scenario
corresponds in Algorithm 2 to the case where r1 and r2 have the same length, larger
than 1. Lines 20-25 introduce a specific definition for when multiple eigensolutions are to
be considered as one cluster of indistinguishable eigenfunctions. The local subinterval is
marked for refinement when it fails the tλ stopping criterion.

Remark 3.4 (Choice of the tolerances tπ, tλ). Note that in the limit tπ → 0, the projection
matrix Π(i,k) is diagonal. On the other hand, the truncation process will leave the projec-
tion matrix unchanged as tπ → 1, possibly leading to an infinite loop over the refinement
level (see Section 3.4). There is then a threshold between between tπ being large enough
to capture potential errors in matching choices, and small enough to minimize the number
of refinements. The selection of the optimal value for tπ becomes more delicate as the
dimension of the parameter space gets larger.

A similar balance must hold for tλ. When there is considerable overlap between two
(or more) eigenfunctions, this will translate into non-zero off-diagonal elements of Π(i,k).
This can lead to a very large number of refinements in order for the subinterval to be
certified, unless tλ is chosen such that those overlapping eigenfunctions are identified as a
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cluster. However, if tλ is chosen to be too large, then wrong matching choices of orthogonal
eigenfunctions will be certified by the a posteriori estimator because such eigenfunctions
will be incorrectly considered indistinguishable. This premature termination can lead to
wrong results.

Algorithm 2 Local a posteriori verification

Require: µi, µk ∈M, {(λj(µi), uj(µi))}nij=1, {(λ`(µk), u`(µk))}
nk
`=1, tπ, tλ ∈ R+

Ensure: if_refinement = 0 or if_refinement = 1
1: Set if_refinement=0
2: Compute Π(i,k) ∈ Rni×nk . See Equation (3.3)
3: for j = 1 to min(ni, nk) do
4: for ` = 1 to nk do
5: if Π

(i,k)
j,j ≥ Π

(i,k)
j,` + tπ then

6: Set Π
(i,k)
j,` = 0 . Truncate Π

(i,k)
j,: up to tolerance tπ

7: end if
8: end for
9: for ` = 1 to ni do

10: if Π
(i,k)
j,j ≥ Π

(i,k)
`,j + tπ then

11: Set Π
(i,k)
`,j = 0 . Truncate Π

(i,k)
:,j up to tolerance tπ

12: end if
13: end for
14: Let r1 = find(Π

(i,k)
j,: ), r2 = find(Π

(i,k)
:,j ) . Indices of the non-zero elements

15: if (length(r1)) > 1 or (length(r2)) > 1) then
16: if length(r1) 6= length(r2) then
17: if_refinement = 1 . Mark [µi, µk] for refinement
18: break
19: end if
20: Let αij,γ1 :=

|λj(µi)−λγ1 (µi)|
λj(µi)

for γ1 ∈ r1

21: Let αkj,γ2 :=
|λj(µk)−λγ2 (µk)|

λj(µk) for γ2 ∈ r2

22: if maxγ1∈r1, γ2∈r2{αij,γ1 , α
k
j,γ2
} > tλ then . No cluster is identified

23: if_refinement = 1 . Mark [µi, µk] for refinement
24: break
25: end if
26: end if
27: end for

3.3 The Sparse Grid-based Adaptive Sampling

In the present contribution we aim at a refinement strategy that performs well also when
the dimension d of our problem is large. To mitigate the curse of dimensionality, it is
essential to pay particular attention to the way the grid of the parameter space M is
refined. One possibility is to use locally-refined sparse grids, in the spirit of what was
proposed in [1, 21]. In particular, the refinement step described in Section 3.4 relies on
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Figure 3.1: Forward points (squares) and neighbours (crosses) of µ = (−1,−1) ∈ Γ(1, 1)
(left); µ = (−1

2 , 1) ∈ Γ(2, 1) (middle); µ = (−1
2 ,

1
2) ∈ Γ(2, 2) (right).

some notions and features related to sparse grids. For the readers’ convenience, we recall
them here.

The main ideas of our sparse grid approach are better explained, without loss of gen-
erality, when M = [−1, 1]2. With small modifications, the case M = [a, b] × [c, d], for
a, b, c, d ∈ R can be handled. Moreover, the following discussion can be easily extended to
the high-dimensional framework, i.e., for d ≥ 3.

Let us define the sequence {Γ(m)}m∈N0 of nested sets of points in [−1, 1] as follows:

Γ(m) :=

{
{0} if m = 0,

{21−mj}2m−1

j=−2m−1 if m > 0.
(3.4)

By tensor product, we get grids of points in M. In particular, given a two-dimensional
multi-index m = (m1,m2) ∈ N2

0, the corresponding two-dimensional grid is defined as

Γ(m) = Γ(m1)× Γ(m2) = {(α1, α2), αk ∈ Γ(mk), k = 1, 2} .

Let µ = (µ1, µ2) ∈ Γ(m) be given, and assume that both its entries are fractions in lowest
terms. We define the set of forward points V(µ) of µ as

V(µ) := {(µ1 ± 2−m1 , µ2), (µ1, µ2 ± 2−m2)} ∩M, (3.5)

and the set of neighbours U(µ) of µ as

U(µ) := {(µ1 ± 2−(m1−1), µ2), (µ1, µ2 ± 2−(m2−1))} ∩M. (3.6)

Note that both sets V(µ) and U(µ) contain up to 2d points for any d ≥ 2. Some examples
are depicted in Figure 3.1.

3.4 The Refinement Strategy

We start with an initial partition P (0) or the parameter spaceM. The procedure described
in Algorithm 3 describes how to go from the `-th partition P (`) to the next partition P (`+1)

containing P (`).
Knowing that P (`) = P (`−1) ∪P (`)

δ , the refinement strategy takes into account only the
points in P (`)

δ . This is essential in order to mitigate the curse of dimensionality when the
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value of d is large. On the other hand, we do not need to consider the points in P (`) \P (`)
δ

since we know from the previous level that the a posteriori indicator confirmed the a priori
matching there.

Each element (parameter) in P
(`)
δ has a collection of neighboring points (see equa-

tion (3.6)). This defines a collection of local subintervals on which we apply Algorithms 1
and 2, leading to either a marking of the subinterval for further refinement or not. The
output of one iteration of this algorithm defines the output of a level. We perform this al-
gorithm iteratively for increasing values of the level ` ∈ N0 (with the convention P (−1) = ∅,
so that P (0) = P

(0)
δ ) until no extra refinements for any subinterval within the current level

take place.

Algorithm 3 Refinement Step

Require: Level ` ∈ N0, initial grid P (`) = P (`−1) ∪ P (`)
δ with P (`−1) = {µ(`−1)

s }N`−1

s=1 and
P

(`)
δ = {µ(`,δ)

s }N`,δs=1 , and eigenpairs Λ
(`)
δ := {(λj(µ(`,δ)

s ), uj(µ
(`,δ)
s )}nsj=1

Ensure: Refined grid P (`+1) and eigenpairs Λ
(`+1)
δ

1: Set P (`+1)
δ = ∅, Λ

(`+1)
δ = ∅

2: for s = 1 : N`,δ do . Loop on the points in P (`)
δ

3: for ν(r,s) ∈ V(µ
(`,δ)
s ) do . Loop on the neighbours of µ(`,δ)

s (3.6)
4: Λ?s := {(λj(µ(`,δ)

s ), uj(µ
(`,δ)
s ))}nsj=1 ← {(λj(µ

(`,δ)
s ), uj(µ

(`,δ)
s ))}nsj=1

5: Λ?r := {(λ?j (ν(r,s)), u
?
j (ν(r,s)))}nsj=1 ← {(λj(ν(r,s)), uj(ν(r,s)))}nrj=1 . See

Algorithm 1
6: if_refinement = a-posteriori check on Λ?s, Λ?r . See Algorithm 2
7: if if_refinement = 1 then
8: P

(`+1)
δ ← ν̄(r,s) . ν̄(r,s) is the corresponding forward point of µ(`,δ)

s

9: Compute Λ̄ := {(λj(ν̄(r,s)), uj(ν̄(r,s)))}nrj=1

10: Λ
(`+1)
δ ← Λ̄

11: end if
12: end for
13: end for
14: Set P (`+1) = P (`) ∪ P (`+1)

δ

4 Numerical results

Section 4.1 is devoted to a numerical example illustrating the behavior of the two local pro-
cedures (a priori matching and a posteriori verification). The global refinement algorithm
is discussed in one- and two- dimensional numerical examples in Sections 4.2 and 4.3.

In all the presented numerical experiments we consider the following setting: let Ω =
[0, 1]2 be the physical domain and let V = H1(Ω) and H = L2(Ω) endowed with the usual
inner products and norms. For all µ ∈ M ⊂ Rd we look for eigenpairs (λ(µ), u(µ)) ∈
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R+ ×H1(Ω) such that {
∇ · (c(µ)∇u(µ)) = λ(µ)u(µ) in Ω,
u(µ) = 0 on ∂Ω,

(4.1)

where c(µ) is a matrix with size 2 × 2 and positive definite for all possible values of the
parameter µ. Integrating by parts, we find the weak formulation of (4.1) of the form (2.1)
with the bilinear forms

a(w, v;µ) :=

∫
Ω
c(µ)∇w · ∇v dx,

b(w, v;µ) :=

∫
Ω
wv dx.

The FE method on a sufficiently refined mesh is employed to numerically approximate the
eigenvalues and eigenfunctions at fixed values of the parameter µ ∈ M. All the computa-
tions are performed in Matlab on a laptop with four cores (eight logical processors), 16
GB of RAM. Furthermore, we make use of the Partial Differential Equation toolbox [20]
and Sparse Grids Kit [23].

4.1 Operations on a subinterval

In the first numerical test we takeM = [0.4, 1],

c(µ) =

(
µ−2 1

1 0.7−2

)
, (4.2)

and Iλ = [0, 270]. We first detail the local steps of the proposed algorithm, namely,
the a priori matching and the a posteriori verification, on the subinterval with endpoints
µ1 = 0.4 and µ2 = 0.7. The FE method at µ1 (respectively µ2) delivers four (respectively
nine) eigenvalues in Iλ (and corresponding eigenvectors), given by

λ(µ1) = (80.8, 137.9, 230.6, 265.9)>,

λ(µ2) = (38.2, 81.1, 109.7, 129.4, 188.6, 189.9, 214.8, 260.9, 261.9)>.

The 4× 9 cost matrix (with weights w1 = 1, w2 = 200) reads as follows:

D =


57.7 282.2 311.6 318.8 390.6 391.5 415.6 462.8 463.3

381.9 189.4 202.6 290.1 333.1 324.8 359.5 396.6 406.6
473.2 431.9 403.4 288.7 204.8 323.0 220.3 313.1 310.7
509.9 359.2 290.3 418.4 360.0 345.3 333.8 278.3 286.7


To minimize the total cost, namely, to solve the optimization problem (3.2), we employ
the Hungarian algorithm, whose output is the permutation σ? = (1, 2, 5, 8) (the entries
of the cost matrix identified by σ? are depicted in red). As a consequence, the vectors
{λj(µ1), j = 1, . . . , 4} and {λ`(µ2), ` = σ?1, . . . , σ

?
4)} are matched as follows:

80.8 ↔ 38.2
137.9 ↔ 81.1
230.6 ↔ 188.6
265.9 ↔ 260.9
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and the vector {λ`(µ2), ` = 1, . . . , 9} is reordered accordingly:

λ?(µ2) = (38.2, 81.1, 188.6, 260.9, 109.7, 129.4, 189.9, 214.8, 261.9)>.

The a priori matching is then followed by the a posteriori verification. Here, we start
with the 4× 9 projection matrix.

Π =


0.997 0.000 0.001 0.000 0.000 0.070 0.000 0.018 0.014
0.000 0.778 0.000 0.052 0.622 0.000 0.071 0.000 0.000
0.030 0.000 0.663 0.000 0.000 0.564 0.000 0.481 0.007
0.000 0.617 0.000 0.051 0.778 0.000 0.092 0.000 0.000


We fix tπ = 0.21, and we enter the loop over j (line 3 in Algorithm 2. For j = 1, the
truncation conditions in line 5, 10 are fulfilled, hence all the off-diagonal entries of the first
row and column of Π are truncated to 0. For j = 2, instead, the same process identifies
two non-zero elements both in the second row and in the second column of Π:

Π =


0.997 0 0 0 0 0 0 0 0

0 0.778 0 0 0.622 0 0 0 0
0 0 0.663 0.000 0.000 0.564 0.000 0.481 0.007
0 0.617 0.000 0.051 0.778 0.000 0.092 0.000 0.000


As a consequence, the first matching choice 80.8 ↔ 38.2 is certified but not the second
matching 137.9↔ 81.1. Here, the second eigenvalue at µ1, namely 137.9, is permitted to be
matched to both the second (81.1 since Π2,2 = 0.778) and fifth (109.7 since Π2,5 = 0.622)
eigenvalues at µ2. Furthermore, the second eigenvalue at µ2, 81.1, can be matched to the
second and fourth (265.9 since Π4,2 = 0.617) eigenvalues at µ1.

We then check whether the second and fourth eigenvalues at µ1 form a cluster given
the fixed tolerance tλ = 0.001. A quick computation yields the following

|λ2(µ1)− λ4(µ1)|
λ2(µ1)

> 0.001

and similar results hold at µ2 for the second and fifth eigenvalues. Thus, these eigenvalues
are distinguishable from each other and no eigenvalue clusters are identified. Consequently,
the a posteriori verification does not confirm the results of the a priori matching, and the
subinterval is not certified and is marked for further refinement.

4.2 Full 1D example

The main purpose of this section is to show how refinement in a full 1D parametric domain
takes place. We continue using the same set-up presented in Section 4.1.

For the sake of comparison, we numerically compute the reference solution (see Fig-
ure 4.1). This is obtained by applying the a priori matching (Algorithm 1) on the uniform
grid of the parametric spaceM containing 129 points. The matching information is then
propagated from left to right along all the 128 subintervals ofM.

In contrast, we apply the adaptive refinement algorithm presented in Section 3. The
output is the (coarse) adapted sparse grid of M containing enough points to detect all

11



0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter

50

100

150

200

250

E
ig

e
n
v
a

lu
e

Figure 4.1: Reference solution.

the features of the reference solution. Figure 4.2 depicts the evolution of the parametric
grid as the level increases, whereas in each subfigure of Figure 4.3 the result of the local
checks are represented: matched eigenvalues are plotted using the same color and marker;
if the projection matrix suggests that more than one matching is possible, the possible
matchings are highlighted by means of black dashed lines. We detail now the level-by-level
procedure, which is summarized in Table 4.1.

Level 0 The initial grid is P (0) = {0.4, 0.7, 1} (see the blue points in Figure 4.2). In
particular, the local checks (both the a priori matching and the a posteriori verifi-
cation) are performed on the two local subintervals [0.4, 0.7] and [0.7, 1], which are
both marked for further refinement.

Level 1 The grid at level one contains five points P (1) = {0.4, 0.55, 0.7, 0.85, 1} (see the
black dots in Figure 4.2) and it is given by P (1) = P (0)∪P (1)

δ , with P (1)
δ = {0.55, 0.85}.

Following Algorithm 3, the local checks are performed on the four subintervals
[0.4, 0.55], [0.85, 1], [0.55, 0.7] and [0.7, 0.85]. Only the last two subintervals are
marked for further refinement.

Level 2 The grid at level 2 is P (2) = {0.4, 0.55, 0.625, 0.7, 0.775, 0.85, 1} (see the red dots
in Figure 4.2) and it is given by P (2) = P (1)∪P (2)

δ , with P (2)
δ = {0.625, 0.775}. Local

checks are then performed on the following subintervals: [0.55, 0.625], [0.625, 0.7],
[0.7, 0.775], and [0.775, 0.85]. Only one subinterval is marked for further refinement,
namely [0.775, 0.85].

Level 3 The grid at level 3 is P (3) = {0.4, 0.55, 0.625, 0.7, 0.775, 0.8125, 0.85, 1} (see the
magenta dots in Figure 4.2) and it is given by P (3) = P (2) ∪ P (3)

δ , with P
(3)
δ =

{0.8125}. The local checks on the local subintervals [0.775, 0.8125] and [0.8125, .085]
are performed, and none of the two is marked for refinement. As a consequence, the
adaptive algorithm terminates.

It is worth mentioning that, even though the subinterval [0.775, 0.85] was marked for
refinement at level 2, the a priori matching was correct. To explain the extra refinement,
we examine the projection matrix associated with this subinterval, more precisely the 2×2

12



Error By Level
Level Total no. of

points
No. of wrongly
matched
points

No. of
subintervals

No. of uncer-
tified subinter-
vals

0 3 2 2 2
1 5 3 4 2
2 7 0 4 1
3 8 0 2 0

Table 4.1: Error table for the 1D example.

sub-matrix with entries corresponding to the black and cyan eigenvalues:[
Π7,7 Π7,8

Π8,7 Π8,8

]
=

[
0.721 0.682
0.680 0.714

]
.

The off-diagonal terms Π7,8 and Π8,7 are non-zero due to a non-negligible overlap between
the corresponding eigenfunctions, which are depicted in Figure 4.4. Therefore, we can iden-
tify two causes for the a posteriori verification to suggest the refinement: (i) the ordering
of the eigenvalues proposed by the a priori matching is incorrect; (ii) the eigenfunctions
are not orthogonal. The second situation typically occurs in the presence of small gaps
between the eigenvalue hypersurfaces. Recall that lines 20-25 in Algorithm 2 are devoted
to case (ii). In this example, no clusters are identified, and the algorithm consequently
terminates.

Once the adaptive algorithm has terminated, the collected information can be exploited
to construct a surrogate for the map µ 7→ λ(µ). Between the various possibilities, we
propose to construction this surrogate simply by piecewise linear interpolation. The result
is depicted in Figure 4.5.

0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

Figure 4.2: Evolution of parametric grid (x-axis) as the level increases (y-axis).

13



0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter

50

100

150

200

250

E
ig

e
n

v
a
lu

e

(a) Level 0
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(b) Level 1
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(c) Level 2
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(d) Level 3

Figure 4.3: Visual summary of the projection matrices.
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(a) λ = 200.3, µ = 0.775 (b) λ = 223.23, µ = 0.775

(c) λ = 183.369, µ = 0.85 (d) λ = 199.786, µ = 0.85

Figure 4.4: Comparison between four non-orthogonal eigenfunctions.
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(b) Level 1

0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter

50

100

150

200

250

E
ig

e
n
v
a
lu

e

(c) Level 2
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(d) Level 3

Figure 4.5: Output of each level for the 1D example.
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4.3 A 2D example

In this numerical test we consider the two dimensional parameter spaceM = [0.8, 1.05]×
[0.8, 1.05], and we take the (positive definite) diffusion matrix

c(µ) = c(µ1, µ2) =

(
µ−2

1 0.8µ−1
2

0.8µ−1
2 µ−2

2

)
.

The computation of the reference solution relies on the uniform tensor product grid of
M containing 129 points (see Figure 4.6 for the eigenvalue hypersurfaces). For eigenvalue
problems depending on two parameters, the computation of the reference solution is still
affordable. However, for increasing dimension d of the parametric space, such an approach
entails prohibitive computational costs, becoming out of reach and extremely more expen-
sive than the proposed sparse grid-based approach. In the following discussion, we focus
on the two important features of the reference solution, namely, crossings and small gaps
of the eigenvalue hypersurfaces.

Figure 4.6: Reference solution for the 2D example; All hypersurfaces.

Given the initial grid P (0) being the 3×3 uniform lattice, and the tolerances tπ = 0.57,
tλ = 0.015, we let the adaptive algorithm run. The level-by-level output is displayed in
Figure 4.7. The parametric grid produced by the adaptive algorithm is clearly non-uniform,
and two regions in the parametric space can be recognized. At the left-half ofM, where no
refinement happens, the eigenvalue hypersurfaces are well separated except for the crossing
of the 3rd and 4th ones (see Figure 4.8 (c)), which is however correctly identified by the a
priori matching and subsequently certified by the a posteriori verification already at level
0. On the other hand, all the added points lie in the right-half of M, even though no
crossings are present. This refinement pattern is due to small gaps between the eigenvalue
hypersurfaces (see Figure 4.8 (a)-(b)). In particular, the extra grid points added at each
level are meant to help the a posteriori test certify the identity a priori matching.

Table 4.2 summarizes the level-by-level information. We can observe that, from level 5
on, five points are added to the grid, even though all the eigenpairs were correctly matched.
These points serve the purpose of allowing the algorithm to fully certify all subintervals,
and produce a correct solution after termination. An important feature to notice is that
some refinements can lead to an increase in the error (represented by the number of wrongly
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(d) Level 3
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(e) Level 4
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(f) Level 5
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(g) Level 6

Figure 4.7: Evolution of grid in the 2D example.
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(a) Hypersurfaces 4,7; Side 1 (b) Hypersurfaces 4,7; Side 2

(c) Hypersurfaces 3,4

Figure 4.8: Final solution for the 2D example; Detailed view.

Error By Level
Level Total no. of

points
No. of wrongly
matched
points

No. of
subintervals

No. of uncer-
tified subinter-
vals

0 9 7 12 4
1 13 2 10 9
2 22 1 22 11
3 36 4 36 10
4 49 2 39 4
5 59 0 34 2
6 64 0 20 0

Table 4.2: Error table for the 2D example.
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matched eigenpairs). This happens for example at level 3. Additional refinements at each
level generate smaller subintervals. While increased accuracy is obtained, this doesn’t
translate into a continuous decay in the error. A correct solution is only guaranteed when
all subintervals are certified.

We conclude the section by bringing to the surface one last issue, namely how to
propagate the matching information. In the one dimensional case, this issue was easily
solved by defining the propagation direction from left to right. In the two dimensional
case, the way to proceed is not clear anymore, and it becomes even more complicated for
d > 2.

Our technique relies on the creation of a path connecting all the points of the adapted
grid. Such a path (which in principle is not guaranteed to be unique) must fulfill good
properties (e.g., connected, no cycles are allowed) since the information must propagate
distinctively. This step is performed in the code making use of the Matlab commands
minspantree and shortestpath.

As an example, we display the initial path corresponding to level 0 in Figure 4.9. We
generate this path by applying the minspantree function on the graph

G = graph([1 1 2 4 2 3 5 4 5 6 7 8], [2 4 5 5 3 6 6 7 8 9 8 9]).

We then find our one-dimensional sub-paths using shortestpath. In this case, the three
sub-paths all start at (0.8, 0.8) and end at (0.8, 1.05), (0.925, 1.05) and (1.05, 1.05)
respectively.
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Figure 4.9: Initial path.

5 Conclusions

The present paper introduces a novel adaptive algorithm for the numerical treatment of
parametric eigenvalue problems arising from elliptic partial differential equations. It is com-
posed of two phases: locally, we look at a specific subinterval and we decide (by means of an
a priori matching followed by an a posteriori verification) whether to mark it for refinement
or not; globally, we perform a sparse grid-based refinement step, which delivers an adapted
grid in the parameter space refined where needed in order to detect the features and cross-
ings of the eigenvalue hypersurfaces. Finally, a surrogate for the parameter-to-eigenvalue
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map is constructed simply by piecewise linear interpolation. Notably, the construction of
a surrogate for the parameter-to-eigenfunction (or parameter-to-eigenvector) map is more
delicate, and it is left for future investigations.

Even though the algorithm is written in an arbitrary dimension of the parameter space,
numerical examples are performed in 1D and 2D, only, with the scope of attesting the valid-
ity and verifying the performances of the proposed numerical scheme. Higher-dimensional
numerical tests will be presented in a forthcoming contribution.

This work paves the way towards the treatment of stochastic eigenvalue problems,
i.e., eigenvalue problems arising from elliptic partial differential equations with random
coefficients. In recent years a huge effort has been made in the study of uncertainty
quantification (UQ) techniques for the source problem, and various methods have been
developed (we mention, e.g., the Monte Carlo method [25], non-intrusive and Galerkin
methods [18] and perturbation methods [6, 7, 8]. However, the field of stochastic eigenvalue
problems is still quite unexplored, and we believe that the combined use of UQ techniques
together with the algorithm proposed here represents a promising way to go.
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