
MOX-Report No. 67/2017

Insights into the modeling of seismic waves for the
detection of underground cavities

Esterhazy, S.; Schneider, F.; Mazzieri, I; Bokelmann, G.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



December 16, 2017 8:3 WSPC/130-JCA ictca-jca˙171215

Journal of Computational Acoustics
c© IMACS

INSIGHTS INTO THE MODELING OF SEISMIC WAVES FOR THE

DETECTION OF UNDERGROUND CAVITIES

SOFI ESTERHAZY

Faculty of Mathematics, University of Vienna,
Oskar Morgenstern Platz 1, 1090 Vienna, Austria

sofi.esterhazy@univie.ac.at
http://www.mat.univie.ac.at/˜ esterhazy

FELIX SCHNEIDER

Department of Meteorology and Geophysics, Faculty of Earth Sciences, Geography and Astronomy,
University of Vienna, UZA2, Althanstrasse 14, 1090 Vienna, Austria

felix.schneider@univie.ac.at

ILARIO MAZZIERI

MOX, Laboratory for Modeling and Scientific Computing, Dipartimento di Matematica,
Politecnico di Milano, P.za L. da Vinci 32, I-20133 Milano, Italy

ilario.mazzieri@polimi.it

GOETZ BOKELMANN

Department of Meteorology and Geophysics,Faculty of Earth Sciences, Geography and Astronomy,
University of Vienna, UZA2, Althanstrasse 14, 1090 Vienna, Austria

goetz.bokelmann@univie.ac.at

Received (Day Month Year)
Revised (Day Month Year)

Abstract. Motivated by the need to detect an underground cavity within the procedure of an On-
Site-Inspection (OSI), of the Comprehensive Nuclear Test Ban Treaty Organization, the aim of this
paper is to present results on the comparison of our numerical simulations with an analytic solution.
The accurate numerical modeling can facilitate the development of proper analysis techniques to
detect the remnants of an underground nuclear test. The larger goal is to help set a rigorous scientific
base of OSI and to contribute to bringing the Treaty into force. For our 3D numerical simulations,
we use the discontinuous Galerkin Spectral Element Code SPEED jointly developed at MOX (The
Laboratory for Modeling and Scientific Computing, Department of Mathematics) and at DICA
(Department of Civil and Environmental Engineering) of the Politecnico di Milano.
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1. Introduction

If a suspicious seismic signal has been recorded by the International Monitoring System of

the Comprehensive Nuclear Test Ban Treaty Organization (CNTBTO), the responsibility

of the On Site Inspection (OSI) division is the investigation of the source area to collect
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evidence that reveals whether a nuclear test has been conducted and, if the circumstances

permit, to get a final localization of ground zero. At the location of an underground nu-

clear explosion, a damaged zone is expected to be present, including a cavity. Thus, cavity

detection might become a major tool for the OSI division.

In order to contribute to the method design, we investigate the scattering of the seismic

wave field in the presence of an acoustic inclusion. The underlying technical questions of the

OSI are still quite new and there are only few experimental examples that have been suitably

documented to build a proper scientific groundwork. This motivates the investigation of the

wave field on a purely numerical level and the simulation of potential observations based

on recent advances in numerical modeling of wave propagation problems.

As much as this is a challenging task in the applied fields, it is also interesting from a

modeling and computational point of view. The classical scattering problem considers the

wave propagation in an acoustic medium with an elastic obstacle, whereas we focus on the

inverse situation of an elastic medium with an acoustic inclusion.

For very simple cases the propagation of seismic waves can be described analytically

[28, 1, 2, 10]. For more complex cases, seismic waves with a significantly smaller or larger

wave length than the characteristic size of the obstacle can be approximated by ray trac-

ing methods [13] or effective medium methods [24, 44, 37], respectively. However, we are

interested in the scattered wave patterns when the wavelengths of the propagating waves

and the characteristic size of heterogeneities are comparable and here numerical methods

become essential. There are many textbooks discussing the numerical modeling of seismic

wave propagation [25, 11, 15, 33, 23, 9, 42]. Here, SPEED [31, 7, 6, 20] is applied to a

three-dimensional (3D) elastic-acoustic scattering problem for comparison. We consider in

particular a 3D scattering problem consisting of a low-velocity spherical acoustic inclusion

embedded in a high-velocity elastic medium, whereby a plane P-wave is scattered by the

inclusion having a diameter similar to the P-wave’s wavelength. For this case Korneev and

Johnson [27] provide an analytic solution which is used as the reference solution for the com-

parison of the numerical results. A similar study in 2D has been discussed in [21]. Based on

the analytic solution presented in [27] the investigation of seismic resonances origin to an

acoustic inclusion was also discussed in [38].

2. Problem formulation

Let Ω = Ωa ∪ Ωe be an open bounded set Ω ⊂ R3, having a spherical obstacle/acoustic

inclusion Ωa located at the origin as illustrated in Figure 1. We consider the elastic wave
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propagation problem in Ω described by

ρeüe −∇ · σ(ue) = f , in Ωe,

ρaüa −∇ · σ(ua) = 0, in Ωa,

+ coupling conditions, on ΓI ,

+ boundary conditions, on ΓB,

u̇e = ue = 0, in Ωe,

u̇a = ua = 0, in Ωa,

(1)

where ρi is the mass density within the subdomain Ωi, i = {e, a}, and ui is the corresponding

displacement unknown vector. The Cauchy stress tensor σ : R3×3 → R3×3 is expressed with

the domain-wise constant Lamé parameters λi and µi by

σ(ui) = λi(∇ · ui)I + µi(∇ui +∇u>i ), i = {e, a}. (2)

We recall that the Lamé parameters are related to the pressure (vp) and shear (vs) velocity

of the media as follows{
λe = ρe(v

2
p,e − 2v2

s,e), in Ωe,

λa = ρav
2
p,a, in Ωa,

{
µe = ρev

2
s,e, in Ωe,

µa = 0, in Ωa.
(3)

Ωe

Ωa

f

ΓI

ΓB

Fig. 1. Sketch of the domain Ω. Homogeneous elastic medium Ωe surrounding a spherical cavity Ωa. Force
load f applied at the bottom of the domain.

Moreover, we also define the subdomain-wise constant wave number by{
kp,e = ω/vp,e, in Ωe,

kp,a = ω/vp,a, in Ωa,

{
ks,e = ω/vs,e, in Ωe,

ks,a = 0, in Ωa.
(4)

Since we are interested in the scattered wave field subject to an incoming pressure plane

wave, we consider a distribution of body force given by

f(x, t) = φ(t)δ(z − z0)e3, (5)
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with time profile φ(t) acting on the plane z = z0 for some z0 far from the acoustic inclusion

at the bottom of the domain.

2.1. Coupling conditions

At the interface between Ωe and Ωa we request only continuity in the normal component

of the displacement as well as of the stress tensor:

ue · na = ua · na, (6)

σ(ue)na = σ(ua)na, (7)

where na is the normal vector pointing outward from Ωa. Note that equation (6) is

equivalent to impose a null jump for the normal component of the displacement field across

the interface between the elastic and acoustic domain, that is [[u ·na]] = 0 on ΓI . However,

if the difference of displacement in tangential direction stays small, this condition can be

replaced by the jump condition [[u]] = 0, which will be used in the DG formulation proposed

in Section 3.2. Note also that equation (7) includes a free surface condition in the tangential

components for elastic medium.

2.2. Boundary conditions

A possible approach to approximate the radiation condition for the unbounded domain

R3 consists in modeling an absorbing boundary layer by the introduction of a fictitious

traction t∗ on ΓB. Here, we consider the local P3 paraxial conditions presented in [39],

which is sufficiently accurate if vp,e/vs,e ≤ 2, as in the application under consideration.

More specifically, the P3 paraxial absorbing conditions read as

∂ne(ue · ne) = − 1

vp,e
∂t(ue · n)− vp,e − vs,e

vp,e
[∂τ1(ue · τ1) + ∂τ2(ue · τ2)] (8)

∂ne(ue · τ1) = − 1

vs,e
∂t(ue · τ1)− vp,e − vs,e

vp,e
∂τ1(ue · n) (9)

∂ne(ue · τ2) = − 1

vs,e
∂t(ue · τ2)− vp,e − vs,e

vp,e
∂τ2(ue · n) (10)

where τ1 and τ2 are two mutually orthogonal unit normal vectors on the plane orthogonal

to normal vector ne pointing outward of Ωe. τ1 and τ2 span the tangent plane to the

surface ΓB in each point such that {τ1, τ2,ne} is a right handed Cartesian system. The

traction term t∗ = σ∗(ue)ne defined on the absorbing boundary in the local coordinate

system (τ1, τ2,ne) has then the following expressiont∗τ1t∗τ2
t∗ne

 =


µe(2vp,e−vs,e)

vs,e
∂τ1(ue · ne)− µe

vs,e
∂t(ue · τ1)

µe(2vp,e−vs,e)
vs,e

∂τ2(ue · ne)− µe
vs,e

∂t(ue · τ2)
λevs,e+2µe(vp,e−vs,e)

vs,e
[∂τ2(ue · τ1) + ∂τ1(ue · τ2)]− λe+2µe

vs,e
∂t(ue · ne)

 ,
that can be easily rewritten in term of the gobal coordinate system (x, y, z). See [12] for

more details.
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3. Numerical discretization

Piece-wise constant material parameters result in contrasting wave lengths and give

reason to approximate the solution with distinct discretization parameters in each domain

Ωi, i = {e, a}. Especially when the velocity contrast is comparably high, this motivates to

use proper space discretization parameters in each subdomain, in order to catch the main

features of the wave phenomenon. This motivates the choice of the following Discontinuous

Galerkin numerical discretization.

3.1. Mesh and trace operators

We consider a (not necessarily conforming) decomposition TΩ of Ω into two nonoverlapping

polyhedral sub-domains Ωe and Ωa, i.e., Ω̄ = Ωe∪Ω̄a, Ωe∩Ωa = ∅. On each Ωi, i = {e, a} we

consider a conforming, quasi-uniform computational mesh Thi of granularity hi > 0 made by

open disjoint elements Kj
i , and suppose that each Kj

i ∈ Ωi is the image through a bilinear

map Φj
i : K̂ → Kj

i of the reference hexahedron K̂ = [−1, 1]2. We define an interior face F

as the non-empty interior of ∂Ke ∩ ∂Ka, for some Ke ∈ The and Ka ∈ Tha , and collect all

the interior faces in the set F Ih . Moreover, we define FBh as the sets of all boundary faces

where absorbing boundary conditions are imposed. Finally, we assume that for any element

K ∈ Th and for any face F ⊂ ∂K it holds hK . hF . See [22, 34] for details, (cf. also [17, 18]

for the case of highly discontinuous coefficients).

Let Ke ∈ The and Ka ∈ Tha be two elements sharing a face F ∈ F Ih , and let ni be

the unit normal vectors to F pointing outward to Ki, i ∈ {e, a}, respectively. For (regular

enough) vector and tensor-valued functions v and τ , we denote by vi and τ i the traces of

v and τ on F , taken within the interior of Ki, i ∈ {e, a}, respectively, and set

[[v]] = ve � ne + va � na, [[τ ]] = τ ene + τ ana, {v} =
ve + va

2
, {τ} =

τ e + τ a
2

,

where v � n = (vTn + nTv)/2. On F ∈ FBh , we set {v} = v, {τ} = τ , [[v]] = v � n,

[[τ ]] = τn.

3.2. Discontinuous Galerkin Sprectral Element discretization

For each subdomain Ωi, i = {e, a} we consider a nonnegative integer Ni, and we define the

finite dimensional space

V Ni
hi

(Ωi) = {v ∈ C0(Ω̄i) : (v|
K
j
i

◦ Φj
i ) ∈ [PNi(K̂)]3 ∀Kj

i ∈ Thi},

where PNi(K̂) is the space of polynomials of degree Ni in each coordinate direction on K̂.

Then, we define the finite dimensional trial space VDG as VDG =
∏
i=e,a V

Ni
hi

(Ωi). The

semidiscrete Discontinuous Galerkin approximation of problem (1) reads: ∀t ∈ (0, T ], find

uh = uh(t) ∈ VDG such that∑
i=e,a

∫
Ωi

ρiüh(t) · v dΩ +Ah(uh(t),v) = Fh(v) ∀v ∈ VDG, (11)
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subjected to the initial conditions u̇h(0) = uh(0) = 0. The right hand side Fh(·) is defined

as

Fh(v) =

∫
Ωe

f(t) · v dΩ +

∫
ΓB

t∗ · v dΓ ∀v ∈ VDG,

while the bilinear form Ah(·, ·) as

Ah(u,v) =
∑
i=e,a

∫
Ωi

σ(u) : ε(v) dΩ

−
∑
F∈F Ih

(∫
F
{σ(u)} : [[v]] dΓ +

∫
F
{σ(v)} : [[u]] dΓ−

∫
F
η[[u]] : [[v]] dΓ

)
, (12)

for any u,v ∈ VDG, being ε(v) = (∇v+∇vT )/2 and η a positive parameter to be choosen

large enough, cf. [6].

Remark 3.1. Implicit in the derivation of formulation (11) is the use of coupling conditions

described in section 2.1. For the sake of presentation we derive formulation (11) in the case

of a partition made by two subdomain Ωe and Ωa. However, it can be easily extended for

accommodating different elastic or acoustic subdomains, as it will be considered in Section

5. Finally, note that the discrete solution is piecewise discontinuous across macro elements

Ωi, i ∈ {e, a} and (weak) continuity is enforced based on employing, at a subdomain level,

the symmetric interior penalty DG (SIPG) method [6]. We refer to [3] for a unified analysis

of the h-version of the method and to [4, 5] for the hp−version of the method and it analysis.

3.3. Fully discrete formulation

In this section we present the time integration of the semi-discrete formulation (11). By

fixing a basis for the discrete space VDG, the semi-discrete algebraic formulation of problem

(11), reads as

M0Ü(t) +M1U̇(t) + (M2 +A)U(t) = F (t) ∀t ∈ (0, T ], (13)

supplemented by the initial conditions U̇(0) = U(0) = 0. Here, denoting by Ndof the total

number of degrees of freedom, the vector U = U(t) ∈ RNdof contains, for any time t, the

expansion coefficients of the semi-discret solution uh(t) ∈ VDG in the chosen set of basis

functions. Analogoulsy, M0 and A are the matrices representations of the bilinear forms∑
i=e,a

∫
Ωi

ρiüh(t) · v dΩ and Ah(uh(t),v),

respectively, cf. (11). Inserting the absorbing conditions from Section 2.2 for the boundary

term
∫

ΓB
t∗ · v dΓ give rise to the matrices M1 and M2 in equation (13). Finally F is the

vector representation of the linear functional Fh(·) containing the body force term f , cf.

(11).
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For the time integration of the system of second order ordinary differential equations

(13), we employ the leap-frog method [36], that is a widely employed time marching scheme

for the numerical simulation of elastic waves propagation, see for example [8, 14, 26, 32].

With this aim we subdivide the time interval (0, T ] into NT subintervals of amplitude ∆t,

and we denote by Un ≈ U(tn), F n ≈ F (tn) the approximation of U and F at time ti = i∆t,

i = 1, 2, ..., NT , respectively. System (13) approximated with the leap-frog scheme reads as:

M0U1 =
∆t2

2
F 0, (14)

(M0 +
∆t

2
M1)Un+1 = (2M0 −∆t2Q)Un + (M0 −

∆t

2
M2)Un−1 + ∆t2F n, (15)

for n = 1, ..., NT − 1, with Q = A + M2. We notice that (15) involves a linear system

with matrix M0− ∆t
2 M2 to be solved at each time step. The choiche of the basis functions

spanning the space VDG strongly influences the structure of the matrix M0 − ∆t
2 M2 and,

therefore, the computational cost related to the solution of the linear system. Furthermore,

since the leap-frog method is an explicit second order accurate scheme, to ensure its nu-

merical stability a Courant - Friedrich - Levy (CFL) condition has to be satisfied (see [36]).

4. Analytic solution

For the following analysis, we consider the total wave field u expressed as the sum of the

incident (uI) and the scattered (uS) wave fields as follow

u(x, t) = uI(x, t) + uS(x, t). (16)

In a homogeneous elastic domain the incident wave origin to a body load (5) has only a

contribution in the 3rd direction which is given by

u3
I(x, t) =

1

2ρevp,e
H(t− |z − z0|

vp,e
)

∫ t− |z−z0|
vp,e

0
φ(τ) dτ. (17)

Note that uI solves then the elastic wave question ρeüI+∇·σ(uI) = f in R3 with parameters

from Ωe. Hence, to recover the total wave field it is sufficient to solve the following problem

for uS : {
ρeüS −∇ · σ(uS) = 0, in Ωe,

ρaüS −∇ · σ(uS) = −ρaüI +∇ · σ(uI), in Ωa,
(18)

together with solely absorbing conditions at the boundary ΓB, cf. Figure 1. This approach

has also been used in [19].

In case of a time-harmonic force load outside the domain (at infinity), the body force

equals zero, i.e. f = 0. For this case, an analytic solution is presented by Korneev and

Johnson[27] and summarized here for the sake of completeness.
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In the time-harmonic case, the incident as well as the scattered wave fields can be

expressed as

uI(x, t) = R{UI(x)e−iωt}, uS(x, t) = R{US(x)e−iωt} (19)

where UI(x) and US(x) are complex-valued functions. In particular, the interaction of the

incident wave with the sphere gives rise to a scattered displacement field inside as well

as outside of the sphere. To this end we omit the time dependence and use the following

notation

U1(x) = US(x)|Ωa , U2(x) = US(x)|Ωe .

In order to construct an analytical solution [27] used the system of spherical vectors in the

spherical coordinte system (r, θ, φ) with unit vectors {r̂, θ̂, φ̂} developed by Petrashen [35]

Y0
lm = Y0

lm(r, θ, φ) = r×∇Ylm
Y+
lm = Y+

lm(r, θ, φ) = (l + 1)r̂Ylm − r∇Ylm
Y−lm = Y−lm(r, θ, φ) = lr̂Ylm + r∇Ylm

where r is distance from the center of the sphere with r = rr̂ and Ylm are the unnormalized

spherical harmonic functions, defined as

Ylm = Ylm(θ, φ) = eimφPml (cos(θ))

such that an arbitrary vector function U can be represented in the form

U(x) =
∑
l,m

a0
lm(r)Y0

lm + a+
lm(r)Y+

lm + a−lm(r)Y−lm.

In this coordinate system an incident plane harmonic P-wave, propagating in the positive

z-direction in Ωe is given by

UP
I (x) =

∑{
jl+1(k2,pr)Y

+
l0 + jl−1(k2,pr)Y

−
l0

}
e−

iπ
2

(l+1)

where the jl(z) are the spherical Bessel functions. Furthermore it is possible to express the

scattered wave field inside and outside the sphere separately by

U1 =
∑
l≥0

{(
a

(1)
l jl+1(kp,1r) + lb

(1)
l jl+1(ks,1r)

)
Y+
l0

+
(
− a(1)

l jl−1(kp,1r) + (l + 1)b
(1)
l jl−1(ks,1r)

)
Y−l0

}
e−

iπ
2

(l+1)

U2 =
∑
l≥0

{(
a

(2)
l hl+1(kp,2r) + lb

(2)
l hl+1(ks,2r)

)
Y+
l0

+
(
− a(2)

l jl−1(kp,2r) + (l + 1)b
(2)
l jl−1(ks,2r)

)
Y−l0

}
e−

iπ
2

(l+1),

respectively, where hj(z) are the spherical Hankel functions of second kind and a
(ν)
l , b

(ν)
l , ν =

1, 2 are the coefficients which are given explicitly in [27]. The wavenumbers kp,i and ks,i
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are given by ω/vp,i and ω/vs,i, where vp,i and vs,i are the propagation velocities of P-

and S-waves inside (i = a) and outside (i = e) of the cavity, respectively. The unknown

coefficients a
(ν)
l , b

(ν)
l can be determined by solving a linear system that arises from the

following continuity conditions, which are valid at the acoustic-elastic interface:

U1 · n = (UP
I + U2) · n and σ(U1)n = σ(UP

I + U2)n

The first condition describes the continuity of the normal component of the displacement.

The tangential displacement components are free due to the fact that no shear stress can

be transmitted to the acoustic domain. Since µ = 0 in Ωa the traction vector σ(U1)n

points in the normal direction n with respect to the interface. Thus the second condition

forces the tangential components of the traction vector σ(UP
I +U2)n · t to be zero, for any

vector t which is orthogonal to n. Thus, the acoustic-elastic interface acts as a free surface

for the components tangential to the interface and transmits only normal components of

displacement and stress between the acoustic and elastic domains.

The total wave-field outside and inside the cavity is given by

Utot = UP
I + U2 and Utot = U1, respectively.

In order to retrieve the solution of the wave equation for a time dependent incident field,

the scattering problem is solved for many frequencies and the time harmonic functions (Eq.

19) are combined by applying inverse Fourier transform. In order to compare the analytical

with numerical solutions all wave fields are convolved with the Ricker wavelet

R(t) = (1− 2π2f2
0 t

2)eπ
2f20 t

2
,

describing a common seismic model wavelet. However, any other wavelet can be used instead

in order to retrieve arbitrary time histories. With the convolution theorem the calculated

synthetic seismogram can be expressed as

s(t) = F−1
[
U({ω}) |F[R(t)]({ω})|

]
(t),

where F and F−1 are Fourier’s transform and it’s discrete inverse, respectively. {ω} is the

set of frequencies for which the solution is computated.

5. Results

In this section we want to address a 3D scattering wave propagation problem consisting

of a low-velocity spherical acoustic inclusion embedded in a high-velocity elastic medium.

In particular we want to compare our numerical results with respect to the analytical one

provided by Korneev and Johnson in [27].

5.1. Mesh generation

Special attention must be given to the grid generation as meshing a spherical inclusion

inside a cube with hexahedrons is not a trivial task. Especially as in this case, when the wave
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length inside the sphere is much smaller than outside. This gives reason to chose a smaller

mesh size inside the inclusion. Using non-curved elements non-conforming meshes inside and

outside the sphere will lead to empty and overlapping regions which would lead to numerical

instabilities and must therefore be avoided. As a work-around we added another small box

around the sphere such that the non-conforming interface can be generated between the

small and the big cube while having a conforming interface between the small cube and the

sphere, see Figure 2. A strategy to overcome this issue is presented in [43]. However, the

parameters are discontinuous across the boundary of the sphere and therefore we can select

different discretization parameters inside and outside the spherical cavity. In summary, DG

jumps are applied to both interfaces: the non-conforming interface between the two elastic

cubes and the conforming interface between the acoustic and elastic domain where physical

parameters are discontinuous.

300 200 100 0 100 200 300
x [m]

300

200

100

0

100

200

300

z [
m

]

Fig. 2. Illustration of the mesh strategy using Trelis (http://www.csimsoft.com/trelis.jsp). The dark
and light gray domain correspond to the elastic and acoustic cavity, respectively. The spherical domain
is connected with conforming interface to a surrounding smaller box with the same small mesh size. The
smaller box is embedded in a bigger box with a larger mesh size resulting in a non-conforming interface.
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5.2. Input data

The mechanical parameters for the elastic and acoustic materials are given in Table 1.

Domain ρ [kg/m3] vs [m/s] vp [m/s]

Ωa 1000 0 1500

Ωe 2700 2310 4000

Table 1. Physical parameters for the test case considered.

The time profile of our seismic source is described by the Ricker wavelet

R(t) =
(
1− 2β(t− t0)2

)
e−β(t−t0)2 , β =

(ωp
2

)2

where ωp = 2πfp is the angular peak frequency of the Ricker wave and t0 a time offset. The

shape of the Ricker profile is shown in Figure 3 and more details on the frequency band can

be found in [40].

−0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

−0.5

0.5

1

time

−20 20 40 60 80 100 120 140 160 180 200 220

1

2

·10−3

fp

frequency

Fig. 3. Top: Time profile for the Ricker wave with peak frequency fp = 66 [Hz] and time shift t0 = 0.03 [s].
Bottom: Spectrum of the Ricker wave

Furthermore we were interested in the case of an incident Ricker wave pulse of a mean

wave length of the size of the cavity, i.e. λ = 2R. Hence we chose:

β = 44000 ⇒ fpeak ∼ 66.7Hz ⇒ λp,e = vp,e/fpeak ∼ 60 = 2R,

However, to minimize numerical dispersion errors we had to choose the grid size according

to S-velocity and the maximum frequency in the Ricker spectrum as follows

fmax = 3fpeak ∼ 200Hz ⇒ λs,e = vs,e/fmax ∼ 11.5 ⇒ Ne = 4, he = 5,
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in order to obtain the resolution of 10 points per wavelength (reasonable for small wave

numbers) and avoid spurious numerical effect from the artificial boundary. With the same

argumentation one should choose the grid size in the acoustic domain by

λp,a = vp,a/fmax ∼ 7.5 ⇒ Na = 4, ha = 3.5.

Note that we use different grid sizes in the domain resulting in a non-conforming mesh, but

we use the same polynomial degree. In our domain of interest (600 × 600 × 600) m3 this

would lead to more than 17.e + 6 grid points and more than 1.e + 9 spectral nodes. The

minimal grid size in this mesh is about hmin = 1.1 m resulting in a time step size

∆t = 0.2× 0.175 hmin
vp,max

∼ 8.e−6 s.

For a simulation time until T = 1 s this gives 125000 time steps.

However, due to limited computational resources we rather resolve for the peak frequency

and put the boundary further away, i.e.

λs,e = vs,e/fpeak ∼ 35 and λp,a = vp,a/fpeak ∼ 22 ⇒ Ne = 4, he = 17, Na = 10,

on a domain of dimension (4000 × 4000 × 2400) m3 reducing the number of grid points

to about 56000. With a minimal grid size hmin = 4.74 the corresponding time step size is

∆t = 4.e− 5 s and 25000 time steps.

5.3. Analysis of the results

In order to provide an overview we show in Figure 5 snapshots of the wave field in the

XZ-plane. The incident plane P-wave travels with constant amplitude through the elastic

domain from the bottom to the top with a velocity of 4000 m/s and reaches the acoustic-

elastic interface at about 0.1 s. With a positive impedance contrast from the elastic to the

acoustic domain given by the material parameters in Table 1 about 75% of the incident

wave is reflected resulting in the primary scattered spherical P- and S- waves which can

be seen at t = 0.15 s. About 25% are transmitted into the cavity where it propagates

only as P-wave with a lower velocity of 1500 m/s. Each time the acoustic wave hits the

boundary of the cavity, about 75% of its energy are now reflected back and only about 25%

are transmitted to the elastic domain. This yields an acoustic wave energy trapped inside

the cavity expressed in multiple reverberations that couple out into the elastic medium

periodically which can be seen for t = 0.2 s to t = 0.45 s.

For validation we compare the analytical and the numerical solution along four pro-

files which are illustrated in Figure 4. Profile A is a vertical section for x = 0 and the

z−coordinate ranging from −100 m to 100 m with a distance of 2 m while profile B is a

horizontal section for z = 0 and the x−coordinate ranging from −100 m to 100 m. The

horizontal profiles C and D are located further away with vertical locations at 300 m and

−300 m from the cavity, which is located at the origin. Profile C and D range horizontally

from x = −300 m to x = 300 m with a distance of 10 m.
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Fig. 4. Cross-section of the computational domain. Validation points along four profiles A),B),C) and D) are
also represented.

Profile A in Figure 6 shows the comparison of the displacement time histories in the Z-

component (seismograms) for locations crossing the cavity in vertical direction. Seismograms

with a gray background show monitoring points inside the acoustic cavity. The incident

plane P-wave reaches the acoustic-elastic interface at about 0.1 s. Along this profile only

the primary back scattered spherical P- wave (decreasing in amplitude with distance and

time) is visible. A scattered S-wave is not formed since at x = 0 the plane P-wave hits

the spherical interface with an incidence angle equal to zero. Further, one can see the wave

continue to propagate inside the cavity (gray zone) with a lower velocity. Due to the velocity

contrast the wave is trapped inside the cavity emitting about 25% of its energy into the

elastic medium each time the wave hits the boundary of the cavity resulting in multiple

reverberations decreasing in amplitude with distance and time. The wave inside the cavity

gets also more and more diffracted with time due to the spherical geometry of the cavity.

Further, one can see that the incident wave field is shielded by the cavity creating a shadow
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Fig. 5. Snapshots of the computed wave field.
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zone which causes the suppression of the incident wave field up to about 10 m above the

cavity. Due to wave-front healing the incident wave field is present above the cavity and

seems to be unperturbed for z & 50 m.

The profile A crosses the cavity at the top and bottom, where the direction normal

to the interface points into the z−direction. Thus the z−component at z = ±30 m in

Figure 6 is the normal component with respect to the interface. The acoustic-elastic interface

condition requires the continuity of the normal component at the interface which can be

seen in Figure 6. The overall waveform fit is quite satisfying. The direct and multiple

scattered phases are reliably captured. However some misfit due to numerical dispersion

occurs, getting more pronounced with time. As discussed in section 5.2, this could be

overcome by using a finer grid using, but with a huge computing time.

Figure 7 shows the profile crossing the cavity in horizontal direction. Here the seismo-

grams for |x| < 30 m and |x| ≥ 30 m are computed in the acoustic and elastic domains,

respectively. The incident wave field passes the profile a little later than t = 0.1 s. In the

elastic domain the incident field is followed by the primary scattered S-wave. The transmit-

ted P-wave inside the cavity shows the strongest amplitudes at the center of the cavity. As

described above multiple reverberations occur with decaying amplitudes, cf. Figure 5.

Profile B is oriented horizontally, hence the z−components show the tangential compo-

nent at the interface. The physical interface condition only demands the continuity of the

displacement in normal direction. As discussed in Section 2.1, the DG-implementation forces

all three components to be continuous at the interface. However, we can see in Figure 7

that the discontinuity of the tangential component is well fitted for the primary transmitted

wave. The scattered numerical waves in the elastic domain coincide very well with the ana-

lytic solution. The multiple internal reverberations are well captured except for numerical

dispersion. A misfit inside the cavity is present near the interface, which do not seem to

affect the seismograms in the elastic domain.

Figure 8 shows seismograms for profiles C and D in the back- and forward-scattered

regimes, respectively. The profiles are located in 300 m distance above and below the cavity

in the elastic medium. In the back-scattered regime in Figure 8 (top) the incident plane

wave is separated from the scattered waves and arrives earlier in time at about t = 0.025 s.

The primary scattered P-wave is a distinct wave arrival at about t = 0.2 s. Two further

scattered P-wave arrivals from internal reverberations inside the cavity are well pronounced.

The first also coincides with the arrival of the secondary S-wave. Further, from the cavity

decoupled S-waves occur from internal acoustic reverberations that are from P-to-S con-

verted during the transmission. On the z−component the spherical-like scattered P-waves

show strong amplitudes near x = 0 m, while S-waves are more pronounced for large |x|.
At x = 0 m S-waves fade out for two reasons, first no P-to-S conversion takes place for

an incidence angle equal to zero, neither during reflection nor during transmission of later

acoustic reverberations, and second due to the projection of the shear particle motion on the

z−direction. In the forward-scattered regime in Figure 8 (bottom) the primary scattered

waves directly follow the incident wave. Internal reverberations cause the later arrivals as

discussed above.
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All physical features are captured by the numerical solution. The waveform fit is very

satisfying. Small deviations due to numerical dispersion can easily be overcome by a finer

grid or higher polynomial degrees.
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Fig. 6. Comparison between analytic (black) and numerical (blue) solution along profile A) in Figure 4
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Fig. 7. Comparison between analytic (black) and numerical (blue) solution along profile B) in Figure 4
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(bottom) in Figure 4
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6. Conclusion/Discussion

The numerical computation of the elastic scattering wave field with SPEED stands in good

agreement with the analytic solution for a spherical shaped inclusion. The validation for

this study paves the way for a comprehensive understanding of the physical characteris-

tic based on numerical computations. However, several aspects are open for improvement.

While numerical deviations can be observed in the acoustic domains, all physical features in

the elastic domain are well resolved. In the elastic domain no signal information is lost nor

any artificial signals are present. The acoustic-elastic coupling is an open research topic for

implementation in SPEED [30] and is currently under investigation. Other combinations

of spatial and temporal discretization methods could use local [29] or Lax-Wendroff time-

stepping [16]. An alternative for absorbing boundary conditions was discussed in [41].
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Appendix

A. Comparison of the x-component

For the sake of completeness we also show here the seismic arrays of the x-components along

Profile A and B in Figure 4.

Along the vertical profile A the seismic traces simply show no contribution from any

shear waves. Along the horizontal profile B we can again see the multiple reflections inside

the cavity and the periodic signals coupling out of the cavity into the surrounding medium.
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Fig. A.1. Comparison between analytic (black) and numerical (blue) solution along profile A in Figure 4.
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Fig. B.2. Comparison between analytic (black) and numerical (blue) solution along profile B in Figure 4.
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