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Abstract

Decay patterns of matrix inverses have recently attracted considerable interest, due
to their relevance in numerical analysis, and in applications requiring matrix function
approximations. In this paper we analyze the decay pattern of the inverse of banded
matrices in the form S = M ⊗ In + In ⊗ M where M is tridiagonal, symmetric and
positive definite, In is the identity matrix, and ⊗ stands for the Kronecker product. It is
well known that the inverses of banded matrices exhibit an exponential decay pattern away
from the main diagonal. However, the entries in S−1 show a non-monotonic decay, which
is not caught by classical bounds. By using an alternative expression for S−1, we derive
computable upper bounds that closely capture the actual behavior of its entries. We also
show that similar estimates can be obtained when M has a larger bandwidth, or when
the sum of Kronecker products involves two different matrices. Numerical experiments
illustrating the new bounds are also reported.

1 Introduction

We consider nonsingular matrices S of size n2 × n2 that can be written as

S =M ⊗ In + In ⊗M, (1)

where M is an n × n banded symmetric and positive definite matrix (SPD) and ⊗ is the
Kronecker product; here In is the identity matrix of size n. Matrices in this form may arise
for instance in the discretization of two-dimensional partial differential equations by means
of finite difference, spectral or finite element methods. We say that a symmetric matrix A is
b-banded if its entries Aij satisfy Aij = 0 for |i − j| > b. In the following, we shall mainly
focus on the case when M is tridiagonal, so that b = 1. As a consequence of M being banded,
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S will also be banded, although its bandwidth will be much larger: if b is the bandwidth of
M , then b · n will be the bandwidth of S.

We are interested in exploring the magnitude pattern of the entries (S−1)ij . It is well-
known that although the inverse of a banded matrix is full in general - and in particular it is
not banded - its entries exponentially decay as their location deviates from the main diagonal;
such a decay pattern was analyzed in detail in [12] for S a general symmetric positive definite
b-banded matrix. Indeed, it was shown in [12] that

|(S−1)ij | ≤ γq
|i−j|

b (2)

where κ is the condition number of S, q = (
√
κ − 1)/(

√
κ + 1), γ = max{λmin(S)

−1, γ̂}, and
γ̂ = (1 +

√
κ)2/(2λmax(S)); in this bound the diagonal elements of S are assumed not to be

greater than one. Here and in the following, λmin(·), λmax(·) denote the smallest and largest
eigenvalues of the given symmetric matrix.

Decay patterns have attracted considerable interest in the scientific computing community
in the last two decades, due to their relevance in the context of linear system preconditioning
[6], [2], low-rank approximation strategies such as hierarchical matrices, wavelets etc. [23],
[1], and in a large variety of applications requiring matrix function approximations, such as
electronic structure calculations, complex networks, robotics, etc.; see, e.g., [4], [7],[5],[3],[17],
and the references therein.

A large amount of literature has focused on the inverse entries of (irreducible) tridiagonal
matrices for which explicit formulas and recurrence relations are now available; see, e.g.,
[21], [19] and their references. Some of these results can be generalized to block tridiagonal
cases, of which (1) is a particular case for M tridiagonal, however accurate estimates for the
entries have only been obtained under more restrictive assumptions [20]. In [19], for instance,
the case of the discretization of the two-dimensional Poisson operator was considered, which
corresponds to (1) with M SPD, tridiagonal and with constant coefficients (see Example 2.2
below).

A key point of the matrices in the form (1) is that the decay of the entries of its inverse
is not monotonic away from the diagonal. In fact, the entries decay in a way that recalls a
sinusoidal behavior converging to zero. We report in Figure 1 a typical such pattern, obtained
for M = −tridiag(1,−2, 1) (here and later in the paper, the underlined number lies on the
matrix diagonal), corresponding to the finite difference discretization of the two-dimensional
negative Laplace operator −(uxx + uyy) in the domain [0, 1] × [0, 1]. This non-monotonic
behavior has been observed in the literature ([19]), and explained in detail for the case of the
discrete Laplacian, for which precise estimates are available [9], [18], [22]; bounds stemming
from an algebraic analysis were also determined in [19]. The situation is far less understood
when M is any tridiagonal SPD matrix, or more generally any banded SPD matrix. Clearly,
classical bounds such as the one in (2) cannot catch this non-monotonic pattern, although its
detection can be crucial in sparsity-based approximation procedures. In this paper we derive
bounds that closely capture this non-monotonic behavior, which is typical of matrices in the
form (1). In particular, we show that the decaying oscillation observed in practice in |(S−1)i,j |
for i, j = 1, . . . , n2, strongly depends on, and can be bounded by, the “mesh” distance between
the two indices i, j when each of them is represented in a natural n× n grid. In section 2 we
provide sharp estimates, followed by easily computable more qualitative bounds; the latter can
be incorporated, for instance, in numerical thresholding strategies during a sparsity-oriented
approximation of the matrix inverse (see, e.g., section 3).
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Figure 1: Pattern of the inverse of the 2D Laplace 100× 100 matrix in the unit square.

In section 4 we shall extend our results to banded SPD matrices, and to the more general
case

Sg :=M1 ⊗ In + In ⊗M2, (3)

where M1 and M2 are symmetric tridiagonal matrices stemming, for instance, from the dis-
cretization by finite differences of a self-adjoint separable second order differential operator on
a stretched rectangular domain, or of an operator with different coefficients in the two space
directions; see, e.g., [16].

2 Decay of the entries of the inverse of S for M tridiagonal

Let X = S−1, and write X = [x1, . . . , xt, . . . , xn2 ]. A simple but key observation is that each
column t of the inverse X is the solution to the linear system

Sxt = et,

where et is the t-th column of In2 . Let us define Wt to be the matrix such that wt = vec(Wt)
with wt ∈ R

n2

and Wt ∈ R
n×n (the “vec” operation stacks the columns of Wt one below the

other). With this notation, and using the Kronecker form of S, the system above is equivalent
to

MXt + XtM = Et.
Since et = vec(Et), t = 1, . . . , n2, the matrix Et has a single nonzero element (Et)ij , with
indices j = ⌊(t − 1)/n⌋ + 1, i = t − n⌊(t − 1)/n⌋, i, j ∈ {1, . . . , n}. Therefore, we can write
Et = Ei+n(j−1) = eie

⊤
j .

The derivation above shows that the n2 entries of each column of S−1, properly reordered,
correspond to the n × n entries of the solution matrix to a Lyapunov equation. In Figure 2
we report the pattern of Et (left) and of Xt (right) for t = 26 when S is the finite difference
discretization of the two-dimensional Laplace operator in the unit square. Note that because
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of the isotropy property of the operator, the forcing term (the right-hand side) diffuses in a
similar way in both directions; see also a related discussion in [19, section 4.1].

We next exploit the closed form of the Lyapunov solution to derive bounds for the entries
of S−1

:,t = vec(Xt) for each t = 1, . . . , n2. Let j = ⌊(t− 1)/n⌋+ 1, i = t− n⌊(t− 1)/n⌋. Since
M is positive definite, the solution can be written as (see, e.g., [15])

Xt =
1

2π

∫ ∞

−∞
(ıωI +M)−1Et(ıωI +M)−∗dω

=
1

2π

∫ ∞

−∞
(ıωI +M)−1eie

⊤
j (ıωI +M)−∗dω ≡ 1

2π

∫ ∞

−∞
ziz

∗
jdω

where zi = (ıωI +M)−1ei. We are interested in estimating the k-th entry of the t-th column
of the inverse S−1. Using
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Figure 2: Left: Column 46 of the 100 × 100 identity matrix, represented on a 10 × 10 grid.
Right: Column 46 of the inverse Laplacian, represented on a 10× 10 grid.

m = ⌊(k − 1)/n⌋+ 1, ℓ = k − n⌊(k − 1)/n⌋, (4)

this corresponds to estimating the entry (Xt)ℓ,m = e⊤ℓ Xtem of Xt, that is

(S−1)k,t = (S−1)ℓ+n(m−1),t = e⊤ℓ Xtem, ℓ,m ∈ {1, . . . , n}.

By varying m, ℓ ∈ {1, . . . , n} all the elements of the t-th column, (S−1):,t are obtained. We
have

e⊤ℓ Xtem =
1

2π

∫ ∞

−∞
e⊤ℓ zi(ω)zj(ω)

∗emdω,

so that

|e⊤ℓ Xtem| ≤
1

2π

∫ ∞

−∞
|e⊤ℓ zi(ω)| |zj(ω)∗em| dω. (5)
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Since e⊤ℓ zi(ω) = e⊤ℓ (ıωI +M)−1ei, the first term in the integrand above is the absolute value
of the (ℓ, i) entry of the inverse of tridiagonal matrix (ıωI +M). In the following we shall
bound each of the two integrand terms, and then we will estimate the obtained integral.

Let λmin, λmax be the extreme eigenvalues of M , and let λ1 = λmin + ıω, λ2 = λmax + ıω.
The matrix ıωI +M is a purely imaginary shifted version of the tridiagonal matrix M , and
its inverse shows a decreasing pattern, in spite of the complex shift. While estimates for
|e⊤ℓ (ıωI +M)−1ei| are well known for ω = 0 (see, e.g., [12, 20, 19]), upper bounds for ω 6= 0
are less so. Upper bounds for |e⊤ℓ (ıωI+M)−1ei|, ω 6= 0 were given by Freund in [13, Theorem
6], and we recall this result for future reference.

Proposition 2.1. Assume M is symmetric positive definite and b-banded. Let a = (λ1 +
λ2)/(λ2 − λ1), and R > 1 be defined as R = α +

√
α2 − 1, with α = (|λ1| + |λ2|)/|λ2 − λ1|.

Then

|e⊤ℓ (ıωI +M)−1ei| ≤
2R

|λ1 − λ2|
B(a)

(

1

R

)
|ℓ−i|

b

, ℓ 6= i,

where, writing a = αR cos(ψ) + ıβR sin(ψ),

B(a) :=
R

βR

√

α2
R − cos2(ψ)(αR +

√

α2
R − cos2(ψ))

,

with αR = 1
2(R+ 1

R) and βR = 1
2(R− 1

R).

Clearly, R = R(ω). We omit this explicit dependence in the following. Figure 3 reports two
typical behaviors of the bound in Proposition 2.1, for the pentadiagonal matrix in Example
4.1. The plots refer to ω = 0.10 (left) and ω = 10 (right): while the bound accurately captures
the slope for large ω, this is in general less so for small ω. This difference in accuracy in general
may affect the accuracy of our estimates, especially when a bandwidth b greater than one is
used (here b = 2).
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Figure 3: Typical estimate of Proposition 2.1 (column 10) for the inverse of the pentadiagonal
matrix of Example 4.1. Left: ω = 0.1. Right: ω = 10.
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Since in this section we assume that M is tridiagonal, we shall use the result above for
b = 1; the case b > 1 is explored in section 4. We prove our bound in two steps. In the
first step (Proposition 2.2), we estimate the entries in terms of an integral, which can be
easily estimated numerically; the results appear to be quite accurate in our examples. In
the second step (Proposition 2.3), we complete the upper bound by estimating the integrals,
thus incurring in additional inaccuracies. The final bound (Propositions 2.3-2.4) should be
considered as a qualitative estimate for the entries pattern.

Proposition 2.2. For k, t ∈ {1, . . . , n2}, let
j = ⌊(t− 1)/n⌋+ 1, i = t− n⌊(t− 1)/n⌋,

and ℓ,m as in (4). With the notation above, the following holds.
i) If i 6= ℓ and j 6= m, then

|(S−1)k,t| ≤
1

2π

64

|λmax − λmin|2
∫ ∞

−∞

(

R2

(R2 − 1)2

)2(
1

R

)|i−ℓ|+|j−m|−2

dω;

ii) If either i = ℓ or j = m, then

|(S−1)k,t| ≤
1

2π

8

|λmax − λmin|

∫ ∞

−∞

1
√

λ2min + ω2

R2

(R2 − 1)2

(

1

R

)|i−ℓ|+|j−m|−1

dω;

iii) If both i = ℓ and j = m, then

|(S−1)k,t| ≤
1

2π

∫ ∞

−∞

1

λ2min + ω2
dω =

1

2λmin
.

Proof. To prove i), we recall that |(S−1)k,t| = |e⊤ℓ Xtem| so that (5) holds, and we notice that

α2
R − 1 = β2R and αR + βR = R. Moreover, 1√

α2
R−cos2(ψ)

≤ 1/(
√

α2
R − 1). Therefore,

B(a) ≤ R

βR

√

α2
R − 1(αR +

√

α2
R − 1)

=
R

β2R(αR + βR)
=

1

β2R
,

so that, using Proposition 2.1,

|e⊤ℓ (ıωI +M)−1ei| ≤
2R

|λ1 − λ2|
4R2

(R2 − 1)2

(

1

R

)|ℓ−i|

.

Substituting the estimate for each of the two integrand terms in (5), we obtain

|e⊤ℓ Xtem| ≤
1

2π

64

|λ1 − λ2|2
∫ ∞

−∞
R2 R2

(R2 − 1)2
R2

(R2 − 1)2

(

1

R

)|ℓ−i|( 1

R

)|m−j|

dω,

from which the result follows.
As of ii) we only need to notice that if, for instance, ℓ = i, then

|e⊤ℓ (ıωI +M)−1ei| ≤
1

|λmin + ıω| . (6)

Substituting into the integral, the bound follows as in the previous case.
For the case iii), the bound (6) can be used for both pairs of indices, and the final bound

follows.
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We next report on a few examples showing the quality of the estimates in Proposition 2.2.
As one might expect, the factor in front of the integral slightly deteriorates the estimate,
while qualitatively the decay of the entries in the inverse matrix is perfectly captured. We
observe that the bounds ii) and iii) can be very loose because of the estimate’s weakness in
(6). This can be clearly observed in the numerical experiments, below, where the inaccuracy
of our estimate is more pronounced in correspondence with the highest peaks, namely for
ℓ = i and/or m = j. In all examples, the matrix M was scaled by its diagonal, so as to
have entries all not greater than one. Technically, the integral appearing in the bound was
estimated using the adaptive Gauss-Kronrod quadrature rule (Matlab function quadgk).
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Figure 4: Example 2.1. Values of column t = 55 of S−1 (solid), estimates for that column as
in Prop.2.2 (dashed), and classical bound in [12] (dash-dotted).

Example 2.1. We consider the symmetric diagonally dominant matrix

M = tridiag(−0.5, 2,−0.5) ∈ R
10×10.

As a sample, we consider column t = 55 (corresponding to the node at i = 5 and j = 4 in
the reference grid), and we compute the upper estimate for (S−1):,t as the row index varies.
Figure 4 shows the accuracy of the estimates in Proposition 2.2 (dashed curve), compared
with the actual values (solid curve) of column 55. The estimate is able to capture the highly
oscillating decay of the entries of S−1 although, as already mentioned, the peaks are somewhat
overestimated. For completeness, the bound (2) from [12] is also reported; for this bound, we
took into account that S has bandwidth b = n = 10. We observe that this classical bound
provides a good envelope of the actual decay, although, as expected, it misses the oscillation
pattern. We also note that the classical bound matches the peaks of our new bound, showing
that the classical predicted decay is obtained for either i = ℓ or j = m, corresponding to the
rows and columns in the grid most slowing decaying (see also Figure 2).

In the following examples, similar plots are shown, where however all curves are scaled by
the value of the corresponding diagonal, so that the maximum value of the column in one.
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Figure 5: Example 2.2. Left: Components of column t = 35 of the inverse of the 2D Laplace
100 × 100 matrix in the unit square, and its estimate from Proposition 2.2 (all curves are
scaled by the values of the corresponding diagonal). Right: upper bounds for all entries of
the inverse (cf. with Figure 1)

Example 2.2. We consider the two-dimensional Laplacian with Dirichlet boundary condi-
tions, discretized by centered finite differences with a 5-point stencil, so thatM = tridiag(−1, 2,−1) ∈
R
10×10 and S is of size 100. In Figure 5 we report the values of (S−1):,35 (solid blue line),

and those of the corresponding upper bound in Proposition 2.2. The agreement with the
actual behavior of the column entries is very good. Similar plots can be observed for the
other columns of S−1.

Example 2.3. The second example stems from the discretization of the same operator as
in Example 2.2, but in terms of the tensorized Babuska-Shen basis, which uses Legendre
polynomials. The corresponding symmetric matrix (for even degrees) is given by (see, e.g.,
[10] and references therein) M = tridiag(δk, γk, δk), where

γk =
2

(4k − 3)(4k + 1)
, k = 1, . . . , n, and

δk =
−1

(4k + 1)
√

(4k − 1)(4k + 3)
, k = 1, . . . , n− 1.

The plot of Figure 6 reports the actual values of (S−1):,35 and their estimates according to
Proposition 2.2. Once again, the bounds appear to be fully descriptive of the entry pattern.

The results of Proposition 2.2 can be manipulated to provide, for each t, more explicit
estimates on the entries of (S−1):,t; more precisely, they are expressed in terms of the “ index
distance” |ℓ− i|+ |m− j|.

Proposition 2.3. For k, t ∈ {1, . . . , n2} let j = ⌊(t− 1)/n⌋+1, i = t−n⌊(t− 1)/n⌋ and ℓ,m
as in (4).
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Figure 6: Example 2.3. Components of column t = 35 of the inverse of the Legendre stiffness
matrix of size 100× 100, and its estimate from Proposition 2.2. (all curves are scaled by the
values of the corresponding diagonal).

i) Let n2 := |ℓ− i|+ |m− j| − 2 > 0. If ℓ 6= i, m 6= j then

|(S−1)k,t| ≤
1

2
√
2

(λmax − λmin)
n2+2

(λ2max + λ2min)
n2/2

√

λ2max + λ2min

(λmaxλmin)2
1√
n2

√

2n2
n2 + 4

. (7)

ii) Let n1 := |ℓ− i|+ |m− j| − 1 > 0. If either ℓ = i or m = j and n1 > 0 then

|(S−1)k,t| ≤
1

2
√
2

(λmax − λmin)
n1+1

(λ2max + λ2min)
n1/2

√

λ2max + λ2min

λmaxλ2min

1√
n1

√

2n1
n1 + 2

. (8)

Proof. The proof is postponed to the Appendix.

We conclude this paragraph with a final qualitative bound for n1, n2 large, that emphasizes
the asymptotic behavior.

Proposition 2.4. Let κ = λmax/λmin = cond(M).

i) Assume ℓ, i,m, j are such that ℓ 6= i, m 6= j and n2 = |ℓ− i|+ |m− j| − 2 > 0. With the
previous notation, it holds

|(S−1)k,t| ≤
√
κ2 + 1

2λmin

1√
n2

.

ii) Assume ℓ, i,m, j are such that ℓ = i or m = j and n1 = |ℓ− i|+ |m− j| − 1 > 0. With
the previous notation, it holds

|(S−1)k,t| ≤
κ
√
κ2 + 1

2

1√
n1

.
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Proof. i) The constant involving the extreme eigenvalues of M satisfies

(λmax − λmin)
n+2

(λ2max + λ2min)
n/2

√

λ2max + λ2min

(λmaxλmin)2
≤

√
κ2 + 1

λmin
, (9)

where κ = λmax/λmin ≥ 1. Indeed,

(λmax − λmin)
n+2

(λ2max + λ2min)
n/2

√

λ2max + λ2min

(λmaxλmin)2
=
λn+2
max

λnmax

(1− 1/κ)n+2

(1 + 1/κ2)n/2
1

λ2minλmax

√

1 +
1

κ2
,

with (1−1/κ)n+2

(1+1/κ2)n/2
≤ 1. Inserting (9) into (7) and noticing that n2

n2/2+1 ≤ 2 yield the result.

The proof of ii) goes along the same lines of i) after observing that it holds

(λmax − λmin)
n+2

(λ2max + λ2min)
n/2

√

λ2max + λ2min

λmaxλ2min

≤ λmax

√
κ2 + 1

λmin
= κ

√

κ2 + 1.

We remark that a result in a similar direction was reported in [19, Theorem 4.5] for the
Laplacian matrix, although in there, an explicit dependence on the problem dimension arises,
together with a more involved dependence on the discretization grid.

In terms of the indices of S−1, our bound shows that

|(S−1)k,t| = |(S−1)ℓ+n(m−1),i+n(j−1)|

≤ γ0
1

√

|ℓ− i|+ |m− j| − 2

= γ0
1

√

|k − t− n(⌊ (k−1)
n ⌋ − ⌊ (t−1)

n ⌋)|+ |⌊ (k−1)
n ⌋ − ⌊ (t−1)

n ⌋| − 2
.

For instance, for all the elements on the secondary diagonal, satisfying k + t = n2, we
obtain

|(S−1)k,t| ≤ γ0
1

(|n2 − 2t− n(⌊n2−t−1
n ⌋ − ⌊ t−1

n ⌋)|+ |⌊n2−t−1
n ⌋ − ⌊ t−1

n ⌋| − 2)
1

2

.

In the qualitative bound of Proposition 2.4 the asymptotic term does not depend on
the actual entries of S−1, but only on the position in the underlying grid. This property
reflects similar considerations obtained for point-wise estimates in the context of the discrete
Laplacian. Indeed, for the discrete Green function Gh on the discrete N -dimensional grid Rh,
it was shown in [9] that there exist constants h0 and C such that for h ≤ h0, x, y ∈ Rh,

Gh(x, y) ≤
{

C log C
|x−y|+h ifN = 2
C

(|x−y|+h)N−2 ifN ≥ 3.
(10)

Our computable bound in Proposition 2.4 shows that the entries depend on the inverse square
root of the distance, whereas in (10) an asymptotic (slower) logarithmic dependence on the
distance is reported for the two-dimensional case.
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We also notice that other bounds are available that use different distance concepts; for
instance, in [7, Theorem 3.4] the decay pattern of certain matrix functions is described by
means of graph theory, in terms of distance1 between nodes of a digraph, where the nodes are
the entry indices in the matrix inverse.

3 On the decay of the Cholesky factor

When preconditioning a large algebraic linear system, a-priori information on the decay prop-
erties of the inverse of the Cholesky factor of S may be important to guide the computation
of incomplete factorizations. Indeed, assuming that S = LL⊤ is the Cholesky factorization
of S, if the entries of S−1 decay away from the main diagonal with a certain pattern, we
expect that also the factor inverse L−⊤ will show a similar pattern. This fact was proved in
[8] for banded matrices S by using the decay rate in (2). With the same technical tools, we
generalize this result to our decay pattern, under the assumption that S has a bandwidth b.

Proposition 3.1. Assume S is b-banded, with diagonal elements not greater than one, and
let S = LL⊤. With the previous notation, for n = ni > 0, i = 1, 2,

|(L−⊤)k,t| ≤ γ0
b

√

n(k, t)
.

Proof. We have

|(L−⊤)k,t| ≤
t+b−1
∑

r=t

|(S−1)k,r| |Lr,t| ≤ γ0

t+b−1
∑

r=t

1
√

n(k, r)
≤ γ0

b
√

n(k, t)
,

where we used the inequality n(k, t) ≤ n(k, r) for k ≤ t ≤ r ≤ t+ b− 1.

We notice that a slightly sharper upper bound could be obtained by first using the bound
of Proposition 2.2, however the final asymptotic dependence with respect to n would still be
the same.

The estimate for the entries of L−1 could be used in the design of linear system precon-
ditioners by means of approximate inverses [8],[2]. Indeed, not only a decay pattern occurs
away from the diagonal, but many tiny values appear within the bandwidth. Therefore, a
threshold-based dropping strategy could be used in conjunction with a band-based procedure,
to a-priori increase the sparsity of the explicit approximate inverse. Similar considerations can
guide the design of quasi-orthogonal polynomial bases, as those developed in, e.g., [10],[11].

4 More general settings

The results of the previous sections can be generalized in a number of ways. For instance,
we can allow the symmetric and positive matrix M in (1) to be generally b-banded, so that
Proposition 2.1 can be used in its full generality. The resulting estimate is reported below.
Its proof is omitted as it is analogous to that of Proposition 2.2.

1Defined as the length of the shortest directed path connecting the two nodes.
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Proposition 4.1. Let M be a real symmetric and positive definite matrix of size n and
bandwidth b. For k, t ∈ {1, . . . , n2}, let

j = ⌊(t− 1)/n⌋+ 1, i = t− n⌊(t− 1)/n⌋

and ℓ,m as in (4). With the notation above, the following holds.
i) If i 6= ℓ and j 6= m, then

|(S−1)k,t| ≤
1

2π

64

|λmax − λmin|2
∫ ∞

−∞

(

R2

(R2 − 1)2

)2(
1

R

)|i−ℓ|/b+|j−m|/b−2

dω;

ii) If either i = ℓ or j = m, then

|(S−1)k,t| ≤
1

2π

8

|λmax − λmin|

∫ ∞

−∞

1
√

λ2min + ω2

R2

(R2 − 1)2

(

1

R

)|i−ℓ|/b+|j−m|/b−1

dω;

iii) If both i = ℓ and j = m, then

|(S−1)k,t| ≤
1

2π

∫ ∞

−∞

1

λ2min + ω2
dω =

1

2λmin
.
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Figure 7: Example 4.1. Components of column t = 55 of the inverse of the Laplace stiffness
matrix of size 100×100 with a 9-point stencil discretization, and its estimate from Proposition
4.1. (all curves are scaled by the values of the corresponding diagonal.)

Example 4.1. We consider the 100× 100 matrix S stemming from the discretization of the
two-dimensional Laplace operator by means of a more accurate discretization (9-point stencil)
of the one-dimensional derivative than in Example 2.2. This gives

M = pentadiag

(

1

12
,−4

3
,
15

6
,−4

3
,
1

12

)

,
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which has bandwidth b = 2. The plot in Figure 7 (for column t = 55 of the inverse S−1) shows
that the estimate of Proposition 4.1 is able to capture the oscillating behavior, but somewhat
fails to follow the asymptotic pattern of the inverse, predicting a slower decay. (We recall
here that all values were scaled to be one at the t-th component.) As already mentioned,
this seems to be due to the weakness of the exponential bound in Proposition 2.1 for a larger
bandwidth. We explicitly observe that also the monotonic classical bound (2) does not seem
to closely match the actual asymptotic decay pattern; we should keep in mind that in this
case, S has bandwidth b · n = 20, which seems to also significantly deteriorate the classical
estimate.

Another generalization is obtained by assuming that S = Sg can be written as in (3), with
M1, M2 symmetric and positive definite square matrices, of size n1 and n2, respectively, so
that Sg is of size n1n2 × n1n2. Following the derivation in Section 2, the elements of each
column t of the inverse can be derived as the elements of the solution matrix X to the Sylvester
equation

M1X + XM2 = E . (11)

The following result generalizes one of the cases of Proposition 2.2. The other case can be
derived analogously.

Proposition 4.2. Assume M1,M2 are symmetric positive definite and tridiagonal matrices.
Let δ1,2 = (λmax(M1) − λmin(M1))(λmax(M2) − λmin(M2)). For k, t ∈ {1, . . . , n1n2} let j =
⌊(t− 1)/n1⌋+ 1, i = t− n1⌊(t− 1)/n1⌋, ℓ = ⌊(k− 1)/n1⌋+ 1, m = t− n1⌊(k− 1)/n1⌋, be
such that ℓ 6= i and m 6= j. Then it holds that

|(S−1
g )k,t| ≤

1

2π

64

δ1,2

∫ ∞

−∞

R2
1

(R2
1 − 1)2

R2
2

(R2
2 − 1)2

(

1

R1

)|i−ℓ|−1( 1

R2

)|j−m|−1

dω,

with R1 and R2 are defined as in Proposition 2.1 for each of the spectra of M1 and M2,
respectively.

Proof. We can write the solution to the Sylvester equation in closed form as (see, e.g., [15])

Xt =
1

2π

∫ ∞

−∞
(ıωI +M1)

−1eie
⊤
j (ıωI +M2)

−∗dω.

To evaluate |(Xt)ℓ,m| we can then apply again Proposition 2.1 to each of the inner term, namely
to |e⊤ℓ (ıωI +M1)

−∗ei|, |e⊤j (ıωI +M2)
−∗em|. The final result thus follows as in Proposition

2.2.

Finally, we observe that the two generalizations above could be combined, giving estimates
for the entries of the inverse when M1 and M2 have different bandwidth.

5 Conclusions

We have characterized the decay pattern of the inverse of banded matrices that can be written
as the sum of two Kronecker products, in which each of the matrices is symmetric positive
definite and banded. Our results explain the non-monotonic (oscillating) pattern commonly
observed in these inverses, while providing upper bounds that can be sharp, especially for
low bandwidth. We also showed that corresponding results can be obtained for more general
Kronecker-type matrices with different banded matrices M1 and M2.

13



Acknowledgements

The authors would like to thank Leonid Knizhnerman for carefully reading an earlier draft of
this manuscript, and Michele Benzi for helpful discussions. The first and third authors were
partially supported by the Italian research fund INdAM-GNCS 2013 “Aspetti emergenti nello
studio di strategie adattative per problemi differenziali”. The second author was partially
supported by the University of Bologna through the FARB Project “Metodi matematici per
l’esplorazione ambientale sostenibile”.

References

[1] M. Bebendorf and W. Hackbusch. Existence of H-matrix approximants to the inverse
FE-matrix of elliptic operators with L∞ -coefficients. Numer. Math., 95:1–28, 2003.

[2] M. Benzi. Preconditioning techniques for large linear systems: a survey. J. Comput.
Phys, 182:418–477, 2002.

[3] M. Benzi and P. Boito. Quadrature rule-based bounds for functions of adjacency matrices.
Lin. Alg. Appl., 433:637–652, 2010.

[4] M. Benzi and P. Boito. Decay properties for functions of matrices over C∗ -algebras. Lin.
Alg. Appl., xx:xx, 2013.

[5] M. Benzi, P. Boito, and N. Razouk. Decay properties of spectral projectors with appli-
cations to electronic structure. SIAM Review, 55:3–64, 2013.

[6] M. Benzi and G. H. Golub. Bounds for the entries of matrix functions with applications
to preconditioning. BIT Numerical Mathematics, 39(3):417–438, 1999.

[7] M. Benzi and N. Razouk. Decay bounds and O(n) algorithms for approximating functions
of sparse matrices. ETNA, 28:16–39, 2007.

[8] M. Benzi and M. Tuma. Orderings fo factorized sparse approximate inverse precondi-
tioners. SIAM J. Sci. Comput., 21(5):1851–1868, 2000.

[9] J. H. Bramble and V. Thomée. Pointwise bounds for discrete Green’s functions. SIAM
Journal on Numerical Analysis, 6(4):583–590, Dec. 1969.

[10] C. Canuto, V. Simoncini, and M. Verani. Adaptive Legendre-Galerkin methods, 2014.
In preparation.

[11] M. Challacombe. A simplified density matrix minimization for linear scaling self-
consistent field theory. J. Chem. Phys., 110:2332–2342, 1999.

[12] S. Demko, W. F. Moss, and P. W. Smith. Decay rates for inverses of band matrices.
Math. Comp., 43:491–499, 1984.

[13] R. Freund. On polynomial approximations to fa(z) = (z−a)−1 with complex a and some
applications to certain non-hermitian matrices. Approx. Theory and Appl., 5:15–31, 1989.

14



[14] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. Corrected
and enlarged edition. Academic Press, San Diego, California, 1980.

[15] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press,
Cambridge, 1991.

[16] R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equa-
tions. Steady State and Time Dependent Problems. SIAM, Philadelphia, 2007.

[17] P.E. Maslen, C. Ochsenfeld, C. A. White, M. S. Lee, and M. Head-Gordon. Locality and
Sparsity of Ab Initio One-Particle Density Matrices and Localized Orbitals. J. Phys.
Chem. A, 102:2215–2222, 1998.

[18] G. T. McAllister and E. F. Sabotka. Discrete Green’s functions. Math. Comp., 27:59–80,
1973.

[19] G. Meurant. A review on the inverse of symmetric tridiagonal and block tridiagonal
matrices. SIAM J. Matrix Anal. Appl., 13(3):707–728, Jul. 1992.

[20] R. Nabben. Decay rates of the inverse of nonsymmetric tridiagonal and band matrices.
SIAM J. Matrix Anal. Appl., 20:820–837, 1999.

[21] R. Vandebril, M. Van Barel, and N. Mastronardi. Matrix computations and semiseparable
matrices. Johns Hopkins University Press, 2008.

[22] T. Vejchodsky and P. Solin. Discrete maximum principle for higher-order finite elements
in 1D. Math. Comp, 76(260):1833–1846, October 2007.

[23] P. Wojtaszczyk. A mathematical introduction to Wavelets. Cambridge University Press,
1997.

Appendix

In this appendix we prove Proposition 2.3.

Proof. i) We set Xℓm := e⊤ℓ Xtem = (S−1)k,t. From the result of Proposition 2.2, we need to
bound the integrand in a way that the integral still converges.

We observe that

1

R
≤ 1

α
=

λmax − λmin

|λ1|+ |λ2|

≤ λmax − λmin

(λ2max + λ2min + 2ω2)1/2
=

λmax − λmin

(λ2max + λ2min)
1/2

1
(

1 + 2ω2

λ2max+λ
2
min

)1/2
.

Moreover, after some algebraic calculation, it follows that R − 1/R = 2
√
α2 − 1, and since

α2 − 1 ≥ (2ω2 + 2λmaxλmin)/(λmax − λmin)
2,

R2

(R2 − 1)2
=

1

4(α2 − 1)
≤ 1

8

|λmax − λmin|2
ω2 + λmaxλmin

. (12)
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Therefore, letting n2 = |i− ℓ|+ |j −m| − 2,

|Xℓm| ≤ 1

2π

64

|λmax − λmin|2
∫ ∞

−∞

(

R2

(R2 − 1)2

)2(
1

R

)

n2

dω

≤ 1

2π

64|λmax − λmin|4
64|λmax − λmin|2

(

λmax − λmin

(λ2max + λ2min)
1

2

)

n2 ∫ ∞

−∞

1

(ω2 + λmaxλmin)2





1

1 + 2ω2

λ2max+λ
2
min





n2
2

dω

≤ 1

2π

(λmax − λmin)
n2+2

(λ2max + λ2min)
n2
2

∫ ∞

−∞

1

(ω2 + λmaxλmin)2





1

1 + 2ω2

λ2max+λ
2
min





n2
2

dω.

Since
1

ω2 + λmaxλmin
=

1

λmaxλmin

1
2ω2

2λminλmax + 1
≤ 1

λmaxλmin

1
2ω2

λ2
min

+λ2max

+ 1
,

we bound the entry further as

|Xℓm| ≤
1

2π

(λmax − λmin)
n2+2

(λ2max + λ2min)
n2/2

1

(λmaxλmin)2

∫ ∞

−∞





1

1 + 2ω2

λ2max+λ
2
min





n2/2+2

dω.

We next estimate the integral. Let τ =
√

2
λ2max+λ

2
min

ω, so that dτ =
√

2
λ2max+λ

2
min

dω. Then

∫ ∞

−∞





1

1 + 2ω2

λ2max+λ
2
min





n2/2+2

dω =
√
2
√

λ2max + λ2min

∫ ∞

0

(

1

1 + τ2

)

n2/2+2

dτ.

The integral above is half the Beta function B(12 ,
n2+3
2 ) ([14, formula 8.38.2]). It is known that

for n2 large, B(12 ,
n2+3
2 ) ≈ Γ(1/2)((n2+3)/2)−1/2. However, we can provide an explicit bound

for the integral. We recall that (1 + τ)k ≥ 1 + kτ , for all τ > −1. Then, using the change of
variable τ = s/

√
n2, we can write

∫ ∞

0

1

(1 + τ2)n2/2+2
dτ ≤

∫ ∞

0

1

1 + (n2/2 + 2)τ2
dτ

=
1√
n2

∫ ∞

0

1

1 + (n2/2 + 2)s2/n2
ds

=
1√
n2

√

n2

n2/2 + 2
atan



s

√

n2/2 + 2

n2



 |∞0 =
π

2

1√
n2

√

n2

n2/2 + 2

thus yielding

|Xℓm| ≤
1

2
√
2

(λmax − λmin)
n2+2

(λ2max + λ2min)
n2/2

√

λ2max + λ2min

(λmaxλmin)2
1√
n2

√

n2

n2/2 + 2
.
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ii) If i = ℓ or j = m, then Proposition 2.2(ii) applies. We set n1 = |i − ℓ| + |j −m| − 1.
Using again (12) and the bound on 1/R, the following bound holds

∫ ∞

−∞

1
√

λ2min + ω2

R2

(R2 − 1)2

(

1

R

)

n1

dω

≤ 1

8

(λmax − λmin)
n1

(λ2max + λ2min)
n1
2

|λmax − λmin|
∫ ∞

−∞

1
√

λ2min + ω2

1

ω2 + λmaxλmin

1
(

1 + 2ω2

λ2
min

+λ2
min

)

n1
2

dω

≤ 1

8

(λmax − λmin)
n1+1

(λ2max + λ2min)
n1
2

1

λmaxλmin

∫ ∞

−∞

1
√

λ2min + ω2

1
2ω2

λ2
min

+λ2max

+ 1

1
(

1 + 2ω2

λ2
min

+λ2
min

)

n1
2

dω

=
1

8

(λmax − λmin)
n1+1

(λ2max + λ2min)
n1
2

1

λmaxλmin

∫ ∞

−∞

1
√

λ2min + ω2

1
(

1 + 2ω2

λ2
min

+λ2
min

)

n1
2
+1

dω

≤ 1

8

(λmax − λmin)
n1+1

(λ2max + λ2min)
n1
2

1

λmaxλ2min

∫ ∞

−∞

1
(

1 + 2ω2

λ2
min

+λ2
min

)

n1
2
+1

dω

where in the last inequality we used
√

λ2min + ω2 ≥ λmin.

Finally, estimating the integral in the above inequality in the same way as in the proof of
i), we get

|Xℓm| ≤
1

2
√
2

(λmax − λmin)
n1+1

(λ2max + λ2min)
n1/2

√

λ2max + λ2min

λmaxλ2min

1√
n1

√

n1

n1/2 + 1
.

17



MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

67/2013 Canuto, C.; Simoncini, V.; Verani, M.

On the decay of the inverse of matrices that are sum of Kronecker

products

66/2013 Tricerri, P.; Dede ,L; Quarteroni, A.; Sequeira, A.

Numerical validation of isotropic and transversely isotropic constitutive

models for healthy and unhealthy cerebral arterial tissues

65/2013 Ambrosi, D.; Ciarletta, P.

Plasticity in passive cell mechanics

64/2013 Ciarletta, P; Ambrosi, D.; Maugin, G.A.

Mass transport in morphogenetic processes: a second gradient theory

for volumetric growth and material remodeling

63/2013 Pigoli, D.; Menafoglio, A.; Secchi, P.

Kriging prediction for manifold-valued random field

62/2013 Arioli, G.; Koch, H.

Existence and stability of traveling pulse solutions of the FitzHugh-

Nagumo equation

61/2013 Antonietti, P.F.; Sarti, M.; Verani, M.

Multigrid algorithms for hp-Discontinuous Galerkin discretizations of

elliptic problems

60/2013 Ghiglietti, A.; Paganoni, A.M.

An urn model to construct an efficient test procedure for response adap-

tive designs

59/2013 Aletti, M.; Bortolossi, A.; Perotto, S.; Veneziani, A.

One-dimensional surrogate models for advection-diffusion problems

58/2013 Artina, M.; Fornasier, M.; Micheletti, S.; Perotto, S.

Anisotropic adaptive meshes for brittle fractures: parameter sensitivity


