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Abstract

In this work, we customize the microSIMPATY algorithm, combining Solid Isotropic Material
with Penalization (SIMP) topology optimization with anisotropic mesh adaptation, within a
multi-physics framework to design cellular material scaffolds suitable for soilless cultivation
systems. The design of these novel substrates is driven by optimization criteria that balance
mechanical and fluid-dynamic performance, with the aim of effectively supporting plant growth.
The numerical validation results and the in silico root growth simulations carried out in virtual
vase-like containers confirm promising potential toward replacing conventional organic and
inorganic substrates with an optimized, sustainable, and readily accessible alternative.

Keywords: Material design, Multi-physics topology optimization, Inverse homogenization,
Anisotropic mesh adaptation, Soilless agriculture

1 Introduction
The rapid increase in global food demand driven by projected population growth [1, 2] poses
critical challenges to modern agriculture [3, 4]. Traditional agricultural methods are increas-
ingly unable to scale in a sustainable manner due to their high land and water demands and
limited resource efficiency [5]. Meeting these challenges requires cultivation strategies that max-
imize productivity while minimizing land and environmental impact [6]. In this context, soilless
agriculture has emerged as a promising solution to decouple food production from arable land
availability [7, 8]. By enabling cultivation under controlled environmental conditions, soilless
agriculture systems improve resource efficiency, crop uniformity, and yield predictability [9, 10].

Hydroponics, one of the main techniques in soilless agriculture, stands out for its productiv-
ity and versatility, relying on a supporting matrix, called substrate, that provides mechanical
anchorage while enabling air and nutrient circulation through water [11, 12, 13, 14]. A wide
range of substrates is currently used in hydroponic systems, each characterized by distinct
physical and chemical properties. For instance, peat moss and coconut coir are valued for their
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high water-holding capacity and aeration balance, but raise sustainability concerns due to non-
renewable sourcing or intensive processing [15, 16]. Perlite and vermiculite offer low density
and excellent root aeration yet generate significant waste and are difficult to recycle [17, 16].
Rock wool, widely adopted in industrial setups, ensures good moisture retention and structural
stability but suffers from poor biodegradability and high disposal costs [18, 19]. More recently,
hydrogels have been explored as partially renewable alternatives, though challenges remain in
ensuring consistent mechanical strength and nutrient diffusion [20, 21]. The strengths and
shortcomings of these conventional materials emphasize the necessity for innovative substrate
designs, with desired properties including structural robustness, fluid dynamics, chemical, ther-
mal, and electrical characteristics, aeration capacity, controlled porosity, manufacturability and
recyclability.

This work aims to foster sustainable innovation in soilless cultivation by developing advanced
design methodologies for novel growth substrates, in line with the United Nations Sustainable
Development Goals on Zero Hunger (SDG 2), Sustainable Cities and Communities (SDG 11),
and Responsible Consumption and Production (SDG 12). Specifically, the proposed framework
enables the design of engineered cellular materials with tunable permeability, mechanical in-
tegrity, and biodegradability, supporting efficient plant growth while minimizing environmental
impact. This versatility has been successfully exploited in several application domains, such
as biomedicine [22, 23], automotion [24], and aerospace engineering [25], but, to the best of
our knowledge, has not yet been explored in the context of substrates for soilless agriculture.
Accordingly, our goal is to determine the optimal unit cell topology that imparts the cellular
material with the desired properties for application in soilless agriculture, with particular em-
phasis on ensuring efficient plant support and nutrient transport.
The optimized unit cells are generated through an automated design pipeline combining topol-
ogy optimization, homogenization techniques and anisotropic mesh adaptation. In more de-
tail, topology optimization represents a well-established framework across several branches of
industrial and mechanical design [26, 27], aimed at determining the optimal distribution of
material and void within a prescribed design domain in order to match a desired performance
measure under specific constraints. Among the various techniques proposed in the literature
(including density-based [28], level-set [29], topological derivative [30], phase-field [31], and
evolutionary [32] approaches), we adopt the Solid Isotropic Material with Penalization (SIMP)
method [28].
Homogenization theory provides a rigorous mathematical framework to link microstructural
and macroscopic behavior in cellular materials. In direct homogenization, the effective macro-
scopic properties are derived by averaging the response of a given microstructure [33]. Inverse
homogenization operates in the opposite direction, determining the optimal unit cell architec-
ture that yields a prescribed set of effective (homogenized) properties at the macroscale [34].
Anisotropic mesh adaptation is a well-established technique, now integrated into many research
and commercial software, to enhance the accuracy of numerical simulations with affordable
computational cost. In the context of engineered cellular materials, anisotropically adapted
meshes have proven highly effective in sharply resolving material–void interfaces, yielding clear
and well-defined designs that are essentially ready for manufacturing.
In particular, in [35] the authors introduced the microSIMPATY algorithm, which discretizes
an inverse homogenization topology optimization problem using anisotropic meshes specifi-
cally tailored to the optimized unit cell. The method builds on a mathematically rigorous
framework grounded in an a posteriori recovery-based anisotropic error estimator [36]. Lim-
ited two-dimensional settings, the microSIMPATY algorithm has been successfully applied to
the design of cellular materials in both single- and multi-physics contexts [35, 22, 37, 23, 38].
The algorithm exhibits remarkable features, including minimal need for density filtering and
post-processing, a largely automated optimization workflow governed by only a few control pa-
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rameters, the ability to generate unconventional topologies that expand the attainable design
space, all within a framework of computational burden reduction and solution quality enhance-
ment.
In the present work, we extend this design pipeline to a fully three-dimensional setting and
apply it to the design of substrates in soilless agriculture. The generalization from a two-
dimensional to a three-dimensional setting turned out to be non-trivial, due to the need to
handle adapted meshes within a periodic framework intrinsic to cellular material architecture.
This issue demanded the development of the dedicated meshing techniques in [39].

The paper is structured as follows. Section 2 introduces the proposed framework for unit cell
design, leading to the three-dimensional multi-physics extension of the microSIMPATY algorithm.
In Section 3, we present the governing models and numerical assessments for single-physics
cases, distinguishing between linear elasticity and Darcy–Stokes flow regime. Section 4 extends
the design pipeline to a coupled multi-physics setting, where mechanical and fluid-dynamic
requirements are simultaneously enforced. Sections 5 and 6 address the reference application
of this study, focusing on the design of a new substrate for soilless agriculture and its in silico
validation for the growth of a representative plant species from the Brassicaceae family. Finally,
Section 7 summarizes the main findings and outlines future research directions.

2 Cell design
Cellular materials benefit from the interplay between distinct spatial scales, namely the macro-
scopic scale of a specimen Ω and the periodic micro-architecture of a representative unit cell ω.
To consistently link these scales, it is customary to employ direct and inverse homogenization
techniques.
The direct approach replaces the heterogeneous material constituting Ω with an equivalent
homogeneous medium whose effective properties encode the impact of the repeated micro-
geometry ω onto Ω [40, 41, 42, 33]. Thus, direct homogenization provides a rigorous micro-to-
macro upscaling for quantities of interest (e.g., elastic stiffness, hydraulic permeability) while
preserving the essential behaviour of the heterogeneous material at a contained modeling effort.
Inverse homogenization reverses the perspective. For assigned target properties (e.g., a desired
elastic or permeability tensor) for the material in Ω, the goal is to identify a periodic unit cell ω
whose homogenized properties match the selected target quantities [34, 29]. In such a context,
a possible choice for the design of ω is represented by topology optimization, which allows for
the proposal of unconventional freeform designs, as an alternative to the optimization of prede-
fined unit cells (e.g., triply periodic minimal surfaces [43] or truss-based optimization [44, 45]).
In more detail, topology optimization aims to distribute material and void portions within ω
in order to optimize a performance measure under design and physical constraints. Among the
several topology optimization methods available in the literature, we adopt the density-based
Solid Isotropic Material with Penalization (SIMP) method [46], whose generic form is

min
ρ∈R

J (U(ρ), ρ) :


Aρ(U(ρ),V) = Fρ(V) ∀V ∈ V

c ≤ C(U(ρ), ρ) ≤ c

ρ ∈ [ρ, 1],

(1)

where ρ models the distribution of the material density in the design domain ω (ρ = ρ for the
void portions, ρ = 1 for full material and ρ < ρ < 1 for intermediate densities). In particu-
lar, functional J denotes the selected performance measure (e.g., mass, inverse permeability,
bulk compressibility), possibly depending on the density ρ and the state U; the first constraint
takes into account the physical model underlying the design process, where Aρ(·, ·) and Fρ(·)
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define the associated differential weak forms; the second constraint enforces two-sided controls
on quantities depending on the state and/or the density variables through vector C, c and c
gathering the corresponding lower and upper bounds; the employment of a minimum material
density value ρ (set to 0.001 throughout the paper) in the third constraint guarantees that
problem (1) is well-defined. Finally, V is an appropriate configuration-dependent space, while
R coincides with L∞(ω, [0, 1]), standard notation being adopted for function spaces [47].
In practice, consistently with [48, 49, 33], we discretize problem (1) through continuous linear
finite elements, after introducing a conforming tetrahedral computational mesh, Th, of ω of car-
dinality #Th. The transition from the continuous to the discrete setting introduces well-known
numerical challenges, such as mesh dependency (the optimized layout depends on the com-
putational grid) and checkerboard patterns (associated with the presence of weakly-connected
solid elements). A variety of remedies to mitigate these issues is available in the literature,
including density filters (e.g., Helmholtz- or Heaviside-type [50]), robust formulations [51, 52],
high-order approximations [53, 54], as well as adapted meshes [55, 56].

With reference to the design of cellular materials, functional J and the constraint vector C
in (1) are related to the target quantities assigned to Ω, the differential forms Aρ and Fρ are
associated with the homogenization process, whereas function spaces R and V properly include
periodic boundary conditions. This set of choices classifies problem (1) as an inverse homog-
enization topology optimization approach (see the next sections for the details). The discrete
counterpart of this problem is tackled through the microSIMPATY algorithm proposed in [35],
which enriches inverse homogenization topology optimization with a combination of anisotropic
mesh adaptation and density filtering. microSIMPATY algorithm guarantees a sharp detection
of the structural boundary through highly-stretched tetrahedra (with few degrees of freedom
crowded at the material/void interface), while generating innovative cellular layouts [22, 37,
23, 38].
In Algorithm 1 we extend microSIMPATY to a three-dimensional (3D) setting, with a view to an
effective application to the design of innovative substrates for soilless agriculture. Concerning
the input values, we distinguish among: parameters J , C, G, c, c specifying problem (1), where
G collects the derivatives of the functionals J and C with respect to ρ; the initial guess for the
discretization of ω (T 0

h ) and of the density function (ρ0h); vector H = [r, β, η]T collecting the
main quantities involved in the density filters; tolerances TOTOL, TAU, ATOL, and integers TOIT,
AIT constraining the optimization and adaptation procedures; lengths hmin and hmax defining
the minimum and maximum allowed mesh element size.
The main loop of the algorithm (lines 3–12) includes an optimization, a filtering, and a mesh
adaptation phases, constrained by a maximum number AIT of allowed iterations and a control
on the stagnation of the mesh cardinality within tolerance ATOL (line 3).
In more detail, routine optimize (line 4) implements the optimization process through the con-
solidated Method of Moving Asymptotes (MMA) [57, 58], taking into account the performance
measure J and the constraint vector C, together with the associated derivatives in G. This
phase returns the number nOpt of performed optimization loops together with the updated
density function, subject to a prescribed tolerance TOTOL for accuracy and a maximum number
of iterations TOIT.
The filtering phase is performed by routine filter (line 5), which resorts to two standard fil-
ters [59], whose combined action enhances a sharp material/void alternation. First, a Helmholtz
smoothing operator removes excessively thin features by promoting intermediate densities along
the layout contour. To this aim, the input density ρ is updated into the smoothed quantity ρ̂
solution to the partial differential equation (PDE)

−r∆ρ̂+ ρ̂ = ρ in ω, (2)

to be completed with suitable boundary conditions, where r ∈ H is a length parameter related
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to the radius of a circular mollifier. Subsequently, ρ̂ is sharpened through the Heaviside filter
as

ρ̃ =
tanh(βη) + tanh[β(ρ̂− η)]

tanh(βη) + tanh[β(1− η)]
, (3)

with β, η ∈ H tuning the severity of the sharpening to enhance the contrast between void and
full material towards a black-and-white configuration.

Algorithm 1 microSIMPATY

1: Input: J , C, G, c, c, T 0
h , ρ0h, H, TOTOL, TAU, ATOL, TOIT, AIT, hmin, hmax

2: Set: k = 0, errA = 1+ ATOL, iter = 0;

3: while errA > ATOL and k < AIT do
4: [nOpt, ρk+1

h ] = optimize(ρkh,J ,C,G, c, c, TOTOL, TOIT);

5: ρ̃k+1
h = filter(ρk+1

h ,H);

6: T k+1
h = adapt

(
T k
h , ρ̃

k+1
h , TAU, hmin, hmax

)
;

7: ρk+1
h = project

(
ρk+1
h , T k+1

h

)
;

8: ρ̃k+1
h = project

(
ρ̃k+1
h , T k+1

h

)
;

9: errA =
∣∣#T k+1

h −#T k
h

∣∣ /#T k
h ;

10: k = k+1;

11: iter = iter + nOpt;

12: end while

13: Th = T k
h ;

14: ρh = ρkh;

15: ρ̃h = ρ̃kh;

16: Output: Th, ρh, ρ̃h, iter

The last step in the main loop coincides with a mesh adaptation process in an anisotropic
setting. The corresponding output is a computational mesh whose elements are sized, shaped
and oriented in order to sharply detect the material/void interface at a contained computational
effort (see the literature related to the design of structures and materials [60, 35]). In particular,
routine adapt implements a metric-based approach for mesh generation [61, 62] where the
mesh metric is based on the anisotropic counterpart of the well-established Zienkiewicz-Zhu
error estimator [63, 64], proposed in [36, 65]. The choice of this specific error estimator is
motivated by its ability to sharply capture steep solution gradients, thereby meeting the need to
accurately track the sharp boundaries of the structure under optimization. The transition from
the estimator to the metric is carried out by solving local constrained minimization problems,
aiming to guarantee a prescribed accuracy TAU on the density gradient, while minimizing the
mesh cardinality and equidistributing the error estimator across the computational grid. To
avoid the generation of excessivelly small or large tetrahedra, we lower and upper bound the
element size through the prescribed lengths hmin and hmax.
The while loop of the algorithm is completed by a projection step through routine project
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(lines 7-8), which ensures the consistency of the discrete material density with the current
computational mesh. Algorithm 1 returns the final anisotropic adapted mesh, the material
and the filtered densities, together with the cumulative number of performed optimization
iterations.

We observe that microSIMPATY algorithm features a mild coupling between the optimiza-
tion and adaptation modules, aimed at mitigating the overall computational burden. Indeed,
parameters TOTOL and TOIT can be effectively used to regulate the alternation between op-
timization and adaptation steps. Moreover, the imposition of periodic boundary conditions
in spaces R and V introduces an additional layer of complexity when dealing with adapted
meshes. In practice, periodicity must be enforced simultaneously across opposite faces, edges,
and corners of the domain, which substantially increases the technical difficulty and limits the
availability of suitable 3D meshing tools. To address this challenge, we employ a dedicated
routine for periodic mesh adaptation, recently introduced in [39].

Concerning the implementation of Algorithm 1, we primarily rely on Python 3.11.7 and
FreeFEM [66]. We exploit dolfinx [67] for partial differential equation–constrained optimiza-
tion, where computations are executed in parallel with PETSc in its Python interface [68],
providing the linear algebra backend and scalable solvers. Boundary conditions are enforced
through the dolfinx_mpc1 library, which enables an efficient parallel treatment of periodicity
via multi-point constraints. As for the mesh adaptation step, the anisotropic metric tensor is
computed in parallel using FreeFEM, while the generation of periodic adapted meshes is assigned
to mmg [69], an open-source tool specialized in anisotropic grid handling.
This modular integration provides an automatic, efficient, robust and flexible tool for the design
of innovative engineered cellular materials.

3 Single-physics-constrained setting
This section tailors the design framework in (1) to two distinct settings, linear elasticity and
Darcy-Stokes flow, thus highlighting the versatility of the microSIMPATY algorithm in addressing
different engineering contexts.

3.1 The linear elasticity case
The linear elasticity theory constitutes the first physics setting adopted for the design of opti-
mized cellular materials. In this context, the static equilibrium of the specimen Ω is modeled
by the equation

−∇ · σ(u) = f in Ω,

where f is a volumetric forcing term and σ is the material stress, being related to the strain ε
and the stiffness E, through the standard linear constitutive law

σ(u) = Eε(u), ε(u) =
1

2
[∇u+ (∇u)T ], (4)

with u : Ω → R3 the structure displacement. In the sequel, we adopt the Voigt notation for
the quantities σ, ε and E, being

σ(u) = [σ11, σ22, σ33, σ23, σ13, σ12]
T ,

ε(u) = [ε11, ε22, ε33, 2ε23, 2ε13, 2ε12]
T ,

E = [Eijkl]ij,kl∈I ,

1https://github.com/jorgensd/dolfinx_mpc
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with σij , εkl, Eijkl : Ω → R, for ij, kl ∈ I = {11, 22, 33, 23, 13, 12} [70].
Standard homogenization theory relieves us from a pointwise evaluation of relations (4).

The idea is to incorporate the mechanical influence of the microscopic geometry ω into the
macroscopic response of Ω by replacing the stiffness tensor E in (4) with the homogenized
counterpart EH , given by

EH
ijkl =

1

|ω|

∫
ω

[
σ(u0, ij)− σ(u∗, ij)

]
:
[
ε(u0, kl)− ε(u∗, kl)

]
dω, (5)

for ij, kl ∈ I, where the prescribed test fields u0, 11 = [x, 0, 0]T , u0, 22 = [0, y, 0]T , u0, 33 =
[0, 0, z]T , u0, 23 = [0, z, 0]T , u0, 13 = [z, 0, 0]T , u0, 12 = [y, 0, 0]T induce the microscopic corrector
fields u∗, ij satisfying the problem∫

ω

σ(u∗, ij) : ε(v) dω =

∫
ω

σ(u0, ij) : ε(v) dω ∀v ∈ V# (6)

on the unit cell ω, with V# = [H1
#(ω)]3 the space of vector-valued periodic H1(ω)-functions.

With reference to problem (1), equations (6) are strictly linked to forms Aρ and Fρ, being

Aρ(U(ρ),V) =

∫
ω

σρ̃(u
∗, ij(ρ)) : ε(v) dω, Fρ(V) =

∫
ω

σρ̃(u
0, ij) : ε(v) dω, (7)

with U(ρ) = u∗, ij(ρ), V = v,
σρ̃(·) = ρ̃ p Eε(·), (8)

where p ≥ 1 is the SIMP penalization exponent that mitigates intermediate densities [71], while
ρ̃ = ρ̃(ρ) denotes the filtered density defined as in (3).
In the next two sections, different choices for J and C, c, c will lead to the design of distinct
cellular materials through microSIMPATY algorithm. In particular, we pick the design domain
ω ⊂ R3 as the unit cube (0, 1)3 and we set p = 4 for the SIMP penalization exponent in (8). The
material selected for the unit cell is characterized by the Lamé’s coefficients, λ and µ, which
for an isotropic solid define the Cauchy’s stress tensor in (4) as σ(u) = 2µ ε(u) + λ tr(ε(u)),
where tr(·) denotes the trace operator. In the present study, we set λ = 0.577 and µ = 0.385,
corresponding to a unit Young’s modulus and a Poisson’s ratio equal to 0.3.
Concerning the input parameters of Algorithm 1, we choose a spherical material region centered
in ω, whose radius varies in the specific design case, as initial guess ρ0h, discretized on an
isotropic structured mesh T 0

h consisting of 162000 tetrahedra. The topology optimization step
is regulated by the tolerance TOTOL = 1% and the maximum number of allowed iterations
TOIT initially set to 200 and halved at each iteration k until 25. This choice is coherent with
the pursued mild coupling paradigm involving optimization and adaptation, and allows us to
reach a balance between efficiency and accuracy. The density filtering phase is tuned by the
parameters in H, here set to r = 0.03, η = 0.5, while β is gradually increased from 1 to 8
throughout the iterations. For mesh adaptation, we set ATOL= 2%, AIT= 10, while prescribing
TAU= 10, hmax = 0.1 and hmin = 0.005.

3.1.1 Design case 1

We consider a benchmark in material design, namely the maximization of the material bulk
modulus. This problem is recurrent in the literature, for instance, when dealing with hierar-
chical laminates that can attain the Hashin–Shtrikman bounds on the bulk and shear moduli
of isotropic two-phase composites [72]. This benchmark is of practical relevance for the design
of load-bearing cellular materials. Indeed, maximizing the bulk modulus yields architectures
suited for lightweight structural cores and energy-absorbing components [73, 74]. In the con-
text of soilless agriculture, similar stiffness-oriented formulations can be exploited to engineer
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Figure 1: Design case 10.3: density field (top) with the associated anisotropic adapted mesh over-
lapped (bottom) for {iter, k} = {0, 0}, {200, 0}, {300, 1}, {425, 6} (from left to right).

scaffolds that provide mechanical stability and resistance to compaction while maintaining the
internal porosity required for aeration and nutrient transport.
With reference to problem (1), we choose

J (u∗,ij(ρ), ρ) = −B(ρ), c = 0, C(u∗,ij(ρ), ρ) = M(ρ), c = vf , (9)

while defining Aρ and Fρ as in (7), where

B(ρ) = 1

9

(
EH

ρ̃,1111 + EH
ρ̃,2222 + EH

ρ̃,3333

)
+

2

9

(
EH

ρ̃,2233 + EH
ρ̃,1133 + EH

ρ̃,1122

)
denotes the (homogenized) bulk modulus, with EH

ρ̃,ijkl the homogenized stiffness tensor com-
ponents in (5) after replacing σ with σρ̃ in (8),

M(ρ) =
1

|ω|

∫
ω

ρ̃ dω (10)

is the volume occupied by the material in ω, and vf is the prescribed maximum allowed volume
fraction. Notice that we constrain the design with a single two-sided inequality, so that vectors
c, C and c simplify to scalar quantities.

As a first scenario, denoted by Design case 1vf , we set vf = 0.3, and we adopt an initial
guess ρ0h with a volume equal to vf . The material topology in ω evolves towards an almost
isotropic truss that distributes material along orthogonal directions (see the layouts in the first
row of Fig. 1), consistently with the balanced weights across the Cartesian axes characterizing
the bulk modulus definition. The benefits led by the employment of an anisotropic adapted
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Figure 2: Design case 10.3: evolution of the objective functional B and of the constraint M as a
function of iter. Mesh adaptation is applied in correspondence with the vertical dashed lines.

mesh are evident in the sharply resolved structural boundary. Here the grid carefully tracks
the steep material/void interface (see the second row in Fig. 1), thus limiting the presence of
intermediate density values.
In Fig. 2, we show the convergence trend of functional B and of constraint M. It can be
observed that the bulk modulus increases, in agreement with the maximization requirement,
until a stable material configuration is attained, as highlighted by the curve stagnation. The
trend is not strictly monotonic and features mild jumps that can be justified by the continuation
method employed to update the filter parameter β and the occurrence of mesh adaptation. We
also remark that the volume constraint remains tightly enforced throughout all iterations, with
M exactly matching the upper bound vf at the end of the optimization process. We refer to
Table 1 for further quantitative information related to B and M, and to the final anisotropic
adapted mesh, in terms of mesh cardinality and maximum element deformation, smax.

We investigate the sensitivity of the design process to the assigned volume fraction, by
varying vf in {0.3, 0.4, 0.5, 0.6}. The associated layouts are gathered in Fig. 3, first row. As vf
increases, the struts forming the unit cell remain aligned with the Cartesian directions, whereas
the structural members become progressively thicker and enhance the load-bearing frames along
the orthogonal directions, ultimately leading to closed-cell configurations. The transition from
open to closed cells is clearly visible in the 2×2×2 cell repetition displayed in the second row of
the figure. The variations in the material properties for the different vf values are confirmed in
the quantities in Table 1. In particular, the effective bulk modulus increases, up to a 5×-factor,
when vf is raised, consistently with the more massive layouts of the optimized designs, while
the volume constraint remains consistently satisfied. Regarding the anisotropically adapted
mesh, slight variations in mesh cardinality and maximum element distortion are observed,
with average values of approximately 227000 tetrahedra and 342, respectively. These results
confirm that a properly adapted mesh enables the handling of heterogeneous design scenarios
with comparable and still computationally affordable effort.
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Figure 3: Design cases 1vf
: unit cell (top) and associated 2×2×2-layout cellular material (bottom),

for vf ∈ {0.3, 0.4, 0.5, 0.6} (from left to right).

M B #Th smax

Design case 10.3

c 0
C 0.300 6.360 263098 371.512
c 0.300

Design case 10.4

c 0
C 0.400 9.400 223955 331.735
c 0.400

Design case 10.5

c 0
C 0.500 18.884 224983 406.274
c 0.500

Design case 10.6

c 0
C 0.600 26.302 200499 420.269
c 0.600

Table 1: Design cases 1vf : sensitivity analysis with respect to the volume fraction.
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Figure 4: Design case 20.0385: density field (top) with the associated anisotropic adapted mesh
overlapped (bottom) for {iter, k } = {0, 0}, {200, 0}, {300, 1}, {446, 9} (from left to right).

3.1.2 Design case 2

As a second test case, we address a volume minimization problem under prescribed shear-
stiffness constraints. This configuration promotes the formation of spanning frames and torsion-
resisting members across multiple planes, while avoiding excessive rigidity in unconstrained
directions. Beyond its classical relevance to lightweight structural cores and lattice reinforce-
ments [75, 76], such a design turns out to be particularly suitable for soilless agriculture, where
shear-resistant yet lightweight scaffolds can provide robust mechanical support to the plant
system without compromising material efficiency. With reference to problem (1), this leads us
to set

J (u∗,ij(ρ), ρ) = M(ρ), c = [EG
ijij ], C(u∗,ij(ρ), ρ) = [EH

ρ̃,ijij ], c = [E
G
ijij ],

where M(ρ) is the volume defined as in (10), while EG
ijij = (1−δ)EG

ijij and E
G
ijij = (1+δ)EG

ijij ,
for ij ∈ {12, 13, 23}, denote the three lower and upper bounds for the homogenized stiffness
tensor entries related to diagonal shear, EH

ρ̃,ijij defined as in Design case 1, with EG
ijij a target

value to be matched up to the tolerance δ = 5%.
The first row of Fig. 4 illustrates the evolution of the topology during optimization across

the iterations for the Design case 20.0385, corresponding to the choice EG
ijij = 0.0385 for

ij ∈ {12, 13, 23}. Specifically, the spherical material initial guess evolves into a truss network
composed of diagonal bars, which are orthogonally connected, thus providing shear resistance
on multiple planes. The iteration snapshots also highlight the beneficial effect of anisotropic
mesh adaptation, as the elements progressively concentrate along the material/void interface
and smooth out surface irregularities (compare the second with the third structure in the
bottom row of the figure).
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Figure 5: Design cases 2EG
ijij

: unit cell (top), associated 2× 2× 2-layout (center) and clipped view
(bottom) of the cellular material, for EG

ijij ∈ {0.0385, 0.0577, 0.0769, 0.0962} (from left to right).

We now increase the values assigned to the target shear stiffness tensor components by
selecting EG

ijij ∈ {0.0385, 0.0577, 0.0769, 0.0962}. The resulting layouts are shown in the first
row of Fig. 5. It is observed that the topology is preserved, while a higher material accumulation
within the domain ω results in an increase in the truss diameter. The topology invariance is
also confirmed by the 2 × 2 × 2 layout (second row) and by the corresponding clipped views
(third row), where the presence of honeycomb-like internal void chambers is evident. Table 2
gathers the same quantities as in Table 1 for this design setting. In particular, it is observed
that M grows with EG

ijij , and that the constrained stiffness components consistently attain the
prescribed lower limits, as expected from the volume minimization objective. It can also be
noted that the total number of elements slightly decreases as the mass increases. This behavior
is consistent with the progressive reduction of the internal void chambers, which leads to a
smaller internal surface area to be resolved.
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EH
ρ̃,1212 EH

ρ̃,1313 EH
ρ̃,2323 M #Th smax

Design case 20.0385

c 0.0365 0.0365 0.0365
C 0.0365 0.0364 0.0365 0.308 398692 376.440
c 0.0404 0.0404 0.0404

Design case 20.0577

c 0.0548 0.0548 0.0548
C 0.0548 0.0548 0.0548 0.3478 316687 203.155
c 0.0606 0.0606 0.0606

Design case 20.0769

c 0.0731 0.0731 0.0731
C 0.0731 0.0731 0.0731 0.4157 302274 126.572
c 0.0808 0.0808 0.0808

Design case 20.0962

c 0.0913 0.0913 0.0913
C 0.0913 0.0913 0.0913 0.4716 294305 283.083
c 0.1010 0.1010 0.1010

Table 2: Design cases 2EG
ijij

: sensitivity analysis with respect to the target stiffness
tensor components.

3.2 The Darcy-Stokes flow case
Analogously to Section 3.1, we here particularize problem (1) to a specific physics, now coin-
ciding with the Darcy-Stokes setting. In this context, we deal with a fluid in a porous medium
described by the flow velocity w : Ω → R3 and the pressure π : Ω → R fields, related through
the Darcy’s law

w = −K(∇π − g), ∇ ·w = 0 in Ω, (11)

where g is the volumetric body force and K : Ω → R3×3 is the symmetric and positive definite
permeability tensor, characterizing the resistance of the porous medium, with components
Kij : Ω → R, for i, j = 1, 2, 3. Homogenization theory allows to replace tensor K with the
corresponding homogenized version KH , such that

KH
ij =

1

|ω|

∫
ω

w∗,i · ej dω, (12)

where w∗,i ∈ V# denotes the velocity components of the periodic pair [w∗,i, π∗,i]T ∈ V#×L2
#(ω)

solution to equations
∫
ω

∇w∗,i : ∇vdω −
∫
ω

π∗,i∇ · vdω +

∫
ω

K−1w∗,i · vdω =

∫
ω

ei · vdω ∀v ∈ V#∫
ω

p∇ ·w∗,idω = 0 ∀p ∈ L2
#(ω),

(13)
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with ei the canonical unit vector, for i = 1, 2, 3, V# as in Design case 1 and L2
#(ω) the space

of the periodic square-integrable functions.
To properly define the differential problem in (1) we have to model the interplay between the
filtered density ρ̃ in ω and the characteristics of the porous material. The idea is that equation
(13) reduces to a pure Stokes flow in the regions occupied by the fluid (namely, in absence of
material, being ρ̃ = 0), while the flow velocity vanishes in correspondence with solid material
areas (namely, for ρ̃ = 1). This leads us to introduce the interpolation law

K−1
ρ̃ = K−1

max +
(
K−1

min −K−1
max

)
(1− ρ̃)

1 + q

1− ρ̃+ q
, (14)

proposed by T. Borrvall and J. Petersson in [77]. This relation ensures a sharp distinction
between fluid and solid regions through the scalar penalization parameter q (here set to 0.03)
and the maximum and minimum values, K−1

max = 106 and K−1
min = 0, for the inverse permeability

attained for ρ̃ = 1 and ρ̃ = 0, respectively. Now, the weak form in (1) has to be generalized to

Aρ(U(ρ),V) = [Aρ,1(U(ρ),V),Aρ,2(U(ρ),V)]T = [Fρ,1(V), 0]T = Fρ(V), (15)

in order to take into account the standard saddle-point formulation in (13), after replacing K−1

with the penalized density-dependent counterpart K−1
ρ̃ in (14), being

Aρ,1(U(ρ),V) =

∫
ω

∇w∗,i(ρ) : ∇vdω −
∫
ω

π∗,i(ρ)∇ · vdω +

∫
ω

K−1
ρ̃ w∗,i(ρ) · vdω

Aρ,2(U(ρ),V) =

∫
ω

p∇ ·w∗,i(ρ)dω, Fρ,1(V) =

∫
ω

ei · vdω,
(16)

with U(ρ) = [w∗,i(ρ), π∗,i(ρ)]T , V = [v, p]T ∈ V# × L2
#(ω).

The approximation of a saddle-point problem requires an ad-hoc choice for the discrete spaces
used to approximate the velocity and the pressure in order to ensure well-posedness [78]. For
this reason, in order to reduce the computational burden and to avoid spurious oscillations
of the pressure, we resort to piecewise linear finite elements to discretize both the flow fields,
combined with a stabilization term for the velocity [79]. When enforcing periodic boundary
conditions along ∂ω, the pressure is determined only up to an additive constant. To remove
this indeterminacy and guarantee a unique discrete solution, we prescribe π∗,i = 0 at a single
corner of the unit cell ω.

The Darcy–Stokes framework for inverse homogenization topology optimization here intro-
duced provides a reference setting for the design of engineered materials with tailored fluidic
properties (see, for instance, [80, 81]). In this context, we test the microSIMPATY algorithm
under different objective functions and constraint configurations, employing the same input
parameters as in Section 3.1, unless otherwise specified.

3.2.1 Design case 3

We consider a permeability–driven fluid design where the cell volume is lower-bounded. The
aim is to maximize permeability in an almost isotropic manner while ensuring that the design
does not degenerate into trivial, void-dominated configurations, which would arise if only an
upper volume constraint were imposed. Such permeability-oriented formulations are of practical
interest in the design of open-cell metallic lattices and porous scaffolds used in heat exchangers,
filters, and flow-distribution systems, where uniform fluid transport and low pressure drop
are essential [82, 83, 74]. Similar design principles are also increasingly relevant to soilless
agriculture, where engineered porous substrates must provide homogeneous water and nutrient
distribution while maintaining sufficient aeration. To this aim, in (1) we set

J (w∗,i(ρ), ρ) = −D(ρ), c = vf , C(w∗,i(ρ), ρ) = M(ρ), c = 1, (17)
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Figure 6: Design case 30.3: density field (top) with the associated anisotropic adapted mesh over-
lapped (bottom) for {iter, k } = {0, 0}, {200, 0}, {300, 1}, {450, 7} (from left to right).

where w∗,i(ρ) are the state variables, solution to (15); the performance measure

D(ρ) =
k(ρ̃)

kref
− rerr E(ρ̃), (18)

inspired by [80, 81], which combines the isotropic (diagonal) permeability function

k(ρ̃) =
1

3

3∑
i=1

KH
ρ̃,ii,

with the anisotropic flow error

E(ρ̃) = 1

k(ρ̃)2

[ ∑
ii,jj∈{11,22,33}

1

2
(KH

ρ̃,ii −KH
ρ̃,jj)

2 +
∑

ij∈{12,13,23}

(KH
ρ̃,ij)

2

]

weighted by the reference value for the permeability k−1
ref = 103 and rerr≥0, respectively, with

KH
ρ̃,ij the components of the homogenized permeability tensor KH

ρ̃ defined as in (12) after
replacing w∗,i with w∗,i(ρ); vf and M(ρ) denote the volume fraction and the structure volume
as in the previous sections. From a computational viewpoint, weight rerr is initially set to one
and is gradually increased throughout the optimization iterations, so that early stages prioritize
flow-channel discovery, while later iterations enforce isotropy more strictly.

The first investigation leads us to choose vf = 0.3 and to identify the initial guess ρ0h with
a cross-shaped topology aligned with the Cartesian axes, coherently with the selected perfor-
mance measure. The isotropic features requested in the optimization have a counterpart in the
unit cell layout provided by microSIMPATY algorithm after iter= 450 (see Fig. 6 where nota-
tion Design 30.3 is adopted for the output of this test case). Indeed, the optimizer consolidates
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a cross-like layout by smoothly rounding junctions and corners. Mesh adaptation concentrates
resolution along the solid–void interface, accentuating the corner fillets and widening local bot-
tlenecks. From a practical viewpoint, the obtained design allows us to reduce head losses and
favor higher fluid velocities through the structure.

Figure 7: Design cases 3vf
: unit cell (top) and associated 2×2×2-layout cellular material (bottom),

for vf ∈ {0.3, 0.4, 0.5, 0.6} (from left to right).

M 10−2 × k(ρ̃) 10−5 × E(ρ̃) #Th smax

Design case 30.3

c 0.300 1.208 6.179 145199 160.672
C 0.300

Design case 30.4

c 0.400 0.723 6.627 167725 195.245
C 0.400

Design case 30.5

c 0.500 0.428 3.746 181822 208.961
C 0.500

Design case 30.6

c 0.600 0.242 0.4512 187753 270.695
C 0.600

Table 3: Design cases 3vf : sensitivity analysis with respect to the volume fraction.

A sensitivity analysis with respect to the volume fraction is carried out varying vf ∈
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Figure 8: Design case 40.0005: evolution of the objective functional M and of the constraints KH
ρ̃,ij

for ij ∈ {12, 13, 23} as a function of iter. Mesh adaptation is applied in correspondence with the
vertical dashed lines.

{0.3, 0.4, 0.5, 0.6}. Figure 7 compares the associated final design unit cells. The overall topology
remains invariant across all configurations, where the geometry preserves a smooth, continuous
shape that sustains efficient flow guidance. With increasing lower volume bounds, the core
region thickens and corner curvatures become more pronounced, yielding a higher final cell
volume. The 2 × 2 × 2 tilings in the second row of the figure confirm the periodic consis-
tency of the optimized layout whereas no internal void chambers develop, in accordance with
permeability maximization under volume constraints. The values reported in Table 3 confirm
the predominance of isotropic cell features. This is evident from the comparison between k(ρ̃)
and E(ρ̃), whose magnitudes differ by three orders, while the performance measure D in (18)
reduces when vf increases and vice versa. The volume constraint is strictly satisfied in all
configurations, matching exactly the prescribed lower bound. Concerning the mesh adaptation
step, the total number of elements increases with parameter vf , consistently with the external
surface growth that needs to be better resolved by the mesh.

3.2.2 Design case 4

This section focuses on the design of material layouts that promote diagonal flow within the
xy, xz, and yz planes, while maximizing the allocation of the solid material. Such anisotropic
fluid pathways are relevant for engineered lattices and corrugated-core architectures designed
to guide flow preferentially along inclined directions, as required in multifunctional heat ex-
changers, drainage layers, or porous cooling panels [73, 74]. A similar design rationale is also
valuable in soilless agriculture, where controlled drainage within porous substrates is crucial to
maintain optimal moisture balance and root-zone aeration. This goal leads us to choose in (1)

J (w∗,i(ρ), ρ) = −M(ρ), c = [KH
ij ], C(w∗,i(ρ), ρ) = [KH

ρ̃,ij ], c = [1016], (19)

with ij ∈ {12, 13, 23}, where the coefficients KH
ij set the lower admissible bounds for the

constraints, whereas the value 1016 in c effectively removes any limitation on the upper bound.
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Figure 9: Design case 40.0005: density field (top) with the associated anisotropic adapted mesh
overlapped (bottom) for {iter, k } = {0, 0}, {200, 0}, {300, 1}, {375, 4} (from left to right).

As a first assessment, we consider a configuration characterized by a uniform lower bound
KH

ij , set to 0.0005 for ij ∈ {12, 13, 23}. We refer to the associated design as to Design case
40.0005. Identifying the initial guess with a cross-shaped topology as in Design Case 3, albeit
with a different volume, the miscroSIMPATY algorithm drives the volume M to increase rapidly
from the 30-th iteration, followed by a gradual approach toward stagnation. Conversely, after
an initial transient phase, the constrained components of the homogenized permeability tensor
remain close to c, exhibiting only mild oscillations (still to be ascribed to the variation of β)
that are progressively damped throughout the iterations. Figure 8 exemplifies these remarks
by displaying the evolution of M and of KH

ρ̃,12, KH
ρ̃,13, KH

ρ̃,23. As far as the unit cell layout is
concerned, the optimizer thickens the material distribution along the three selected diagonal di-
rections (see Fig. 9, top row), while the employment of an anisotropic adapted mesh (see Fig. 9,
bottom row) rounds junctions, thus reducing head losses without violating the constraints.

By gradually increasing the uniform lower bound KH
ij to 0.001 and 0.002, the microSIMPATY

algorithm allocates less material, maintaining sufficiently conductive flow paths and largely pre-
serving the characteristic diagonal-conducting topology (see Fig. 10, second and third columns).
As a complementary check, we impose a non uniform lower bound for the selected homoge-
nized permeability tensor components by setting KH

12 = 0.0015, KH
13 = KH

23 = 0.0005. The
resulting topology departs from the earlier symmetric configurations, though the dominant
diagonal-flow orientation is still preserved (see Fig. 10, fourth column, where notation Design
case 40.0015,0.0005 is adopted for this configuration). Table 4 gathers the main quantities related
to the microSIMPATY optimization process, for the four scenarios in Fig. 10. The final constraint
values are very close to the prescribed lower bounds, and the required isotropy of the specimen
is preserved across the first three settings, apart from minor fluctuations. As for the unit cell
volume, a decrease in M is observed, in agreement with the trends reported in Fig. 10. On the
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contrary, the number of elements in the final adapted mesh increases, while the aspect ratio
remains quite stable around 440.

Figure 10: Design cases 40.0005 (first column), 40.001 (second column), 40.002 (third column) and
40.0015,0.0005 (fourth column): unit cell (top) and associated 2 × 2 × 2-layout cellular material
(bottom).

10−4 ×Kρ̃,12 10−4 ×Kρ̃,13 10−4 ×Kρ̃,23 M #Th smax

Design case 40.0005

c 5.0 5.0 5.0 0.723 157016 492.883
C 5.038 5.038 5.038

Design case 40.001

c 10.0 10.0 10.0. 0.649 172917 431.691
C 10.057 10.058 10.057

Design case 40.002

c 20.0 20.0 20.0 0.428 233089 478.206
C 20.066 20.062 20.065

Design case 40.0015,0.0005

c 15.0 5.0 5.0 0.4512 171700 367.783
C 15.119 5.004 5.004

Table 4: Design cases 40.0005, 40.001, 40.002 and 40.0015,0.0005: sensitivity analysis with
respect to the lower bound for the permeability tensor components.
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4 Multi-physics-constrained setting
Here, we extend the design framework introduced in (1) to a multi-physics setting, where the
optimization is simultaneously driven by two distinct physical phenomena. Motivated by the
target application of the paper and based on the findings from the previous analyses, we cou-
ple linear elasticity with Darcy–Stokes flow models, suitably adapting the optimization setting
adopted so far.
It is to remark that, when coupling elasticity and fluid transport, the two objectives act, in
general, antagonistically. As shown in the previous sections, enhancing elastic performance
tends to increase mass and member thickness and may create enclosed void chambers to stiffen
the cell. Conversely, meeting permeability requirements promotes open channels with preferred
sizes and orientations, which generally reduce stiffness. Combining the two physics is therefore
challenging, not only because of parameter tuning and potential infeasibilities, but also because
the resulting designs trace a trade-off along a Pareto front.
Several studies have analyzed the maximization of the bulk modulus or permeability sepa-
rately [81], typically resulting in nearly isotropic unit cells emphasizing either mechanical or
fluid performance, depending on the chosen objective. In contrast, the present work aims to
address both aspects concurrently to capture the intrinsic trade-off between structural stiff-
ness and hydraulic conductivity. In particular, we simultaneously enforce shear-stiffness and
diagonal-flow targets, merging the Design Cases 2 and 4. This multi-physics setting has prac-
tical relevance for the design of porous lattices employed in lightweight structural cores, heat
exchangers, and bio-scaffolds, where mechanical support and directional fluid transport must
coexist [73, 74]. This leads us to consider the multi-physics-constrained volume maximization
setting

min
ρ∈R

−M(ρ) :



Aρ(u
∗, ij ,v) = Fρ(v) ∀v ∈ V#

Aρ(U(ρ),V) = Fρ(V) ∀V ∈ V# × L2
#(ω)

EG
ijij ≤ EH

ρ̃,ijij ≤ E
G
ijij

KH
ρ̃,ij ≥ KH

ij

ρ ∈ [ρ, 1],

(20)

with ij ∈ {12, 13, 23}, where Aρ, Fρ, and Aρ, Fρ are defined as in (7) and (15), respectively,
while the constraints are the same as in Sections 3.1.2 and 3.2.2.
This optimization process can be interpreted from two complementary perspectives. In the first,
starting from Design Case 2 with shear targets at minimum volume, selected permeability lower
bounds Kij are imposed, enforcing openings in regions that would otherwise remain sealed. In
the second, starting from Design Case 4 with diagonal-flow bounds and volume maximization,
some shear targets EG

ijij are demanded to avoid excessively solid and thick configurations. In
both cases, the volume maximization objective is retained to prevent the mechanical response
from collapsing to its lower admissible limits.

Algorithm 1 is run starting from a spherical material initial guess ρ0h and under the three
optimization scenarios detailed in Table 5, where notation Design case 5EG

ijij ,K
H
ij

is adopted
to distinguish the different configurations. The remaining input parameters to microSIMPATY
are assigned as in Section 3.1. Figure 11 tracks the evolution of the volume M and of the six
normalized constraints, associated with the setting in the first panel of the table. It is observed
that the performance measure M exhibits a non-monotonic convergence history before reaching
stagnation, whereas the constraints EH

ρ̃,ijij and KH
ρ̃,ij stabilize within only a few iterations. In

particular, the former rapidly approach the associated upper bounds after the initial iterations,
while the latter reach the corresponding lower bounds within the first 100 iterations and then
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gradually converge, consistently with the trend shown in Fig. 8 for the same quantities.

EH
ρ̃,1212 EH

ρ̃,1313 EH
ρ̃,2323 10−4 ×KH

ρ̃,12 10−4 ×KH
ρ̃,13 10−4 ×KH

ρ̃,23 M #Th smax

Design case 50.0577,0.0001

c 0.0548 0.0548 0.0548 1.0 1.0 1.0
C 0.0606 0.0606 0.0606 1.013 1.012 1.014 0.535 398839 588.178
c 0.0606 0.0606 0.0606 1016 1016 1016

Design case 50.0385,0.00015

c 0.0365 0.0365 0.0365 1.5 1.5 1.5
C 0.0404 0.0404 0.0404 1.513 1.510 1.513 0.418 253195 622.5
c 0.0404 0.0404 0.0404 1016 1016 1016

Design case 50.02503,0.0002

c 0.0238 0.0238 0.0238 2.0 2.0 2.0
C 0.0239 0.0238 0.0239 2.012 2.012 2.011 0.339 246258 533.753
c 0.0263 0.0263 0.0263 1016 1016 1016

Table 5: Design cases 50.0577,0.0001, 50.0385,0.00015, 50.02503,0.0002: sensitivity analysis with
respect to the stiffness and permeability tensor components.

Figure 11: Design case 50.0577,0.0001: evolution of the objective functional M and of the constraints
EH

ρ̃,ijij and KH
ρ̃,ij for ij ∈ {12, 13, 23} as a function of iter. Mesh adaptation is applied in corre-

spondence with the vertical dashed lines.

Algorithm 1 stops at iter = 425, delivering a mesh consisting of 398839 tetrahedra, and
produces the unit cell layout shown in the first column of Fig. 12. The resulting topology
retains the diagonal-flow character observed in Design case 4, yet introduces openings and
fissures. These additional features enhance fluid transport at the expense of elastic stiffness, as
expected under competing physical constraints. This trade-off between mechanical and fluid
requirements is further confirmed by the second and third panels of Table 5, where increased
permeability must be balanced by milder targets on the components of the homogenized stiffness
tensor to preserve problem feasibility. As a consequence, the material volume of the optimized
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unit cell decreases to accommodate more fluid, as clearly shown by the values of M in the table
and by the cell layouts and 2× 2× 2 tilings in Fig. 12.

Figure 12: Design cases 50.0577,0.0001 (first column), 50.0385,0.00015 (second column), 50.02503,0.0002
(third column): unit cell (top) and associated 2× 2× 2-layout cellular material (bottom).

5 Design of new substrates for soilless cultivation
In soilless cultivation, the substrate must act as a scaffold that simultaneously provides struc-
tural support for plant growth and allows water and nutrients to reach the roots, enabling the
proliferation throughout the growing medium. Design requirements for new substrates include
the creation of an effective network of channels that prevents dead-ends and promotes root
spreading, while ensuring isotropic pathways for uniform fluid transport even in the presence
of cross-talk between channels. To support these objectives, the scaffold must resist transverse
loads, maintaining mechanical stability relevant for root–substrate interactions, and provide
through-channel connectivity along the Cartesian directions, so that roots grow upright and
flow paths remain unimpeded without privileging a single direction. Thus, to support these
objectives in the optimization problem formulation, we are led to properly bound the homog-
enized shear stiffness and Cartesian-directional permeability components.
With reference to the previous design cases, the requirement on the shear stiffness compo-
nents remains consistent with Design case 2, while the promotion of fluid flow along preferred
directions shifts from the diagonals, as in Design case 4, to the Cartesian axes. In accor-
dance with the layout designs in Sections 3.2, it is also necessary to prevent degeneration into
void-dominated configurations, leading to the identification of the performance measure as the
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maximization of volume. This corresponds to solve

min
ρ∈R

−M(ρ) :



Aρ(u
∗, ij ,v) = Fρ(v) ∀v ∈ V#

Aρ(U(ρ),V) = Fρ(V) ∀V ∈ V# × L2
#(ω)

EG
ijij ≤ EH

ρ̃,ijij ≤ E
G
ijij

KH
ρ̃,ℓℓ ≥ KH

ℓℓ

ρ ∈ [ρ, 1],

(21)

with ij ∈ {12, 13, 23} and ℓℓ = 11, 22, 33, Aρ, Fρ, and Aρ, Fρ defined as in (7) and (15),
respectively.

EH
ρ̃,1212 EH

ρ̃,1313 EH
ρ̃,2323 10−2 ×KH

ρ̃,11 10−2 ×KH
ρ̃,22 10−2 ×KH

ρ̃,33 M #Th smax

Design case SC1

c 0.0183 0.0183 0.0183 2.0 2.0 2.0
C 0.0184 0.0184 0.0185 2.021 2.021 2.021 0.118 160022 71.254
c 0.0202 0.0202 0.0202 1016 1016 1016

Design case SC2

c 0.0219 0.0219 0.0219 1.0 1.0 1.0
C 0.0242 0.0242 0.0242 1.013 1.013 1.012 0.240 200416 117.580
c 0.0242 0.0242 0.0242 1016 1016 1016

Design case SC3

c 0.0548 0.0548 0.0548 0.5 0.5 0.5
C 0.0548 0.0547 0.0547 0.5052 0.5051 0.5052 0.394 246268 70.096
c 0.0606 0.0606 0.0606 1016 1016 1016

Design case SC4

c 0.0219 0.0219 0.0219 1.0 1.0 0.5
C 0.0242 0.0241 0.0242 1.009 1.009 0.505 0.276 213017 211.696
c 0.0242 0.0242 0.0242 1016 1016 1016

Table 6: Design cases SC1, SC2, SC3, SC4: sensitivity analysis with respect to the
stiffness and the permeability tensor components.

As a first experiment, we constrain the design process in (21) with the values in the second
panel of Table 6, while setting the input parameters for microSIMPATY algorithm exactly as for
the multi-physics framework in Section 4. The optimization converges at iter= 375, yielding
the layout shown in the second column of Fig. 13, top row, here identified with the label SC2.
The material distribution satisfies the imposed constraints on the stiffness and permeability
tensor components (see Table 6), forming diagonal structures (see Fig. 13, second column,
center row) similar to those observed in Design case 2 and compliant with the prescribed shear
bounds. At the same time, the unit cell exhibits additional void regions and narrow fissures,
which provide more space for root growth and fluid motion. The effect of anisotropic mesh
adaptation is evident in the smooth outer surfaces of the cell, provided by the refinement along
the material/void interfaces and by the coarse tessellation in the internal regions.

With a view to prototyping scaffolds capable of hosting different cultivations with distinct
growth requirements, we now explore the design space by varying the bounds of the constrained
quantities (see Table 6). Specifically, we investigate: (i) the effects of lowering the shear stiffness
target while increasing the minimum allowed diagonal permeability (Design case SC1); (ii) the
impact of higher mechanical targets combined with reduced substrate permeability demands
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Figure 13: Design cases SCi: unit cell (top) with the associated anisotropic adapted mesh overlapped
(center) and associated 2 × 2 × 2-layout cellular material (bottom), for i = 1, . . . , 4 (from left to
right).

(Design case SC3); and (iii) the introduction of anisotropic permeability across the growth
medium (Design case SC4). As shown in Fig. 13, the scenario in (i) drives the design toward a
more open, flow-friendly topology, whereas option (ii) acts in the opposite direction, producing
thicker struts within the unit cell. The anisotropic requirement in (iii) is reflected in the
asymmetric arrangement of the struts, with wider lateral channels that accommodate the higher
permeability imposed along the lateral directions. The distinctive features of Design cases
SC1, SC2, SC3, and SC4 are also evident in the views of the 2 × 2 × 2 tiling shown in the
figure. Finally, the values reported in Table 6 highlight that the elastic constraint is active and
accommodates the requirements imposed by the two-sided inequality in (21), while the control
over the fluidic properties promotes optimized values consistently close to the lower bound.
From a computational standpoint, the adapted anisotropic mesh enables the management of a
complex multiphysics optimization problem with a limited number of elements (within 250000
tetrahedra). It is observed that, in Design Case SC4, the anisotropic permeability requirements
have a corresponding effect on the maximum deformation value smax.
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6 In silico study of substrates for in-vase growth
Building on the results presented in the previous section, we simulate crop development within
the designed scaffolds. To assess the suitability of the optimized structures, we employ RootBox [84],
an open-source MATLAB tool [85] that models plant root growth through an L-system–based ap-
proach [86]. In RootBox, a virtual pot can be defined to constrain the growth domain, allowing
users to visualize how the root system develops within the container.
The standard version of RootBox supports only simple geometries (i.e., cylinders, truncated
cones or parallelepipeds) defined by a small set of parameters. To enable the simulation of
more complex containers, such as the cellular scaffolds considered in this manuscript, we ex-
tend the code to accept imported STL geometries. In particular, the distance from each
container point to the scaffold surface is computed via an efficient MATLAB point-to-triangle
distance algorithm, which returns the minimum distance between the point and the triangular
facets of the scaffold mesh. Furthermore, to support in silico studies of plant growth in soilless
cultivation systems, we implemented a bounding-box correction that prevents roots from escap-
ing the scaffold domain. This particulare configuration aims to reproduce standard nurseries
used for germination, in which multiple slots are embedded within a larger container. These
enhancements extend the flexibility of RootBox, enabling its application to a broad range of
growth scenarios.

parameter definition mean value standard deviation

Primary root

r growth rate 3.0 [cm/day] –
lb basal zone length 0.7 [cm] –
la apical zone length 1.0 [cm] –
ln length between laterals 0.37 [cm] 0.25 [cm]

nob maximum number of laterals 540 –
a root radius 0.015 [cm] –

theta insertion angle 0.0 –
dx step length 0.25 [cm] –

successor number of successors 2 –
tropism tropism [1, 5, π/9] –

Lateral roots

r growth rate 0.57 [cm/day] –
la apical zone length 200 [cm] –
ln length between laterals 0.37 [cm] 0.25 [cm]

a root radius 0.012 [cm] –
theta insertion angle 7π/18 π/9

dx step length 0.25 [cm] –
tropism tropism [1, 1, π/9] –

Table 7: In silico growth: input parameters for rapeseed used in RootBox (the standard
deviation is null when not specified).
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Figure 14: In silico growth: rhizotron-like (left) and parallelepiped vase (right) containers; close-up
view of the constituting cellular structures in correspondence of the highlighted circled area (center)
for the rhizotron (top) and the vase (bottom) configurations.

To assess the innovative scaffold designs, we consider two virtual containers, namely a
rhizotron-like and a parallelepiped vase, both constructed by periodically repeating the unit
cell of Design case SC2 in Fig. 13. The scaffolded structures are reported in Fig. 14, left and
right. This preliminary investigation aims to explore the ability of this design case to support
complex root architectures, considering its potential balance between permeability, mechanical
strength, and geometric versatility.
For the specific crop, we select rapeseed, a flowering member of the Brassicaceae family, due
to the compatibility between seed and root sizes and the dimensions of the scaffold unit cells.
Table 7 summarizes the main parameters and corresponding values (randomized according to
given mean value and standard deviation) governing both primary and lateral root growth for
this crop, as defined in the script Example_Rhizotron.m provided with RootBox. Here, gravity
is assumed as the primary driver of growth direction over a 20-day simulation period.

Rhizotron configuration A rhizotron is a permanent installation designed to study sub-
surface phenomena such as root development. Typically, it consists of a thin slab of undisturbed
native soil enclosed within a transparent container [87]. A common geometric representation
is a thin parallelepiped with a small depth, which is generally filled with soil or, as in the novel
soilless agriculture-oriented configuration proposed here, with a periodic repetition of the unit
cell SC2. In this study, we model a cellular structure with dimensions Lx = 10 [cm], Ly = 1
[cm], and Lz = 10 [cm], where each unit cell has a side length of 0.5 [cm] (see Fig. 14, left and
top-center).
The 20-day period is split into 300 time-frames. The three panels in Fig. 15 (top and bottom-
left) illustrate the evolution of primary and lateral roots at frame 100, 150 and 300. A clear
downward growth of the primary root can be observed under the effect of gravitropism, whereas
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the lateral roots initially expand horizontally and subsequently exhibit a more irregular up-
ward development. This behavior is mainly constrained by the presence of the internal cellular
structure and the confining walls of the rhizotron.

For comparison, we repeated the simulation using native soil instead of the cellular scaffold.
As shown in the bottom-right panel of Fig. 15, the primary root displays a smoother, less
tortuous growth pattern, likely due to the absence of the internal obstacles provided by the
lattice. This results in an accumulation of the roots at the bottom, whereas the presence of a
scaffold provides anchoring points for both the primary and lateral roots, thereby increasing
the root surface area available for water and nutrient exchange.

Vase configuration In a second validation test, we examine root development within a
vase-like container configuration. This setup represents a standard environment for cultivation.
The modeled structure has dimensions Lx = Ly = 5 [cm] and Lz = 10 [cm], and is filled
through the periodic repetition of the same unit cell SC2 as in the rhizotron case, with the
same time 20-day period and 300 time-frames. The resulting geometry is shown in Fig. 14
(right and center-bottom for a detail). Figure 16 (top and bottom-left panels) displays the
simulated trajectories of primary and lateral roots at frame 100, 150 and 300. The primary
root initially follows a predominantly vertical downward path (top-left), taking advantage of
the larger vertical dimension of the container. As growth progresses, the trajectory gradually
transitions to a more horizontal pattern (top-right), with a noticeable accumulation of roots
near the bottom region (bottom-left). The lateral roots, in turn, exhibit an increasingly invasive
development, expanding the spatial distribution concurrently with the elongation of the primary
root system.

The response of root organization to the replacement of native soil with a cellular scaf-
fold is analyzed in the vase configuration, analogously to the rhizotron case. A comparison of
the bottom panels in Fig. 16 indicates that, in the soil-only case, the primary root follows an
undisturbed vertical growth before spreading horizontally at the base, while lateral roots pre-
dominantly develop upward from the bottom region. When the cellular structure is introduced,
the primary root trajectory becomes perturbed, and lateral root expansion shifts toward the
horizontal plane, leading to a reduced presence in the central and upper zones of the domain.

7 Conclusions and future developments
In this work, we demonstrated that the design pipeline for cellular materials driven by the
microSIMPATY algorithm can be effectively employed in the framework of soilless agriculture,
enabling the replacement of conventional cultivation media with engineered cellular scaffolds.
This approach is instrumental to support the synthesis of substrate architectures with enhanced
sustainability, reduced production costs, and the potential for local, automated, and controlled
manufacturing.

The fully three-dimensional extension of microSIMPATY retains the benefits of the original
2D version, including minimal density filtering, sharp solid–void interface resolution, reduced
post-processing, and a largely automated workflow, while offering great flexibility to meet di-
verse design objectives. Specifically, we showed how different combinations of objective and
constraint sets (e.g., bulk-modulus maximization under volume constraints, shear-stiffness en-
hancement at minimum volume, isotropic permeability promotion, and diagonal-flow control)
lead to distinct and physically interpretable unit cell topologies across both single- and multi-
physics settings governed by homogenized linear elasticity and Darcy–Stokes flow models.
This versatile framework proved instrumental for developing potential soil surrogates capable
of providing mechanical support while promoting isotropic water and nutrient transport. The
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Figure 15: In silico growth – rhizotron configuration: distribution of the primary and lateral roots
at frame 100 (top-left), 150 (top-right) and 300 (bottom-left) for the scaffolded container and at
frame 300 for the standard native soil setting (bottom-right).
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Figure 16: In silico growth – vase configuration: distribution of the primary and lateral roots at
frame 100 (top-left), 150 (top-right) and 300 (bottom-left) for the scaffolded container and at frame
300 for the standard native soil setting (bottom-right).
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RootBox platform has been extended to perform in silico root-growth simulations within the
optimized cellular scaffolds, qualitatively validating the capability to host root systems.

For the practical implementation of the proposed pipeline for the advanced substrate design,
additional properties critical for soilless cultivation must be considered in the optimization
process, such as water retention and capillarity, salinity accumulation and flushing cycles,
cleanability for reuse. Equally essential are the manufacturability of these scaffolds and the
selection of suitable materials for the fabrication. At present, a preliminary manufacturing
phase has been undertaken, in which a scaffold based on the SC2 design has been 3D printed
using PLA, chosen for the compostable and biodegradable properties. Scaling up to realistic,
larger configurations is ultimately pivotal for in vivo testing. In this regard, a collaboration has
already been successfully established with the Department of Agricultural and Environmental
Sciences at the University of Milan.
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