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Abstract

We propose a non-intrusive Deep Learning-based Reduced Order Model (DL-ROM) capable of capturing
the complex dynamics of mechanical systems showing inertia and geometric nonlinearities. In the first phase,
a limited number of high fidelity snapshots are used to generate a POD-Galerkin ROM which is subsequently
exploited to generate the data, covering the whole parameter range, used in the training phase of the DL-ROM.
A convolutional autoencoder is employed to map the system response onto a low-dimensional representation
and, in parallel, to model the reduced nonlinear trial manifold. The system dynamics on the manifold is
described by means of a deep feedforward neural network that is trained together with the autoencoder. The
strategy is benchmarked against high fidelity solutions on a clamped-clamped beam and on a real micromirror
with softening response and multiplicity of solutions. By comparing the different computational costs, we
discuss the impressive gain in performance and show that the DL-ROM truly represents a real-time tool
which can be profitably and efficiently employed in complex system-level simulation procedures for design
and optimisation purposes.

1 Introduction

Nonlinear modelling in solid and structural mechanics has received an impressive boost in recent years thanks
to the increasing availability of computational resources. In particular, the nonlinear dynamics of Micro-
Electro-Mechanical-Systems (MEMS) has attracted great attention as nonlinearities-related effects play an
important role at the microscale and they intrinsically arise during the regular functioning of MEMS. Although
usually avoided and considered a nuisance, nonlinear signatures can be efficiently exploited paving the way
to extraordinary performances for both existing devices and new nonlinear-ameliorated applications/working
principles. Seminal works have already demonstrated the potential of devices that exploit nonlinear phenomena
in microstructures. For instance, nonlinearities improve the frequency stability over temperature fluctuations of
resonant accelerometers [1] and of resonators designed for clock applications [2]; the combination of mechanical
(hardening) and electrostatic (softening) nonlinearities also widens the linear response of MEMS sensors [3, 4].
Internal resonance, frequently observed in nano-micro mechanical resonators, has been employed to stabilize the
oscillation frequency of self-sustaining resonators [5], and to improve the performances of Coriolis gyroscopes
[6]. Parametric resonance breaks into the engineering of filters [7], flow sensors [8] and mass sensors [9], as well
as in boosting the sensitivity of gyroscopes [10, 11]. The design of MEMS devices based on the co-existence of
multiple stable solutions has inspired gas sensors [12], shock sensors [13], accelerometers [14] and flow sensors
[15]. In order to properly master and exploit nonlinearities, improved modelling capabilities are essential.

In this paper, we focus on the large family of MEMS resonators (e.g., accelerometers, gyroscopes, magnetometers,
micromirrors, time-keeping devices) which are primarily defined by the steady-state periodic response. Selected
output quantities of interest like, e.g., the maximum midspan deflection of a beam, or the rotation amplitude
of a micromirror, should be predicted as a function of the actuation intensity and frequency – thus playing the
role of input parameters – and ultimately yielding the so-called Frequency Response Function (FRF). Moreover,
the actuation can be electrostatic, piezoelectric, or magnetic, according to the considered applications, hence
introducing additional sources of nonlinearities. Tracing the FRF thus requires to solve the problem multiple
times (ranging from O(103) to O(107), depending upon the application at hand) for different values of a set of
input parameters.
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Even if numerical methods are emerging as a general solution to tackle the aforementioned tasks, the
computational cost of high-fidelity approaches still remains a major issue, if not a true bottleneck. For instance,
dedicated Harmonic Balance techniques or shooting procedures are overwhelmingly complex and time consuming
[16, 17]. On the other hand, because of the low dissipation in vacuum packaged devices, ultimately leading to
long transients, time marching schemes are hardly computationally affordable, yielding to high-dimensional,
nonlinear dynamical systems to be solved. The community of nonlinear dynamics at the microscale therefore
lacks of approaches that are suitable for the new generation of MEMS, in specific scenarios where multi-queries
and real-time performances are required for the sake of design, testing and optimization. In all these cases,
relying on high-fidelity computational techniques is indeed unaffordable.

Among different options, reduced order models (ROMs) represent a key numerical tool in order to generate
efficient, yet reliable, approximations to the solution of parametrized differential problems. In particular,
projection-based ROMs reshape the original high-fidelity problem into a nonlinear, dynamical system featuring a
much lower dimension, yet capable to capture the physical features of the problem at hand [18, 19, 20]. However,
projection-based ROMs are intrusive techniques, possibly expensive to be assembled in the case of high order
polynomial (or nonpolynomial) nonlinearities, and hurdles to scale over many parameters instances [21, 22, 23].

In this framework, extensions of the modal methods available for linear problems to the nonlinear regime
are receiving increasing attention [24]. Nevertheless, the computation of the invariant manifolds of nonlinear
normal modes starting from the normal form theory has been developed to maturity only for relatively small-
scale systems [25] and applications to large scale problems are still the object of intensive research [26]. Thus,
the projection of dynamical systems onto low-dimensional nonlinear manifolds is still an open challenge. Data-
driven approaches based on Proper Orthogonal Decomposition (POD) have been recently successfully applied
to MEMS by Gobat et al.[27]; however, these are still linear approaches that might experience some difficulties
in reproducing the correct curvature of invariant manifolds while retaining only few DOFs in the ROM and
eventually fail to reach real-time performances.

Exploiting machine learning methods for constructing surrogates of dynamical systems has recently been an
area of increasing interest for the system dynamics community. Among others, huge success has been encountered
by the Physics Informed Neural Networks (PINN) [28] which have been applied in multiple contexts and also
in solid mechanics [29]. These neural networks leverage the automatic differentiation feature to directly enforce
partial differential equations. However, so far they still do not serve the aim of generating ROMs for parameter
dependent problems.

Deep Learning (DL) techniques come as an inspiration to handle the complex reduction process of dynamical
systems, unvealing low-dimensional features from black-box data streams [30, 31, 32]. Brunton and coworkers
recently applied the SINDy method [33, 34, 35] in combination with autoencoder neural networks to discover
the underlying model of dynamical systems [36]. Fresca et al.[37, 38], proposed a non-intrusive DL-based ROM
technique, which we refer to as DL-ROM. Combining in a suitable way a convolutional autoencoder (AE) and a
deep feedforward neural network (DFNN), the DL-ROM technique enables the construction of an efficient ROM,
whose dimension is as close as possible to the number of parameters upon which the solution of the differential
problem depends. The encoder part performs an operation of feature extraction forcing the high dimensional data
to be reduced, at the bottleneck layer, to few latent variables. We highlight that this approach builds on the idea
that the system dynamics develops on a very low dimensional curved invariant manifold. Indeed this is very often
the case for real MEMS devices which, in the linear regime, oscillate according to a specific mode of interest,
while this turns into the corresponding Nonlinear Normal Mode (NNM) as the actuation intensity increases
[24, 26]. The procedure exploits snapshots taken from a set of FOM solutions (for selected parameter values and
time instances) and deep neural network architectures to learn, in a non-intrusive way, (i) the nonlinear trial
manifold where the ROM solution is sought, (ii) the nonlinear reduced dynamics, and (iii) and the reconstruction
of the approximate FOM response starting from the latent variables. In the framework proposed by Fresca et
al.[38], a further dimensionality reduction carried out on the FOM data through proper orthogonal decomposition
(POD), yielding the so-called POD DL-ROM technique, also allows to speedup training times and to compress
data dimensions, enhancing the construction of DL-ROMs. Neural networks have also been used to model simple
structures by Simpson et al. [39], with two main differences: the convolutional autoencoder uses Long Short-Term
Memory (LSTM) networks; a statistical regression model is used instead of the DFNN. The adoption of LSTM
cells is beneficial for the prediction of the time evolution beyond the training window, which is not targeted in
the present contribution focusing on periodic responses. More in general, DL algorithms in conjunction with
POD have already been exploited to address long-term predictions in time, however without including parameter
dependencies [40, 41]. Recurrent neural networks have been considered by Gonzalez and Balajewicz[42] to evolve
low-dimensional states of unsteady flows, exploiting either POD or a convolutional recurrent autoencoder to
extract low-dimensional features from snapshots. DL algorithms have also been used to describe the reduced
trial manifold where the approximation is sought, then exploiting a minimum residual formulation to derive the
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ROM as done by Lee and Carlberg[32].
In this paper we propose a new version of the DL-ROM discussed above, in which a first dimensionality

reduction of the data is achieved by means of a POD-Galerkin (POD-G) ROM making use of a single global
set of POD modes. It worth stressing that that this simple technique might fail in complex scenarios like, e.g.
fluid structure simulations for flutter analysis. For these applications sophisticated interpolation algorithms, as
proposed e.g. in [43, 44, 45], might reveal necessary. However, here we restrain ourselves to the specific class of
nonlinear vibrations of microstructures undergoing non-infinitesimal, but still moderate transformations. This
context, though limited in scope, has a huge practical importance given the spread of MEMS in everyday life.
The nonlinearities involved are known as geometrical and the reduced models of these structures are generalized
Duffing equations [26]. The accuracy of the POD-Galerkin ROM with a single global set of POD modes has
been extensively investigated for these applications by Gobat et al.[27] showing very good predictive capabilities
when validated against the original high-fidelity FOM. However, for the sake of completeness, also in the present
contribution the error of POD-G with respect to the FM will always be presented. Before continuing, we
stress anyway that the data generation phase is not the main focus of this contribution, which rather aims at
investigating the ability of the DL approach to identify the main features of the response and help achieve a
model order reduction. Different problems will indeed require different data generation strategies. Moreover, the
speed-up performance achieved at testing time is due to the use of the DL-ROM and is not an attribute of the
data generation strategy used only during the training process.

In our case, selecting the POD-G, the costly FOM data generation phase is greatly reduced and the training
of the DL-ROM is performed using cheaper POD-G snapshots covering the whole parameter range. This allows
addressing real industrial examples in complex scenarios where multiplicity of solutions exist thus requiring
specific provisions.

Compared to other surrogate models exploiting machine/deep learning algorithms, a distinguishing feature
of POD-G DL-ROMs is their capability to compute the whole solution field, for any new parameter instance and
time instant, at testing time, thus enabling the extremely efficient evaluation of any output quantity of interest
depending on the solution field. The technique proposed in this work can be considered as the Data Driven
counterpart of the Direct Normal Form method for invariant manifolds that has been recently applied to large
scale finite element systems of mechanical structures [46, 26, 47].

The structure of the paper is as follows. After a brief definition in Section 2 of the problem at hand and of
the type of nonlinearities involved, we discuss the proposed data-driven procedure in Section 3. The POD-G
ROM, i.e. the first level of dimensionality reduction, is presented in Section 3.1, while the second Deep Learning
level is analysed in Section 3.2, detailing the structure of the Autoencoder and of the FF Neural Network. Two
applications are then presented in Section 4, starting with the academic example of a clamped-clamped beam in
Section 4.2, and later addressing a real micromirror in Section 4.3.

2 Problem formulation

We will consider MEMS devices with given fixed geometry subjected to a periodic forcing of angular frequency
ω and modulated in amplitude by the coefficient β. The input parameter vector is µ = [ω, β] ∈ P ⊂ Rnµ ,
with P a closed and bounded set of dimension nµ = 2. These devices are usually characterised by several
Frequency Response Functions (FRFs). For instance, in the specific case of the doubly clamped beam analysed
in Section 4.2, the FRF plotted in Figure 5f) expresses the mid-span displacement umid of the beam in terms
of µ. Each dot represents the maximum value of umid in the corresponding periodic solution. Moreover one
might desire to monitor the evolution of stresses or strains at other specific points in order to guarantee a correct
operation of the device. Providing all these output data is the main goal of any numerical technique. Therefore
we aim to formulate a fast and reliable reduced-order technique capable of predicting periodic responses of period
T , with T = 2π/ω, and of providing as output the corresponding full field response in terms of displacements,
strains and stresses.

Many microsystems, like e.g. micromirrors, undergo large transformations and in particular large rotations.
The device initially occupies the domain Ω0 described by material coordinates X and is subjected to the
transformation x = φ(X, t) = X + u(X, t), with u displacement vector and x actual spatial coordinates. The
boundary ∂Ω0 is partitioned in ∂ΩD and ∂ΩN where Dirichlet and Neumann periodic boundary conditions are
enforced, respectively. In this contribution, for the sake of simplicity, only homogeneous boundary conditions
will be considered. By assumption, this partition does not depend on the transformation thus ruling out specific
applications including, e.g. evolving contact. The device is actuated by given time-periodic body forces B(X, t).
The overall governing system of PDEs with periodic time boundary conditions reads:

3



ρ0ü(X, t)−∇ ·P(X, t)− ρ0B(X, t;µ) = 0 for (X, t) in Ω0 × [0, T ], (1a)

P(X, t) ·N(X) = 0 for (X, t) in ∂ΩN × [0, T ], (1b)

u(X, t) = 0 for (X, t) in ∂ΩD × [0, T ], (1c)

u(X, 0) = u(X, T ) for X in Ω0, (1d)

u̇(X, 0) = u̇(X, T ) for X in Ω0, (1e)

S(X, t) = A(X) : E(X, t) for (X, t) in Ω0 × [0, T ], (1f)

E(X, t) =
1

2

(
∇u(X, t) +∇Tu(X, t) +∇Tu(X, t) · ∇u(X, t)

)
for (X, t) in Ω0 × [0, T ], (1g)

P(X, t) = (1 +∇u(X, t)) · S(X, t), for (X, t) in Ω0 × [0, T ]. (1h)

Eq. (1a) expresses the conservation of momentum where ρ0 is the initial density and P is the first Piola-Kirchhoff
stress [48]. Eq. (1b) and (1c) are the Neumann and Dirichlet boundary conditions respectively. Eqs. (1d) and
(1e) enforce the periodicity condition on displacements and velocities. The device is made of cubic single crystal
silicon or polysilicon, thus admitting only small strains, a condition which is well described by the Saint Venant-
Kirchhoff constitutive model Eq. (1f) between the Second Piola-Kirchhoff stress S and the Green-Lagrange strain
tensor E (Eq. (1g)) through the fourth-order elasticity tensor A endowed with major and minor symmetries.
Finally, Eq. (1h) formulates the link between the two Piola-Kirchhoff stress tensors [48].

The weak form of the momentum conservation, i.e. Eqs. (1a)-(1b), reads:

∫

Ω0

ρ0ü(X, t)·w(X) dΩ0 +

∫

Ω0

P(X, t) :∇Tw(X) dΩ0 =

∫

Ω0

ρ0B(X, t;µ)·w(X) dΩ0 ∀w ∈ H1
0 (Ω0), (2)

where w is the test velocity selected in H1
0 (Ω0), i.e. the space of functions with finite energy that vanish on the

portion ∂ΩD ⊂ ∂Ω0 where Dirichlet boundary conditions are prescribed. Within the present context, it is worth
stressing that Eq. (2) exactly accounts for geometric (elastic and inertia) nonlinearities, e.g., large rotations or
nonlinear mode coupling.

The spatial discretization of Eq. (2), e.g. by means of the finite element method, with the additional inclusion
of a Rayleigh model damping term, yields a system of coupled nonlinear differential equations representing the
full order model (FOM):

Müh(t) + Cu̇h(t) + Kuh(t) + G(uh,uh) + H(uh,uh,uh) = F(t;µ), t ∈ (0, T ) (3a)

uh(0) = uh(T ), u̇h(0) = u̇h(T ) (3b)

where the vector uh(t) ∈ RNh collects the Nh unknown displacements nodal values, M ∈ RNh×Nh is the
mass matrix, C = (ω0/Q)M is the Rayleigh mass-proportional damping matrix – considering a reference
eigenfrequency ω0 and a quality factor Q – and F(t;µ) ∈ RNh is the nodal force vector which depends on
the vector of parameters µ. The internal force vector has been exactly decomposed in linear, quadratic, and
cubic power terms of the displacement: K ∈ RNh×Nh is the stiffness matrix related to the linearized system,
while G ∈ RNh and H ∈ RNh are vectors given by monomials of second and third order, respectively. We stress
that the components of these vectors can be expressed using an indicial notation as

Gi =

Nh∑

j,k=1

Gijkuh,juh,k, Hi =

Nh∑

j,k,l=1

Hijkluh,juh,kuh,l, i = 1, . . . , Nh.

Eq. (3) represents our high-fidelity FOM which depends on the input parameters µ. Our goal is the efficient
numerical approximation of the solution manifold:

S = {uh(t;µ)| t ∈ [0, T ) and µ ∈ P ⊂ Rnµ} ⊂ RNh . (4)

In particular, assuming that, for any given parameter µ ∈ P, the FOM admits a unique solution for each
t ∈ (0, T ), that is, the dynamical system Eq. (3) has a unique trajectory for each parameter instance, the
intrinsic dimension of the solution manifold is at most nµ + 1 � Nh, where nµ is the number of parameters
(time thus plays the role of an additional coordinate).

The numerical solution of the FOM Eq. (3) to compute the steady state response is a challenge in itself for
large scale problems. One option is the use of time marching methods to simulate a sufficiently large number
Nc of cycles, where Nc is typically inversely proportional to the damping. This technique resorts to robust
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algorithms implemented in most of the commercial software, but when damping is very small, as in most MEMS
devices, the computational effort may not be affordable. In other approaches, like the Harmonic Balance (HB)
method [49, 50], the unknown displacements are expressed as the sum of Fourier components thus automatically
respecting periodicity conditions. However, their implementation requires dedicated codes and non-standard
computing facilities.

3 Data-driven Model Order Reduction

In this section, we briefly review the construction of POD-Galerkin (POD-G) ROMs and of the POD-G Deep
Learning-based ROM (POD-G DL-ROM) technique which combines the best features of POD and DL algorithms
in order to achieve real-time simulations of the structural behavior of MEMS devices.

3.1 POD-Galerkin ROM (POD-G ROM)

A simple way to build a ROM able to approximate Eq. (4) is through the introduction of a linear reduced trial

manifold S̃N,linh = Col(V) of dimension N � Nh, spanned by the N columns of a matrix V ∈ RNh×N . Thus we
can achieve an approximation ũh(t,µ) ≈ uh(t,µ) as:

ũh(t,µ) = VuN (t;µ) (5)

in which ũh : [0, T ) × P → S̃n and uN (t;µ) ∈ RN , ∀t ∈ [0, T ) and µ ∈ P, is the vector of degrees of freedom
of the ROM approximation. The most commonly used technique to build the subspace S̃Nh bases is through
POD. The first step in the construction of a POD-G ROM requires to generate a matrix Su ∈ RNh×Ns , whose
Ns columns collect snapshots of the FOM solutions, obtained for different values of the parameters µ

Su = [uN (t1, ;µ1)|...|uN (tNt , ;µ1)|...|uN (t1, ;µNtrain
)|...|uN (tNt , ;µNtrain

)]. (6)

Each snapshot in Su is sampled inside a certain time interval [0, T ] partitioned in Nt time steps, with tk, k =
1, . . . , Nt, and the parameter space P where a set of Ntrain parameter instances µk, k = 1, . . . , Ntrain, is selected.
Next, POD computes the Singular Value Decomposition (SVD) of the matrix Su

Su = UΣZT ,

where the columns of the orthonormal matrix U ∈ RNh×Nh are the left singular vectors and the columns of the
orthonormal matrix Z ∈ RNs×Ns are the right singular vectors. The diagonal elements of Σ ∈ RNh×Ns are the
singular values of the matrix Su and are conventionally ordered from the largest to the smallest. In particular,
POD selects the columns of V in Eq.(5) as the first N left singular vectors of Su, often called POD modes
(POMs) in the literature [51, 20, 52].

Once the linear trial POD subspace has been obtained, projecting the FOM Eq. (3) onto the POD subspace
yields the structural dynamics geometric POD-G ROM, under the form of a N -dimensional nonlinear ODE
system, whose solution provides the dynamics of the generalized coordinates uN ∈ RN :

MPODüN + CPODu̇N + KPODuN + GPOD(uN ,uN ) + HPOD(uN ,uN ,uN ) = FPOD(uN , t;µ), t ∈ (0, T ), (7)

where
MPOD = VTMV, CPOD = VTCV, KPOD = VTKV,

FPOD = VTF, GPOD
i = gPOD

ijk uN,juN,k, HPOD
i = hPOD

ijkl uN,juN,kuN,l,

with MPOD,CPOD,KPOD ∈ RN×N . The computation of the vectors GPOD and HPOD entails O(N3) and O(N4)
terms, respectively. Note that the coefficients gPOD

ijk and hPOD
ijkl can be precomputed, and that the reduced problem

can be assembled efficiently thanks to its polynomial nature, thus avoiding the use of hyper-reduction techniques
such as the (discrete) empirical interpolation method [53, 54, 55].

The POD-G approach has been recently benchmarked on several MEMS including beams, arches and mirrors.
With reference to MEMS structures Gobat et al.[27] have shown that, provided that a sufficient number of POD
modes is included in the trial space, the technique accurately reproduces the response of the device. However, in
particular when large rotations are involved, the dimension of the trial space increases and solution of the ROM
with continuation techniques comes with a high computational cost, failing to serve the final goal of generating a
real-time simulation tool. As recalled in the introduction, the approach however delivers a remarkable accuracy
despite using a single global basis, and does note require elaborate strategies like those proposed e.g. in [43, 44, 45]
for different applications. This very good performance of the POD-G approach is strongly linked to the fact
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that the range of variation of the frequency parameter, the one which impacts the most on the model, is
actually very limited (as typical of MEMS resonators) and that the nonlinearities are mild, since the solution
manifold is regular. All these factors usually play a remarkable role in view of making ROMs based on the linear
superimposition of modes accurate and reliable.

3.2 POD-Galerkin-enhanced deep learning based-reduced order models (POD-G
DL-ROMs)

POD-DL-ROMs are non-intrusive ROMs, which aim at approximating the map (t,µ)→ uh(t,µ) by describing
both the trial manifold and the reduced dynamics through deep neural networks [56]. To reduce the dimensionality
of the snapshots and avoid feeding training data of very large dimension Nh, POD is first applied – realized
through randomized SVD (rSVD) [57] – to the snapshot set Su; then, a DL-ROM is built to approximate the
map between (t,µ) and the POD generalized coordinates uN (t;µ).

The POD-DL-ROM technique is extremely efficient and it is able to model highly nonlinear problems by
identifying the manifold underlying the dynamics of the system in a complete data-driven and black-box, non-
intrusive way. On the other hand, its data-driven nature implies that the sampled data provided must span the
parameter space of interest and contain all the information necessary to accurately approximate the solution
manifold. In this way, the size of the training dataset increases with the number of parameters considered in the
FOM.

Instead, POD projection-based ROMs exploit a data-driven process to generate the basis of the linear
subspace, later this basis is used to project the nonlinear system given by the spatial discretisation. For instance
(exact) projection procedures like the POD-G ROM outlined in Section 3.1, lead to a nonlinear system of ODEs
whose degrees of freedom can be physically interpreted and that can be solved with many different integration
packages (i.e. Auto07p [58], MANLAB[59], Nlvib [60], Matlab built-in functions, BifurcationKit [61] etc.). On
the other hand, such POD-G ROM is strongly intrusive and it is way less efficient than a DL-ROM, because
the ODE system must be solved up to a given time instant of interest for a given parameter instance. These
conditions may be acceptable when a limited number of inquiries are needed, but when a refined inspection of
the system response dynamics is necessary for optimal design purpose or when a real-time solution is needed
(e.g. online control) POD-G ROMs, and in general intrusive approaches, fail.

In this contribution, we exploit the most appealing features of both techniques to achieve a real-time
simulation of a MEMS. A sketch of the proposed procedure, named POD-Galerkin-enhanced Deep Learning-
based ROM (POD-G DL-ROM), is outlined in Fig. 1.

Figure 1: POD-G DL-ROM procedure scheme. By solving the FOM for few parameter instances, a small number
of FOM snapshots are generated. The high-fidelity snapshots are used to compute the POD basis matrix V and
generate the POD-G ROM. This is later exploited to compute a large number of reduced snapshots, for different
parameter instances, able to finely span the parameter space of interest. These snapshots represent the input
to the POD-G DL-ROM neural network. Once the POD-G DL-ROM is trained, it is used to generate all the
approximate solutions required.

First, a few FOM simulations, that loosely span the parameter space, are performed. The generated high-
fidelity snapshots are processed with SVD and a subset of POD modes is selected. The number of POD modes
kept in the subspace must be defined in order to guarantee a good approximation of the underlying manifold
as shown by Gobat et al.[27], where POD-G ROMs are applied to mechanical systems with low damping like
MEMS. By exploiting the generated linear subspace, the POD-G ROM is built following the procedure detailed in
Section 3.1. The POD-G ROM depends explicitly on the model parameters of interest, i.e. the load amplitude β
and the forcing frequency ω, and it is solved, at testing time, to create snapshots of the ROM intrinsic coordinates
finely spanning the parameter space P.

The resulting reduced solutions are provided as input to the POD-G DL-ROM neural network during the
training stage. Following the DL-ROM technique outlined by Fresca et al.[38], the DFNN is simultaneously
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trained to provide as output the minimal coordinate vector for the same parameter instance. Finally, the decoder
function of the convolutional AE maps the minimal coordinates to the approximated intrinsic coordinates.

More precisely, the POD-G DL-ROM approximation of the FOM solution uh(t;µ) is

ũh(t;µ,θDF ,θD) = VũN (t;µ,θDF ,θD) ≈ VuN (t;µ,θDF ,θD) ≈ uh(t;µ),

that is, it is sought in a linear trial manifold of (potentially large) dimension N ,

S̃Nh = {VũN (t;µ,θDF ,θD) | ũN (t;µ,θDF ,θD) ∈ RN , t ∈ [0, T ) ,µ ∈ P} ⊂ RNh , (8)

by applying the DL-ROM strategy [38] to approximate uN (t;µ) – rather than directly VTuh(t;µ). The DL-ROM
approximation ũN (t;µ,θDF ,θD) ≈ uN (t;µ) takes the form

ũN (t;µ,θDF ,θD) = fDN (φDFn (t;µ,θDF );θD), (9)

and is sought in a reduced nonlinear trial manifold S̃nN of very small dimension n � N ; usually, n ≈ nµ + 1 –
here time is considered as an additional parameter. As in a POD-DL-ROM, in a POD-G DL-ROM both the
reduced dynamics and the reduced nonlinear manifold (or trial manifold) where the ROM solution is sought
must be learnt. In particular:

• Reduced dynamics learning. To describe the system dynamics on the nonlinear trial manifold S̃nN , the
intrinsic coordinates of the approximation ũN are defined as

un(t;µ) = φDFn (t;µ,θDF ),

where φDFn (·; ·,θDF ) : [0, T )×Rnµ → Rn is a DFNN, consisting of the repeated composition of a nonlinear
activation function, applied to a linear transformation of the input, multiple times. Here θDF denotes the
DFNN parameters vector, collecting the weights and biases of each of its layers;

• Nonlinear trial manifold learning. To model the reduced nonlinear trial manifold S̃nN , we employ the
decoder function of a convolutional autoencoder (AE), that is,

S̃nN = {ũN (t;µ) = fDN (φDFn (t;µ,θDF );θD) | φDFn (t;µ,θDF ) ∈ Rn, t ∈ [0, T ) , µ ∈ P ⊂ Rnµ} ⊂ RN ,
(10)

where fDN (·;θD) : Rn → RN denotes the decoder function of a convolutional AE obtained as the composition
of several layers (some of which are convolutional), depending upon a vector θD collecting all the corresponding
weights and biases.

Finally, the encoder function fEn (·;θE) : RN → Rn – depending upon a vector θE of parameters – of the
convolutional AE can be used to map the POD-G reduced solution (or approximated intrinsic coordinates)
uN (t,µ) associated to (t,µ) onto a low-dimensional representation

ũn(t;µ,θE) = fEn (uN (t;µ);θE).

Hence, provided the parameter matrix L ∈ R(nµ+1)×Ns defined as
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)| . . . |(tNt ,µNtrain

)], (11)

and the snapshot matrix Su, training a POD-G DL-ROM requires to solve the optimization problem

min
θ
J (θ) = min

θ

1

NtrainNt

Ntrain∑

i=1

Nt∑

k=1

L(tk,µi;θ), (12)

where the per-example loss function L(tk,µi;θ) is given by the sum of two terms

L(tk,µi;θ) =
ωh
2
‖uN (tk;µi)− ũN (tk;µi,θDF ,θD)‖2

+
1− ωh

2
‖ũn(tk;µi,θE)− un(tk;µi,θDF )‖2,

(13)

with θ = (θE ,θDF ,θD). The former term in Eq. (13) is the reconstruction error between the POD-G ROM
reduced solutions and the POD-G DL-ROM approximations while the latter is the misfit between the intrinsic
coordinates and the output of the encoder function. Finally, ωh ∈ [0, 1] is a prescribed weighting parameter.
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3 A Deep Learning-based Reduced Order Model (DL-ROM)

Let us now detail the construction of the proposed nonlinear ROM. In this respect, we define the functions
 h and�n in (9) and (11) by means of deep learning (DL) models, exploiting neural network architectures.
This choice is motivated by their capability of approximating nonlinear maps e↵ectively, and by their
ability to learn from data and generalize to unseen data. On the other hand, DL models enable us to
build non-intrusive, completely data-driven, ROMs, since their construction only requires to access the
dataset, the parameter values and the snapshots matrix, but not the FOM arrays appearing in (1).

The DL-ROM technique we developed is composed by two main blocks responsible, respectively, for the
reduced dynamics learning and the nonlinear trial manifold learning (see Figure 2). Hereon, we denote
by Ntrain, Ntest and Nt the number of training-parameter instances, of testing-parameter instances and
time instances, respectively, and we set Ns = Ntrain · Nt. The dimension of both the FOM solution and
the ROM approximation is Nh, while n denotes the number of intrinsic coordinates, with n ⌧ Nh.

For the description of the system dynamics on the reduced nonlinear trial manifold (which we refer to
as reduced dynamics learning), we employ a deep feedforward neural network (DFNN) with L layers, that
is, we define the function �n in definition (11) as

�n(t; µ,✓DF ) = �DF
n (t; µ,✓DF ), (12)

thus yielding the map

(t, µ) 7! un(t; µ,✓DF ) = �DF
n (t; µ,✓DF ),

where �DF
n takes the form (30), t 2 [0, T ], and results from the subsequent composition of a nonlinear

activation function L times. Here µ 2 P ⇢ Rnµ and ✓DF denotes the vector of hyper-parameters of the
DFNN.

Regarding instead the description of the reduced nonlinear trial manifold S̃n defined in (10) (which we
refer to as reduced trial manifold learning), we employ the decoder function of a convolutional autoencoder
(AE), that is, we define the function  h appearing in (9) and (10) as

 h(un(t; µ);✓D) = fD
h (un(t; µ);✓D), (13)

thus yielding the map

un(t; µ) 7! ũh(t; µ,✓D) = fD
h (un(t; µ);✓D)

where fD
h results from the composition of several layers, some of which of convolutional type, overall

depending on the vector ✓D of hyper-parameters of the decoder function.

Combining the two stages above, the DL-ROM approximation is then given by

ũh(t; µ,✓) = fD
h (�DF

n (t; µ,✓DF );✓D) (14)

where �DF
n (·; ·,✓DF ) : R(nµ+1) ! Rn and fD

h (·;✓D) : Rn ! RNh are defined as in (12) and (13), respec-
tively, and ✓ = (✓DF ,✓D) are the parameters defining the neural network. The architecture of DL-ROM
is shown in Figure 2.

Computing the ROM approximation (9) in the developed framework is equivalent to solve an optimiza-
tion problem. More precisely, provided the parameter matrix M 2 R(nµ+1)⇥Ns defined as

M = [(t1, µ1)| . . . |(tNt , µ1)| . . . |(t1, µNs
)| . . . |(tNt , µNs

)], (15)
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un(t; µ) 7! ũh(t; µ,✓D) = fD
h (un(t; µ);✓D)

where fD
h results from the composition of several layers, some of which of convolutional type, overall

depending on the vector ✓D of hyper-parameters of the decoder function.

Combining the two stages above, the DL-ROM approximation is then given by
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Computing the ROM approximation (14) for any new value of µ 2 P, at any given time, requires to
evaluate the map (t, µ) ! ũh(t; µ,✓) at the testing stage, once the hyper-parameters ✓ = (✓DF ,✓D) have
been determined, once and for all, during the training (and validation) stage. The training stage consists
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Computing the ROM approximation (14) for any new value of µ 2 P, at any given time, requires
to evaluate the map (t, µ) ! ũh(t; µ,✓) at the testing stage, once the parameters ✓ = (✓DF ,✓D) have
been determined, once and for all, during the training stage. The training stage consists in solving an
optimization problem (in the variable ✓) after a set of snapshots of the FOM have been computed.
More precisely, provided the parameter matrix M 2 R(nµ+1)⇥Ns defined as

M = [(t1, µ1)| . . . |(tNt , µ1)| . . . |(t1, µNtrain
)| . . . |(tNt , µNtrain

)], (15)

and the snapshot matrix S, defined in (4), we solve the problem: find the optimal parameters ✓⇤

solution of

J (✓) =
1

Ns

NtrainX

i=1

NtX

k=1

L(tk, µi;✓) ! min
✓

(16)

where

L(tk, µi;✓) =
1

2
kuh(tk; µi) � ũh(tk; µi,✓)k2 =

1

2
kuh(tk; µi) � fD

h (�DF
n (tk; µi,✓DF );✓D)k2. (17)

To solve the optimization problem (16)-(17) we use the ADAM algorithm [29] which is a Stochastic
Gradient Descent method [52] computing an adaptive approximation of the first and second momentum
of the gradients of the loss function. In particular, it computes exponentially weighted moving averages
of the gradients and of the squared gradients. We set the starting learning rate to ⌘ = 10�4, the batch
size to Nb = 20 and the maximum number of epochs to Nepochs = 10000. We perform cross-validation,
in order to tune the hyper-parameters of the DL-ROM, by splitting the data in training and validation
and following a proportion 8:2. Moreover, we implement an early-stopping regularization technique
to reduce overfitting [20]. In particular, we stop the training if the loss does not decrease over 500
epochs. As nonlinear activation function we employ the ELU function [14] defined as

�(z) =

(
z z � 0

exp(z) � 1 z < 0.

No activation function is applied at the last convolutional layer of the decoder neural network, as
usually done when dealing with autoencoders. The parameters, weights and biases, are initialized
through the He uniform initialization [24].

As we rely on a convolutional autoencoder to define the function  h, we also exploit the encoder
function

ũn(t; µ,✓E) = fE
n (u(t; µ);✓E), (18)

which maps each FOM solution associated to the pairs (t; µ) 2 Col(M) provided as inputs to the
feed-forward neural network (12), onto a low-dimensional representation ũn(t; µ,✓E) depending on
the parameters vector ✓E defining the encoder function.

Indeed, the actual architecture of DL-ROM that is used only during the training and the validation
phases, but not during testing, is the one shown in Figure 3. In practice, we add to the architecture of
the DL-ROM introduced above the encoder function of the convolutional autoencoder. This produces
an additional term in the per-example loss function (17), thus calling the following optimization
problem to be solved:

min
✓

J (✓) = min
✓

1

Ns

NtrainX

i=1

NtX

k=1

L(tk, µi;✓), (19)

where

L(tk, µi;✓) =
!h

2
kuh(tk; µi)� ũh(tk; µi,✓DF ,✓D)k2 +

1 � !h

2
kũn(tk; µi,✓E)�un(tk; µi,✓DF )k2 (20)

L(t, µ;✓) =
!h

2
kuh(t; µ) � ũh(t; µ,✓DF ,✓D)k2 +

1 � !h

2
kũn(t; µ,✓E) � un(t; µ,✓DF )k2
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Deep learning-based reduced order modeling (DL-ROM) 164

To overcome the limitations of linear ROMs we consider a new, nonlinear ROM technique 165

based on deep learning models. First introduced in [16] and assessed on one-dimensional 166

benchmark problems, the DL-ROM technique aims at learning both the nonlinear trial 167

manifold (corresponding to the matrix V in the case of a linear ROM) in which we 168

seek the solution to the parametrized system (1) and the nonlinear reduced dynamics 169

(corresponding to the projection stage in a linear ROM). This method is non-intrusive; 170

it relies on DL algorithms trained on a set of FOM solutions obtained for different 171

parameter values. 172

We denote by Ntrain and Ntest the number of training and testing parameter instances, 173

respectively; the ROM dimension is again denoted by n ⌧ N . In order to describe the 174

system dynamics on a suitable reduced nonlinear trial manifold (a task which we refer 175

to as reduced dynamics learning), the intrinsic coordinates of the ROM approximation 176

are defined as 177

un(t; µ,✓DF ) = �DF
n (t; µ,✓DF ), (8)

where �DF
n (·; ·,✓DF ) : R(nµ+1) ! Rn is a deep feedforward neural network (DFNN), 178

consisting in the subsequent composition of a nonlinear activation function, applied to a 179

linear transformation of the input, multiple times [34]. Here ✓DF denotes the vector of 180

parameters of the DFNN, collecting all the corresponding weights and biases of each 181

layer of the DFNN. 182

Regarding instead the description of the reduced nonlinear trial manifold, approx- 183

imating the solution one, S̃ ⇡ S (a task which we refer to as reduced trial manifold 184

learning) we employ the decoder function of a convolutional autoencoder (AE) [35,36]. 185

More precisely, S̃ takes the form 186

S̃ = {fD(un(t; µ,✓DF );✓D) | un(t; µ,✓DF ) 2 Rn, t 2 [0, T ) and µ 2 P ⇢ Rnµ} (9)

where fD(·;✓D) : Rn ! RN consists in the decoder function of a convolutional AE. This 187

latter results from the composition of several layers (some of which are convolutional), 188

depending upon a vector ✓D collecting all the corresponding weights and biases. 189

As a matter of fact, the approximation ũ(t; µ) ⇡ u(t; µ) provided by the DL-ROM 190

technique is defined as 191

ũ(t; µ) = fD(�DF
n (t; µ,✓DF );✓D). (10)

The encoder function of the convolutional AE can then be exploited by mapping the 192

FOM solution associated to (t, µ) onto a low-dimensional representation 193

ũn(t; µ,✓E) = fE
n (u(t; µ);✓E), (11)

where fE
n (·,✓E) : RN ! Rn is the encoder function, depending on a vector of parameters 194

✓E . 195

Computing the DL-ROM approximation of u(t; µtest), for any possible t 2 (0, T ) and 196

µtest 2 P, corresponds to the testing stage of a DFNN and of the decoder function of 197

a convolutional AE; this does not require the evaluation of the encoder function. We 198

remark that our DL-ROM strategy overcomes the three major computational bottlenecks 199

implied by the use of projection-based ROMs, since: 200

- the dimension of the DL-ROM can be kept extremely small; 201

- the time resolution required by the DL-ROM can be chosen to be larger than the 202

one required by the numerical solution of dynamical systems in cardiac electro- 203

physiology; 204
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fD
N

Figure 2: POD-G DL-ROM architecture. The approximated intrinsic coordinates uN (t;µ) are provided as input
to the encoder function which outputs ũn(t;µ). The same parameter instance associated to the POD-G ROM
reduced solution, i.e. (t;µ), enters the DFNN which provides as output un(t;µ), and the error between the
low-dimensional vectors is accumulated. The minimal coordinates un(t;µ) are given as input to the decoder
function returning the approximated reduced solution ũN (t;µ). Then, the reconstruction error is computed.
The approximation of the FOM solution is then recovered as ũh = VũN (t;µ).

The architecture of the POD-G DL-ROM neural network is shown in Figure 2; note that, at testing time, we
can discard the encoder function of the convolutional AE.

We remark that the computation of the low-fidelity snapshots, obtained as reduced solution of a POD-G ROM
for several parameter instances, can be considered as an extension of the idea at the basis of the POD-DL-ROM
technique, where the high-fidelity, FOM snapshots are projected onto the reduced linear trial subspace, generated
by means of rSVD, before being fed as input to the AE. The main advantage is that solving the POD-G ROM
is more efficient than the solution of the FOM, thus we can use it to generate all the snapshots required by the
POD-G DL-ROM neural network to be able to generalize to new, unseen scenarios by remarkably decreasing the
time required for the generation of the training/testing datasets. On the other hand, the quality of the reduced
solution is influenced by the number of retained POD modes, thus the preparation of the POD-G ROM is crucial.

Summarizing the procedure, the POD-G DL-ROM exploits the POD-G ROM in the training stage to: 1) finely
sample the parameter space to guarantee the proper generalization capabilities of the DL-ROM neural network;
2) perform a dimensionality reduction of the FOM with consequent advantages in memory management and
efficiency during the training stage of the DL-ROM; 3) compute the POD basis matrix employed to recover uh.
The DL-ROM is still used to approximate the FOM solution during the online, testing stage, thus its efficiency
and generalization capabilities are fully exploited. As result, we get a real-time simulation of the device dynamics,
whose performance is detailed in Section 4.

3.3 Frequency vs phase control

As recalled in Section 1, we aim at simulating the FRF of MEMS. However, the intrinsic nonlinearities imply that
the system response may not be uniquely defined for a given external frequency ω and load β as a consequence
of bifurcations, e.g. saddle-node bifurcations. The steady-state response of the system will converge to a certain
branch depending on the initial conditions. This is the case, for instance, of the simple clamped-clamped beam
analysed in Section 4.2 which is representative of a large class of resonating MEMS and it is characterized by a
FRF like the one in Figure 5. For a given load multiplier β and angular frequency ω, the maximum midspan
displacement over the period T = 1/ω of the beam can have one or three amplitude values, due to the so-called
hardening effect. This portrait of the dynamics may be further complicated in presence of internal resonances
where the number of overlapping branches and alternative solutions increases.
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Figure 3: Response of the Duffing oscillator eq.(14) for ω0=1[rad/µs], ε=1, β = 0.2, k3=0.5 and ξ=0.05. Figure
a): typical FRF, where a is plotted versus the forcing angular frequency ω. Three regions can be identified: two
regions (red and blue lines, respectively) characterised by a single periodic solution for a given ω, and a region
(orange line) where three solutions exist. This plot can be viewed as the projection on the ω − a plane of the
response in the 3D space φ− ω − a (Figure c). Figure b): projection of the system response of Figure c) on the
φ− a plane, where uniqueness is preserved for any phase value. Figure d): projection of the system response of
Figure c) on the φ− ω plane.

In this contribution, we will focus on systems without internal resonances and forced with a single frequency
excitation close to an eigenfrequency. In these conditions, the dynamics is similar to the one of a simple Duffing
resonator:

ü+ ω2
0u+ ε(2ξω0u̇+ k3u

3) = εβ cos(ωt), (14)

where ω0 is the eigenfrequency, ξ is damping coefficient, k3 cubic nonlinearity coefficient, β is the load multiplier
and ε � 1 is a bookkeeping parameter that sorts the order of magnitude of the terms [62]. The Multiple Scales
solution of Eq. (14) reads:

u(t) = a(β) cos(ωt− φ) + εa3(β)
k3

32ω2
0

cos(3(ωt− φ)) +O(ε3), (15)

which is plotted in several forms in Figure 3. In particular, we remark that the amplitude a(β) can be
expressed as a single-valued function of the phase φ ∈ [0 : π]. It is worth recalling that this property of Duffing-
like systems is exploited experimentally in phase-controlled closed-loop experiments that allow tracking both
stable and unstable branches [63, 64].

Since the POD modes in V, eq.(5), are energetically ordered and we know that the first POM is generally
associated with the excited eigenmode, the corresponding dof in the POD-G ROM can be used to define the
phase φ. Moreover, the periodic solution is expressed as the sum of several harmonic components, each with a
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specific phase value, see e.g. Eq. (15). We hence define the phase referring to the lowest harmonic component
which is typically the largest and also completely characterises linear problems.

Consequently, our problem will be no longer be expressed directly as a function of the parameters µ = [β, ω],
but rather of µ = [β, φ]. However, since we aim at plotting FRFs, the relationship between φ and ω must be
suitably approximated for each value of β. Coherently with the approach taken in this investigation, we use a
DFNN to model the relationship (φ, β) 7→ ω(φ, β). The training data of the DFNN are represented by all the ω
values at which the POD-G ROM solutions are sampled to feed the DL-ROM. This way to proceed allows solving
the lack of uniqueness of the response, but nevertheless the ω(φ, β) function has two asymptotes for φ = 0, π,
thus the regions close to these points are difficult to model with a DFNN. The best results have been obtained
applying the following strategy. Instead of using directly φ in the DFNN, we formulate the input of the neural
network in terms of sinφ and cosφ. Then, the goal is to learn the function

fDFφ−ω : R3 → R such that (sinφ, cosφ, β) 7→ fDFφ−ω ≈ ω(φ, β). (16)

This simple feature engineering, based on the qualitative assumptions on the problem considered, allows mitigating
the effects close to the boundaries, as shown in the following section.

4 Numerical results

We discuss the application of the proposed POD-G DL-ROM technique to MEMS devices: a clamped-clamped
beam resonator and a micromirror. The FOM is solved through the HB method implemented, together with a
continuation scheme, in a custom Fortran library [49] for large scale problems. The generation of POD-G ROMs
for MEMS has been extensively discussed by Gobat et al.[27]. Here the ROM is solved with the Matlab package
MANLAB [59] that exploits the HB method and asymptotic expansion with continuation of periodic orbits.

layer input output kernel #of filters stride padding
dimension dimension size

1 [N, N, 1] [N, N, 8] [5, 5] 8 1 SAME
2 [N, N, 8] [N/2, N/2, 16] [5, 5] 16 2 SAME
3 [N/2, N/2, 16] [N/4, N4, 32] [5, 5] 32 2 SAME
4 [N/4, N/4, 32] [N/8, N/8, 64] [5, 5] 64 2 SAME
5 N 64
6 64 n

Table 1: Attributes of convolutional and dense layers in the encoder fEn .

layer input output kernel #of filters stride padding
dimension dimension size

1 n 256
2 256 Nh
3 [N/8, N/8, 64] [N/4, N/4, 64] [5, 5] 64 2 SAME
4 [N/4, N/4, 64] [N/2, N/2, 32] [5, 5] 32 2 SAME
5 [N/2, N/2, 32] [N, N, 16] [5, 5] 16 2 SAME
6 [N, N, 16] [N, N, 1] [5, 5] 1 1 SAME

Table 2: Attributes of dense and transposed convolutional layers in the decoder fDN .

4.1 Settings of neural networks

Data normalization and standardization enhance the training phase of the network by rescaling all the dataset
values to a common frame. For this reason, the inputs and the output of DL-ROM are rescaled in the range
[0, 1] by applying an affine transformation. In particular, provided the parameter matrix L = [Ltrain,Lval] ∈
R(nµ+1)×Ns , we first rescale the time variable to the range [0, 2π] as τ = tω, where τ is the dimensionless time
variable, and then we define

Limax = max
j=1,...,Ns

Ltrain
ij , Limin = min

j=1,...,Ns
Ltrain
ij , i = 1, . . . , nµ + 1,
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so that data are normalized by applying the following transformation

Ltrain
ij 7→

Ltrain
ij − Limin

Limax − Limin

, i = 1, . . . , nµ + 1, j = 1, . . . , Ns. (17)

Each feature of the training parameter matrix is rescaled according to its maximum and minimum values.
Regarding instead the training snapshot matrix Su = [Strain

u ,Sval
u ] ∈ RNh×Ns , we define

Su,max = max
i=1,...,Nh

max
j=1,...,Ns

Strain
u,ij , Su,min = min

i=1,...,Nh
min

j=1,...,Ns
Strain
u,ij ,

and apply transformation Eq. (17) by replacing Limax, L
i
min with Su,max, Su,min, respectively, that is we use the

same maximum and minimum values for all the features of the snapshot matrix. Transformation Eq. (17) is
applied also to the validation and testing sets, but considering as maximum and minimum the values computed
over the training set. In order to rescale the reconstructed solution to the original values, we apply the inverse
transformation of Eq. 17. The configuration of the DL-ROM neural network used in the following test cases is the
one given below. We choose a 12-layer DFNN equipped with 50 neurons per hidden layer and n neurons in the
output layer, where n represents the dimension of the (nonlinear) reduced trial manifold. The architectures of
the encoder and decoder functions are instead reported in Tables 1 and 2. No activation function is applied at the
last convolutional layer of the decoder neural network, as usually done in AEs. To solve the optimization problem
Eqs. (12)-(13), we use the ADAM algorithm [65], which is a stochastic gradient descent method computing an
adaptive approximation of the first and second momentum of the gradients of the loss function. In particular,
it computes exponentially weighted moving averages of the gradients and of the squared gradients. We set
the starting learning rate to η = 10−4, the batch size to 40, and perform cross-validation in order to tune
the hyperparameters of the DL-ROM, by splitting the data in training and validation sets with a proportion
8:2. Moreover, we implement an early-stopping regularization technique to reduce overfitting [66], stopping
the training if the loss does not decrease over 500 epochs. The maximum number of epochs is set to 10000.
As nonlinear activation function, we employ the ELU function [67]. The parameters, weights and biases, are
initialized through the He uniform initialization [68]. The interested reader can refer to [56] for a detailed version
of the algorithms used for the training/testing phases. The latter have been carried out on a Tesla V100 32GB
GPU by means of the Tensorlow DL framework [69].

The reduction process requires training the fDFφ−ω DFNN as well. The architecture of the NN is the same for
both resonator and micromirror. The DFNN receives as input cosine and sine values of a phase φ and a load
multiplier β and gives as result a frequency ω. Since the solutions are computed with HB method the calculation
of the phase response φ on the first harmonic component is straightforward since it corresponds to tan(a1/b1)
with a1 amplitude of the first harmonic sine and b1 amplitude of the first harmonic cosine. In the next sections,
we will plot the results of the fDFφ−ω DFNN using the phase φ instead of the cosine and sine for sake of clarity.
During the online stage this feature extraction preprocess is embedded in the neural network input, thus only
a value for the phase φ and a forcing level β are provided. The function fDFφ−ω : R3 → R is a 10-layer DFNN
equipped with 64 neurons per hidden layer and 1 neuron in the output layer. We employ the tanh activation
function, Adam optimization algorithm, mean squared error metric and batch size equal to 20. The starting
learning rate to η = 10−3 and perform cross-validation in order to tune the hyperparameters NN, by splitting
the data in training and validation sets with a proportion 1:1. The parameters, weights and biases, are initialized
through the Glorot Normal initialization [70]. The early-stopping criterion is used to determine the best fit with
a patience coefficient of 50 epochs over a total number of epochs equal to 2000. The implementation was carried
out in the Tensorlow DL framework [69].

4.2 Doubly clamped beam resonator

Let us consider a doubly clamped beam of length L = 1000µm with a rectangular cross-section of dimensions
10µm×24µm , as depicted in Figure 4a). Even though this example is proposed primarily to discuss the
performance of the proposed technique in the simplest possible setting, nevertheless it also emulates realistic
MEMS resonators like those analysed in [63] and depicted in Figures. 4b) and 4c). The beam is made of isotropic
polysilicon [71], with density ρ = 2330 Kg/m3, Young modulus E = 167 GPa and Poisson coefficient ν = 0.22.

Dirichlet boundary conditions (uD = 0) are applied on the two opposite sides of the beam. Neumann
boundary conditions (fD = 0) are enforced elsewhere. The quality factor is assumed equal to Q = 50. The
device is excited, for simplicity, by a body load F = Mφ1β cos(ωt) proportional to the first eigenmode φ1, with
M mass matrix and β load multiplier. The discussion aims at demonstrating the accuracy of the POD-G DL-
ROM technique by proposing comparisons with the HB-FOM. Hence, in order to keep the FOM computational
time at a reasonable level, a rather coarse mesh with 2607 nodes has been employed. The first five eigenfrequencies
are reported in Table 3.
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Figure 4: Clamped-clamped beam. Figure a): geometry and mesh of the doubly clamped beam, 3D view. This
academic example can be considered as a simplified version of real MEMS resonators like the ones in Figure b)
and c) analysed by Zega et al.[63]. The red boxes frame the beam resonators in the picture.

Eigenmode 1 2 3 4 5
Frequency [kHz] 87.141 208.45 240.03 470.10 572.18

Table 3: Doubly clamped beam: first 5 eigenfrequencies of the FEM model

The POD-G ROM basis vectors are computed using 500 high-fidelity snapshots generated from one period of
10 frequency samples, picked along the FRF corresponding to β = 0.5µN. The sampling values are represented
by the violet circle markers in Figures 5a). The POD-G ROM is built retaining in the linear trial space only the
first 4 most energetic POD modes, depicted in Figures 5b), 5c), 5d) and 5e), respectively. This number of POD
modes represents the minimum required to achieve a good accuracy while keeping the model relatively small. A
comprehensive analysis of the POD-G applied to this benchmark has been proposed by authors in [27] where in
particular a discussion on the convergence with respect to the number of samples and of POD modes retained
is presented. In this contribution we will rather focus on the subsequent phases of the procedure. However,
for the sake of completeness, in Figures 6,8,9 also the POD-G results, together with those of the DL-ROM
procedure, are compared against the FOM in order to provide a critical assessment of the POD-G procedure in
our applications. Next, the POD-G ROM is used to generate the training data for the DL-ROM. The training
dataset is represented in Figure 5f) where the red markers on the FRFs denote the combinations of forcing and
phase employed, spanning the space (β, φ) in {0.25, 0.375, 0.5, 0.625, 0.75}µN× [0.1714 : 3.1344]rad with a total
of 309 combinations. For each phase-frequency combination 50 snapshots have been taken along each simulated
period, yielding a total of 15450 snapshots. A convergence analysis with respect to the number of training points
in this phase will be addressed later in Fig.10.

To better understand the efficacy of the procedure we compare, in Figure 6, the solutions obtained with the
FOM, the POD-G ROM and the POD-G DL-ROM approaches in terms of the plots ω(φ), umid(φ) (with umid

maximum midspan displacement) and umid(ω) (the FRFs) for different β values.
The plots of the frequency-phase functions are reported in Figure 6a) while enlarged views of specific regions

are proposed in Figures 6b) and 6c). The FOM, POD-G ROM and POD-G DL-ROM solutions are nearly
superimposed along the whole curves, some differences being observed where the phase approaches the vertical
asymptotes. Only minor differences can be observed at higher amplitudes which can be ascribed to the limited
number (4) of POD modes retained in the ROM. The POD-G DL-ROM induces a slight increment in the
error with respect to the FOM. Nevertheless, its accuracy is still excellent. The phase-amplitude functions are
presented in Figure 6d), while enlarged views are reported in Figures 6e) and 6f). Also in this case FOM, POD-G
ROM and POD-G DL-ROM solutions are nearly superimposed, even at the boundaries of the phase parameter
space. The FRF given by the combination of the previous functions is shown in Figure 6g), with enlarged views
being presented in Figures 6h) and 6i). We notice that the resulting FRFs are almost identical and deviate only
very close to the limits of the ω(φ) approximations (e.g. close to ω = 0.59 rad/µs on the lower branch of the
FRF).

All the periodic solutions computed with the POD-G DL-ROM are represented as an envelope of all the FRFs
for different values of the forcing in Figure 7. Such a plot, that would be demanding even with a POD-G ROM,
can be completed with the POD-G DL-ROM in few seconds and opens the way to the use of this technique in
the real time simulation and optimisation of complex systems.
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Figure 5: Clamped-clamped beam. Figure a): FOM sampling points (β = 0.5) used to generate the snapshots
for the POD-G ROM. Figures b)-e): first four most energetic POD modes obtained from SVD. Figure f): FRFs
umid(ω) computed with the POD-G ROM for different load multipliers β; red markers identify the training
dataset used for the DL-ROM (some points have been clipped at higher frequencies). Figures g) and h): plots
of the ω(φ) and umid(φ) functions corresponding to the FRFs of Figure f), with the same β values.

A further assessment of the POD-G DL-ROM performance concerns time histories along one period. In
Figure 8a) we plot the periodic responses of the midspan displacement corresponding to the parameter instances
highlighted with the black circle markers in Figure 6, while Figures 8b) and 8c) illustrate the error of the POD-G
ROM and the POD-G DL-ROM with respect to the FOM. It is worth stressing that the procedure reconstructs,
for each parameter query and along the whole period, an approximation of the FOM solution everywhere on the
structure and not only at selected points. To quantify the error globally introduced in the spatial domain, we
first define the instantaneous relative measure for a given parameter instance:

εFOM (µ, t) =
||uh(µ, t)− ũh(µ, t)||√

1
Nt

∑Nt
k=1 ||uh(µ, tk)||2

(18)

where Nt denotes the number of time instances considered along one period, uh(t) is the high-fidelity solution
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Figure 6: Clamped-clamped beam. Results of the POD-G DL-ROM (red lines) compared with the FOM (black
dash-dotted lines) and with the POD-G ROM (dashed blue lines). Figure g): final umid(ω) FRF curves for
different β values. Figures h) and i): enlarged views of the green boxes of figure g). The black dots denote points
that will be further investigated in Figure 8. Figure a): ω(φ) curves for the same β values of Figure g). Figures
c) and d): enlarged views of the green boxes of Figure a). Figure d): umid(φ) curves for the same β values of
Figure g). Figures e) and f): enlarged views of the green boxes of Figure d).

vector at time t, ũh(t) is the POD-G DL-ROM reconstruction of the FOM solution and || · || denotes the L2-norm
at a given time t. The denominator of Eq. (18) provides a reference value for the normalization given by the
average of the L2-norm of the solution along the whole period. The relative errors, always close to or lower than
εFOM = 10−3, are reported in Figure 9.

Next, we compute an average relative error ε̄FOM , with respect to the FOM, over all the Nt time instants of
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Figure 7: Clamped-clamped beam. Solution envelops generated with the POD-G DL-ROM. Figure a): envelop
surface for umid(φ, β). Figure b): envelop surface for ω(φ, β). Figure c) envelop of the FRFs umid(ω, β). The
black lines are the POD-G DL-ROM solutions shown in Figure 6 and are here reported to better highlight the
surface curvature.

a the period for all the Ntest parameter instances tested:

ε̄FOM =
1

Ntest

Ntest∑

i=1

√√√√ 1

Nt

Nt∑

k=1

ε2FOM (µi, tk) (19)

The results are reported in Fig.10 where, for a variable number of training snapshots, two error measures are
plotted: the loss function (13) and ε̄FOM . The training set described above corresponds to the largest number of
snapshots considered, and it has been progressively rarefied by halving each time the number of phase instances
for each β instance. In particular, by analyzing the convergence properties of the POD-G DL-ROM technique,
is evident that, by providing a sufficient amount of training data to the neural network, the level of accuracy
achieved by the POD-DL-ROM is remarkable over the entire testing set (hence over the whole parameter space
P). Moreover, we point out that, by considering parameter instances within the parameter space and sufficiently
far from the boundaries, we expect a further improvement in the accuracy of the POD-G DL-ROM approximation
with respect to the FOM solution. Indeed, as highlighted in Figure 9 referring to the peaks of the FRF for the
largest number of snapshots, typical relative errors are almost one order of magnitude smaller than the average
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Figure 8: Clamped-clamped beam. Comparison between the periodic responses of the FOM (black line), the
POD-G ROM (blue line) and the POD-G DL-ROM (red line) solutions. The sampling points are the ones
detailed in Figure 6. Figure a) depicts the system response along each period. Figures b) and c) represent
the error of the POD-G ROM and the POD-G DL-ROM with respect to the FOM, computed as the difference
between the midspan displacement instantaneous values

reported in Fig.10.

number of instances TFOM TPOD TDL TFOM/TDL TPOD/TDL

300 212s 0.009s 0.0015s 1.41× 105 6.0
105 20.13h 3.2s 0.18s 4.0× 105 17.7
106 8.4d 31.5s 2.0s 3.62× 105 15.7

6× 107 503d 1890s 115s 3.77× 105 16.4

Table 4: Clamped-clamped beam. Computational cost of the FOM (TFOM), POD-G ROM (TPOD) and POD-G
DL-ROM (TDL) and speedup of the reduction techniques. In the latter two cases we report only the testing time,
without including the training phase.

Next, we compare the computational time required to solve the FOM with the POD-G ROM and the POD-G
DL-ROM testing times, i.e. the time needed to compute the ROM solution for a given number of parameter
instances. The results are summarised in Table 4 and the computational cost trend is depicted in Figure 11.
We stress that the TPOD and TDL data do not include the training phase, which will be performed off-line,
beforehand.

We notice that the TFOM explodes when increasing the number of instances while the POD-G ROM (TPOD)
can drastically reduce the computing time making it a suitable approach when there is no need of truly real-time
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Figure 9: Clamped-clamped beam. Relative instantaneous error εFOM (t) (Eq. (18)) along one period with respect
to the FOM solution, of the POD-G ROM (blue line) and the POD-G DL-ROM (red line) approximations. The
sampling points are the ones detailed in Figure 6 and corresponds to the peaks of the FRFs.
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Figure 10: Clamped-clamped beam. Convergence analysis with respect to the number of training samples. Two
errors measures on testing instances are reported. The left axis refers to the loss (blue curve) while the right
axis to the average relative error (red curve). The axes are in logarithmic scales.
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Figure 11: Clamped-clamped beam. Plot of the computational time as a function of the number of instances for
the FOM, POD-G ROM and POD-G DL-ROM. All the methods display a linear trend.

applications. As extensively discussed in [27], in this case a robust ROM can be build with only 4 POD modes.
Nevertheless, even in this extremely simple example, the POD-G DL-ROM testing time (TDL) highlights the
impressive performance of the technique, which guarantees a reduced effort, with respect to the FOM, of a factor
105.

4.3 MEMS Micromirror

Micromirrors represent one of the most promising examples of the next generation of MEMS which will deeply
impact our lives and enable a sustainable evolution of the Internet of Things. Among their virtually countless
applications, one can cite pico-projectors for Augmented Reality (AR) lenses [72] and 3D scanners for Light
Detection and Ranging (LiDAR) in autonomous driving.

Figure 12: Micromirror. Figure a): optical picture of the micromirror. Figure b): Schematic view of the layout
with few details on the device components [49, 73]. Figure c): third (torsional) eigenmode that is actuated
during operations and the boundary conditions used in the simulation of half of the device.

Because of the inertial and geometrical effects triggered by large rotations, micromirrors are intrinsically
nonlinear and the prediction of their dynamic behaviour is essential to guarantee a proper design and control
of the mirror during the online stage. Only recently their numerical simulation has been tackled by Opreni et
al.[49] with a dedicated large scale FOM based on HB method. It is worth stressing that the generation of a
suitable ROM is a tough challenge even for the most advanced and recent techniques, like the Direct Normal
Form approach, mainly because the torsional mode is not the lowest-frequency one (it is the third) and is not
well separated from the other modes. Indeed, the quadratic formulation of the Direct Normal Form approach
implemented by Opreni et al. [26] fails and a high order expansion is required, as remarked by Vizzaccaro et
al.[47]. Similar difficulties have been experienced with the Implicit Condensation approach [74].

The mirror considered, fabricated by STMicroelectronics, is illustrated in Figure 12. The mirror plate is
suspended to a gimbal connected with a torsional beam along the rotation axis and two suspension beams on
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Figure 13: Micromirror. Figure a): sampling points on the FOM FRF used to build the POD-G ROM subspace
bases. Figure b)-l): 9 most energetic POD modes used in the reduced basis. Figure m): FRFs θ(ω) computed
with the POD-G ROM for different β values. The training sampling points used to generate the snapshots for
the DL-ROM construction are highlighted with red markers. Some points at higher frequencies are clipped.
Figure n) and o): ω(φ) and θ(φ) functions corresponding to the FRFs of Figure m), with the same β values.

each side. The mirror is assumed to be made of isotropic polysilicon [71], with density ρ = 2330 Kg/m3, Young
modulus E = 167 GPa and Poisson coefficient ν = 0.22. Since the central plate is very stiff, we adopt its angle
of rotation θ as reference for the FRFs amplitude and for the time response. Thanks to symmetry, only half
of the micromirror is modelled with the FEM and a total of 9732 dofs. The Dirichlet boundary conditions are
imposed on the substrate (the dark green areas in Figure 12b) and on the symmetry plane. On the remaining
boundaries, zero traction Neumann boundary conditions are imposed. The first five eigenfrequencies obtained
from a linear FEM eigenvalue analysis are listed in Table 5; the torsional mode of interest herein, the third one,
has a frequency of 29271 Hz. A quality factor equal to Q = 1000 is considered.

The micromirror is inspired by the one analysed by Opreni et al.[49], nevertheless we simplify the forcing
mechanism by replacing the piezoelectric actuation with a body load proportional to the third torsional eigenmode
F = Mφ3β cos(ωt). Such a simplification allows focusing only on the application of the POD-G DL-ROM
technique to the modelling of geometric and inertia nonlinearities. An HB-FOM is used to generate the high-
fidelity solutions to be processed with SVD. We collect 2000 snapshots obtained for β = 2.5µN and 40 frequency
values distributed as illustrated by the cross markers in Figure 13a). To achieve a good balance between subspace
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Figure 14: Micromirror: Results of the POD-G DL-ROM (red lines) compared with the FOM (black dash-dotted
lines) and with the POD-G ROM (dashed blue lines). Figures a) and d): frequency ω(φ) and angle θ(φ) plots,
respectively, for various forcing levels. Figures b) and c) are enlarged views of ω(φ) in Figure a). Figures e) and
f) are enlarged views of θ(φ) in Figure b).

dimension and quality of the solution, the 9 POD modes illustrated in Figures 13b)-13l) are retained in the
reduced basis. A critical analysis of the POD-G applied to this benchmark has been proposed by the authors in
[27]. Anyway, in Figures 14, 16,17 we also report the relative error of POD-G results with respect to the FOM,
as a further check.

The POD-G ROM is next used to generate the low-fidelity snapshots for the DL-ROM and the fDFφ−ω DFNN.
The training dataset is represented in Figure 13m where the red markers on the FRFs denote the combinations

of forcing and phase employed, spanning the space (β, φ) in {1.0, 1.5, 2.0, 2.5, 3.0}µN× [0.1604 : 2.9211] rad with a
total of 175 combinations. For each parameter instance, the period of the response is sampled with 100 snapshots.

The trained DL-ROM is finally applied to build the FRF curves for all the desired forcing levels as plotted in
Figure 14. Similarly to what remarked in the previous application to the clamped-clamped beam, the POD-G
DL-ROM reproduces the dynamic behaviour of the system with remarkable accuracy and errors are limited
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Figure 15: Micromirror. Envelop of the solutions reconstructed with the POD-G DL-ROM. Figure a): θ(φ;β
envelop. Figure b): ω(φ;β) envelop. Figure c): θ(ω;β) envelop. The black line are the POD-G DL-ROM
solutions shown in Figure 6 and are here reported to better represent the surface curvature.

to regions corresponding to the lower and upper bounds of the phase, of little engineering interest. Also in
this case, the POD-G DL-ROM can be used to produce an almost continuous envelop of the system FRFs, as
shown in Figure 15. The same accuracy is displayed by the time evolution of the angle, reported in Figure 16,
corresponding to the parameter combinations highlighted by black dots in Figure 14. The error of the POD-G
ROM and the POD-G DL-ROM with respect to the FOM is depicted in Figure 16b) and c) respectively.

Finally, the relative error εFOM , Eq. (18) is plotted in Figure 17 for various load multipliers β, while Fig.18
collects a convergence analysis, in terms of the loss function (13) and of ε̄FOM . The training set described above
corresponding to the largest number of snapshots considered, it is progressively coarsened by halving the number
of phase points sampled.

One of the major strengths of the approach is that, starting from the output ũN of the decoder, the FOM
approximate solution can be reconstructed using the POD-G modes as: ũh(t;µ) = VũN (t;µ). This field can
be later manipulated with standard FEM tools to generate any quantity of interest, like e.g. stresses which are
often required to monitor strength criteria.

This means that the same outputs as the original FOM can be delivered without limitations. It should be
mentioned, however, that this might require to access the data structures of the FOM, like the connectivity
matrix, inducing some overheads in the testing phase.

As an example, the Von Mises stress σVM is plotted in Figure 19 where the FOM solution is compared with
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Eigenmode 1 2 3 4 5
Frequency [kHz] 11.080 18.533 29.271 41.667 68.848

Table 5: Micromirror: first five eigenfrequencies computed with a linear FEM

Figure 16: Micromirror. Comparison between the periodic responses of the FOM (black line), the POD-G ROM
(blue line) and the POD-G DL-ROM (red line) solutions. The sampling points are indicated by black dots in
Figure 14. Figure a): evolution of the rotation angle over one period. Figures b) and c): angle error of the
POD-G ROM and the POD-G DL-ROM solutions with respect to the FOM.

the prediction of the POD-G DL-ROM at two different time instants in Figure 17. A quantitative inspection
shows that an excellent accuracy is preserved. Some artefacts appear in the plots which are however associated
with the rather coarse mesh utilised in the example.

Finally, we compare the computational cost of the FOM, the POD-G ROM and the POD-G DL-ROM
solutions. The results are summarized in Table 6 and the computational cost trend is depicted in Figure 20.
Contrary to the clamped-clamped beam example, the larger POD basis dimension (9 as opposed to 4) yields as
expected an increase of the ratio TPOD/TDL which puts in better evidence the interest of the proposed approach
over other model order reduction techniques for real-time applications.

5 Conclusions

In this paper we have proposed a non-intrusive Deep Learning-based ROM tailored to describe both the trial
manifold and the reduced dynamics of complex mechanical systems showing inertia and geometric nonlinearities.
In order to reduce the computational cost of the procedure, a POD-Galerkin ROM has been first generated using
a limited amount of FOM snapshots and the training of the DL-ROM has been performed using cheaper POD-G
solutions covering the whole parameter range.

The encoder function of a convolutional autoencoder (AE) has been used to map the system response onto a
low-dimensional representation, while the decoder part models the reduced nonlinear trial manifold and allows
to reconstruct a posteriori an approximation of the FOM response. Finally, in order to describe the system
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Figure 17: Micromirror. Relative error εFOM (t) (Eq. (18)), along one period, with respect to the FOM solution
for the POD-G ROM (blue line) and the POD-G DL-ROM (red line) approximations. The sampling points are
the ones detailed in Figure 14 and correspond to the peaks of the FRFs.
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Figure 18: Micromirror. Convergence analysis with respect to the number of training samples. Two errors
measures on testing instances are reported. The left axis refers to the loss (blue curve) while the right axis to
the average relative error (red curve). The axes are in logarithmic scales.

dynamics on the manifold, a Deep Forward Neural Network has been utilized and trained at the same time as
the AE.

The proposed technique has proved extremely efficient as it models highly nonlinear problems by identifying
the manifold underlying the dynamics in a completely data-driven, black-box and non-intrusive way, provided
that the sampled data span the parameter space of interest.

This strategy has been implemented and benchmarked on both an academic example and a real industrial
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Figure 19: Contour plot of the Von Mises stress σVM at the peak of the FRF for β = 2.25 and two different
instants of the periodic response i.e. τ = π/2 and τ = π, with τ normalised time. Figures a) and d): field
computed with the FOM. Figures b) and e): field computed with the POD-G DL-ROM. Figures c) and f):
difference between the two reconstructions. The displacement of the mirror has been amplified by a factor 5

number of instances TFOM TPOD TDL TFOM/TDL TPOD/TDL

101 7.09 s 0.0042 0.0011 s 6.4× 103 3.81
102 1.18 m 0.042 s 0.0012 s 5.9× 104 35

3× 102 3.54 m 0.12 s 0.0015 s 1.41× 105 80
103 11.82 m 0.42 s 0.0026 s 2.72× 105 161
104 1.97 h 4.23 s 0.016 s 4.43× 105 264
105 19.7 h 42.3 s 0.19 s 3.73× 105 222
106 8.2 d 7 m 2.1 s 3.37× 105 200

6× 107 494 d 7.05 h 118 s 3.6× 105 215

Table 6: Micromirror. Computational cost of the FOM (TFOM), POD-G ROM (TPOD) and POD-G DL-ROM
(TDL) and speedup of the reduction techniques.

application like a MEMS micromirrors showing softening response and multiplicity of solutions. In both cases a
truly real-time ROM is achieved that preserves the capability to retrieve a posteriori, through the decoder part
of the AE, an estimate of any solution field available in the corresponding FOM.

In both applications, the POD-G DL-ROM has reproduced the dynamic behaviour of the system with
remarkable accuracy, inducing limited errors in the regions corresponding to the lower and upper bounds of
the phase range. Concerning the computational cost, we have compared the POD-G DL-ROM both against
the original FOM solved by HB procedures and against the POD-G ROM. In the former case the gain is
always impressive, and in the latter, as soon as the POD trial-space dimension increases in realistic examples,
improvements of two orders of magnitude have been observed.

The data generation phase through the POD-G ROM might however fail in complex scenarios like, e.g. fully
coupled fluid-structure simulations and in applications where the range of variation of the parameters is large.
These situations require further investigation, but might be handled with the POD DL-ROM formulation in
which the POD is only used to preprocess the matrix of snapshots to extract salient features retaining a large
number of POMS
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