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Abstract

In this work we present discontinuous Galerkin finite element methods on polytopal
grids (PolydG) for the numerical simulation of multiphysics wave propagation phe-
nomena in heterogeneous media. In particular, we address wave phenomena in elastic,
poro-elastic, and poro-elasto-acoustic materials. Wave propagation is modeled by us-
ing either the elastodyanmics equation, in the elastic domain, the acoustics equations
in the acoustic domain and the low-frequency Biot’s equations in the poro-elastic one.
The coupling between different models is realized by means of (physically consistent)
transmission conditions, weakly imposed on the interface between the domains. For all
models configuration, we introduce and analyse the PolydG semi-discrete formulation,
which is then coupled with suitable time marching schemes. For the semi-discrete
problem, we present the stability analysis and derive a-priori error estimates in a suit-
able energy norm. A wide set of verification tests with manufactured solutions are
presented in order to validate the error analysis. Examples of physical interest are
also shown to demonstrate the capability of the proposed methods.

Keywords: poroelasticity; acoustics; discontinuous Galerkin method; polygonal and
polyhedral meshes; stability and convergence analysis

AMS subject classifications. 35L05, 65M12, 65M60, 74F10

1 Introduction

Multiphysics wave propagation in heterogeneous media is a very attractive re-
search topic and, in recent decades, it has registered considerable interest in the
mathematical, geophysical and engineering communities. Mathematical models
for wave propagation phenomena range from the linear transport equation, to
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the non-linear system of Navier-Stokes equations and they appear in many dif-
ferent scientific disciplines, such as acoustic engineering [1], vibroacoustics [2],
aeronautical engineering, [3], in biomedical engineering [4], and computational
geosciences, see [5] for a comprehensive review.

Thanks to the ongoing development of increasingly advanced high-performance
computing facilities, the use of mathematical algorithms and numerical simula-
tions for the solution of wave propagation problems has given a notable impulse
towards a deeper understanding of these phenomena. Numerical methods de-
signed for wave simulations must account for the following three distinguishing
features: accuracy, geometric flexibility and scalability. Accuracy is essential to
correctly reproduce the physical phenomenon, and allows to minimize numer-
ical dispersion and dissipation errors that would deteriorate the quality of the
solution. Geometric flexibility is required since the computational domain usu-
ally features complicated geometrical shapes as well as sharp media contrasts.
Scalability is demanded to solve on parallel machines real computational models
featuring several hundred of millions or even billions of unknowns.

In this work we will consider wave propagation problems arising from geo-
physics and we will analyze several models, with increasing complexity, em-
ployed in this scientific area. We will first present models of elastodynamics,
then of poro-elasticity, and finally coupled poro-elasto-acoustics models.

Elastodynamic and viscoelastodynamic models are typically used for study-
ing seismic waves that propagate across the globe and are generated by earth-
quakes, volcanic activity, or artificial explosions. As far as the elastodynamic
equations are concerned, the most used numerical methods are finite differences
[6, 7, 8], finite elements [9], finite volumes [10, 11, 12, 13], and spectral elements
in either the conforming [14, 15, 16] or discontinuous setting [17, 18, 19].

Poro-elastodynamic models are used to describe the propagation of pressure
and elastic waves through a porous medium. Pressure waves propagate through
the saturating fluid inside pores, while elastic ones through the porous skeleton.
In the pioneering work by Biot [20] general equations of waves propagation in
poro-elastic materials were introduced. More recently, in [21] it is proposed a
model of seismic waves in saturated soils, distinguishing in-phase (fast) move-
ments between solid and fluid from out-phase (slow) ones. Poro-elasto-acoustic
problem model acoustic/sound waves impacting a porous material and conse-
quently propagating through it. The coupling between acoustic and poro-elastic
domains, realized by means of physically consistent transmission conditions at
the interface, is discussed in [22] and [23].

There is a wide strand of literature concerning the numerical discretization
of poroelastic or poro-elasto-acoustic models. Here, we recall, e.g., the Lagrange
Multipliers method [24, 25, 26], the finite element method [27, 28] the spectral
and pseudo-spectral element method [29, 30], the ADER scheme [31, 23], the
finite difference method [32], and references therein.

The aim of this work is to introduce and analyze a discontinuous Galerkin
method on polygonal/polyhedral grids (PolydG) for the numerical discretiza-
tion of multiphysics waves propagation through heterogeneous materials. The
geometric flexibility and the arbitrary-order accuracy featured by the proposed
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scheme are crucial within this context as they ensure at the same time the pos-
sibility of handling complex geometries and an intrinsic high-level of precision
that are necessary to correctly represent the solutions.

For early results in the field of dG methods we refer the reader to [33, 34, 35,
36, 37, 38, 39] for second-order elliptic problems, to [40] for parabolic differential
equations, to [41] for flows in fractured porous media, and to [42] for fluid
structure interaction problems. In the framework of dG methods for hyperbolic
problems, we mention [43, 44] for scalar wave equations on simplicial grids
and the more recent PolydG discretizations designed in [45] for elastodynamics
problems, in [46] for non-linear sound waves, in [47, 48] for coupled elasto-
acoustic problems, and in [49] for poro-elasto-acoustic wave propagation.

The remaining part of the paper is structured as follows: in Section 2 we
review differential models for wave propagation in heterogeneous Earth’s media
while in Section 3 we define the discrete setting used in the paper. The elas-
todynamic model and its numerical discretization through a PolydG method is
recalled in Section 4, while Sections 5 and 6 discuss the numerical analysis of
a PolydG method for wave propagation problems in poro-elastic and coupled
poro-elastic-acoustic media, respectively. Different numerical tests of physical
interest are introduced and discussed in Section 7. Finally, in Section 8 we draw
some conclusions and discuss some perspective about future work.

Notation

In the following, for an open, bounded domain D ⊂ Rd, d = 2, 3, the notation
L2(D) is used in place of [L2(D)]d, with d ∈ {2, 3}. The scalar product in L2(D)
is denoted by (·, ·)D, with associated norm ‖·‖D. Similarly, H`(D) is defined as
[H`(D)]d, with ` ≥ 0, equipped with the norm ‖ · ‖`,D, assuming conventionally
that H0(D) ≡ L2(D). In addition we will use H(div, D) to denote the space
of L2(D) functions with square integrable divergence. In order to take into
account essential boundary conditions, we also introduce the subspaces

H1
0 (D) = {ψ ∈ H1(D) | ψ|ΓD = 0}, (1)

H1
0 (D) = {v ∈H1(D) | v|ΓD = 0}, (2)

H0(div, D) = {z ∈H(div, D) | (z · np)|ΓD = 0}, (3)

with ΓD ⊂ ∂D having strictly positive Hausdorff measure. Given k ∈ N and a
Hilbert space H, the usual notation Ck([0, T ];H) is adopted for the space of H-
valued functions, k-times continuously differentiable in [0, T ]. The notation x .
y stands for x ≤ Cy, with C > 0, independent of the discretization parameters,
but possibly dependent on physical coefficients and the final time T .

2 Modelling seismic waves

A seismic event is the result of a sudden release of energy due to the rupture of a
more fragile part of the Earth’s crust called the fault. The deformation energy,
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accumulated for tens and sometimes hundreds of years along the fault, is trans-
formed into kinetic energy that radiates, in the form of waves, in all directions
through the layers of the Earth. Seismic waves are therefore energy waves that
produce an oscillatory movement of the ground during their passage. Seismic
waves are subdivided into two main categories: volume waves and surface waves.
The former are separate into compression waves (P) and shear waves (S). The
faster P waves are transmitted both in liquids and in solids, while the slower S
waves travel only in solid media. P waves induce ground motion aligned with
the wave field direction while S waves induce ground motion perpendicular to
the wave propagation field.

More and more frequently mathematical models are used for the study and
analysis of ground motion. The solution of these models through appropriate
numerical methods can quickly provide important information for the evalua-
tion of the seismic hazard of a given region and for the planning of the territory
in order to limit the socio-economic losses linked to the seismic event. In the
following we consider the differential model that aims at describing the propa-
gation of seismic wave within the Earth’s media.

Let Ω be a bounded domain modeling the portion of the Earth where the pas-
sage of seismic waves occurs, and let its boundary ∂Ω be decomposed into three
disjoint parts ΓD, ΓN and ΓA, where the values of the displacement (Dirich-
let conditions), the values of tractions (Neumann conditions), and the values
of fictitious tractions (absorbing conditions) are imposed, respectively. For a
temporal interval (0, T ], with T > 0, the equation governing the displacement
field u(x, t) of a dynamically disturbed elastic medium can be expressed as

ρ∂ttu−∇ · σ = f in Ω× (0, T ], (4)

where ρ is the mass density, f define a suitable seismic source and σ is the
stress tensor that models the constitutive behaviour of the material. Possible
definition for σ and f will be discussed in the sequel. Equation (4) is completed
by prescribing suitable boundary conditions as well as initial conditions. For
the latter, by choosing u(·, 0) = ∂tu(·, 0) = 0, we suppose the domain to be at
rest at the initial observation time.

2.1 Seismic waves in viscoelastic media

As we said previously, the stress tensor σ can be defined in different ways to
properly model the behavior of the soil. Before presenting the main constitutive
laws that can adopted for seismic wave propagation analysis we introduce: (i)
the strain tensor ε defined as the symmetric gradient, i.e., ε(u) = (∇u+∇Tu)/2,
and (ii) the fourth-order (symmetric and positive definite) stiffness tensor D,
encoding the mechanical properties of the medium expressed in term of the first
and the second Lamé coefficients, namely λ and µ, respectively. For an elastic
material the generalized Hooke’s law

σ = D : ε (5)
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defines the most general linear relation among all the components of the stress
and strain tensor. In the most general case, i.e. a fully anisotropic material,
equation (5) contains 21 material parameters. However in our case, i.e., for a
perfectly isotropic material, (5) can be reduced as

σ(u) = λ∇ · ε(u)I + 2µε(u), (6)

where I is the identity tensor.
Pure elastic constitutive laws are not physically representative in the field

of application of interest. A first model for visco-elastic media can be handled
by modifying the equation of motion according to [50]. In the approach, the
inertial term ρ∂ttu in (4) is replaced by ρ∂ttu + 2ρζ∂tu + ρζ2u where ζ is an
attenuation parameter. As a matter of fact, with this substitution, i.e.,

ρ∂ttu+ 2ρζ∂tu+ ρζ2u−∇ · σ = f in Ω× (0, T ], (7)

all frequency components are equally attenuated with distance, resulting in a
frequency proportional quality factor Q ∝ Q0

f
α , with Q0 > 0 and α ≈ 1 [51]. A

second attenuation model, is obtained by considering materials “endowed with
memory” in the sense that the state of stress at the instant t depends on all the
deformations undergone by the material in previous times. This behaviour can
be expressed through an integral equation of the form

σ(t) =

∫ t

0

∂D
∂t

(t− s) : ε(s) ds (8)

where the stress σ is determined by the entire strain history. Implicit in this
law is the dependence on time of the Lamé parameters λ and µ, cf. [52, 53].
We remark that, by using (8) it is possible to obtain an almost constant quality
factor Q in a suitable frequency range, cf. [53].

On ∂Ω several conditions can be set to correctly define the interaction be-
tween the wave and the domain boundary. Dirichlet conditions, are employed to
prescribe the behaviour of the displacement filed i.e. u = gD, while Neumann
conditions σn = gN , where gN represents a distribution of surface load. Here
n denotes the outward pointing normal unit vector with respect to ∂Ω.

For geophysical applications, since the domain of interest Ω represents a por-
tion of the Earth the following boundary conditions are commonly adopted: (i)
free-surface condition, i.e. σn = 0 for the top Earth’s surface and (ii) transpar-
ent boundary conditions σn = t for the remaining lateral and bottom surfaces.
The latter consists in modeling the absorbing boundary layers by introducing
a fictitious traction term t = t(u, ∂tu), consisting of a linear combination of
displacement space and time derivatives. Examples can be found in [54, 55]. In
Figure 1 we report an illustrative example of domain Ω together with boundary
conditions.

2.2 Seismic waves in porous media

Modeling wave propagation through fluid-saturated porous rock is crucial for the
characterization of the seismic response of geologic formations. In this case, the
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Fig. 1: Example of domain Ω with boundary ∂Ω divided into a Dirichlet ΓD, a
Neumann ΓN and an absorbing ΓA part.

effects arising from the interaction between the viscous fluid and the solid matrix
have to be taken into account. In the framework of Biot’s poro-elasticity theory
[56, 20], the total stress tensor σ̃ additionally depends on the pore pressure p
according to the following relation

σ̃(u, p) = σ(u)− βpI, (9)

with σ(u) defined in (6) and 0 < β ≤ 1 denoting the Biot coefficient. Adding
to the momentum balance equation (4) the inertial term corresponding to the
filtration displacement w = φ(wf − u), where φ > 0 is the reference porosity
and wf the fluid displacement, leads to

ρ∂ttu+ ρf∂ttw −∇ · σ̃ = f in Ω× (0, T ]. (10)

Here, the average density ρ is given by ρ = φρf + (1 − φ)ρs, where ρf > 0 is
the saturating fluid density and ρs > 0 is the solid density. To derive Biot’s
wave equations in Section 5, the rheology of the porous material (9) and the
momentum balance (10) are combined with the dynamics of the fluid system
described by Darcy’s law and the conservation of fluid mass in the pores.

Two major differences have been observed when dealing with poro-elastic
media instead of elastic ones: (i) the attenuation due to wave-induced fluid flow
and (ii) the presence of an additional compressional wave of the second kind
(slow P-wave), which becomes a diffusive mode in the low-frequency range, cf.
[5]. As observed in [31], this slow P-wave is mainly localized near the material
heterogeneities or the source.

2.3 Modelling the seismic source

Seismic wave can be generated by different natural and artificial sources. De-
pending on the problem’s configuration one can consider a single point-source,
an incidence of a plane wave or a finite-size rupturing fault.

We can define a point-wise force f acting on a point x0 in the ith direction
as

f(x, t) = f(t)eiδ(x− x0), (11)
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where ei is the unit vector of the ith Cartesian axis, δ(·) is the delta distribution,
and f(·) is a function of time. The expression of f(·) can be selected among
different waveforms. Here, we report one of the most employed one, i.e. the
Ricker wavelet [57], defined as

f(t) = A0(1− 2βp(t− t0)2)e−βp(t−t0)2 , βp = π2f2
p , (12)

being A0 is the wave amplitude, fp the peak frequency of the signal and t0 is a
fixed reference time.

To define a vertically incident plane wave one can consider a uniform distri-
bution of body forces along the plane z = z0 of the form f(x, t) = f(t)eiδ(z−z0).
The latter generates a displacement in the ith direction of the form

ūi(x, t) =
1

2ρc
H(t− | z − z0 |

c
)

∫ t− |z−z0|c

0

f(τ) dτ, (13)

whereH(·) is the Heaviside function and c (that can be equal to cP =
√
λ+ 2µ/ρ

or cS =
√
µ/ρ) is the wave velocity, see [58]. By taking the derivative with re-

spect to time of (13) and evaluating the result at z = z0 we can express f(t) as
f(t) = 2ρc∂ūi∂t . Finally, we introduce one of the most important seismic input
for seismic wave propagation that is the double-couple source force. A point
double-couple or moment-tensor source localized in the computational domain
is often adopted to simulate small local or near-regional earthquakes. Its math-
ematical representation is based on the seismic moment tensor m(x, t), defined
in [59] as

mij(x, t) =
M0(x, t)

V
(sF,inF,j + sF,jnF,i) i, j = 1, .., d,

where nF and sF denote the fault normal and the rake vector along the fault,
respectively. M0(x, t) describes the time history of the moment release at x
and V is the force elementary volume. The equivalent body force distribution
is finally obtained through the relation f(x, t) = −∇ ·m(x, t), see [60].

3 Discrete setting for PolyDG methods

3.1 Space discretization

In this section we define the notation related to the subdivision of the compu-
tational domain Ω by means of polytopic meshes. We introduce a polytopic
mesh Th made of general polygons (in 2d) or polyhedra (in 3d). We denote such
polytopic elements by κ, define by | κ | their measure and by hκ their diameter,
and set h = maxκ∈Th hκ. We let a polynomial degree pκ ≥ 1 be associated with
each element κ ∈ Th and we denote by ph : Th → N∗ = {n ∈ N | n ≥ 1}
the piecewise constant function such that (ph)|κ = pκ. The discrete spaces are

introduced as follows: Vh = [Pph(Th)]d, where Pph(Th) is the space of piecewise
polynomials in Ω of total degree less than or equal to pκ in any κ ∈ Th.
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In order to deal with polygonal and polyhedral elements, we define an inter-
face as the intersection of the (d− 1)-dimensional faces of any two neighboring
elements of Th. If d = 2, an interface/face is a line segment and the set of all
interfaces/faces is denoted by Fh. When d = 3, an interface can be a general
polygon that we assume could be further decomposed into a set of planar tri-
angles collected in the set Fh. We decompose the faces of Th into the union of
internal (i) and boundary (b) faces, respectively, i.e.: Fh = F ih ∪ Fbh. Moreover
we further split the boundary faces as Fbh = FDh ∪ FNh , meaning that on FDh
(resp. FNh ) Dirichlet (resp. Neumann) boundary conditions are applied.

Following [61], we next introduce the main assumption on Th.

Definition 3.1. A mesh Th is said to be polytopic-regular if for any κ ∈ Th,
there exists a set of non-overlapping d-dimensional simplices contained in κ,
denoted by {SFκ }F⊂∂κ, such that for any F ⊂ ∂κ, the following condition holds:

hκ . d | SFκ | | F |−1 . (14)

Assumption 3.1. The sequence of meshes {Th}h is assumed to be uniformly
polytopic regular in the sense of Definition 3.1.

As pointed out in [61], this assumption does not impose any restriction on either
the number of faces per element nor their measure relative to the diameter of
the element they belong to. Under Assumption 3.1, the following trace-inverse
inequality holds:

||v||L2(∂κ) . ph−1/2
κ ||v||L2(κ) ∀ κ ∈ Th ∀v ∈ Pp(κ). (15)

In order to avoid technicalities, we also make the following hp-local bounded
variation property assumption.

Assumption 3.2. For any pair of neighboring elements κ± ∈ Th, it holds
hκ+ . hκ− . hκ+ and pκ+ . pκ− . pκ+ .

Next, following [62], for sufficiently piecewise smooth scalar-, vector- and
tensor-valued fields ψ, v and τ , respectively, we define the averages and jumps
on each interior face F ∈ F ih shared by the elements κ± ∈ Th as follows:

JψK = ψ+n+ + ψ−n−, JvK = v+ ⊗ n+ + v− ⊗ n−, JvKn = v+ · n+ + v− · n−,

{{ψ}} =
ψ+ + ψ−

2
, {{v}} =

v+ + v−

2
, {{τ}} =

τ+ + τ−

2
,

where ⊗ is the tensor product in R3, ·± denotes the trace on F taken within κ±,
and n± is the outer normal vector to ∂κ±. Accordingly, on boundary faces F ∈
Fbh, we set JψK = ψn, {{ψ}} = ψ, JvK = v⊗n, JvKn = v ·n, {{v}} = v, {{τ}} = τ .

Finally, we introduced some important concepts employed for the convergence
analysis of PolydG methods presented in the sequel, namely, the mesh covering
T] and the Stein extension operator Ẽ . Indeed, the latter are used to extend
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standard hp-interpolation estimates on simplices to polytopal elements. We
refer the reader to [36, 63, 40, 61] for all the details.

A covering T] = {Kκ} related to the polytopic mesh Th is a set of shape
regular d−dimensional simplices Kκ such that for each κ ∈ Th there exists a
Kκ ∈ T] such that κ ⊂ Kκ. We suppose that there exits a covering T] of Th and
a positive constant CΩ, independent of the mesh parameters, such that

max
κ∈Th

card{κ′ ∈ Th : κ′ ∩ Kκ 6= ∅, Kκ ∈ T] s.t. κ ⊂ Kκ} ≤ CΩ,

and hTκ . hκ for each pair κ ∈ Tκ and Tκ ∈ T] with κ ⊂ Th. This latter
assumptions assure that, when the computational mesh Th is refined, the amount
of overlap present in the covering T] remains bounded.

For an open bounded domain Σ ⊂ Rd and a polytopic mesh Th over Σ
satisfying Assumption 3.1, we can introduce the Stein extension operator Ẽ :
Hm(κ) → Hm(Rd) [64], for any κ ∈ Th and m ∈ N0, such that Ẽv |κ= v and
‖Ẽv‖m,Rd . ‖v‖m,κ. The corresponding vector-valued version mapping Hm(κ)
onto Hm(Rd) acts component-wise and is denoted in the same way. In what
follows, for any κ ∈ Th, we will denote by Kκ the simplex belonging to T] such
that κ ⊂ Kκ.

3.2 Time integration

We introduce here the time integration scheme used for the numerical simula-
tions shown in the following sections. First, we observe that all the semi-discrete
problems arising after a PolyDG discretization, i.e., equations (24), (36) and
(54), can be rewritten in a compact form as AẌ +BẊ +CX = F or equiva-
lently as

Ẍ = A−1(F −BẊ −CX) = A−1F −A−1BẊ −A−1CX = L(t,X, Ẋ). (16)

Then, we discretize the interval [0, T ] by introducing a timestep ∆t > 0,
such that ∀ k ∈ N, tk+1 − tk = ∆t and define Xk as Xk = X(tk), with X can
be either UT , [U,W ]T or [U,W,Φ]T , depending on the problem we are solving.
Finally, to integrate in time (16) we can apply the Newmark−β scheme as
follows. The Newmark−β scheme is defined by introducing a Taylor expansion
for displacement and velocity, respectively:X

k+1 = Xk + ∆tZk + ∆t2(βNLk+1 + ( 1
2 − βN )Lk),

Zk+1 = Zk + ∆t(γNLk+1 + (1− γN )Lk),
(17)

being Zk = Ẋ(tk), Lk = L(tk, Xk, Zk) and the Newmark parameters βN and
γN satisfy, the following constraints 0 ≤ γN ≤ 1, 0 ≤ 2βN ≤ 1. The typical
choices of parameters are γN = 1/2 and βN = 1/4, for which the scheme is
unconditionally stable and second order accurate. We also remark that when
L = L(tk, Xk) β = 0 and γ = 1/2 the Newmark scheme reduces to the leap-frog
scheme which is explicit and second order accurate.
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4 Elastic wave propagation in heterogeneous media

Hereafter, for the sake of presentation, we will consider the linear visco elas-
todyamics model, i.e. equations (7) and (6). We suppose ∂Ω = ΓD ∪ ΓN and
we consider homogeneous Dirichlet and Neumann boundary conditions on ΓD
and ΓN , respectively. The system of equations can be recast as

ρ∂ttu+ 2ρζ∂tu+ ρζ2u−∇ · σ = f in Ω× (0, T ],

σ = Dε(u) = λ∇ · ε(u)I + 2µε(u), in Ω× (0, T ],

u = 0 on ΓD × (0, T ],

σn = 0 on ΓN × (0, T ],

(u, ∂tu) = (u0,u1) in Ω× {0}.

(18)

The case with non homogenous Neumann conditions is treated in [65], while
absorbing conditions are considered in [54]. Finally, we refer to [18, 66] for
a detailed analysis of viscoelastic attenuation models. We suppose the mass
density ρ and the Lamé parameters λ and µ strictly positive bounded functions
of the space variable x, i.e. ρ, λ, µ ∈ L∞(Ω). We also suppose the forcing
term f a given (regular enough) source terms, i.e., f ∈ L2((0, T ];L2(Ω)) and
that the initial conditions (u0,u1) ∈H1

0 (Ω)×L2(Ω). The weak formulation of
problem (18) reads as follows: for all t ∈ (0, T ] find u = u(t) ∈ H1

0 (Ω) such
that

(ρ∂ttu,v)Ω + (2ρζ∂tu,v)Ω + (ρζ2u,v)Ω +Ae(u,v) = (f ,v)Ω ∀v ∈H1
0 (Ω),

(19)
where for any u,v ∈H1

0 (Ω) we have set

Ae(u,v) = (σ(u), ε(v))Ω. (20)

Problem (19) is well-posed and its unique solution u ∈ C((0, T ];H1
0 (Ω)) ∩

C1((0, T ];L2(Ω)), see [67, Theorem 8-3.1].

4.1 Semi-discrete formulation

Using the notation introduced in Section 3, we define the PolyDG semi-discretization
of problem (19): for all t ∈ (0, T ], find uh = uh(t) ∈ Vh such that

(ρ∂ttuh,vh)Ω + (2ρζ∂tuh,vh)Ω + (ρζ2uh,vh)Ω +Aeh(uh,vh) = (f ,vh)Ω (21)

for any vh ∈ Vh, supplemented with the initial conditions (uh(0), ∂tuh(0)) =
(u0

h,u
1
h), where u0

h,u
1
h ∈ Vh are suitable approximations of u0 and u1, respec-

tively. Here, we also assume the stiffness tensor D and the mass density ρ to be
element-wise constant over Th. The bilinear form Aeh : Vh × Vh → R is defined
as

Aeh(u,v) = (σ(u), ε(v))Th − ({{σ(u)}}, JvK)Fih∪FDh
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− (JuK, {{σ(v)}})Fih∪FDh + (η JuK, JvK)Fih∪FDh (22)

for all u,v ∈ Vh. Here, we adopt the compact notation (·, ·)Th =
∑
T∈Th(·, ·)T

and (·, ·)FIh∪FDh =
∑
F∈FIh∪F

D
h

(·, ·)F . The penalization function η : Fh → R+ in

(22) is defined face-wise as

η = σ0

 max
κ∈{κ1,κ2}

(
Dκp2

κh
−1
κ

)
, F ∈ F ih, F ⊂ ∂κ1 ∩ ∂κ2,

Dκp2
κh
−1
κ , F ∈ FDh , F ⊂ ∂κ ∩ ΓD.

(23)

where Dκ =| (D |κ)1/2 |22 for any κ ∈ Th (here | · |2 is the operator norm induced
by the l2-norm on Rn, where n denotes the dimension of the space of symmetric
second-order tensors, i.e., n = 3 if d = 2, n = 6 if d = 3), and σ0 is a (large
enough) positive parameter at our disposal.

By fixing a basis for Vh and denoting by U the vector of the expansion
coefficients in the chosen basis of the unknown uh the semi-discrete formulation
(21) can be written equivalently as:

MρÜ(t) +DU̇(t) + (Ae +C)U(t) = F(t) ∀t ∈ (0, T ), (24)

with M denoting the mass matrix in Vh, Ae the stiffness matrix corresponding
to the bilinear form Ae, D and C the damping matrices, and with initial con-
ditions U(0) = U0 and U̇(0) = U1. Note that F is the vector representations of
the linear functional (f ,vh)Ω.

4.2 Stability and convergence results

In this section we recall the stability and convergence results for the semidiscrete
PolyDG formulation (21). We refer the reader to [45] and to [68] for all the
details. The results are obtained in the following energy norm

‖uh(t)‖2E = ‖ρ 1
2 ∂tuh(t)‖2Ω + ‖ρ 1

2 ζuh(t)‖2Ω + ‖uh(t)‖2DG,e ∀t ∈ (0, T ], (25)

where

‖v‖2DG,e = ‖D 1
2 ε(v)‖2Th + ‖η 1

2 JvK‖2FIh∪FDh ∀v ∈ Vh ⊕H1
0 (Ω), (26)

with ‖ · ‖2Th = (·, ·)Th and ‖ · ‖2FIh∪FDh = (·, ·)FIh∪FDh .

Proposition 4.1. Let f ∈ L2((0, T ];L2(Ω)) and uh ∈ C1((0, T ];Vh) be the ap-
proximate solution of (21) obtained with the stability constant σ0 defined in (23)
chosen sufficiently large. Then,

‖uh(t)‖E . ‖u0
h‖E +

t∫
0

‖f(τ)‖L2(Ω) dτ, ∀0 < t ≤ T, (27)
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where ‖uh(0)‖2E = ‖ρ 1
2u1,h‖2Ω + ‖ρ 1

2 ζu0,h‖2Ω + ‖u0,h‖2DG,e, being u0,h,u1,h ∈
Vh suitable approximation of the initial conditions u0 and u1, respectively.
The proof of the previous stability estimate can be found for instance in [45,
68]. From (27) it is possible to conclude that the PolyDG approximation is
dissipative. Indeed, when f = 0 (no external forces) the energy of the system
at rest ‖u0

h‖E is not conserved through time.
Concerning the convergence results of the PolyDG scheme we report here

below the main result. We refer the reader to [45] for the details and for the
proof of the following theorem.

Theorem 4.1. Let Assumption 3.1 and Assumption 3.2 be satisfied and assume
that the exact solution u of (19) is sufficiently regular. For any time t ∈ [0, T ],
let uh ∈ Vh be the PolyDG solution of problem (21) obtained with a penalty
parameter σ0 appearing in (23) sufficiently large. Then, for any time t ∈ (0, T ]
the following bound holds

‖u− uh‖E(t) .
∑
κ∈Th

hsκ−1
κ

p
mκ−3/2
κ

(
IT]mκ(u)(t) +

∫ t

0

IT]mκ(∂tu)(s) ds

)
, (28)

where

IT]mκ(u) = ‖Ẽu‖Hmκ (T]) +
hκ

p
3/2
κ

‖Ẽ(∂tu)‖Hmκ (T]) + ‖Ẽσ(u)‖Hmκ (T])

with sκ = min(pκ + 1,mκ) for all κ ∈ Th. The hidden constant depends on the
material parameters and the shape-regularity of the covering T], but is indepen-
dent of hκ, pκ.

4.3 Verification test

We solve the wave propagation problem (18) in Ω = (0, 1)2, choosing λ = µ =
ρ = ζ = 1 and assuming that the analytical solution u is given by

u(x, t) = sin (
√

2πt)

[
− sin (πx)2 sin (2πy)

sin (2πx) sin (πy)2

]
. (29)

Dirichlet boundary conditions and initial conditions are set accordingly. We set
the final time T = 1 and chose a time step ∆t = 10−4 of the leap-frog scheme,
cf. (17). The penalty parameter σ0 appearing in (23) has been set equal to 10.
We compute the discretization error by varying the polynomial degree pκ = p,
for any κ ∈ Th, and the number of polygonal elements Nel.

In Figure 3 (left), we report the computed L2-error ‖eu‖L2(Ω) = ‖u −
uh‖L2(Ω) at time T obtained on a shape-regular polygonal grid (cf. Figure 2)
versus the polynomial degree p, which varies from 1 to 5, in semilogarithmic
scale. We fix the number of polygonal elements as Nel = 160. We observe the
exponential converge in p, since the chosen solution is analytic. Next, we com-
pute the energy error ‖u−uh‖E at final time T as a function of the mesh size h,
as shown in Figure 3 (right). In this case we retrieve the algebraic convergence
proved in (28) for a polynomial degree p = 2, 3, 4.
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Fig. 2: Test case of Section 4.3. Example of computational domain having 100
polygonal elements.

h \ p 2 3 4
0.35 1.1078e+0 1.4101e-1 1.8809e-2
0.26 4.9112e-1 4.3925e-2 4.3186e-3
0.19 1.8714e-1 1.4661e-2 1.0703e-3
0.13 8.0198e-2 4.7140e-3 2.6145e-4
rate 2.23 2.89 3.71

Fig. 3: Test case of Section 4.3. (Left) Computed L2-error as a function of
the polynomial degree p in a semilogarithmic scale by fixing the number of
polygonal elements as Nel = 160. (Right) Computed energy error as a function
of the mesh size h for polynomial degree p = 2, 3, 4. The rate of convergence is
also reported in the last row, cf. (28).
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Fig. 4: Example of porous domain Ωp together with mixed boundary conditions
on ΓpD and ΓpN .

5 Poro-elastic media

In this section, we consider a poro-elastic material occupying a polyhedral do-
main Ωp ⊂ Ω modeled by equations (9) and (10). The low-frequency Biot’s
system [20] can be written as

ρ∂ttu+ ρf∂ttw −∇ · σ̃ = f in Ωp × (0, T ],

σ̃ = λ∇ · ε(u)I + 2µε(u)− βpI in Ωp × (0, T ],

ρf∂ttu+ ρw∂ttw + η
k ẇ +∇p = g in Ωp × (0, T ],

p = −m(β∇ · u+∇ ·w) in Ωp × (0, T ],

u = 0 and w · n = 0 on ΓpD × (0, T ],

σ̃ n = 0 and p = 0 on ΓpN × (0, T ],

(u, ∂tu) = (u0,u1) in Ωp × {0},
(w, ∂tw) = (w0,w1) in Ωp × {0},

(30)

where the density ρw is given by ρw = aφ−1ρf with tortuosity a > 1, η repre-
sents the dynamic viscosity of the fluid, k is the absolute permeability, and m
denotes the Biot modulus. As in the previous section, we assume that the model
coefficients ρf , ρw, ηk

−1,m ∈ L∞(Ωp) are strictly positive scalar fields and that
the source term f , g and the initial conditions (w0,w1) are regular vector fields,
namely f , g ∈ L2((0, T ];L2(Ωp)) and (w0,w1) ∈ H0(div,Ωp) × L2(Ωp). The
third and fourth equations in (30) correspond to the dynamic Darcy’s law and
the conservation of fluid mass, respectively. For the sake of simplicity, in (30)
we have also assumed that the clamped region ΓpD ⊂ ∂Ωp is impermeable
and a null pore pressure condition is prescribed on the Neumann boundary
ΓpN = ∂Ωp \ ΓpD, cf. Figure 4. We remark that more general boundary condi-
tions can be treated up to minor modifications.

In what follows, we focus on the two-displacement formulation of the low
frequency poro-elasticity problem [69], that is obtained by inserting the ex-
pression of the total stress σ̃ and the pore pressure p in the other equations
in (30). The corresponding weak formulation reads: for all t ∈ (0, T ] find
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(u(t),w(t)) ∈H1
0 (Ωp)×H0(div,Ωp) such that

Mp((∂ttu, ∂ttw), (v, z)) + (ηk−1∂tw, z)Ωp +Ae(u,v) +Ap(βu+w, βv + z)

= (f ,v)Ωp + (g, z)Ωp , ∀(v, z) ∈H1
0 (Ωp)×H0(div,Ωp), (31)

with Ae : H1
0 (Ωp)×H1

0 (Ωp)→ R defined as the restriction to Ωp of in (20) and
the bilinear forms Mp,Ap defined such that

Mp((u,w), (v, z)) = (ρu+ ρfw,v)Ωp + (ρfu+ ρww, z)Ωp ,

Ap(w, z) = (m∇ ·w,∇ · z)Ωp ,
(32)

for all (u,w), (v, z) ∈ H1
0 (Ωp) ×H0(div,Ωp). The well-posedness of the low-

frequency poro-elasticity problem (31) has been established in [70, Section 5.2]
in the framework of semigroup theory.

5.1 Semi-discrete formulation

Proceeding as in Section 4.1, we derive the semi-discrete PolydG approxima-
tion of problem (31). We introduce a polytopic mesh T ph of Ωp satisfying As-
sumptions 3.1 and 3.2 and denote by Fph the set of faces of T ph . Here, we
consider the same polynomial space for both the discrete solid displacement
uh and filtration displacement wh, i.e. uh,wh ∈ V p

h = (Pph(T ph ))d, and we
assume that all the model coefficients are piecewise constant over T ph . The
PolydG semi-discrete problem consists in finding, for all t ∈ (0, T ], the solution
(uh(t),wh(t)) ∈ V p

h × V
p
h such that

Mp((∂ttuh, ∂ttwh), (vh, zh)) + (ηk−1∂twh, zh)Ωp +Aeh(uh,vh)

+Aph(βuh +wh, βvh + zh) = (f ,vh)Ωp + (g, zh)Ωp , ∀vh, zh ∈ V p
h , (33)

where Aeh : V p
h ×V

p
h → R is defined as in (22) and the bilinear form Aph defined

such that

Aph(w, z) = (m∇ ·w,∇ · z)T ph − ({{m(∇ ·w)}}, JzKn)Fpih ∪F
pD
h

− (JwKn, {{m(∇ · z)}})Fpih ∪FpDh + (γJwKn, JzKn)Fpih ∪F
pD
h
, (34)

for all w, z ∈ V p
h and the penalization function γ ∈ L∞(Fph) is given by

γ = m0

 max
κ∈{κ1,κ2}

(
m|κp

2
κh
−1
κ

)
, F ∈ Fpih , F ⊂ ∂κ1 ∩ ∂κ2,

m|κp
2
κh
−1
κ , F ∈ FpDh , F ⊂ ∂κ ∩ ΓpD,

(35)

where m0 is a positive user-dependent parameter. We remark that, owing to the
H(div)-regularity of the filtration displacement w solving (31), the penalization
term in (34) acts only on the normal component of the jumps. Problem (33)
is completed with suitable initial conditions (uh(0),wh(0), ∂tuh(0), ∂twh(0)) =
(u0

h,w
0
h,u

1
h,w

1
h) ∈ V p

h × V
p
h × V

p
h × V

p
h .
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We conclude this section by observing that the algebraic representation of
the semi-discrete formulation (33) is given by[

Mp
ρ Mp

ρf

Mp
ρf

Mp
ρw

] [
Ü

Ẅ

]
+

[
0 0
0 Mηk−1

] [
U̇

Ẇ

]
+

[
Ae +Ap

β2 Ap
β

Ap
β Ap

] [
U
W

]
=

[
F
G

]
,

(36)
with initial conditions [U,W, U̇ , Ẇ ](0) = [U0,W0, U1,W1] and [F , G]T corre-
sponding to the vector representations of the linear functionals in the right-hand
side of (33).

5.2 Stability and convergence results

The aim of this section is to establish an a priori estimate for the solution of
problem (33). First, we define for all u,w ∈ C1([0, T ];V p

h ) the energy function

‖(u,w)(t)‖2E = ‖ρ
1
2
u∂tu(t)‖2Ωp + ‖(ρfφ)

1
2 ∂t(u+ φ−1w)(t)‖2Ωp + ‖u(t)‖2DG,e

+ | (βu+w)(t) |2DG,p +‖(η/k)
1
2w(0)‖2Ωp +

∫ t

0

‖(η/k)
1
2 ∂tw(s)‖2Ωp ds, (37)

with ρu = ρs(1−φ)
2 , the norm ‖ · ‖DG,e : V p

h → R+ defined as in (26) and

| z |2DG,p= ‖m
1
2∇·z‖2T ph +‖γ 1

2 JzKn‖2FpIh ∪FpDh ∀z ∈ V p
h ⊕H0(div,Ωp). (38)

One can easily check that max0≤t≤T ‖(·, ·)(t)‖2E defines a norm on C1([0, T ];V p
h ×

V p
h ), cf. [49, Remark 3.2]. We are now ready to derive the stability estimate

for the PolydG semi-discretization.

Proposition 5.1. Let f , g ∈ L2((0, T ];L2(Ωp)) and let uh,wh ∈ C1((0, T ];V p
h )

be the solutions of (33) obtained with sufficiently large penalization parameters
σ0 and m0. Let additionally assume that ρ−1

u , kη−1 ∈ L∞(Ωp). Then, it holds

max
t∈[0,T ]

‖(uh,wh)(t)‖E ≤
∫ T

0

∥∥∥(k/η)
1
2 g(s)

∥∥∥2

Ωp
ds+ T

∫ T

0

∥∥∥ρ− 1
2

u f(s)
∥∥∥2

Ωp
ds+ E0,

with

E0 = E0(u0
h,w

0
h,u

1
h,w

1
h) =Mp((u1

h,w
1
h), (u1

h,w
1
h)) +Aeh(u0

h,u
0
h)

+Aph(βu0
h +w0

h, βu
0
h +w0

h) + ‖(η/k)
1
2w0

h‖2Ωp . (39)

Proof. First, we observe that the bilinear form Mp is positive definite. Indeed,
owing to the definition of the density functions ρ, ρu, and ρw and since ã =
a− 1 > 0, for all (v, z) 6= (0,0) one has

Mp((v, z), (v, z)) = 2
∥∥∥ρ 1

2
uv
∥∥∥2

Ωp
+

∥∥∥∥(ρfφ)
1
2

(
v +

z

φ

)∥∥∥∥2

Ωp

+

∥∥∥∥∥ (ρf ã)
1
2 z

φ
1
2

∥∥∥∥∥
2

Ωp

> 2
∥∥∥ρ 1

2
uv
∥∥∥2

Ωp
+
∥∥∥(ρfφ)

1
2

(
v + φ−1z

)∥∥∥2

Ωp
> 0.

(40)
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Furthermore, if the stability parameters σ0 and m0 are chosen sufficiently large,
the bilinear forms Aeh and Aph are coercive (see [49, Lemma A.3]), i.e., for all
vh, zh ∈ V p

h it holds

Aeh(vh,vh) ≥ ‖vh‖2DG,e,

Aph(βvh + zh, βvh + zh) ≥| βvh + zh |2DG,p .
(41)

Then, taking (vh, zh) = (∂tuh, ∂twh) in (33) and integrating in time between 0
and t ≤ T , it is inferred that

[Mp((∂tuh, ∂twh), (∂tuh, ∂twh)) +Aeh(uh,uh) +Aph(βuh +wh, βuh +wh)](t)

+2

∫ t

0

∥∥∥∥(ηk) 1
2

∂twh(s)

∥∥∥∥2

Ωp

ds = 2

∫ t

0

(f , ∂tuh)Ωp(s)+(g, ∂twh)Ωp(s) ds+Ẽ0,

with Ẽ0 = Mp((u1
h,w

1
h), (u1

h,w
1
h)) + Aeh(u0

h,u
0
h) + Aph(βu0

h + w0
h, βu

0
h + w0

h).
Now, using (40) and (41) to infer a lower bound for the left-hand side of the

previous identity and summing ‖(η/k)
1
2w0

h‖2Ωp to both sides of the resulting
inequality, we obtain

‖(uh,wh)(t)‖E +
∥∥∥ρ 1

2
u∂tuh(t)

∥∥∥2

Ωp
+

∫ t

0

∥∥∥(η/k)
1
2 ∂twh(s)

∥∥∥2

Ωp
ds

≤ 2

∫ t

0

(f , ∂tuh)Ωp(s) + (g, ∂twh)Ωp(s) ds+ E0, (42)

where E0 = Ẽ0 + ‖(η/k)
1
2w0

h‖2Ωp corresponds to the quantity defined in (39).

Therefore, to conclude it only remains to bound the right-hand side of (42). To
do so, we apply the Cauchy–Schwarz and Young inequalities to infer

2

∫ t

0

(g, ∂twh)Ωp(s) ds ≤
∫ t

0

∥∥∥(η/k)
1
2 ∂twh(s)

∥∥∥2

Ωp
ds+

∫ t

0

∥∥∥(k/η)
1
2 g(s)

∥∥∥2

Ωp
ds

and

2

∫ t

0

(f , ∂tuh)Ωp(s) ds ≤ 1

t

∫ t

0

∥∥∥ρ 1
2
u∂tuh(s)

∥∥∥2

Ωp
ds+ t

∫ t

0

∥∥∥ρ− 1
2

u f(s)
∥∥∥2

Ωp
ds

≤ max
s∈[0,t]

∥∥∥ρ 1
2
u∂tuh(s)

∥∥∥2

Ωp
+ t

∫ t

0

∥∥∥ρ− 1
2

u f(s)
∥∥∥2

Ωp
ds.

inserting the previous bounds into (42) and taking the maximum over t ∈ [0, T ],
yields the assertion.

Remark 1. We observe that, proceeding as in [71, Lemma 7], it is possible to
obtain a stability estimate for problem (33) requiring µ−1 ∈ L∞(Ωp) together
with f ∈ H1((0, T ],L2(Ωp)) instead of ρ−1

u ∈ L∞(Ωp). The key step is based on

estimating the term
∫ t

0
(f , ∂tuh)Ωp by using partial integration and the discrete

Korn’s first inequality [72, Lemma 1].
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Field Value
ρf , ρ 1
λ, µ 1
a 1
φ 0.5
η 1
ρw 2
β, m 1

Fig. 5: Test case of Section 5.3. (Left) Poro-elastic test case. Polygonal mesh,
with Nel = 100 polygons. (Right) Poro-elastic test case. Physical parameters.

For the sake of conciseness, we decide not to present here the convergence
analysis for the PolydG formulation of the poro-elastic problem (33). However,
an error estimate can be readily deduced from Theorem 58 below, in the case
in which the exact solution on the acoustic part of the domain is null.

5.3 Verification test

We consider problem (30) in Ωp = (−1, 0)× (0, 1) and choose as exact solution

u(x, y; t) =

(
x2 cos(πx2 ) sin(πx)
x2 cos(πx2 ) sin(πx)

)
cos(
√

2πt), w(x, y; t) = −u(x, y; t). (43)

As before, Dirichlet boundary conditions and initial conditions are set accord-
ingly. The model problem is solved on a sequence of polygonal meshes as the
one shown in Figure 5 (left), with physical parameters shown in Figure 5 (right).

The final time T has been set equal to 0.25, considering a timestep of ∆t =
10−4 for the Newmark-β scheme, γN = 1/2 and βN = 1/4, cf. (17). The penalty
parameters σ0 and m0 appearing in definitions (23) and (35), respectively, have
been chosen equal to 10.

In Figure 6 (left) we report the computed L2-errors for the elastic u and
filtration w displacements as a function of the polynomial degree p in a semilog-
scale. We fix the number of polygonal elements as Nel = 100. We observe an
exponential rate of convergence since the solution (43) is analytic. In Figure 6
(right) we report the computed energy error ‖(u− uh,w −wh)‖E, cf. (58), as
a function of the mesh size h for a polynomial degree p = 2, 3, 4. In this case we
retrieve the rate of convergence O(hp) as it is proved in (58).

6 Poro-elastic-acoustic media

In this section, we present the PolydG discretization of the poro-elasto-acoustic
interface problem. We refer the reader to [49] for the rigorous mathemati-
cal analysis of the model problem and the detailed derivation of the proposed
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h \ p 2 3 4
0.36 5.8052e-1 1.0464e-1 1.1450e-2
0.25 3.3505e-1 3.1326e-2 2.9694e-3
0.18 1.7345e-1 1.1617e-2 8.0532e-4
0.13 8.9824e-2 4.7403e-3 2.0572e-4
rate 2.10 3.06 3.86

Fig. 6: Test case of Section 5.3. (Left) Computed L2-errors ‖eu‖L2(Ωp) = ‖u−
uh‖L2(Ωp) and ‖ew‖L2(Ωp) = ‖w − wh‖L2(Ωp) as a function of the polynomial
degree p in a semilogarithmic scale for Nel = 100 polygonal elements. (Right)
Computed energy error as a function of the mesh size h for polynomial degree
p = 2, 3, 4. The rate of convergence is also reported in the last row, cf. (58).

Fig. 7: Simplified representation of the domain Ω = Ωp ∪ Ωa for d = 2. Pores
classification in Ωp: sealed (1), open (2) and imperfect (3).

method. In what follows, we assume that Ω is decomposed into two disjoint,
polygonal/polyhedral subdomains: Ω = Ωp ∪ Ωa, cf. Figure 7.

The two subdomains share part of their boundary, resulting in the interface
ΓI = ∂Ωp ∩ ∂Ωa. We set ∂Ωp = ΓpD ∪ ΓpN ∪ ΓI and ∂Ωa = ΓaD ∪ ΓaN ∪ ΓI ,
where the surface measures of ΓpD, ΓaD, and ΓI are assumed to be strictly
positive. The outer unit normal vectors to ∂Ωp and ∂Ωa are denoted by np and
na, respectively, so that np = −na on ΓI .

The subdomain Ωp represents a poro-elasto medium whose dynamical be-
havior is described by Biot’s equations (30). In the fluid domain Ωa, we consider
an acoustic wave with constant velocity c > 0 and mass density ρa > 0 such
that ρa, c

−2 ∈ L∞(Ωa). For a given source term h ∈ L2((0, T ];L2(Ωa)), the
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acoustic potential ϕ satisfies
ρac
−2∂ttϕ−∇ · (ρa∇ϕ) = h in Ωa × (0, T ],

ϕ = 0 on ΓaD × (0, T ],

ρa∇ϕ · na = 0 on ΓaN × (0, T ],

(ϕ, ∂tϕ) = (ϕ0, ϕ1) in Ωa × {0},

(44)

with (ϕ0, ϕ1) ∈ H1
0 (Ωa) × L2(Ωa). To close the coupled poro-elasto-acoustic

problem, some interface conditions on ΓI are needed. Here, we consider phisi-
cally consistent transmission conditions (see, e.g., [22] and [73]) expressing the
continuity of normal stresses, continuity of pressure, and conservation of mass:

−σ̃np = ρaϕ̇np on ΓI × (0, T ],

(τ − 1)ẇ · np + τp = τρaϕ̇ on ΓI × (0, T ],

−(u̇+ ẇ) · np = ∇ϕ · np on ΓI × (0, T ].

(45)

The parameter τ : ΓI → [0, 1] denotes the hydraulic permeability at the inter-
face and models different pores configurations, cf. Figure 7. In the open pores
region τ−1(1) ⊂ ΓI the second equation in (45) reduces to p = ρaϕ̇, while in the
sealed pores subset τ−1(0) we have ẇ · np = 0, implying that τ−1(0) is imper-
meable. Finally, the imperfect pores region τ−1((0, 1)) models an intermediate
state between open and sealed pores. For later use, we split the interface into
two disjoint (possibly non-connected) subsets ΓI = ΓsI ∪ ΓoI , with

ΓsI = τ−1(0) and ΓoI = τ−1((0, 1]) = ΓI \ ΓsI .

We remark that the first and second conditions in (45) plays the role of a
Neumann and a Robin-like conditions for system (30), respectively. Similarly,
the third equation in (45) acts as a Neumann condition for problem (44). The
existence and uniqueness of a strong solution to the poro-elasto-acoustic problem
coupling equations (30), (44), and (45) is proved in [49, Appendix A].

In order to derive the weak formulation of the coupled problem, we introduce
the function ζτ : ΓoI → R+, defined by ζτ = τ−1(1− τ), and the weighted space

Wτ = {z ∈H0(div,Ωp) | ζ
1
2
τ (z · np)|ΓoI ∈ L

2(ΓoI), (z · np)|ΓsI = 0}, (46)

equipped with the norm

‖z‖Wτ
= ‖z‖Ωp + ‖∇ · z‖Ωp + ‖ζ

1
2
τ z · np‖ΓoI ∀z ∈Wτ .

The weak form of the problem obtained by coupling equations (30), (44), and
(45) reads as: for any t ∈ (0, T ], find (u,w, ϕ)(t) ∈H1

0 (Ωp)×Wτ ×H1
0 (Ωa) s.t.

M((∂ttu, ∂ttw, ∂ttϕ), (v, z, ψ)) +A((u,w, ϕ), (v, z, ψ)) + B(∂tw, z)

+ C(∂tϕ,v + z)− C(∂t(u+w), ψ) = (f ,v)Ωp + (g, z)Ωp + (h, ψ)Ωa (47)
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for all (v, z, ψ) ∈H1
0 (Ωp)×Wτ ×H1

0 (Ωa), where we have set

M((u,w, ϕ), (v, z, ψ)) =Mp((u,w), (v, z)) + (ρac
−2ϕ,ψ)Ωa ,

A((u,w, ϕ), (v, z, ψ)) = Ae(u,v) +Ap(βu+w, βv + z) +Aa(ϕ,ψ),

B(w, z) = (ηk−1w, z)Ωp + (ζτ w · np, z · np)ΓoI
,

C(ϕ, z) = 〈ρaϕ, z · np〉ΓI ,

(48)

with Mp,Ae,Ap defined in (32), (20), and (34), respectively. In (48), the
bilinear form Aa is defined such that Aa(ϕ,ψ) = (ρa∇ϕ,∇ψ)Ωa for all ϕ,ψ ∈
H1

0 (Ωa) and 〈·, ·〉ΓI denotes the H
1
2 (ΓI)-H

− 1
2 (ΓI) duality product.

6.1 Semi-discrete formulation

We decompose the polytopic regular mesh Th as Th = T ph ∪T ah , where T ah and T ph
are aligned with Ωa and Ωp, respectively. In a similar way, we decompose Fh as
Fh = FIh ∪ F

p
h ∪ Fah , where FIh = {F ∈ Fh : F ⊂ ∂κp ∩ ∂κa, κp ∈ T ph , κa ∈ T ah },

and Fph and Fah denote the faces of T ph and T ah , respectively, not laying on
ΓI . The discrete spaces are selected as follows: given element-wise constant
polynomial degrees ph : T ph → N∗ and rh : T ah → N∗, we let V p

h = [Pph(T ph )]d

and V ah = Prh(T ah ). Finally, we also assume that the coefficients ρa and c
are piecewise constant over T ah and τ is piecewise constant over FIh . Under
this assumption, we can decompose the set of mesh faces belonging to ΓI as
FIh = FIsh ∪ FIoh , with FIsh = {F ∈ FIh | F ⊂ ΓsI} and FIoh = FIh \ FIsh .

The semi-discrete PolydG formulation of problem (47) consists in finding,
for all t ∈ (0, T ], the discrete solution (uh,wh, ϕh)(t) ∈ V p

h ×V
p
h ×V ah such that

∂ttM((uh,wh, ϕh), (vh, zh, ψh)) +Ah((uh,wh, ϕh), (vh, zh, ψh)) + ∂tB(wh, zh)

+∂t[Ch(ϕh,vh+ zh)− Ch(uh+wh, ψh)]=(f ,vh)Ωp+(g, zh)Ωp+(h, ψh)Ωa (49)

for all discrete functions (vh, zh, ψh) ∈ V p
h ×V

p
h × V ah . As initial conditions we

take the L2-orthogonal projections onto (V p
h × V

p
h × V ah )2 of the initial data

(u0,w0, ϕ0,u1,w1, ϕ1). For all u,v,w, z ∈ V p
h and ϕ,ψ ∈ V ah , the bilinear

forms Ah and Ch appearing in (49) are given by

Ah((u,v, ϕ), (v, z, ψ)) = Aeh(u,v) + Ãph(βu+w, βv + z) +Aah(ϕ,ψ), (50)

Ch(ϕ,v) = (ρaϕ,v · np)FIh , (51)

with Aeh : V p
h × V

p
h → R defined as in (22) and

Ãph(w, z) = (m∇ ·w,∇ · z)T ph − ({{m(∇ ·w)}}, JzKn)Fpih ∪F
pD
h ∪F

Is
h

− (JwKn, {{m(∇ · z)}})Fpih ∪FpDh ∪FIsh + (γJwKn, JzKn)Fpih ∪F
pD
h ∪F

Is
h
,

Aah(ϕ,ψ) = (ρa∇ϕ,∇ψ)T ah − ({{ρa∇ϕ}}, JψK)Faih ∪FaDh
− (JϕK, {{ρa∇ψ}})Faih ∪FaDh + (χJϕK, JψK)Faih ∪FaDh .

(52)
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Notice that the bilinear form Ãph is different from Aph defined in (34). Indeed, the

definition of Ãph in (52) also takes into account the essential condition z ·np = 0
on ΓsI embedded in the definition of the functional space Wτ . The stabilization
function χ ∈ L∞(Fah) is defined such that

χ = ρ0

 max
κ∈{κ1,κ2}

(
(ρa)|κ r

2
κh
−1
κ

)
, F ∈ Faih , F ⊂ ∂κ1 ∩ ∂κ2,

(ρa)|κr
2
κh
−1
κ , F ∈ FaDh , F ⊂ ∂κ ∩ ΓaD,

(53)

with ρ0 > 0 being a user-dependent parameter.
Denoting by (U , W ,Φ) the vector of the coefficients of (uh,wh, ϕh) in the

chosen basis for V p
h × V

p
h × V ah , the algebraic form of problem (49) reads:

Mp
ρ Mp

ρf
0

Mp
ρf

Mp
ρw 0

0 0 Ma
ρac−2

 ÜẄ
Φ̈

+

 0 0 C
0 B C
−C −C 0

 U̇Ẇ
Φ̇


+

Ae + Ãp
β2 Ãp

β 0

Ãp
β Ãp 0

0 0 Aa


UW

Φ

 =

FG
H

 , (54)

with initial data (U,W,Φ)(0) = (U0,W0,Φ0) and (U̇ , Ẇ , Φ̇)(0) = (U1,W1,Φ1).

6.2 Stability and convergence results

In this section, we present the main stability and convergence results proved in
[49]. First, we introduce the energy norm defined such that, for all (u,w, ϕ) ∈
C1([0, T ];V p

h × V
p
h × V ah ),

‖(u,w, ϕ)(t)‖2E = ‖(u,w)(t)‖2E + ‖ρ
1
2
a c
−1∂tϕ(t)‖2Ωa + ‖ϕ(t)‖2DG,a

+ ‖γ 1
2w · n‖2FIsh +

∫ t

0

‖ζ
1
2
τ ∂t(w · n)‖2FIoh ds, (55)

with ‖ · ‖E defined in (37) and ‖ · ‖DG,a : V a
h → R+ given by

‖ϕ‖2DG,a = ‖ρ
1
2
a∇ϕ‖2T ah + ‖χ 1

2 JϕK‖2FaIh ∪FaDh ∀ϕ ∈ V a
h ⊕H1

0 (Ωa). (56)

The stability of the semi-discrete PolydG problem (49) is a consequence of
Proposition 6.1 below, which also implies that the formulation is dissipative.
Indeed, in the case of null external source terms, it follows from estimate (57)
that ‖(uh,wh, ϕh)(t)‖E . ‖(uh,wh, ϕh)(0)‖E for any t > 0. The proof of the
following result is based on taking (vh, zh, ψh) = (∂tuh, ∂twh, ∂tϕh) ∈ V p

h ×
V p
h × V ah in (49), using the skew-symmetry of the coupling terms, and then

reasoning as in Proposition 5.1 (see [49, Theorem 3.4] for the details).
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Proposition 6.1. For sufficiently large penalty parameters σ0,m0, ρ0 and for
any t ∈ (0, T ], the solution (uh,wh, ϕh)(t) ∈ V p

h × V
p
h × V ah of (49) satisfies

‖(uh,wh, ϕh)(t)‖E . ‖(uh,wh, ϕh)(0)‖E+

∫ t

0

‖f(s)‖2Ωp+‖g(s)‖2Ωp+‖h(s)‖2Ωads,

(57)
with hidden constant depending on time t and on the material properties, but
independent of the interface parameter τ .

In what follows, we report the main result concerning the error analysis
of the PolydG discretization (49). To infer the error estimate of Theorem 6.1
below, an additional assumption on the interface permeability τ is required.

Assumption 6.1. For each F ∈ FIoh and κ ∈ T ph such that F ⊂ ∂κ ∩ ΓoI , it

holds (ζτ )|F = ( 1−τ
τ )|F .

p2p,κ
hκ

, with hidden constant independent of τ .

We remark that the previous assumption is used only for establishing the error
estimate below but, according to our observation, it is not needed in practical
applications. We refer the reader to [49, Theorem 4.3] for the detailed proof of
the following result.

Theorem 6.1. Let Assumption 3.1, Assumption 3.2, and Assumption 6.1 be
satisfied and assume that the solution (u,w, ϕ) of the weak formulation (31)
is sufficiently regular. For any time t ∈ [0, T ], let (uh,wh, ϕh)(t) ∈ V p

h ×
V p
h ×V ah be the PolydG solution of problem (49) obtained with sufficiently large

penalization parameters σ0,m0 and ρ0. Then, for any time t ∈ (0, T ], the
discretization error E(t) = (u− uh,w −wh, ϕ− ϕh)(t) satisfies

‖E(t)‖E .
∑
κ∈T ph

hsκ−1
κ

p
mκ−3/2
κ

(
IT]mκ(u,w)(t) +

∫ t

0

IT]mκ(∂tu, ∂tw)(s) ds

)

+
∑
κ∈T ah

hqκ−1
κ

r
lκ−3/2
κ

(
IT]lκ (ϕ)(t) +

∫ t

0

IT]lκ (∂tϕ)(s) ds

)
,

(58)

where

IT]mκ(u,w) = ‖Ẽu‖Hmκ (T])+ ‖Ẽw‖Hmκ (T])+ ‖Ẽ∂tu‖Hmκ (T])+ ‖Ẽ∂tw‖Hmκ (T]),

IT]lκ (ϕ) = ‖Ẽϕ‖Hlκ (T]) + ‖Ẽ∂tϕ‖Hlκ (T]),

with sκ = min(pκ + 1,mκ) and qκ = min(rκ + 1, lκ) for all κ ∈ Th. The hidden
constant depends on time t, the material properties, and the shape-regularity of
the covering T], but is independent of the discretization parameters and of τ .

6.3 Verification test

As a verification test case we study the poro-elasto-acoustic problem (30),(44)
with (45) conditions in Ω = Ωp ∪Ωa = (−1, 1)× (0, 1). We consider a sequence
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Fig. 8: Test case of Section 6.3. Polygonal mesh with Nel = 100 elements.

h \ p 2 3 4
0.35 5.5007e-1 4.4095e-3 7.6593e-3
0.25 2.0885e-1 1-6164e-3 1.7884e-3
0.18 1.3225e-1 6.5993e-4 5.1521e-4
0.13 6.9271e-2 2.5537e-4 1.2756e-4
rate 1.98 2.91 4.29

Fig. 9: Test case of Section 6.3. (Left) Computed L2-errors ‖eu‖L2(Ωp) =
‖u−uh‖L2(Ωp), ‖ew‖L2(Ωp) = ‖w−wh‖L2(Ωp) and ‖eϕ‖L2(Ωa) = ‖ϕ−ϕh‖L2(Ωa)

as a function of the polynomial degree p in a semilogarithmic scale with by fixing
the number of polygonal elements as Nel = 100. (Right) Computed energy error
as a function of the mesh size h for polynomial degree p = 2, 3, 4. The rate of
convergence is also reported in the last row, cf. (58).

of polygonal meshes as the one shown in Figure 8, the physical parameters listed
in Figure 5 (right) and c = ρa = 1. As exact solution we consider (43) in Ωp
and

ϕ(x, y; t) = x2 sin(πx) sin(πy) sin(
√

2πt),

in Ωa in order to have a null pressure in the whole poroelastic domain. Dirichlet
and initial conditions are set accordingly. We remark that with this choice the
interface coupling conditions are null on ΓI . For the following test cases we
consider τ = 1 (open pores) at the interface, however similar results can be
obtained with τ ∈ [0, 1), cf. [49]. We fix the T = 0.25 and consider a time
step ∆t = 10−4 for the Newmark-β scheme, γN = 1/2 and βN = 1/4, cf. (17).
Penalty parameters σ0 and m0 in Ωp as well as ρ0 ∈ Ωa are set equal to 10, cf.
(23), (35) and (53), respectively.
Finally, in Figure 9 (left) we report in a semilog-scale the computed L2-norms
of the error fixing a computational mesh of Nel = 100 polygons and varying
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Fig. 10: Test case of Section 7.1. Computational domain: the location of the
point-source force is superimposed in red.

the polynomial degree p = 1, 2, . . . , 5. An exponential decay of the error is
clearly attained. In Figure 9 (right) we report the computed energy errors as a
function of the the mesh-size h, for the p = 2, 3, 4. Consistently with (58) the
errors decays proportionally to hp.

7 Examples of physical interest

7.1 Two layered media

In this section we consider a wave propagation problem in heterogeneous media
taken from [29]. The aim of this test is to show how different assumptions on
the model can determine and change the behavior of the wave propagation. The
domain of interest is Ω = (0, 4.8)2 km2 and consists of two layers as depicted in
Figure 10. In the first case (a) the layers are perfectly elastic, cf. Table 1, while
in the second case (b) the layers are assumed to be poro-elastic, cf. Table 2.
A point-wise source f , cf. (11), acting in the y− direction is located in the
upper part of the domain at point x = (2.4, 2.7) km. The time evolution of the
latter is given by a Ricker-wavelet (12) with amplitude A0 = 1 m, time-shift
t0 = 0.3 s and peak-frequency fp = 5 Hz. For both models (a) and (b) we use a
shape-polygonal mesh with characteristic size h = 100 and a polynomial degree
p = 3. We set homogeneous Dirichlet conditions on the boundary and use null
initial conditions. To integrate in time model (a) we chose the leap-frog scheme
while for model (b) the Newmark-β scheme with parameters β and γ as in the
previous section. We fix the final time T = 1 s and chose ∆t = 1.e− 3 s.

In Figure 11 we report some snapshots of the computed magnitude of the
velocity field | v | for models (a) and (b). As expected, the propagation of
the wave in the elastic domain is regular and refraction phenomena are not very
evident (due to a low contrast between the wave speeds). On the contrary, when
porous media are accounted for, the refraction effects are more pronounced. This
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Lower Layer Upper Layer
Solid density ρ 2650 2200 kg/m3

Shear modulus µ 1.5038 ·109 4.3738 ·109 Pa
Lamé coefficient λ 1.8121·109 7.2073·109 Pa
Damping coefficient ζ 0 0 s−1

Tab. 1: Test case of Section 7.1. Physical parameters for elastic media.

Lower Layer Upper Layer
Fluid Fluid density ρf 750 950 kg/m3

Dynamic viscosity η 0 0 Pa · s
Grain Solid density ρs 2650 2200 kg/m3

Shear modulus µ 1.5038 ·109 4.3738 ·109 Pa
Matrix Porosity φ 0.2 0.4

Tortuosity a 2 2
Permeability k 1 · 10−12 1 · 10−12 m2

Lamé coefficient λ 1.8121·109 7.2073·109 Pa
Biot’s coefficient m 7.2642·109 6.8386·109 Pa
Biot’s coefficient β 0.9405 0.0290

Tab. 2: Test case of Section 7.1. Physical parameters for poro-elastic media.

is in agreement with the findings in [29].

7.2 Wave propagation in layered poro-elastic-acoustic media

As a final test cases we consider the domain reproduced in Figure 12 where an
acoustic layer is in contact with a heterogeneous poro-elastic body.

For the acoustic domain we set ρa = 1500 [kg/m3] and c = 1000 [m/s].
Physical parameters for the poro-elastic domain are chosen as in Table 2 where,
for this case, the property of the former “Lower Layer” are assigned to the first
poro-elastic subdomain, while those of the former “Upper Layer” to the second
poro-elastic subdomain, cf. Figure 12. In this numerical example we chose the
dynamic viscosity η equal to 0.001. Boundary and initial conditions have been
set equal to zero both for the poroelastic and the acoustic domain. Forcing terms
are null in Ωp, while in Ωa we consider a force of the form h = r(x, y)q(t), where
q is a Ricker wavelet of the form (12) with A0 = 1 [Hz m3], βp = 39.4784 [Hz2]
and t0 = 0.75 s. The function r(x, y) is defined as r(x, y) = 1, if (x, y) ∈⋃4
i=1B(xi, R), while r(x, y) = 0, otherwise, where B(xi, R) is the circle centered

in xi and with radius R. Here, we set x1 = (13097, 8868) m, x2 = (16673, 8868)
m, x3 = (27079, 8868) m, x4 = (29324, 8868) m and R = 100 m. Notice that,
the support of the function r(x, y) has been reported in Figure 12, superimposed
with a sample of the computational mesh employed.

Simulations have been carried out by considering: a polygonal mesh consist-
ing in N = 6356 triangles, subdivided into Na = 2380 and Np = 3976 triangles
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Fig. 11: Test case of Section 7.1. Computed velocity field | v | at the time
instants t = 0.3 s (left), t = 0.6 s (center) and t = 1 s (right) for elastic model
(a) (top) and poro-elastic model (b) (bottom).

Fig. 12: Test case of Section 7.2. Computational domain. Location of the
acoustic sources are also superimposed.



8 Conclusions 28

for the acoustic and poroelastic domain, respectively; a Newmark scheme with
time step ∆t = 10−2 s and γN = 1/2 and βN = 1/4 in a time interval [0, 4] s;
a polynomial degree pκ = rκ = p = 4. In Figure 13, we show the computed
pressure ph considering the interface permeability τ = 1. The latter value mod-
els an open pores condition at the interface, cf. (45). Remark that ph = ρaϕ̇h
in the acoustic domain while ph = −m(β∇ · uh + ∇ · wh) in the poro-elastic
one. As one can see, the pressure wave correctly propagates from the acoustic
domain to the poro-elastic one: the continuity at the interface boundary can
be appreciated. Finally, we note how the second porous layer (sound absorbing
material) produces a damping of the pressure field.

8 Conclusions

In this work we have presented a review of the development of PolyDG methods
for multiphysics wave propagation problem in elastic, poro-elastic and poro-
elasto-acoustic media.

After having recalled the theoretical background of the analysis of PolyDG
methods we analysed the well-posedness and stability of different numerical
formulations and proved hp-version a priori error estimates for the semi-discrete
scheme. Time integration of the latter is obtained based on employing the leap-
frog or the a Newmark-scheme. Numerical experiments have been designed not
only to verify the numerical performance of PolyDG methods but also to exploit
the flexibility in the process of mesh design offered by polytopic elements. In
this respect, numerical tests of physical interest have been also discussed.

To conclude, we can affirm that PolyDG methods allow a robust and flexible
numerical discretization that can be successfully applied to wave propagation
problems. Future developments in this direction include the study of multi-
physics problems such as fluid-structure (with poro-elastic or thermo-elastic
structure) interaction problems as well as the exploitation of agglomeration-
based algorithms to design multilevel and multigrid methods for the efficient
iterative solution of the (linear) system of equations stemming from the PolyDG
discretization.
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high-order discontinuous Galerkin method for nonlinear sound waves. J.
Comput. Phys., 415:109484, 2020.

[47] P. F. Antonietti, F. Bonaldi, and I. Mazzieri. A high-order discontinuous
Galerkin approach to the elasto-acoustic problem. Comput. Methods Appl.
Mech. Engrg., 358:112634, 29, 2020.

[48] P. F. Antonietti, F. Bonaldi, and I. Mazzieri. Simulation of three-
dimensional elastoacoustic wave propagation based on a Discontinuous
Galerkin Spectral Element Method. Internat. J. Numer. Methods Engrg.,
121(10):2206–2226, 2020.

[49] P. F. Antonietti, M. Botti, I. Mazzieri, and S. Nati Poltri. A high-order dis-
continuous Galerkin method for the poro-elasto-acoustic problem on polyg-
onal and polyhedral grids. SIAM J. Sci. Comput., 2021. In press.

[50] R. Kosloff and D. Kosloff. Absorbing boundaries for wave propagation
problems. J. Comput. Phys., 63(2):363–376, 1986.

[51] I. B. Morozov. Geometrical attenuation, frequency dependence of Q, and
the absorption band problem. Geophys. J. Int., 175(1):239–252, 2008.

[52] D. Komatitsch and J. Tromp. Spectral-element simulations of global seismic
wave propagation-I. Validation. Geophys. J. Int., 149(2):390–412, 2002.



8 Conclusions 34

[53] P. Moczo, J. Kristek, and M. Gális. The Finite-Difference Modelling of
Earthquake Motions: Waves and Ruptures. Cambridge University Press,
United Kingdom, 2014.

[54] A. Quarteroni, A. Tagliani, and E. Zampieri. Generalized Galerkin approx-
imations of elastic waves with absorbing boundary conditions. Comput.
Methods Appl. Mech. Engrg., 163(1–4):323 – 341, 1998.
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