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Abstract

In this work two-phase compressible-incompressible flows are studied. In particular, the possibility of

driving the gas bubbles moving in a liquid towards a prescribed position is investigated. To this end,

first a well-established mathematical model for two-phase compressible-incompressible fluids is briefly

introduced, then an adjoint-based optimal control problem is defined. Finally numerical results on

the controllability of the system are presented.
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1. Introduction

Multi-phase flow models describe many phenomena in physics. Indeed, any time two or more

fluids move in a given domain they can be represented with a multi-phase model. In compressible-

incompressible flow models, one fluid (typically a liquid) is assumed incompressible and interacts with

a second fluid (typically a gas) for which compressibility effects cannot be neglected. This class of

models is of particular interest for those kinds of applications in which the change of volume of the

gaseous component of the multi-phase flow plays a crucial role.

This is the case, for instance, of the production process of metal foams, which are metallic structures

containing gaseous inclusions. Gas bubbles are first generated by admixing gas-releasing blowing

agents with the molten metal and during the growing process they move within the liquid until the

solidification phase starts. The final position and size of such bubbles is what determines the physical

properties of the foam. Modelling such a complex process is a challenging task since it involves many

different interacting phenomena including fluid-dynamics, chemical reactions, phase-change and heat

transfer. We refer to [1] and [2] for an overview on this industrial process and the related modelling
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approaches. An even tougher challenge is controlling the process by driving the distribution of the

gas bubbles towards a desired configuration. The present paper proposes a first contribution in this

direction.

The selection of a suitable multi-phase model is critical since it should combine the ability to

capture the evolution of compressible bubbles in an incompressible fluid while keeping the overall

formulation simple enough to numerically solve an optimal control problem.

When immiscible fluids are considered, different multi-phase models can be devised, each charac-

terised by its own way of keeping track of the region occupied by the different fluids. Limiting our

focus to the so-called front capturing approaches where the interface position is defined by the value

of an auxiliary function, the most common techniques are the Level Set Method ([3], [4]), the Volume

Of Fluid Method ([5]) and the Ghost Fluid Method ([6]). Each of these approaches has been widely

used in the literature concerning two-phase flows.

In the case of compressible-incompressible flows different models can be adopted for the two fluids.

Indeed, while the incompressible fluid is typically modelled by using the incompressible Navier-Stokes

equations, the compressible fluid requires a compressible formulation of the flow equations. Therefore,

different sets of equations should be solved in the sub-domains occupied by the two phases and,

moreover, the position of the interface between these sub-domains is itself an unknown of the problem.

When the local fluid-dynamics inside the bubble can be neglected, approximated approaches such

as those proposed in [7, 8, 9] can be adopted, where the flow equations (and, in particular, the

incompressible Navier-Stokes equations) are solved in the liquid phase, while the gas phase is only

characterized by a scalar pressure variable governed by a state equation. In other works, such as

for example [10] and [11], the two different sets of equations are solved each in one subdomain,

using suitable interface conditions to match the solutions at the interface. This approach, of course,

brings along all the issues shared by the problems defined on moving domains (such as fluid-structure

interaction problems) and in particular the need to track the interface and to adapt the grid in the

sub-domains to always be conforming to the interface itself.

The approach we are interested in uses instead a unified formulation, in which the same set

of variables and equations can be used throughout the whole domain. Different models have been

proposed in the literature to meet this requirement: a simple unified formulation of the Navier-Stokes

equations in terms of primitive unknowns (pressure, velocity, temperature) which is suitable for both

compressible and incompressible limits has been proposed in [12] and [13] while in [14] the Low-Mach

approximation of the compressible Navier-Stokes equations ([15] and [16]) is used, leading to a more

involved model with multiple pressure components. In this work we consider an isothermal version
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of the model proposed in [12], also adopted in [17], for which we will derive the optimality conditions

required to solve an optimal control problem.

The solution of optimal control problems for compressible-incompressible flows is, to the best of

our knowledge, novel in the literature. In general, optimization in the framework of partial differential

equations has been investigated for a long time in its various forms, may it be for example inverse

problems (see e.g. [18]) or optimal control problems (see e.g. [19] and [20]). More specifically,

numerical optimization in the field of computational fluid dynamics has been the object of intensive

study, with different goals (e.g. drag reduction, energy minimization, heat dissipation and vorticity

reduction). It is beyond the scope of this paper to provide an exhaustive review on the topic. We

limit ourselves to recalling, among others, the book [21] and the references therein. In view of the

discussion above, the goal of this paper is to provide a first contribution towards the understanding

of optimal control problems governed by compressible-incompressible flows.

The outline of the paper is the following. In section 2, the two-phase compressible-incompressible

model proposed in [12] and adopted for the problem at hand is briefly recalled. In section 3, an

optimal control problem is introduced and the relative optimality conditions are derived. In section 4,

the discretization of the primal and adjoint equations and the gradient-type algorithm for the solution

of the optimal control problem are introduced. Finally, in section 5, numerical results for the optimal

control problems in three relevant test cases are presented and discussed.

2. A mathematical model for two-phase flows

In this section, the model used in this work to describe two-phase compressible-incompressible flows

will be introduced. The final goal of the model is to be able to accurately describe the dynamics of a

system composed of N gas bubbles contained in a liquid matrix, as shown in figure 1. In particular, we

consider the unified formulation proposed in [12], in which the same set of variables is used throughout

the whole domain, that is for both the gas and fluid phases.

Let Ω Ă Rd, d “ 2, 3, be a sufficiently regular bounded open set. As in [12], [17] and [13], the flow

in the liquid phase is governed by the incompressible Navier-Stokes equations
$

’

&

’

%

∇ ¨ u “ 0 ,

ρ
Bu
Bt ` ρ pu ¨∇qu´∇ ¨ τ`∇p “ ρg ,

(1)
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u “ 0

u “ 0

u “ 0

u “ 0

Figure 1: Example setting for the physical system of interest. In dark grey the gas bubbles and in lighter grey the liquid

matrix

while in the gaseous phase the compressible isothermal Navier-Stokes equations
$

’

’

’

’

’

&

’

’

’

’

’

%

Bρ
Bt `∇ ¨ pρuq “ 0 ,

ρ
Bu
Bt ` ρ pu ¨∇qu´∇ ¨ τ`∇p “ ρg ,

p “ ρ rT

(2)

are considered, where the gas is assumed to be perfect. In the above systems, u “ u px, tq denotes
the velocity, p “ p px, tq the pressure, ρ “ ρ px, tq the density, the temperature T is assumed to be

constant both in space and in time, r is the specific gas constant and g the gravitational acceleration.

Both systems must then be closed by suitable initial and boundary conditions.

In this work, fluids are all supposed to be Newtonian, so the viscous stress tensor is given by the

constitutive equation

τ “ λ p∇ ¨ uq I` 2µD ,

where µ “ µ px, tq represents the viscosity, λ “ λ px, tq is the second viscosity coefficient (in general,

λ “ ´2{3µ) and
D “ ∇u` p∇uqt

2 .

To write a single, unified formulation, valid in the whole domain Ω and which uses the same set of

variables in both phases, following [12], a Level Set approach was used, tracking the interface between

the two phases as the zero level-set of a signed distance function ϕ px, tq. This function will then be
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used to compute the Heaviside function:

H px, tq “
$

&

%

1 in the gas (ϕ ď 0),

0 in the liquid (ϕ ą 0),

which in turn will be employed to define the physical properties ρ, µ, λ and χT in the whole domain

by mixing the corresponding properties of each single phase. For each quantity, we will use subscripts

l and g to indicate “liquid” and “gas”, respectively.

In view of the above discussion, the two-phase model stemming from (1) and (2) reads as follows:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

∇ ¨ u` χT

ˆBp
Bt ` u ¨∇p

˙

“ 0 in Ωˆ pt0, tf s ,

ρ
Bu
Bt ` ρ pu ¨∇qu´∇ ¨ τ`∇p “ ρg` s in Ωˆ pt0, tf s ,
Bϕ
Bt ` u ¨∇ϕ “ 0 in Ωˆ pt0, tf s ,

H “ H pϕq “

$

’

&

’

%

1 if ϕ ď 0

0 if ϕ ą 0
in Ωˆ pt0, tf s ,

ρ “ p

rT
H ` ρl p1´Hq in Ωˆ pt0, tf s ,

µ “ µgH ` µl p1´Hq in Ωˆ pt0, tf s ,
λ “ λgH ` λl p1´Hq in Ωˆ pt0, tf s ,
χT “ 1

p
H in Ωˆ pt0, tf s ,

boundary conditions on BΩˆ pt0, tf s ,
initial conditions in Ω ,

(3)

where ρl, µg, µl, λg and λl are given constants depending on the fluids and χT denotes the isothermal

compressibility. See [12] for further details.

Notice that the different values of λ and µ in the two phases also enter in the definitions of the

viscous stress tensor τ. Moreover, in the incompressible case, since ∇ ¨u “ 0, the viscous stress tensor

reverts back to the standard incompressible constitutive equation:

τ “ 2µD .

Notice also that the surface tension term

s px, tq “ ς κn @ px, tq P Σ ptq

was added to the right hand side of the momentum equation, where Σ “ Σ ptq denotes the interface

between the two phases, being ς a constant representing the surface tension coefficient, n the normal
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vector to the interface and κ the curvature. As it is classical in the level set method, we have the

following relations:
n “ ∇ϕ

‖∇ϕ‖
,

κ “ ´∇ ¨ n “ ´∇ ¨ ∇ϕ
‖∇ϕ‖

.

(4)

The surface tension term s px, tq can be equivalently defined on the whole domain Ω as:

s px, tq “ ς κn δ pΣq ,

where δ pΣq is the Dirac function associated with Σ. See [22] for further details.

To reduce the onset of numerical instabilities of the discrete solution at the interface, the function

H pϕq will be substituted by a smoothed approximation, which reads:

Hε pxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1 if x ă ´ε2 ,
1
2

ˆ

1` cos
ˆ

π
2x` ε

2ε

˙˙

if ´ ε

2 ď x ď ε

2 ,

0 if x ą ε

2 ,

(5)

for a given a constant ε P R`. Similarly, the Dirac function will be replaced by a smoothed approxi-

mation, namely

δε pxq “ dFε

dx “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if x ă ´ε2 ,

´1
2
π

ε
sin

ˆ

π
2x` ε

2ε

˙

if ´ ε

2 ď x ď ε

2 ,

0 if x ą ε

2 .

(6)

Finally, we remark that in model (3) the two phases are immiscible and no mass transfer at the

interface is considered.

3. An optimal control problem

Let Ω represent a box containing a given number of gas bubbles moving within a liquid. Our aim

is to formulate an optimal control problem whose solution yields the volumetric force to be applied

to the system in order to drive the gas bubbles to a given final position at a given time. An example

setting is shown in figure 2.

Let us denote by C the control variable acting on the right hand side of the momentum equation.
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u “ 0

u “ 0

u “ 0

u “ 0

Figure 2: Example setting for the optimal control problem of interest. In red the target position for the evolution of

the bubbles and in dark grey a possible distribution of the bubbles at the final time tf in the uncontrolled case.

Then the state system reads as follows:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

∇ ¨ u` χT

ˆBp
Bt ` u ¨∇p

˙

“ 0 in Ωˆ pt0, tf s ,

ρ
Bu
Bt ` ρ pu ¨∇qu´∇ ¨ τ`∇p “ ρg` ρC` s in Ωˆ pt0, tf s ,
Bϕ
Bt ` u ¨∇ϕ “ 0 in Ωˆ pt0, tf s ,

H “ F pϕq “

$

’

&

’

%

1 if ϕ ď 0

0 if ϕ ą 0
in Ωˆ pt0, tf s ,

ρ “ p

rT
H ` ρl p1´Hq in Ωˆ pt0, tf s ,

µ “ µgH ` µl p1´Hq in Ωˆ pt0, tf s ,
λ “ λgH ` λl p1´Hq in Ωˆ pt0, tf s ,
χT “ 1

p
H in Ωˆ pt0, tf s ,

u “ 0 on BΩˆ pt0, tf s ,
u|t“t0

“ u0 in Ω ,

ϕ|t“t0
“ ϕ0 in Ω ,

(7)

where, for simplicity, we enforced homogeneous Dirichlet boundary conditions for the velocity.

We are interested in solving the following minimization problem:
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Problem 1. Let C “ L2
´

pt0, tf q ;
`

H1 pΩq˘d
¯

be the space of admissible controls. Given two constants

σ1 , σ2 P R, a function ϕ̄ : Ω Ñ R and an objective functional J defined as:

J : C Ñ R

C Ñ J pCq “ σ1
2

ż

Ω

´

ϕ pCq|t“tf
´ ϕ̄

¯2
dx` σ2

2 ‖C‖2
C ,

(8)

find C˚ “ argmin
CPC

J pCq such that the equation system (7) holds.

Let us comment on the objective functional (8). The first term ensures that the final solution for

the signed distance equation (7)3 is close to the target solution ϕ̄. This amounts to prescribing a final

distribution of the bubbles. The second term is a standard term penalising the norm of the control.

In view of designing a numerical algorithm to solve problem 1, the following result will be crucial.

Theorem 1 (Optimality conditions). The optimality conditions for the two-phase compressible-

incompressible control problem 1 are given by:

i) the state system (7)

ii) the adjoint system
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´ B
Bt pρûq ` ρ p∇uqT ¨ û´ ρ pu ¨∇q û´∇ ¨

´

µ∇û` µ p∇ûqt
¯

`

´∇ pλ∇ ¨ ûq ´∇p̂` χT p̂∇p`∇ϕϕ̂ “ 0
in Ωˆ pt0, tf s ,

∇ ¨ û “ ´ BBt pχT p̂q ´∇ ¨ pχT u p̂q ` H

rT
ρ̂` χT χ̂T in Ωˆ pt0, tf s ,

´ Bϕ̂Bt ´∇ ¨ pϕ̂uq “ ´δ˚ pϕq Ĥ `R pϕ, ûq in Ωˆ pt0, tf s ,

Ĥ “
´ p

r T
´ ρl

¯

ρ̂` pµg ´ µlq µ̂`

` pλg ´ λlq λ̂` χ̂T

in Ωˆ pt0, tf s ,

ρ̂ “ ´BuBt ¨ û´ pu ¨∇qu ¨ û` g ¨ û`C ¨ û in Ωˆ pt0, tf s ,

µ̂ “ ´∇u : ∇û´ p∇uqt : ∇û in Ωˆ pt0, tf s ,
λ̂ “ ´pp∇ ¨ uq Iq : ∇û in Ωˆ pt0, tf s ,

p χ̂T “ ´p̂
ˆBp
Bt ` u ¨∇p

˙

in Ωˆ pt0, tf s ,

û “ 0 on BΩ ,

û|t“tf
“ 0 in Ω ,

p̂|t“tf
“ 0 in Ω ,

ϕ̂|t“tf
“ σ1

´

ϕ|t“tf
´ ϕ̄

¯

in Ω ,

(9)
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where û, p̂, ϕ̂, Ĥ, ρ̂, µ̂, λ̂ and χ̂T are the so-called adjoint variables. The source term R pϕ, ûq
in equation (9)3 is defined as:

R pϕ, ûq “∇ ¨
˜

ˆ

´∇
ˆ

ς
∇ϕ

‖∇ϕ‖
δε pϕq û

˙

` ς∇ ¨
ˆ

∇ϕ
‖∇ϕ‖

˙

δε pϕq û
˙

1
‖∇ϕ‖

˜

1´
ˆ

∇ϕ
‖∇ϕ‖

˙2
¸¸

`

´ ς∇ ¨
ˆ

∇ϕ
‖∇ϕ‖

˙

∇ϕ
‖∇ϕ‖

δ1ε pϕq û ,

where δ1ε pϕq denotes the derivative of the smooth Dirac’s delta function (6).

iii) the variational equality

σ2 pC , δCqC `
ż tf

t0

ż

Ω
ρ δC ¨ û dx dt “ 0 @ δC P C , (10)

where p¨ , ¨qC denotes the usual scalar product in L2
´

pt0, tf q ;
`

H1 pΩq˘d
¯

.

Proof. Denoting by y “ pu, p, ϕ,H, ρ, µ, λ, χT q and by ŷ “
´

û, p̂, ϕ̂, Ĥ, ρ̂, µ̂, λ̂, χ̂T

¯

the state and

adjoint variables, respectively, we consider the following Lagrangian functional:

L py, ŷ,Cq “ σ1
2

ż

Ω

´

ϕ pCq|t“tf
´ ϕ̄

¯2
dx` σ2

2 ‖C‖2
C `

´
ż tf

t0

ż

Ω

ˆ

ρ
Bu
Bt ` ρ pu ¨∇qu´∇ ¨

´

µ∇u` µ p∇uqt ` λ p∇ ¨ uq I
¯

`∇p´ ρg´ ρC´ s
˙

¨ û dx dt`

´
ż tf

t0

ż

Ω

ˆ

∇ ¨ u` χT

ˆBp
Bt ` u ¨∇p

˙˙

p̂ dx dt´
ż tf

t0

ż

Ω

ˆBϕ
Bt ` u ¨∇ϕ

˙

ϕ̂dx dt`

´
ż tf

t0

ż

Ω
pH ´ F pϕqq Ĥ dx dt´

ż tf

t0

ż

Ω

´

ρ´ p

r T
H ´ p1´Hq ρl

¯

ρ̂dx dt`

´
ż tf

t0

ż

Ω
pµ´ µgH ´ p1´Hqµlq µ̂dx dt´

ż tf

t0

ż

Ω
pλ´ λgH ´ p1´Hqλlq λ̂ dx dt`

´
ż tf

t0

ż

Ω
ppχT ´Hq χ̂T dx dt´

ż tf

t0

ż

BΩ
u ¨ θ̂1 dsdt´

ż

Ω
pu|t“t0 ´ u0q ¨ θ̂2 dx`

´
ż

Ω
pϕ|t“t0 ´ ϕ0q θ̂3 dx .

(11)

The first term on the right hand side of (11) is the cost functional J , while the remaining terms are

the inner products between the equations in the state system and the adjoint variables, which assume

the role of Lagrangian multipliers.

The thesis is obtained by looking for a stationary point of L , i.e.

∇L “ 0 .

Indeed, as it is standard in the optimal control problems via Lagrangian approach (see e.g. [20]), by

computing the derivatives of L with respect to the adjoint variables and by setting them all equal
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to zero, we recover the state system (7). On the other hand, by computing the derivatives of L with

respect to the primal variables, we obtain the adjoint system (9). Finally, by deriving the lagrangian

functional with respect to the control variable C, we obtain the variational equality (10). Further

details can be found in [23].

It is important to remark (see [20]) that the variational equality (10) yields the gradient of the

cost functional with respect to the control variable. Indeed, (10) can be rewritten as:

p∇CJ , δCqC “ 0 @δC P C ,

with

∇CJ “ σ2 C` ρ û . (12)

The gradient equation (12) will be employed to design a gradient-type algorithm, which will be detailed

in section 4.

4. Space-time discretization and minimization algorithm

The systems described in sections 2 and 3 have been approximated by using a Finite Element

discretization in space, while a Finite Difference approach was used for the time discretization. To

this end, the solution interval pt0, tf s is divided into N subintervals of length ∆t “ tf ´ t0
N

. In the

following, a superscript pnq will denote the value of each quantity at time tpnq “ t0` n∆t. As for the

space discretization at each timestep tpnq, for
`

upnq, ppnq
˘

and
´

ûpnq, p̂pnq
¯

we use continuous P2{P1

finite elements, which are inf-sup stable (see e.g. [24]); for ϕpnq and ϕ̂pnq we choose discontinuous P1

finite elements, following the discretization for the level set equation adopted in [25]; finally, continuous

P1 finite elements are used for all the remaining primal and adjoint quantities, including the control

variable C. For each continuous quantity, a subscript h will denote its discrete counterpart.

The result of the space-time discretization is a non-linear system of equations that needs to be

solved at each timestep. As a monolithic approach would be computationally unfeasible given the

complexity of the system, we employ a staggered approach to define a sequence of simpler problems

to be solved at each time step.

Let us introduce some preliminary notation that will be used throughout the remainder of the

section. Let Th be the triangulation on the domain Ω and let tEiu be the elements of Th. We
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consider the following discrete functional spaces:

Vh “
 

vh P C0 pΩq : vh|E P P2 @E P Th

(

,

Qh “
 

qh P C0 pΩq : qh|E P P1 @E P Th

(

,

Wh “
 

wh P L2 pΩq : wh|E P P1 @E P Th

(

.

Consider then an edge e of Ei P Th. Given generic scalar-valued and vector-valued functions f

and F, let fi and Fi denote the traces of f and F on e as taken in Ei, respectively, and let νi be the

outward normal vector on e with respect to Ei. If e is an internal edge shared by elements Ei and Ej ,

we define:

JfK :“ fiνi ` fjνj , tfu :“ 1
2 pfi ` fjq ,

JFK :“ Fi ¨ νi ` Fj ¨ νj , tFu :“ 1
2 pFi ` Fjq .

For a boundary edge e, on the other hand, we define:

JfK :“ fi νi , tfu :“ fi .

Finally, we will denote by E0 the set of all internal edges and EB the set of all boundary edges.

Let us now describe the staggered approach used to solve system (7). Given the initial conditions

ϕ
p0q
h , up0qh , pp0qh , ρp0qh µ

p0q
h , λp0qh , and χp0qTh

, for every n “ 1, 2, . . . N , the solution process is as follows:

1P. Compute upnqh and ppnqh , by solving the following discrete problem:

Find
´

upnqh , p
pnq
h

¯

in Vh
d ˆQh such that

ż

Ω

ρ
pn´1q
h

∆t upnqh ¨ vh dx`
ż

Ω
ρ
pn´1q
h

´

upn´1q
h ¨∇

¯

upnqh ¨ vh dx`
ż

Ω
τ
pnq
h ¨∇vh dx`

´
ż

Ω
p
pnq
h ∇ ¨ vh dx`

ż

Ω
∇ ¨ upnqh qh dx`

ż

Ω

χ
pn´1q
Th

∆t p
pnq
h qh dx`

ż

Ω
χ
pn´1q
Th

upn´1q
h ¨∇ppnqh qh dx “

“
ż

Ω

ρ
pn´1q
h

∆t upn´1q
h ¨ vh dx`

ż

Ω
ρ
pn´1q
h g ¨ vh dx`

ż

Ω
spn´1q

h ¨ vh dx`
ż

Ω

χ
pn´1q
Th

∆t p
pn´1q
h qh dx`

`
ż

Ω
Cpnqh qh dx @ pvh, qhq P Vh

d ˆQh ,

where

τ
pnq
h “ λ

pn´1q
h

´

∇ ¨ upnqh

¯

I` 2µpn´1q
h

∇upnqh `
´

∇upnqh

¯t

2
and

spn´1q
h “ ςκ

pn´1q
h npn´1q

h δε

´

Σpn´1q
h

¯

,

with κpn´1q
h and npn´1q

h computed using (4).
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2P. Compute the signed distance function ϕpnqh , by solving the following discrete level-set equation:

Find ϕpnqh in Wh such that

ÿ

EPTh

ż

E

ϕ
pnq
h

∆t wh dx´
ÿ

EPTh

ż

E

ϕ
pnq
h upnqh ¨∇wh dx´

ÿ

EPTh

ż

E

ϕ
pnq
h ∇ ¨ upnqh wh dx`

`
ÿ

ePEB

ż

e

upnqh ¨ JwhK
!

ϕ
pnq
h

)

ds`
ÿ

ePE0

ż

e

ˆ

!

ϕ
pnq
h

)

upnqh JwhK` 1
2

∣∣∣upnqh ¨ ν
∣∣∣Jϕpnqh K ¨ JwhK

˙

ds “

“
ÿ

EPTh

ż

E

ϕ
pn´1q
h

∆t wh dx @wh PWh .

See [25] for more details.

3P. Compute Hpnqh , using the smoothed approximation (5).

4P. Update the physical parameters ρpnqh , µpnqh , λpnqh , χpnqTh
using equations (7)5, (7)6, (7)7 and (7)8,

respectively.

5P. If n ă N , set n “ n` 1 and go back to 1P.

Concerning the adjoint system (9), notice that, as it is classical, it is a backwards-in-time problem

(with a structure similar to the one of the primal problem). Given the final conditions ϕ̂pNqh , ûpNqh ,

p̂
pNq
h , ρ̂pNqh µ̂

pNq
h , λ̂pNqh , and χ̂T

pNq
h , for every n “ N ´ 1, N ´ 2, . . . 0, the solution process is as follows:

1A. Compute ûpnqh and p̂pnqh , solving the following discrete problem:

Find
´

ûpnqh , p̂
pnq
h

¯

in Vh
d ˆQh such that

ż

Ω

ρ
pnq
h

∆t ûpnqh ¨ vh dx`
ż

Ω
ρ
pnq
h

´

∇upnqh

¯t ¨ ûpnqh ¨ vh dx´
ż

Ω
ρ
pnq
h

´

upnqh ¨∇
¯

ûpnqh ¨ vh dx`

`
ż

Ω
µ
pnq
h ∇ûpnqh : ∇vh dx`

ż

Ω
µ
pnq
h

´

∇ûpnqh

¯t

: ∇vh dx`
ż

Ω
λ
pnq
h ∇ ¨ ûpnqh ∇ ¨ vh dx`

`
ż

Ω
p̂
pnq
h ∇ ¨ vh dx`

ż

Ω
χ
pnq
Th

p̂
pnq
h ∇ppnqh ¨ vh dx`

ż

Ω
∇ ¨ ûpnqh qh dx´

ż

Ω

χ
pnq
Th

∆t p̂
pnq
h qh dx`

`
ż

Ω
∇ ¨

´

χ
pnq
Th

upnqh p̂
pnq
h

¯

qh dx “
ż

Ω

ρ
pn`1q
h

∆t ûpn`1q
h ¨ vh dx ´

ż

Ω

χ
pn`1q
Th

∆t p̂
pn`1q
h qh dx`

´
ż

Ω
ϕ̂
pn`1q
h ∇ϕpnqh ¨ vh dx`

ż

Ω

H
pnq
h

rT
ρ̂
pn`1q
h qh dx`

ż

Ω
χ
pnq
Th
χ̂T

pn`1q
h dx @ pvh, qhq P Vh

d ˆQh .

2A. Compute the adjoint signed distance function ϕ̂pnqh , solving the following discrete problem:

12



Find ϕ̂pnqh in Wh such that

ÿ

EPTh

ż

E

ϕ̂
pnq
h

∆t wh dx´
ÿ

EPTh

ż

E

ϕ̂
pnq
h upnqh ¨∇wh dx`

ÿ

ePEB

ż

e

upnqh ¨ JwhK
!

ϕ̂
pnq
h

)

ds`

`
ÿ

ePE0

ż

e

ˆ

!

ϕ̂
pnq
h

)

upnqh JwhK` 1
2

∣∣∣upnqh ¨ ν
∣∣∣Jϕ̂pnqh K ¨ JwhK

˙

ds “
ÿ

EPTh

ż

E

ϕ̂
pn`1q
h

∆t wh dx`

`
ÿ

EPTh

ż

E

´

δε

´

ϕ
pnq
h

¯

`R
´

ϕ
pnq
h , ûpnqh

¯¯

wh dx @wh PWh .

3A. Compute Ĥpnqh using equation (9)4.

4A. Update the adjoint physical parameters ρ̂pnqh , µ̂pnqh , λ̂pnqh , χ̂T
pnq
h using equations (9)5, (9)6, (9)7

and (9)8, respectively.

5A. If n ă N , set n “ n` 1 and go back to 1A.

As mentioned above, the optimal control problem is solved using an iterative algorithm to get to

the minimum of the cost functional. In particular, the descent direction at the k-th minimization

step, denoted by d, is chosen using a gradient method, which means:

d “ ´∇J
´

Cpkq
¯

,

where Cpkq is the value of the control variable at the k-th iteration in the minimization loop. On

the other hand, the length of the step along the selected direction, which will be denoted by α, is

computed with a backtracking algorithm. The best approach in terms of speed of convergence would of

course be to move along the direction given by the gradient of the cost functional until the minimum

value on that line is reached. However, the solution of this mono-dimensional exact minimization

would be too expensive to be computed, so an approximated minimization is used instead. Indeed,

given an initial step length αp0q, the backtracking method tests sequentially smaller values for α until

a value α that satisfies the Armijo condition

J
´

Cpkq ` αd
¯

ď J
´

Cpkq
¯

` c1α
´

∇J
´

Cpkq
¯

, d
¯

,

for a given constant c1, is found. Algorithm 1 sums up the complete solution method for problem 1.

For further details, see for example [26].

5. Numerical results

In this section, the results for various instances of problem 1 are presented. The same set of values

is used for the optimal control problem parameters throughout all the cases shown. In particular, the

13



Algorithm 1 Optimal control problem solution method

Let an initial guess Cp0q and two positive constants εg e εJ be given.

Set k “ 0

while

∥∥∥Cpkq ´Cpk´1q
∥∥∥

C∥∥∥Cpk´1q
∥∥∥

C

ą εg ^
∥∥∥∇J

´

Cpk`1q
¯

∥∥∥
G
ą εJ do

Solve system (7) using steps 1P-5P and the current control value Cpkq

Solve system (9) using steps 1A-5A and the newly computed solution of the state system

Set d “ ´∇J
´

Cpkq
¯

Compute step length:

begin

Let an initial guess αp0q and two constants c1 ą 0 and c2 P p0, 1q be given

Solve system (7) using steps 1P-5P and Cpkq ` αp0qd as control value

Set m “ 0

while J
´

Cpkq ` αpmqd
¯

ą J
´

Cpkq
¯

` c1αpmq
´

∇J
´

Cpkq
¯

, d
¯

do

Set αpm`1q “ c2 α
pmq

Solve system (7) using steps 1P-5P and Cpkq ` αpm`1qd as control value

mÐ m` 1

end while

end

Set Cpk`1q “ Cpkq ` αpmqd
k Ð k ` 1

end while

14



values chosen for the penalization parameters in equation (8) are σ1 “ 100 and σ2 “ 10´6, while the

initial guess for the control function C px, tq is

Cp0q px, tq “
¨

˝

0

0

˛

‚ @ px, tq P Ωˆ rt0, tf s .

In algorithm 1, c1, c2 and αp0q are set to 0.001, 0.5 and 1, respectively, while the thresholds for the

convergence check are εg “ εJ “ 10´6.

As for the physical parameters, the values chosen for the viscosity are µl “ 1 and µg “ 0.1, while

the density is equal to ρl “ 10 in the liquid and will have different values in the gas, depending on

the test case. The specific gas constant is set to 300 and the temperature is 300. All the dimensional

quantities are expressed in the International System of Units (SI).

With the aim of reducing the computational burden, all the numerical results of the present section

have been obtained by employing an inexact version of the gradient method presented in section 4.

More specifically, the adjoint system (9) has been solved by setting to zero the term R pϕ, ûq. This

choice clearly yields an approximated value for the gradient ∇CJ . Moreover, in the numerical tests,

mild viscosity and density ratios are considered in order to limit the numerical issues associated

with large discontinuities in the coefficients. Still, the numerical results shown in this section are

paradigmatic and represent a first step towards the application of optimal control problems to two-

phase compressible-incompressible flows.

5.1. Test case 1: target control reconstruction

In this first test case, a given known value is preliminarily used for C in equation (7) to compute

the target position of the bubbles. Then the optimal control problem is setup to drive the system

towards such a desired configuration.

The initial configuration is represented in figure 3. The domain is a square with sides L1 “ L2 “ 2

and it was discretized using a structured triangular grid with N “ 80 nodes on each side. The

two bubbles are initially at rest in the domain, with centers in p0.5, 0.5q and p1.5, 1.5q, radiuses

r1 “ r2 “ 0.2 and densities ρ1 “ 1 and ρ2 “ 2, corresponding to pressures p1 “ 90000 and p2 “ 180000,

respectively. The final time is tf “ 1 and the time step is ∆t “ 0.05. No gravity is considered.

The chosen target control is:

Ct “
¨

˝

0

´5

˛

‚ .

In this case, the optimal control problem 1 is solved in the set of admissible control containing constant

2D vectors.
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Figure 3: Test case 1, initial position of the bubbles

The history of convergence obtained by employing algorithm 1 is plotted in figure 4, while figure 5

shows the time evolution of the bubbles’ position once the obtained optimal control is employed for

the solution of the primal system. Such optimal control has value:

C˚ “
¨

˝

5.858ˆ 10´5

´4.9998

˛

‚ .

First of all, let us notice that the targets are well recovered by the optimal solution, in terms of

both the bubbles’ position (figure 5) and the value of the control function C. As for the history of

convergence (figure 4), the plots for the functional value and its gradient norm show a decrease in both

quantities at each minimization iteration. Finally, the figure presenting the number of backtracking

iterations shows that the adopted choice for the backtracking parameters is enough to satisfy Armijo’s

condition.

5.2. Test case 2: controlling the final height

Figure 6 shows the initial settings for the second test case. Once again, we consider a square

domain with sides L1 “ L2 “ 2, which was discretized using a structured triangular grid with N “ 80

nodes on each side. The two bubbles, initially at rest, are placed in the liquid domain, with centers in

p0.5, 0.5q and p1.5, 0.5q, radiuses r1 “ r2 “ 0.25 and initial densities ρ1 “ 1 and p2 “ 3, corresponding

to pressures p1 “ 90000 and p2 “ 270000, respectively. The final time is tf “ 1 and the time step is

∆t “ 0.05. Gravity is g “ p0,´9.81q.
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Figure 4: Test case 1, history of convergence

time = 0.0 time = 0.25 time = 0.5 time = 0.75 time = 1.0

Figure 5: Test case 1, evolution of the bubbles’ position employing the computed optimal control (in orange) and target

position (in dashed black)
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Figure 6: Test case 2, initial position of the bubbles

Having the bubbles different pressures but equal volume at the initial state, they would be pushed

upwards at different speed by the buoyancy force. The aim of the solution of the optimal control

problem is to prevent this phenomenon from happening, driving the bubbles to the same height

instead. To do so, the target position of the two bubbles is chosen to be centered in p0.5, 1q and

p1.5, 1q, with radiuses given by

r1,f “
c

ρ1
ρ1 ` ρ2

pr2
1 ` r2

2q » 0.1767767 ,

r2,f “
c

ρ2
ρ1 ` ρ2

pr2
1 ` r2

2q » 0.3061862 . (13)

Figures 7 and 8 show the history of convergence and the results of the optimal control problem,

respectively.

As can be seen from the plots in the middle row of figure 8, the target is well recovered by the

optimal solution. The target and computed bubbles’ positions are not exactly superimposed, but are

clearly much closer if compared to the respective positions of the target and the uncontrolled bubbles

at final time (figure 8, top row). Furthermore, and more importantly, the obtained optimal control

does indeed drive the bubbles to a position where both centers are at the same height, as desired.

From figure 7, which shows the history of convergence, we appreciate the efficacy of the gradient-

type algorithm in reducing the cost functional.

5.3. Test case 3: controlling the topology

The initial configuration for the last test case is shown in figure 9. For this test case, we move to
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Figure 7: Test case 2, history of convergence
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time = 0.0 time = 0.25 time = 0.5 time = 0.75 time = 1.0

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 8: Test case 2, optimal control problem results. Top row: uncontrolled solution. Middle row: controlled solution

(orange) and target position (dashed black). Bottom row: computed optimal control
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Figure 9: Test case 3, initial position of the bubbles

a rectangular domain with sides L1 “ 2 and L2 “ 3, which has been discretized using a structured

triangular grid with N1 “ 80 nodes on L1 and N2 “ 120 nodes along L2, so that the grid size is

the same on both sides. The two bubbles have initial centers in p1, 0.5q and p1, 1.25q and radiuses

r1 “ r2 “ 0.25, while the densities are set to ρ1 “ 1 and p2 “ 3, corresponding to pressures p1 “ 90000

and p2 “ 270000, respectively. The final time is tf “ 1.5 and the time step is ∆t “ 0.05. Gravity is

g “ p0,´9.81q.
The goal of this test case is to control the topology of the bubbles. In the uncontrolled case, the

higher-pressure bubble placed initially at the bottom would rise quicker than the top one, ending

in a merging of the two, thus giving rise to a larger single bubble. The goal of the optimal control

problem is to keep the two bubbles separated up until the end of the simulation. To this end, the

target position chosen for the two bubbles has centers in p1, 1.75q and p1, 2.5q, so that they maintain

the same relative distance as in the initial state, and radiuses given by equation (13).

The history of convergence and the results of the optimal control problem are shown in figures 10

and 11, respectively.

Once again, the target is reached by the optimal solution. In particular, the goal of having two

separate bubbles at the end of the simulation is accomplished. The history of convergence shows that

the functional decreases along the iterations.
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Figure 10: Test case 3, history of convergence
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time = 0.0 time = 0.4 time = 0.75 time = 1.15 time = 1.5

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 11: Test case 3, optimal control problem results. Top row: uncontrolled solution. Middle row: controlled solution

(orange) and target position (dashed black). Bottom row: computed optimal control
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6. Conclusions

In this work, the controllability of two-phase compressible-incompressible flows has been numer-

ically investigated. The model introduced in [12] has been employed to govern the optimal control

problem. The optimality conditions give rise to three coupled systems of equations, which have been

numerically discretized to obtain a gradient-type algorithm.

Several numerical experiments were conducted, showing the efficacy of the proposed methodology

and paving the way for more realistic simulations related to the production of metal foams. These

test cases show that the physical system is indeed controllable, both when a specific final position

of the gas bubbles and when a specific topology (or a specific number of bubbles) is required. This

means that by choosing a proper forcing term in the momentum equation the system can be driven

to a configuration that would not be the natural solution of the equations system, if left uncontrolled.

A possible topic for future work may be to extend this approach to use a type of control that is

closer to what one would employ in an industrial framework. Indeed, a distributed volumetric force

can hardly be applied consistently and precisely during the foaming process. A better choice could

perhaps be to use the local temperature in the domain as the control variable. This, on the other

hand, would entail the extensions to the non-isothermal case of both the physical model and the

corresponding optimality conditions in the optimal control problem.
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