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Abstract

Hypoxia contributes significantly to resistance in radiotherapy. Our research rigorously examines the
influence of microvascular morphology on radiotherapy outcome, specifically focusing on how microvas-
culature shapes hypoxia within the microenvironment and affects resistance to a standard treatment reg-
imen (30× 2GyRBE). Our computational modeling extends to the effects of different radiation sources.
For photons and protons, our analysis establishes a clear correlation between hypoxic volume distribu-
tion and treatment effectiveness, with vascular density and regularity playing a crucial role in treatment
success. On the contrary, carbon ions exhibit distinct effectiveness, even in areas of intense hypoxia and
poor vascularization. This finding points to the potential of carbon-based hadron therapy in overcoming
hypoxia-induced resistance to RT. Considering that the spatial scale analyzed in this study is closely
aligned with that of imaging data voxels, we also address the implications of these findings in a clinical
context envisioning the possibility of detecting subvoxel hypoxia.

1 Introduction

Radiotherapy is a common treatment for cancer, used to treat more than half of patients [10]. Technological
progress over the past three decades has greatly advanced radiation therapy. The high conformity to the
cancer target together with the availability of various radiation sources are prime examples of this evolution
[31]. Despite significant advances, cancer control continues to grapple with the complexities arising from both
intratumor and intertumor heterogeneity. Central to these challenges is the interaction between oxygenation
and radiation therapy, which also involves possible heterogeneity in tumor oxygenation.

Since the first observations in bacteria [1], hypoxia has been known to be a significant determinant of
tumor resistance to RT, decreasing the damage induced by ionizing radiation [29]. Hypoxia, while generally
defined as a shortage of oxygen, lacks a consistent quantitative measure. Severe hypoxia typically shows
oxygen levels between 0.02% and 0.2% (0.15 to 1.5 mmHg), and moderate hypoxia up to 1% or 2% (7.6
or 15.2 mmHg). Furthermore, hypoxia is classified by cause: chronic hypoxia due to the distance from the
oxygen-carrying vasculature to the tissue and acute hypoxia due to reduced blood flow that limits oxygen
delivery.

Given the critical role of oxygen in RT, some imaging-based methods have been proposed to evaluate
hypoxia in tissues, particularly tumors [29, 5, 30, 15]. Such methods take advantage of different technologies

∗Corresponding Author
†The first two authors contributed equally to this work, sharing the first authorship

1



such as positron emission tomography (PET), near-infrared spectroscopy (but this is related to vascular
oxygen) and magnetic resonance imaging (MRI), which allows the extraction of signals related to the oxygen
content of the vascular compartments (BOLD signal) and the tissue compartments (TOLD signal) [9]. Using
the TOLD method, hypoxic areas of the tumor were also correlated with the outcome of radiotherapy [81].
Further image-based methods have been proposed to identify hypoxic regions by signal combination. The
method of Hompand et al. highlights hypoxic regions, estimating oxygen delivery from tissue consumption
[28]. We must mention the resolution mismatch between the oxygen delivery scale, the imaging resolution,
and the modulation of treatment [23]. In fact, oxygen delivery within the microenvironment occurs on a
microscale (hundreds of µm), whereas voxels on the mm scale characterize the imaging [26], and treatment
delivery is planned on a slightly larger scale. This scale mismatch motivates deeper analyzes involving
different methods, from computational to in vitro and animal models [18].

The delivery of oxygen to microvessels is usually studied computationally by reducing the number of
dimensions of the vascular system through various techniques. As a macroscopic approach, perfusion has
been described using porous media [8, 40, 11]. Similarly, models that account for the local morphology of
the microvasculature have been developed, for example, describing the microvasculature as a collection of
concentrated sources; see, for example, [67] and more recently [73]. This seminal idea has evolved into more
advanced multiphysics approaches [52, 37, 53], which encompass vascular and interstitial flow, red blood
cell transport, oxygen transport, and allow mesoscale analysis of the vascular microenvironment. With
this approach, Powathil et al. validated the prediction of their model against hypoxic markers and in situ
oxygen measures [54]. To effectively simulate the intricate relationship between vascular networks and their
environment, new strategies have been used to analyze blood flow and oxygen transfer [27], unraveling the
impact of vascular transport and network morphology on tissue hypoxia in specific applications (e.g., brain
[27, 19], tumor [54, 13]). Through a sensitivity analysis, we recently showed the effect of vascular density
and morphology on oxygen distribution in tissue [77].

Few microvascular models have been applied to study radiation therapy and the microenvironment.
Scott et al. described the interaction between vascular density and a morphological index [63]. In fact, they
reported variations in the correlation between the morphological index and the outcome of treatment when
considering different vascular densities. In a subsequent study, the same authors showed the importance of
microvascular oxygen transport [24]. No evidence was found that microvascular morphology had any effect
on the results of treatment, although oxygen variation in the vascular system was not considered. Schiavo et
al. generated a vascular geometry cm-wide using a fractal approach with a hypovascularized core [62]. They
studied chronic and acute hypoxia, showing how model parameters determine hypoxia, varying its position
and area. In general, these studies suggest a key role for the vascular network in determining the outcome
of RT.

When applying these models to RT, we must estimate the outcome of radiotherapy from computational
oxygen distributions. To this end, the oxygen enhancement ratio (OER) shows the dose scale factor required
to obtain the same tumor control when treating hypoxic versus normoxic tumors [12]. To consider radiation
sources other than photons, we must evaluate the Relative Biological Effectiveness (RBE), which describes
the dose ratio required to obtain the same damage with different radiation sources, testing a particular source,
such as protons and carbon ions, against a reference one (usually photons)[12]. Hadrons have an RBE greater
than 1, with a greater biological efficacy than photons. These radiations are also characterized by higher
linear energy transfer (LET), the energy deposited per track length, measured by keV/µm. Interestingly,
the OER is influenced by LET. For example, carbon ions typically have a higher LET than photons, and
their effectiveness is less affected by the presence of hypoxia (that is, the OER is lower at a higher LET) [12].
Taking into account hypoxic imaging data, Garrido-Hernandez et al. compared treatment plans optimized
using different models to account for RBE and OER [16]. They reported some differences in the prediction
of the models, but even a significant effect of hypoxia.

Within this framework, our objective is to analyze the effect of microvasculature on radiation therapy
using a state-of-the-art computational model. On the basis of these results, we address the influence of
microvascular morphology (vascular density and regularity) on radiotherapy outcome to understand the
role of the microvasculature. Furthermore, we show how this approach allows quantitative analysis of the
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microvasculature and microenvironment in RT. Lastly, we extend this analysis to hadron therapy and altered
oxygenation states to assess whether the role of microvasculature is consistent through different types of
treatment and under other conditions.

2 Materials and methods

The workflow of this study comprises three steps: (i) generating different configurations of the geometry
of the microvascular network, (ii) computing the oxygen concentration in the microvascular environment,
and (iii) applying radiobiological models to estimate the result of radiotherapy. In the following paragraphs,
we detail the methods for each step. The results are then analyzed and visualized by Paraview[36] and
Prism[21].

2.1 Generation of microvascular networks

We consider a region of 1mm × 1mm × 150µm that describes an ideal portion of vascularized tissue. To
generate representative vascular networks in that region, we adopt the previously proposed strategy [77].
This method uses Voronoi tessellation on a plane, resulting in a space-filling network following biomimetic
principles [52, 70] and comprising bifurcation and anastomosis alone. As Voronoi networks are uniquely
defined by a set of seed points, to initialize network generation, we adopt a two-step approach based on
the placement of seed points in a square 1mm × 1mm, subdivided into positive and negative points, with
opposite roles. First, we uniformly distribute a set of positive seeds in the plane. Then, a set of negative
seeds is generated based on a Poisson distribution centered on (0.5mm, 0.5mm). Each negative seed deletes
a positive one, leading to a heterogeneous vessel distribution. Finally, a positive seed is added in the center
of the square. Thanks to this method, we have produced networks characterized by different metrics. In
particular, we control the surface-to-volume ratio S/V (the lateral surface of the network over the volume of
the tissue) by controlling the positive seeds. In contrast, irregular morphology, quantified by the maximum
distance of any point in the network (dmax), is determined by the ratio between the negative and positive
seeds. Finally, we generate a quasi-3D network by moving the junctions and the boundary nodes along the
direction perpendicular to the plane to fill the thickness of 150µm.

We generate a set of 27 networks, representing 9 different conditions in triplicates (Figure S8). The nine
conditions combine three values of S/V and three values of dmax, ranging from poor to highly vascularized
tissues and from regular to irregular morphology (Table 1).

2.2 Modeling blood flow and oxygen transfer

The microvascular environment model used in this work belongs to the mesoscale approach family [68]. We
describe the microenvironment as a three-dimensional domain, Ω, in which we embed the microvascular
network represented as a collection of one-dimensional channels, i.e., the vascular domain is a metric graph
denoted by Λ. In particular, coupling models at different dimensions requires specific mathematical methods
[7, 38]. However, it brings some significant advantages at the computational level that will be discussed
later.

In these two domains, we assembled three mathematical problems that describe different phenomena: (i)
fluid flow F [7], (ii) transport of red blood cells H [52], (iii) transport of oxygen O [53].

2.2.1 Microvascular flow and red blood cells transport

First, we model fluid flow within the vasculature and surrounding tissue (F). An interstitial fluid is described
as a Newtonian fluid in a porous medium, employing Darcy’s equation. On the other hand, we use the
Poiseuille equation for blood flow in the vasculature. The effects of red blood cells (H) are included in the
model considering their effect on viscosity by the Fahraeus-Lindqvist effect [55], and their splitting when
traveling in a bifurcation, that is, the Zweifach-Fung effect [64]. The classical Starling equation describes
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fluid filtration through the microvascular wall, which accounts for hydraulic and osmotic pressures. The
problem is complemented by the mass conservation equations in the two domains (tissue Ω and vasculature
Λ), and it reads as follows:

F +H :



ut +
K

µt
∇pt = 0 in Ω (Darcy’s eq.)

∇ · ut − ϕV δΛ = 0 in Ω (mass conservation eq.)

8µvuv +R2∂spv = 0 in Λ (Poiseuille’s eq.)

∂s(πR
2uv) + ϕV = 0 in Λ (mass conservation eq.)

ϕV = 2πRLp

(
(pv − pt)− σ(πv − πt)

)
in Λ (Starling’s eq.)

πR2uv∂sH − ϕV H = 0 in Λ (RBCs transport eq.)

(1)

where the subscripts t and v represent the tissue and vasculature, respectively, u is the fluid velocity, p is the
fluid pressure, µ is the viscosity, K is the porous medium permeability, R is the radius of the vessel, ϕV fluid
flow across the vascular wall affected by the vascular hydraulic conductivity, Lp, the reflection coefficient
for proteins, σ and the osmotic pressure, π. Further details on modeling equations, procedures to handle
network junctions, and numerical solutions to the problem can be found in [52, 50]. The problem is then
defined by considering boundary conditions, setting variable values for the inlet and outlet pressures, and
the hematocrit inlet. For tissue, homogeneous conditions are enforced so that no flow can leave the domain.

2.2.2 Oxygen transport

The oxygen transport equations (O) for the two domains comprise diffusion, consumption, and advection,
using data from the models F andH in a one-way coupling scenario. In addition to the component mentioned
above, we introduce three phenomena: (i) oxygen binding to hemoglobin, (ii) oxygen uptake dynamics, and
(iii) oxygen exchanges through microvascular walls.

For the first, we recall that oxygen is present in the system as solved in plasma/interstitial fluid (Cv or
Ct) or bound to hemoglobin (CHbO2

). The total oxygen content is the sum of the two in the vasculature,
the region containing RBC and hemoglobin. We assume the binding dynamics as an instantaneous process,
described by the Hill’s equation:

CHbO2
(Cv) = k1 H S(Cv) = k1 H

CγHb
v

CγHb
v + (ηpl ps50)

γHb
(2)

where k1 is a constant value determined by the product of the Hüfner factor (HF ) describing the oxygen
binding capacity of human hemoglobin and the Mean Corpuscular Hematocrit Concentration (MCHC). The
remaining parameters of (2) are oxygen solubility in plasma ηpl, the oxygen partial pressure at half-saturation
of hemoglobin ps50 , and the Hill exponent γHb.

Secondly, we describe the cell uptake in the tissue by the well-known Michaelis-Menten equation [46]:

Rt(Ct) = Vmax
Ct

Ct + ηt pm50

(3)

where Vmax is the maximum oxygen consumption rate, ηt is the oxygen solubility in the tissue, and pm50
is

the Michaelis-Menten constant, i.e. the oxygen partial pressure at half consumption rate.
The oxygen exchanges include diffusion and advection through the microvascular wall as a semi-permeable

membrane [33]:

ϕO2 = 2πR PO2(Cv − ct) +

(
Cv + ct

2

)
ϕV (4)

where PO2
is the microvascular wall permeability.
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Comprehensively, the oxygen transport model reads as follows:

O :


∇ · (−εt∇Ct + ut Ct) +Rt(Ct) = ϕO2 δΛ on Ω

πR2 ∂

∂s

(
−εv

∂Cv

∂s
+ uv

(
Cv + CHbO2(Cv)

))
= −ϕO2 on Λ

(5)

where ε∗, ∗ = v, t are the diffusion coefficients in the blood and tissue compartments. The model de-
scribes oxygen transport through the microvasculature and delivery to tissue through flux ϕO2

. This mixed-
dimensional mathematical formulation combines a 3D region Ω, with a 1D network Λ. At the mathematical
level, the coupling between the two is provided by a Dirac measure distributed throughout the network,
denoted by δΛ. Eventually, oxygen reaches the cells and cell uptake occurs. The problem is complemented
by boundary conditions that define oxygen concentrations at network inlets, the null derivative at network
outlets, and null concentration gradients at the tissue faces, i.e., no diffusive flux. Complete details related
to the derivation, discretization, solving, and validation of the model are reported in [53].

2.3 Simulations of oxygen transport in the microenvironment

For complex geometrical configurations, explicit solutions to the problems F , H, O are not available. Nu-
merical simulations are the only way to apply the model to real cases. The discretization of these models,
described in [52], is achieved by the finite element method (Appendix A). Due to the peculiar mathematical
structure of the model, based on mixed-dimensional differential equations, no commercially available simula-
tor can handle it. All simulations have been performed using an internal C++ code based on the GetFem++
open-source library [57].

The main advantage of the mixed-dimensional formulation adopted here is that the discretizations of
the equations defined in the tissue and the vascular network are entirely independent with respect to the
computational grids and the numerical schemes. We discretize the branches of the vascular network as
separate subdomains. A piecewise straight line approximates each of them. The problems of blood flow and
oxygen transfer are approximated using continuous piecewise polynomial finite elements. The interstitial
flow problem is approximated by using mixed finite elements.

Because of the non-linear relationships present in the constitutive laws of the model, the problem has
been linearized, and the solution of the coupled problem has been reached via an iterative process. At each
iteration, the numerical discretization schemes described above provide a high-dimensional linear system of
equations solved employing state-of-the-art iterative (linear) solvers with suitable preconditioners. We refer
to [52, 6, 7, 38] for further details on computational methods.

The ideal tissue slab with dimension 1mm × 1mm × 150µm has been discretized through a uniform
tetrahedral mesh of 40 × 40 × 6 nodes on each side, consisting of 57600 tetrahedra. This numerical resolution
has been considered satisfactory after performing a mesh sensitivity analysis. In particular, the mean relative
error in the L2 norm on the approximation of the oxygen partial pressure between the considered mesh and
a new one with higher resolution (precisely 50 × 50× 8 points per side) resulted in less than 3%.

The simulation of each blood flow and oxygen transfer scenario discussed below is not computationally
demanding on a multi-core processor with good performance. Scaling up these computations to the tumor
scale will require high-performance computing platforms.

2.4 Radiobiological models for the radiotherapy outcome

We model radiotherapy treatment using the linear-quadratic model (LQ), the most widely used radiological
model. It is based on two different parameters that describe the radiosensitivity of cells or tissue. The
first parameter α describes the lethal damage resulting from a ’single’ hit, whereas β is related to ’multiple’
hits, namely the interaction of multiple radiation tracks [45]. Combining these two parameters and the dose
administered (D), the surviving fraction (SF ) is estimated as follows:

SF (D) = e−αD −βD2

. (6)
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The values of SF range from 0 to 1, representing the fraction of cells that survived treatment with the
specified dose D. In current clinical practice, the total dose is divided into fractions nf , usually administered
daily, that is, fractionated treatments [10]. A slightly modified LQ model describes the cumulative effect of
each fraction by recursive application of the model:

SF (D) =
∏
nf

(
e−αd −βd2

)
= enf(−αd −βd2) (7)

where d = D/nf is the fraction dose. We remark that tumor growth during treatment is not included in this
equation.

Due to the small tissue region analyzed, we assume a constant dose D on the volume. The same as-
sumption is invalid for oxygen content, which may differ throughout the region, affecting treatment results.
To account for the oxygen effect, we adopt two different models: the Wenzl model (WEN) [79, 80] and the
Tinganelli model (TIN) [74]. These are modifications of the classical LQ model. The model proposed by
Wenzl and colleagues defines the variation of α and β with the oxygen partial pressure and the linear energy
transfer (LET) of ionizing radiation:

α(x, pO2, LET ) =
(a1 + a2 LET ) pO2(x) + (a3 + a4 LET ) kRT

pO2(x) + kRT√
β(x, pO2) =

b1 pO2(x) + b2 kRT

pO2(x) + kRT

(8)

where kRT is the oxygen tension for radiosensitivity equal to half of its maximum value. Expressions of
α(x, pO2, LET ) and β(x, pO2) are inserted directly into the LQ equation:

SF (D) = enf(−α(x,pO2,LET )d −β(x,pO2)d
2). (9)

On the contrary, the Tinganelli model is based on the definition of the Oxygen Enhancement Ratio (OER),
which is then used to scale the dose:

OER(0, LET ) =
LET γ +M a

a+ LET γ

OER(x, pO2, LET ) =
b OER(0, LET ) + pO2(x)

b+ pO2(x)

DOER(x, pO2, LET ) =
D

OER(pO2(x), LET )

(10)

where M , a, γ, b are parameters fitted to experimental data, and DOER(x, pO2, LET ) is the dose corrected
for the oxygen effect, to be included in the LQ model. Therefore, the TIN values α and β do not change
with LET or pO2, and the resulting model reads as follows:

SF (D) = e
nf

(
−α d

OER(pO2(x),LET )
−β

(
d

OER(pO2(x),LET )

)2
)
. (11)

To properly compare the models, we used the parameters of the WEN model published in [79], and fit the
TIN parameters to the data reported by WEN and colleagues. Further details on the parameter and the
fitting procedure are described in the Appendix A.

These two LQ-based models allow us to compute the SF (x). Based on that, we calculate the tumor
control probability (TCP ), which describes the probability of successful treatment. It is based on the
number of cells surviving the treatment (SF) and the initial number of clonogenic cells N :

TCP (D) = e−N ·SF (D). (12)

In particular, since we analyze the spatial variability of the radiotherapy response on the microscale, we
describe SF as a spatially dependent map SF (D,x). We employ the methods presented in [71] to compute
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the TCP (D) from the SF distribution, leveraging the Poisson process assumption and the ’parallel-like’
behavior of the tumor (i.e., even a small portion of the tumor surviving results in tumor relapse, and
therefore TCP is low):

TCP (D) =
∏
i

TCP (D,xi) =
∏
i

e−Ni SF (D,xi). (13)

In summary, we obtain pO2(x) in the tissue that solves F , H, and O. We compute SF (x) applying the
WEN and TIN models. Finally, we consider the spatial distribution SF (x) to obtain a probability value for
TCP (D) (equation 13).

2.5 Simulated treatment schedule and sources

We initially define the treatment schedule for photons, the most common radiation therapy treatment. The
total treatment dose is 60 Gy, divided into 30 fractions at 2 Gy per fraction, that is, a treatment 30× 2Gy.
We point out that this treatment is compatible with the clinical schedules and the clinical dose received by
the tumors. For example, non-small cell lung cancers receive 30× 2Gy [56], and prostate cancer patients are
usually treated with 60 − 72 Gy in fractions 20 − 30 [82]. In our setting, 30 × 2Gy treatment guarantees a
highly successful treatment (TCP ≃ 1) in well-oxygenated tumors (pO2 > 5 mmHg).

Furthermore, we analyze a similar treatment schedule for hadron therapy, particularly for protons and
carbon ions. These different sources have different biological effects. To consider this, the dose is usually
scaled by RBE [12]. Consequently, two different doses are defined: the physical dose, that is, the actual
dose physically measured, and the biological dose scaled by RBE. The biological dose is then used in the
LQ models. We compare different sources considering the same biological dose (2 GyRBE per fraction); the
physical dose is 2/RBE Gy per fraction. Photons and hadrons also differ in LET (photons: 2 keV/µm; pro-
tons: 4 keV/µm; carbon ions: 75 keV/µm [12, 35]), which enters the radiobiological models and determines
the response to hypoxia.

2.6 Oxygenation scenarios

We evaluated the level of oxygenation pO2 in the microenvironment, within the domain Ω under three
different scenarios. The baseline scenario represents a typical tumor tissue without specific characteristics
(see Table 1). The second scenario simulates reduced oxygen delivery due to decreased blood flow, a condition
known as acute hypoxia (AH) [75, 29]. The third scenario involves a higher level of oxygen consumption
by the tumor, which exacerbates any chronic hypoxia from the baseline. This type of hypoxia, related
to diffusion limitations, depends on the distance from the nearest blood vessel [75, 29]. Elevated oxygen
consumption effectively shortens the diffusion distance prior to cellular uptake.

3 Results

We quantify the outcome of radiotherapy (i.e., tumor control) by referring to different sources (photons,
protons, and carbon ions) and various states of oxygenation in the microenvironment. For each case, we
solve fluid dynamics F , red blood cell transport H, and oxygen delivery O. The oxygen distribution is then
used to estimate the surviving fraction (SF) and the corresponding tumor control probability (TCP) using
two different formulations of the Linear Quadratic model modified for the oxygen content. The results are
presented starting from the classical photon-based RT. The effects of hadron therapy are studied, as well as
the implications of non-standard oxygenation levels.

3.1 Variations in oxygen distribution due to microvascular density and mor-
phology

The microvascular density and morphology generally affect the oxygen distribution in the microenvironment.
When considering a regular network, tissue oxygenation increases with microvascular density, as evidenced
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by the first row of the panel 1-a, and quantified by graph 1-b (blue columns referring to the lower dmax).
The same trend is also reported for irregular networks for higher dmax values. In contrast, increasing dmax

effectively reduces the average partial oxygen pressure in medium and highly vascularized cases only. In
the low-vascularized case, the regularity of the network has little to no effect. The resulting oxygen content
is consistent with the ranges described in the literature, which differ between tissues due to differences in
vascularization and tissue oxygen demand [5, 58, 4].

Microvascular density and morphology generally determine the hypoxic volume fraction. The more
irregular the network, the larger the low oxygen fraction (Figs. 1, cf. and S9). Additionally, a denser
microvascularization results in smaller low-oxygen fractions.

High vascularization does not guarantee the absence of hypoxic regions, as indicated by hypoxic volume
in case S/V = 14mm−1, dmax = 240µm. Generally, a higher degree of irregularity (dmax) is required
to produce hypoxia in higher vascularized tissues. For example, the hypoxic volume appears in the case
S/V = 7mm−1, dmax = 160µm, but not in S/V = 14mm−1, dmax = 160µm.

3.2 Computing TCP with photons RT

We computed the surviving fraction SF (x) and the corresponding tumor control probability using the two
radiobiological models (Wenzl model - WEN [79, 80] and the Tinganelli model – TIN [74]; Fig. 2). Good
vascularization with regular microvascular morphology determines a tiny or null hypoxic fraction (Fig. 1
c-f), and therefore a TCP → 1, that is, a successful treatment (S/V = 7mm−1 - dmax = 120µm, and
S/V = 14mm−1 - dmax = {120; 160}µm). Even a tiny hypoxic volume (considering the strong definition
with pO2 ≤ 1 mmHg) produces an evident drop in TCP, as can be seen in cases S/V = 7mm−1 -
dmax = 160µm. The highly irregular morphology of the network reduces TCP under all conditions, as
shown by the drop in TCP when considering cases S/V = 14 mm−1.

Data show that increased vascularization generally improves TCP, while morphological irregularities have
a detrimental effect on the outcome of the treatment. This is especially evident with the TIN model, which
is characterized by a less sharp response to hypoxia.

An irregular microvascular morphology can determine a poor treatment outcome, even in highly vascu-
larized tissues. A similar result can be achieved with a regular low-density microvascular network. In fact,
the TCPs for cases S/V = 14mm−1 - dmax = 240µm and S/V = 3.5mm−1 - dmax = 120µm are similar.

3.3 Comparing TCP from photons and hadron therapy

We analyze the cases treated with protons and carbon ions using the same biological dose and schedule
(Fig. 3). First, proton-based radiotherapy has outcomes similar to those of photon treatment. Therefore,
considerations of microvascular architecture and morphology still hold for proton therapy, determining the
outcome of the treatment. Again, increased vascularization and morphological regularity improve TCP. As
a result, carbon ions effectively treat all cases analyzed without the influence of microvascular density and
morphology. We remark that we are using the same biological dose, and consequently, a similar outcome
is expected. However, they differ slightly for protons and more evidently for carbon ions. This is due to
the different LET associated with the two sources: 2 keV/µm for photons, 4 keV/µm for protons, and
LET = 75 keV/µm) [12, 35]. LET determines also the response to hypoxia, as can be seen in equations
8 and 10. In particular, ionizing radiation characterized by greater LET results in being less sensitive to
hypoxia-mediated radioresistance. Therefore, they result in a higher TCP. This effect is slightly noticeable
when comparing photons and protons, but is evident when considering carbon ions.

3.4 Influence of acute hypoxia and tumor oxygen consumption

We tested the same vascular conditions, reducing the vascular flow rate and increasing tumor oxygen demand,
keeping all other parameters at their reference values. Among the two, increased consumption induces a more
potent reduction in oxygenation within the tissue (Fig. 4), in agreement with previous work on oxygenation
[53, 66, 65]. An essential difference between the two scenarios is how they act in the two domains. Acute
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Figure 1: Oxygen distribution in the nine cases for the reference scenario. (a) Oxygen partial
pressure in the tissue Ω and microvascular Λ domains. A single replicate of the nine cases (3 S/V × 3 dmax)
is shown. (b) Average oxygen partial pressure in the tissue in the nine cases considered. (c) Localization
of low oxygen areas, setting a threshold (th) equal to 1 mmHg. Similar maps for th = 2mmHg and
th = 5mmHg are available in the figure S9. The other panels show the fraction of nodes below the
threshold in the nine cases, setting the threshold to 5 mmHg (d), 2 mmHg (e), and 1 mmHg (f).

hypoxia first acts on the microvascular network, leading to a more pronounced decrease of pO2 in the
network (Fig. 4a compared to the left columns). On the other hand, an increase in consumption reduces the
oxygen concentration of the tissue uniformly, with lower effects on the network. Higher oxygen consumption
increases the microvascular density required to ensure good oxygenation. The levels in the average partial
oxygen pressure for the cases dmax = {120, 160, 240}µm - S/V = 7mm−1 - High consumption are similar
to those of dmax = {120, 160, 240}µm - S/V = 3.5mm−1 - Reference, showing an insufficient microvascular
density.
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Figure 2: Computed TCPs for the nine cases with photons RT. Resulting TCPs referred to 30×2Gy
treatment with photons radiotherapy using the WEN (a) and the TIN (b) models applied to the 9 cases
(3 S/V × 3 dmax). TCP → 1 depicts successful treatments.
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Figure 3: Computed TCPs for the nine cases with three different sources: photons, protons,
and carbon ions. Resulting TCPs referred to 30 × 2GyRBE treatment using the WEN (a) and the TIN
(b) models. radiotherapy treatment is simulated considering photons, protons, and carbon ions applied to
the 9 cases (3 S/V × 3 dmax). TCP → 1 depicts successful treatments.

Increased oxygen consumption creates larger hypoxic volumes with pO2 ≤ 1 mmHg, with a wide impact
on different microvascular conditions (Fig. 5). We note that the hypoxic volume fraction generally decreases
with vascular density and increases in perturbed vascular scenarios. Hypoxia is also significantly present in
the highly vascularized scenario if the morphology is irregular.

Finally, the alterations observed in hypoxic volumes at low vascular density report a peculiar pattern.
For acute hypoxia and high consumption rates, the transition from regular to perturbed vascular morphology
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leaves the volume fraction of hypoxic tissue almost unchanged. In these scenarios, vascular renormalization
would not improve tissue oxygenation. In fact, regular networks are more affected than irregular networks
by acute hypoxia and high consumption. This different behavior in low-vascularized tissues agrees with data
previously shown with a 2d-0d model [63].

3.5 Comparing TCP in different scenarios

Using oxygen distributions, we estimate TCPs under different oxygenation scenarios considering three treat-
ments (Fig. 6a-b). A lower microvascular density and a considerably irregular morphology (that is, a high
dmax) decrease the probability of a successful treatment with photons and protons. Furthermore, mid-
microvasularization with mid-regularity results in better TCP (although often unsuccessful) than irregularly
highly vascularized and regular low-vascularized cases. However, carbon treatment has high TCPs in all
cases considered, showing a very low dependence on microvascular characteristics.

We compare the correlations among the oxygen data and the resulting TCPs when considering photons
(Fig. 6c-d). The average pO2-TCP plot shows a ”safe area” depicting successful treatments (TCP → 1)
for an average oxygen partial pressure greater than 32 mmHg, ensuring a treatment without oxygen-related
radioresistance problems. Below this threshold, the TCP is more scattered, showing that this index is not
a good marker of treatment failure. On the other hand, the hypoxic volume fraction (pO2 < 1) is strictly
correlated with the outcome of the treatment (R2 = .73, p < .0001). As also shown in the previous results,
proton treatments lead to similar results when analyzing the hypoxia-TCP correlation (Fig. 6e). Carbon
still shows a correlation, but with a lower influence of hypoxia (coefficient of linear regression log10TCP -
hypoxic volume fraction: photons -1.669; protons -1.673; carbon -0.247).

We note that the correlation of hypoxia with radioresistance is not surprising (see Section 2.4). These
results highlight the contribution to hypoxia at the microvascular scale, which shows the role of microvascular
morphology.

With the exclusion of carbons, favorable microvascular networks determine the success of treatment, that
is, high TCP. To unravel the role of the microvascular network, we define the vascular index as the sum of two
scores for the density of vascularization (1 = high, 2 = medium, 3 = low) and the morphology (1 = regular,
2 = medium, 3 = irregular). Therefore, the lowest vascular score ( = 2) represents a highly vascularized
regular network. Then, the vascular score of 3 comprises a medium-vascularized regular network and a highly
vascularized network with medium irregularities. The TCP is close to one if the vascular index is lower than
four. Indeed, the TCP starts to drop monotonically at this level with increasing index. Interestingly, the
vascular index equal to four includes heterogeneous conditions between the two indices (high-density irregular
or low-density regular), which shows the importance of a comprehensive characterization of the microvascular
network in terms of density and morphology.

4 Discussion

The concept of Biological Target Volume (BTV) brings radiobiological characteristics to radiation treatment.
In this framework, tumor oxygenation represents essential information that can be collected through imaging.
PET scans demonstrate the existence of hypoxic areas within tumors, and hypoxia has been shown to be
an accurate predictor of the results of radiation treatment. However, translation of this information into a
biologically optimized treatment plan through dose painting has not reached clinical practice [76, 61]. The
dynamic nature of hypoxia is believed to be one of the reasons for limiting dose-painting techniques, also
considering that changes in hypoxic volume are predictive of local recurrence [39]. Another problem lies in
the so-called resolution gap. In fact, the voxels of the imaging data are typically on the millimeter scale,
whereas oxygen diffusion occurs on the micrometer scale [23]. Consequently, different oxygen distributions
can have similar PET signals that mask the intra-voxel heterogeneity.

In this framework, computational models can be used to study the state of oxygenation at the microscale,
as proposed in [22]. We analyze by computational models the effect of microvascular morphology on oxy-
genation and, eventually, on the outcome of radiation therapy. Some evidence in the literature particularly
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motivates the use of computational models to analyze different oxygenation scenarios. Grogan et al. con-
ducted a similar study showing how 2D and 3D representations differ when analyzing microvascular oxygen
delivery and reported a negligible influence of microvascular morphology on tissue oxygenation [24]. Scott
and coworkers reported a non-trivial influence of the microvasculature on radiotherapy. More in detail, the
morphology of the network is differently correlated with the outcome of therapy when considering high and
low vascular density [63]. Schiavo et al. simulated an idealized tumor vasculature with heterogeneous vas-
cular density and morphology with low vascularization toward the center of the tumor [62]. Various factors
associated with microvascular conditions have been shown to have an effect on the oxygenation and radiation
results of a tumor that is one centimeter wide in scenarios that are clinically applicable and involve diffusion
and perfusion limited hypoxia.

These research works primarily examine how oxygen diffuses within tissues. More comprehensive models
that incorporate blood flow and red blood cells within the microvascular network offer a more detailed
understanding[53, 64, 20, 14]. This approach helps explain the uneven distribution of oxygen in vessels and
its impact on oxygen delivery, altering how the microvascular structure affects the outcomes of radiation
therapy. Our study is based on a microscale oxygenation model that describes both vascular and tissue [53],
applied to a domain comparable to a single imaging voxel (millimeter scale), obtaining tissue oxygen levels
consistent with the literature [5, 58]. In our scenarios, we reproduced different levels of hypoxia down to a
few mmHg (as reported by Muz et al. [49]), and we simulated treatments with clinically relevant schedules.

We report a strong correlation between TCP and hypoxic volume (pO2 ≤ 1mmHg, Figure 6). Anyway,
such a correlation originates from the oxygen distribution at the microscale, reaching a subvoxel resolution.
In contrast, it is lost when the resolution is limited to the size of the voxel, namely by limiting the oxygen
knowledge to a single value (Figure 6). This confirms the presence of the resolution gap described by Grimes
et al. [23]. Using the mean pO2 as a representative value, we can only identify a threshold required to obtain
a successful treatment (pO2|avg ≥ 32mmHg), but the outcome of treatment is highly scattered in the case
of lower oxygenation.

In terms of clinical translation, these data suggest that any local de-escalation in dose painting must be
approached with caution, given the current imaging capabilities. Due to resolution limitations, information
available at the voxel level can hide local hypoxic spots. These areas could significantly reduce TCP, even
to 10−1 when the average pO2 ranges from 10-20 mmHg.

Our results show the effect of microvasculature on radiotherapy (Figures 3,6). A significant decrease
in TCP is independent of low vascular density or highly disordered morphology. We note that different
vascular geometries can represent various tumors but also different regions within the same tumor, as shown
in [62]. Furthermore, the combination of vascular density, shape, flow, and oxygen consumption can produce
complex results in terms of the average oxygenation within the voxel (Figures 1, 4). In contrast, we do
not report similar effects in the hypoxic regions (pO2 ≤ 1mmHg) and, consequently, in TCP. These results
differ from those reported by Scott et al. [63]. However, a direct comparison is difficult due to the different
metrics, model dimensionality, and modeled cell phenomena (e.g., cell proliferation).

In addition to classical photon-based radiation therapy, we also considered hadron therapy, which rep-
resents an alternative treatment to overcome tumor hypoxia. A higher LET is associated with a lower
OER with less pronounced oxygen-mediated radio-resistance [12, 79]. In our study, we considered protons
(LET = 4 keV/µm) and carbon ions (LET = 75 keV/µm). Consistently, the proton results are similar
to those of the photon ones, whereas the carbon ions deviate toward better control of the tumor in all
cases, namely, controlling hypoxic tumors. Such results are consistent with a similar study, in which carbon
ion fractionated radiotherapy successfully controls hypoxic tumors [2]. When considering the results, we
can identify cases that benefit from carbon-ion treatment. Our simulations show a clear benefit when the
vascular index is greater than 4, highlighting the role of the microvasculature.

Dose escalation represents another alternative to address hypoxia-related tumor radioresistance. This
work presents a computational model that enables us to assess the impact of the shape of the microvascular
network in a dose escalation scenario. We further considered an escalated treatment, adding 10 Gy to
the photon irradiation with the same fractionation schedule. Generally, increasing dose increases TCP as
expected, but it is still less effective than carbon ion treatments (Figure 7 a and b). Gain in TCP is
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often insufficient to reach clinically acceptable values. Indeed, considering treatments with TCP ≥ 0.85 as
successful, the 10 Gy boost satisfied the condition in 42% of the cases, while the photons reached 30% without
the boost (Figure 7c). The increase in TCP is ineffective when met with poor microvascular morphology
and, consequently, strong hypoxia (Figure 7d).

The benefit becomes insignificant when the vascular index is 5 or higher. This approach also sheds light
on dose-boosting techniques, showing the potential gain with a local dose increase of 10 Gy. On the contrary,
carbon ions prove effective in 95% of the cases in our data set, with a tumor control probability (TCP) of
0.85 or higher. The exceptions have a vascular index of 6, representing the least favorable vascular condition
in our study.

We note that even if we considered a fractionated scheme, we did not include the effect of radiation
damage on vascular damage (e.g., on permeability of the vascular wall and vasodilation). Vascular damage
is essential, especially when considering high doses, but we still have limited knowledge of its mechanisms
and impact on treatments [42]. We did not consider the reoxygenation effect, namely the possible changes
in oxygen consumption during treatment related to cell death. Including this effect and cell proliferation
would increase the relevance of this work in the clinic. To this end, a detailed description of the dynamics
of cell number due to growth and treatment is required, both through oxygen-mediated mechanisms [34].
The extreme hypoxia scenario can be intensified, leading to a decrease in the flow rate to a non-flow state.
To obtain reliable results in this extreme condition, more intricate vascular geometry must be taken into
account, as suggested by Schiavo et al. [62].

On the other hand, we consider the average value to be representative of the voxel. Different techniques
could be applied and developed to provide a more physics-based extraction of the representative value (e.g.,
tracer binding kinetics or cellular composition [23]). An example of this application in a different field is
the study by Geady et al., in which they evaluated the resolution requirements for radiomic features to
be representative of cell biology, considering a physics-based downsampling technique [17]. With a similar
approach, we could further evaluate how a specific image (e.g., PET) is representative of the microscopic
oxygen distribution.

Summarizing, we discuss how the microvasculature plays a critical role in determining hypoxia at a small
scale, analyzing a domain comparable to a single imaging voxel. In fact, variations in vascular density
and morphology result in highly heterogeneous oxygenation conditions (Figures 1, 4 and 5). Taking into
account the crucial role of oxygen in radiation therapy, vascular networks significantly influence treatment
outcomes, measured by tumor control probability (TCP, Figures 6f and 7b). This influence is particularly
pronounced for photons and protons, which exhibit similar responses. TCP decreases when unfavorable
vascular scenarios are considered. On the contrary, carbon ions demonstrate notably greater efficacy even in
such cases. Furthermore, we have observed a strong correlation between TCP and subvoxel hypoxic volume
(Figure 6e). However, this correlation relies on sub-voxel data, which are not directly obtainable from images.
When restricting our analysis to the average voxel, this correlation dissipates (Figure 6c), highlighting the
existence of a resolution gap between imaging capabilities and oxygenation phenomena. The findings suggest
that without considering the microscale variability of oxygenation, voxel-based imaging data may lead to
underestimating the presence of hypoxic niches that are critical in determining radiation therapy success.
This has profound implications for the clinical application of dose painting, necessitating caution in local
dose de-escalation strategies.

5 Conclusion

We introduced an advanced computational approach based on multiscale modeling to investigate oxygena-
tion in the tumor microenvironment, accounting for various conditions and vascular properties. Using this
model, we can quantitatively assess the influence of several critical factors, including the morphological
characteristics of the vascular network. Interestingly, the vascular network significantly affects the efficacy
of photon and proton radiotherapy treatment, whereas carbon ion treatment remains effective even with
irregular low-density vessel distribution. Proton treatment does not demonstrate a distinct advantage over
photon-based radiation therapy in addressing tumor hypoxia.
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Our results support the existence of a resolution gap in current clinical imaging [23]. Considering the
potential misidentification of hypoxic regions, these findings advise caution when contemplating de-escalation
in dose painting.

Furthermore, this computational tool shows promise in evaluating hypothetical scenarios and in vitro
models of radiation-induced damage to the microvasculature [25].
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A Parameter estimation for radiobiological models

This supplementary section describes the procedure to fit parameters for the Tinganelli model (TIN) based
on data published by Wenzl et al. The TIN model reads as follows:

OER(0, LET ) =
LET γ +M a

a+ LET γ

OER(pO2, LET ) =
b OER(0, LET ) + pO2

b+ pO2

D(pO2, LET ) =
Dph

OER(pO2, LET )

(14)

where M , a, γ, and b are parameters fitted to experimental data.
We first estimate the parameters M , a, and γ by RMSE minimization against the data reported in Figure

1 (solid line) by Wenzl et al. [79] (Figure S10). This data set represents the OER-LET relation under no
oxygen conditions (pO2

= 0.01mmHg ≃ 0.001%). Therefore, we use this data set to estimate OER(0, LET ).
The parameter values are M = 2.81, a = 522.45 keV/µm, and γ = 1.38.

As a second step, using the data in Figure 3 of the same work, we estimate the parameter b (Figure S10).
We run the RMSE minimization on the data for LET = 2 keV/µm. Consequently, the fit is less accurate
for LET = 100 keV/µm. The resulting value for b is 1.24 mmHg.

Finally, we report theOER function considering photon, protons, and carbon, namelyOERphotons(pO2, 2 keV/µm),
OERprotons(pO2, 4 keV/µm), and OERcarbon(pO2, 75 keV/µm) (Figure S10).

B Numerical discretization and solvers

The discretization of the problem F +H+O is achieved using the finite element method. One of the main
advantages of our formulation is that the computational meshes of Ω and Λ are entirely independent. For
this reason, we address the two approximations separately.

We denote with T h
t an admissible family of partitions of Ω̄ into tetrahedrons K

Ω̄ =
⋃

K∈T h
t

K,

that satisfies the usual conditions of a conforming triangulation of Ω. Here, h denotes the characteristic
size of the mesh, that is, h = maxK∈T h

t
hK , where hK is the diameter of the simplex K. Moreover, we
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implicitly assume that Ω is a polygonal domain. The solution of F is approximated using discontinuous
piecewise-polynomial finite elements for pressure and Hdiv-conforming Raviart-Thomas finite elements for
velocity, namely

Y h
k := {vh ∈ L2(Ω), vh|K ∈ Pk(K) ∀K ∈ T h

t },

RT h
k := {wh ∈ Hdiv(Ω), wh|K ∈ Pk(K; Rd)⊕ xPk(K) ∀K ∈ T h

t },

for every integer k ≥ 0, where Pk indicates the standard space of polynomials of degree ≤ k in the variables
x = (x1, . . . , xd). The lowest order Raviart-Thomas approximation has been adopted, corresponding to
k = 0 above.

Concerning the capillary network, we adopt the same approach used at the continuous level and split
the network branches into separate subdomains. Furthermore, each curved branch Λi is approximated by a
piecewise linear 1D line, denoted by Λh

i . More precisely, the latter is a partition of the i-th branch of the
network of a sufficiently large number of segments, named S ⊂ Λh

i . In this way, we obtain the following
discrete domain:

Λh =

N⋃
i=1

Λh
i .

The solution of F on a given branch Λh
i is approximated using continuous piecewise polynomial finite element

spaces for both pressure and velocity. Since we want the vessel velocity to be discontinuous at multiple
junctions, we define the finite element space over the whole network as the collection of the local spaces of
the single branches. In contrast, pressure has been assumed to be continuous over the network; therefore,
its finite element approximation is standard. We will use the following families of finite element spaces for
pressure and velocity, respectively:

Xh
k+1 (Λ) := {wh ∈ C0(Λ̄), wh|S ∈ Pk+1 (S) ∀S ∈ Λh},

Wh
k+2 (Λ) :=

N⋃
i=1

Xh
k+2

(
Λh
i

)
,

for every integer k ≥ 0. As a result, we use generalized Taylor-Hood elements on each network branch,
satisfying the local stability of the mixed finite element pair for the network in this way. At the same time,
we guarantee that the pressure approximation is continuous throughout the network Λh. In particular, for
the numerical experiments shown later, we have used the lowest order k = 0.

For hematocrit, we proceed as we did for the velocity approximation. In particular, we approximate
equation H with the finite element space Wh

k+2 defined in Λh
i . For the sake of generality, let us define the

families of discrete subspaces of the functional spaces for k ≥ 0:

V h
t = RT h

k (Ω) and Qh
t = Y h

k (Ω) ,

V h
v = Wh

k+2(Λ
h) and Qh

v = Xh
k+1(Λ

h) and Wh
v = Wh

k+2(Λ
h) .

According to work presented in [52, 53], to which we remand for the meaning of all the symbols of the
equations that follow, the discrete equations for the microvascular flow and red blood cell transport (the
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F +H model) are the following: find uh
t ∈ Vh

t , pht ∈ Qh
t , uh

v ∈ V h
v , phv ∈ Qh

v , Hh ∈ Wh
v such that

(
∇ · uh

t , qht
)
Ω
−

(
2πRf(p

h
t , p

h
v )δΛ , qht

)
Ω
= 0 ∀qht ∈ Qh

t ,

µt
K

(
uh

t , vh
t

)
Ω
−

(
pt , ∇ · vh

t

)
Ω
= −

(
gt , v

h
t · nt

)
∂Ω

∀vh
t ∈ V h

t ,

∑
i

(
∂s(πR

2
iu

h
v,i , q

h
v

)
Λh
i

+
∑

i

(
2πRf(p

h
t , p

h
v ) , q

h
v

)
Λh
i
−

∑
i∈E qhvπR

2
iu

h
v,i|zi

−
∑

j q
h
v |yj

[∑
i∈K+

j
πR2

iu
h
v,i|yj −

∑
i∈K−

j
πR2

iu
h
v,i|yj

]
= 0 ∀qhv ∈ Qh

v ,

∑
i

(
− 2

µv,i

R2
i
ϕ′(1)

(
1 + κ2

iR
2
i

)
πR2

iu
h
v,i , v

h
v,i

)
Λi

−
∑

i

(
phv , ∂s(πR

2
i v

h
v,i)

)
Λh
i
+

∑
i∈E phv πR2

i v
h
v |zi

+
∑

j p
h
v |yj

[∑
i∈K+

j
πR2

i v
h
v,i|yj −

∑
i∈K−

j
πR2

i v
h
v,i|yj

]
= −

∑
i∈B

[
g+v πR2

i v
h
v |x+

i
− g−v πR2

i v
h
v |x−

i
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∀vhv ∈ V h
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πR2

iu
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h
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iu
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h
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FQE,j,iw

h
i |yj

(∑
i∈Kout

j
πR2

iu
h
v,iH

h
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=

∑
j
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i∈B πR2

iu
h
v,iH0w

h
i |xin

i
∀wh

i ∈ Wh
v .

Similarly, the discrete formulation of the oxygen transport problem, namely the problem O, is obtained
by projecting the weak formulation of the equations in suitable discrete finite element spaces.

Let us define Qh
t = Y h

k (Ω) and Qh
v = Xh

k (Λ) for k ≥ 0 where Y h
k := {fh ∈ C0(Ω), fh|K ∈ Pk(K) ∀K ∈

T h
t }, for every integer k ≥ 0, where Pk indicates the standard space of polynomials of degree ≤ k in variables

x = (x1, . . . , xd) and Xh
k (Λ) := {gh ∈ C0(Λ), gh|S ∈ Pk (S) ∀S ∈ Λh}, for every integer k ≥ 0.

We also apply a fixed-point method to linearize the system of equations by evaluating the reaction term in
the tissue and the oxyhemoglobin concentration in the microvessels at the previous iteration. More precisely,
we define the new coefficient, Ψ(k−1) as the oxyhemoglobin concentration at the previous iteration:

Ψ(k−1) = k1 H

(
C

(k−1)
v

)γ−1

(
C

(k−1)
v

)γ
+ k2

Such formulation of the oxyhemoglobin term highlights the effect of free oxygen transport with respect to
hemoglobin-bound oxygen. Then, the blood velocity can be re-written as follows:

uh,(k−1)
v = uh

v (1 + Ψ(k−1));

Then, the discrete equations for the oxygen transport model become: find C
h,(k)
t ∈ Qh

t and C
h,(k)
v ∈ Qh

v
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such that, 

(Dt∇C
h,(k)
t , ∇qht )Ω + (∇ · (utC

h,(k)
t ), qht )Ω + (βO2C

h,(k)
t , qht )∂Ω

−
([

2πR PO2(C
h,(k)
v − ct) + ϕv

2

(
C

h,(k)
v + ct

)]
, qt

)
Λ

+

(
Vmax

C
h,(k−1)
t + αtpm50

C
h,(k)
t , qht

)
Ω

= (βO2
c0,t, q

h
t )∂Ω , ∀qht ∈ Qh

t

(
πR2Dv

∂C
h,(k)
v

∂s
,
∂qhv
∂s

)
Λ

+
(
πR2uh,(k−1)

v Ch,(k)
v , qhv

)
Λ

+
([

2πR PO2
(C

h,(k)
v − ct) + ϕv

2

(
C

h,(k)
v + ct

)]
, qhv

)
Λ
= 0 ∀qhv ∈ Qh

v .

As mentioned above, the meaning of all variables and symbols of these equations is described in [51].
To calculate the numerical solution of the problem, let us introduce the algebraic formulation of the

complete problem. Linearization of the problem is beneficial. At each stage of the fix-point technique, a
linear system is generated and must be solved. To be more concise, we report the complete formulation of
the discrete system only for the oxygen transport problem O, remanding to the interested reader the discrete
version of F +H to [52].

For problem O, the number of degrees of freedom (DOF) of the discrete spaces Qh
t and Qh

v is Nh
t =

dim(Qh
t ) and Nh

v = dim(Qh
v ) and the finite element basis functions are {φi

t}
Nh

t

i=1 for Qh
t and {φj

v}
Nh

v

j=1

for Qh
v . Then the numerical solution for the oxygen concentration can be written as a linear combination of

these base functions Ch
t (x) =

Nh
t∑

i=1

ct
h,i(k) φi

t(x), ∀x ∈ Qh
t Ch

v (s) =

Nh
v∑

j=1

cv
h,j(k) φj

v(s). Substituting these

expressions in the weak discrete problem and exploiting the linearity of the inner product, we obtain the
following linear system for each iterative step:[

Dt + At + Rt + Btt Btv

Bvt Dv + Av + Bvv

] [
Ch(k)

t

Ch(k)

v

]
=

[
Ft

Fv

]
. (15)

The submatrices and subvectors in (15) are defined as follows:

[Dt]ij := (D∗
t φj

t ,φ
i
t)Ω + (βtφ

j
t ,φ

i
t)∂ΩMIX

, Dt ∈ RNh
t ×Nh

t ,

[At]ij := (uh
t · ∇φj

t ,φ
i
t)Ω + (∇ · uh

t φj
t ,φ

i
t)Ω, At ∈ RNh

t ×Nh
t ,

[Rt]ij := (
M0

C
h,(k−1)
t +KM

φj
t ,φ

i
t)Ω, Rt ∈ RNh

t ×Nh
t ,

[Dv]ij := (πR∗2D∗
v

∂φj
v

∂s
,
∂φi

v

∂s
)Ω, Dv ∈ RNh

v ×Nh
v ,

[Av]ij := (πR∗2 u∗h,(k−1)
v

∂φj
v

∂s
,φi

v)Ω + (πR∗2 ∂u
∗h,(k−1)
v

∂s
φj

v,φ
i
v)Ω+ Av ∈ RNh

v ×Nh
v ,

+ (πR∗2 βvφ
j
v,φ

i
v)∂ΛOUT

,
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[Btt]ij := −(2πR∗[P ∗
l +

L∗
p

2
P (Pv − Pt − σ∆π)]φj

t ,φ
i
t)Ω, Btt ∈ RNh

t ×Nh
t ,

[Btv]ij := +(2πR∗[P ∗
l +

L∗
p

2
P (Pv − Pt − σ∆π)]φj

t ,φ
i
v)Ω, Btv ∈ RNh

t ×Nh
v ,

[Bvv]ij := −(2πR∗[P ∗
l +

L∗
p

2
P (Pv − Pt − σ∆π)]φj

v,φ
i
v)Ω, Bvv ∈ RNh

v ×Nh
v ,

[Bvt]ij := +(2πR∗[P ∗
l +

L∗
p

2
P (Pv − Pt − σ∆π)]φj

v,φ
i
t)Ω, Bvt ∈ RNh

v ×Nh
t ,

[Ft]i := −(βt c0,t φ
i
t)∂ΩMIX

, Ft ∈ RNh
t ,

[Fv]i := −(πR∗2 βv c0,v φi
v)∂ΛOUT

, Fv ∈ RNh
v .

Where u∗
v is:

u∗(k−1)
v = uv (1 + k1 H

C
(k−1)γ−1

v

C
(k−1)γ

v + k2
)
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Table 1: Values for the parameters of the model. The values of the parameters are reported along
with their units and references. Parameters specified for the oxygen scenarios are changed, while the others
remain constant.

Network morphology
Symbol Parameter Value Ref.
S/V Vascular area over tissue volume 3500− 7000− 14000 m−1 [3]
dmax Maximum distance from the network 120− 160− 240 µm -

Fluid problem F
K Tissue permeability 3.6× 10−17 m2 [69]
µt Interstitial fluid viscosity 1.2× 10−3 Pa s [72]
µv Blood viscosity computed [55]
R Vascular radius variable [77]
Lp Vascular wall hydraulic conductivity 1.4× 10−10 m2s/kg [59]

πv − πt Transmural osmotic difference 640 Pa [73, 32]
σ Reflection coefficient for proteins 0.82 [69]

Oxygen problem O
HF Hüfner factor 1.36 mlO2/gHb [78]

MCHC Mean Corpuscular Hematocrit Concentration 0.34 gHb/mlRBC [78]
ηpl Oxygen solubility in plasma 2.82× 10−5 (mlO2/ml)/mmHg [43]
ps50 pO2 at hemoglobin half-saturation 27 mmHg [78]
γHb Hill exponent 2.64 [78]
Vmax Maximum oxygen consumption rate 2.47× 10−4 (mlO2/s)/cm

3 [78]
ηt Oxygen solubility in tissue 3.89× 10−5 (mlO2/cm

3)/mmHg [43]
pm50

pO2 at half consumption rate 0.5 mmHg [78, 43]
PO2 Microvascular wall permeability 3.5× 10−5 m/s [6]
εt Oxygen diffusion coefficient in tissue 2.41× 10−9 m2/s [43]
εv Oxygen diffusion coefficient in vasculature 2.18× 10−9 m2/s [43]

Boundary conditions
pv|in Pressure at vascular inlets 40 mmHg [41]
pv|out Pressure at vascular outlets 15 mmHg [41]
Hin Discharge hematocrit at vascular inlets 0.45 [78]

pO2|in pO2 at vascular inlets 90 mmHg [60, 44, 47]
Radiotherapy

N Tumor cells in reference volume 15k [48]
a1 WEN parameter 0.22 Gy−1 [79]
a2 WEN parameter 0.0024 Gy−1(keV/µm)−1 [79]
a3 WEN parameter 0.05 Gy−1 [79]
a4 WEN parameter 0.0031 Gy−1(keV/µm)−1 [79]
b1 WEN parameter 0.4 Gy−1 [79]
b2 WEN parameter 0.015 Gy−1 [79]
kRT pO2 for half radiosensitivity (WEN) 3 mmHg [79]
γ TIN parameter 1.38 see Appendix
M TIN parameter 2.81 see Appendix
a TIN parameter 522.45 keV/µm see Appendix
b TIN parameter 1.24 mmHg see Appendix

Oxygen scenarios
Symbol Parameter Value Scenario
pv|in Pressure at vascular inlets 30 mmHg Acute hypoxia
pv|out Pressure at vascular outlets 25 mmHg Acute hypoxia
Vmax Maximum oxygen consumption rate 4.94× 10−4 (mlO2/s)/cm

3 High consumption
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Figure 4: Oxygen distribution for the different oxygen scenarios (a) Oxygen maps referring to
networks with S/V = 7 mm−1, varying dmax in the vertical direction, and oxygen scenarios in the horizontal
one. (b) Average oxygen partial pressure in all the 27 cases considered (3 S/V ×3 dmax×3 oxygen scenarios).
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Figure 5
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Figure 5: Hypoxic areas for the different oxygen scenarios Volume fractions with pO2 ≤ 1 mmHg in
all the 27 cases considered (3 S/V ×3 dmax×3 oxygen scenarios). Plots are complemented by hypoxia maps
referring to networks with S/V = 7 mm−1, varying dmax in the vertical direction, and oxygen scenarios in
the horizontal one.
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Figure 6: Irradiation results in all the cases analyzed. Heat maps with the TCPs for all the cases
analyzed with the WEN (a) and the TIN model (b). Ref = Reference cases. AH = Acute Hypoxia cases.
HC = High consumption cases. Scatterplot showing the correlation between TCP (computed with the TIN
model) with average oxygen partial pressure (c) and hypoxic volume fraction pO2 ≤ 1 mmHg (d). (e)
Scatterplot for TCP and hypoxic volume fraction considering different treatments. (f) Effect of the vascular
index on the TCP with different treatments.
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