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We design a Mixed Virtual Element Method for the approximated solution to the first-order form of
the acoustic wave equation. In absence of external load, the semi-discrete method exactly conserves the
system energy. To integrate in time the semi-discrete problem we consider a classical θ -method scheme.
We carry out the stability and convergence analysis in the energy norm for the semi-discrete problem
showing optimal rate of convergence with respect to the mesh size. We further study the property of
energy conservation for the fully-discrete system. Finally, we present some verification tests as well as
engineering application of the method.
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1. Introduction

The numerical simulation of acoustic, elastic or electromagnetic wave propagation finds application
in many scientific disciplines, including aerospace, geophysics, civil engineering, telecommunications,
and medicine for instance.

The present work considers a Mixed Virtual Element method on general polytopal grids for the
discretization of the acoustic wave equation written as a first order system of hyperbolic partial
differential equations.

In general, mixed methods consider the discretization of vector fields in some H(div)-conforming
spaces while scalar fields in some L2 spaces. Classes of mixed methods include the well known Raviart-
Thomas (RT) [9, 58, 61], the Brezzi-Douglas-Marini (BDM) [26, 30, 31, 56] finite element schemes
and more recently the Mixed Virtual Element Methods (MVEM) [15, 39]. The VEM, introduced firstly
in [14], have been applied recently to various differential problems, including elasticity [10], Stokes
[20, 33], Navier-Stokes [21], Cahn-Hilliard [2], Darcy [39], Helmholtz [53], Maxwell [18] and wave
[4, 40, 62] equations.

The major benefit of using VEM, instead of classical approaches, is the fact that it gives the
opportunity to preserve at the discrete level some important properties valid at the continuous level.
In particular, it is possible to design discrete spaces with global high regularity, which preserve the
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polynomial divergence/curl, that are robust with respect to mesh-locking phenomena. Moreover, VEM
can handle general polytopal meshes, that are particularly useful to account for small features in the
model (such as cracks, holes and inclusions), and treat in an automatic way hanging nodes, movable
meshes and adaptivity.

The very first analysis of RT finite element discretization applied for the spatial approximation of the
acoustic wave equation is presented by Geveci in [46]. He showed that even if the RT finite elements
conserve the energy of the system, when a time discretization is applied, the fully-discrete method
produces an implicit time-marching scheme which is inefficient, since the mass matrix is nondiagonal.
For this reason it is preferred to use mass lumping techniques, see e.g. [13, 37] or symplectic schemes
that conserve a positive-definite perturbed energy functional [52]. A slightly different formulation, in
which two time derivatives appear on the vector variable and none on the other equation has been
analysed in literature, see, for instance, [34, 38, 49, 50, 51].

Discontinuous Galerkin (dG) methods have been also considered for the solution of the wave
equation in the mixed form, see for instance [11, 34, 35, 36, 55]. However, they have been
mostly studied for the second order hyperbolic version: we mention [48, 60] for the scalar case,
[5, 8, 42, 43, 44, 54, 59] for the vectorial case and [3, 6, 7] where a dG approximation on polygonal grids
is considered. Within the framework of polytopal methods we mention a recent work by [32] where the
Hybrid High-Order (HHO) method is applied to the wave equation in either first and second order form
and [19] where the Mimetic Finite Differences is applied in the context of Hamiltonian wave equations.

Here, for the first time, a MVEM is considered for the solution of linear wave acoustics written as a
system of first order partial differential equations. The analysis is carried out by taking inspiration from
the approaches proposed in [17, 22] and [39]. Concerning the choice of the degrees of freedom, the
proposed scheme can be seen as the extension on polytopal grids of RT finite elements. The integration
in time of the semi-discrte problem is achieved by considering a θ -method scheme.

The paper is organised as follows: in Section 2 we review the mathematical model, its weak
formulation, a stability result and the energy conservation of the system. In Section 3 after introducing
the virtual element spaces with the associated set of degrees of freedom and defining the discrete bilinear
forms, we present the semi-discrete virtual element formulation and establish the well-posedness of the
semi-discrete problem, the stability bound for discrete solution in a discrete energy norm and the energy
conservation. In Section 4 we analyse the theoretical properties of the proposed method: by considering
the Fortin operator introduced in [39], we recall the interpolation estimates. Then, we prove optimal
order of convergence for the proposed method. Moreover we estimate the error between the energy
of the exact solution and the energy of the virtual element solution. In Section 5 we introduce the
family of θ -method schemes for integrating in time the semidiscrete problem in Section 3.4 and discuss
the property of energy conservation. In Section 6 we provide some experiments to give numerical
evidence of the behaviour of the proposed scheme. Finally, Section 7 is devoted to conclusions and
future perspectives.

Notations and Preliminaries

Throughout the paper we will follow the usual notation for Sobolev spaces and norms as in [1]. Let
Ω ⊂R2 be the computational domain with Lipschitz continuous boundary ∂Ω and external unit normal
nnn, we denote with xxx = (x1, x2) the independent variable. With a usual notation the symbols ∇ and curl
denote the gradient and curl for scalar functions, while div denotes the divergence operator for vector
fields. For an open bounded domain ω , the norm in the space Lp(ω) is denoted by ‖·‖Lp(ω), norm and
seminorm in Hs(ω) are denoted respectively by ‖·‖s,ω and |·|s,ω , while (·, ·)ω and ‖ · ‖0,ω denote the
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L2-inner product and the L2-norm (the subscript ω may be omitted when ω is the whole computational
domain Ω ).

We recall the following well known functional spaces which will be useful in the sequel

H(div,ω) := {vvv ∈ [L2(ω)]2 : divvvv ∈ L2(ω)} ,

H(curl,ω) := {vvv ∈ [L2(ω)]2 : curlvvv ∈ L2(ω)} ,

and introduce the following spaces

VVV := {vvv ∈ H(div,Ω) s.t. vvv ·nnn = 0 on ΓN} , Q := L2(Ω) ,

where ΓN ⊂ ∂Ω , equipped with natural inner products and induced norms.
Since we are dealing with a time dependent problem, we will also consider the following Bochner

spaces. Let T > 0, for space-time functions v(xxx, t) defined on ω×(0,T ), we denote with vt the derivative
with respect to the time variable. Furthermore, using standard notations [57], for a Banach space V with
norm ‖ · ‖V , we introduce the space

L2(0,T ;V ) :=
{

v : (0,T )→V s.t. v measurable,
∫ T

0
‖v(t)‖2

V dt <+∞

}
.

In similar way, for n≥ 0, we consider the space Cn(0,T ;V ).

2. Mathematical Model

Let Ω ⊂ R2 be the polygonal domain. The boundary ∂Ω is divided in three parts, with mutually
disjoint interiors, denoted by ΓD, ΓN and ΓR, corresponding to Dirichlet, Neumann and Robin boundary
conditions, respectively; one or two of them may be empty.

In a time interval (0,T ], for a piece-wise constant positive real valued function c (representing the
characteristic velocity of the medium), and a scalar source f , the following problem is set in Ω .

Problem 1 (Model problem) Find (uuu, p) such that{
uuut(xxx, t)−∇p(xxx, t) = 000

c−2 pt(xxx, t)−divuuu(xxx, t) = f (xxx, t)
in Ω × (0,T ],

supplied with the following boundary conditions
p(xxx, t) = gD(xxx, t) on ΓD× (0,T ],

uuu(xxx, t) ·nnn = gN(xxx, t) on ΓN× (0,T ],

uuu(xxx, t) ·nnn+α
−1c−1 p(xxx, t) = gR(xxx, t) on ΓR× (0,T ],

being α > 0 an impedance parameter, and gD,gN and gR given functions, and initial conditions{
p(xxx,0) = p0(xxx) in Ω ,

uuu(xxx,0) = uuu0(xxx) in Ω .
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This problem describes the space-time variation of particle velocity uuu and acoustic pressure p in
a heterogeneous medium where waves propagate with characteristic velocity c =

√
µ

ρ
, being ρ > 0

the density and µ > 0 the viscosity of the medium, respectively. Notice that the condition on ΓR×
[0,T ] is known in the literature as impedance boundary condition and includes the low-order absorbing
condition when α = 1 and gR = 0, [11]. In the following we suppose uuu0 ∈ Q2, p0 ∈ Q, f ∈ L2(0,T ;Q)
and for the sake of presentation we set gD = gN = gR = 0 and α = 1. The general case, i.e., with
non-homogeneous boundary conditions con be treated similarly. Next, we define the following bilienar
forms

m(·, ·) : VVV ×VVV → R m(uuu,vvv) := (uuu,vvv)Ω ∀(uuu,vvv) ∈VVV ×VVV ,

n(·, ·) : Q×Q→ R n(p,q) := (c−2 p,q)Ω ∀(p,q) ∈ Q×Q,

b(·, ·) : VVV ×Q→ R b(uuu,q) := (divuuu,q)Ω ∀(uuu,q) ∈VVV ×Q,

r(·, ·) : VVV ×VVV → R r(uuu,vvv) := (cuuu ·nnn,vvv ·nnn)ΓR ∀(uuu,vvv) ∈VVV ×VVV ,

(2.2)

and the linear functional associated to given data is defined as

F(·) : Q→ R F(q) := ( f ,q)Ω ∀q ∈ Q.

Then the weak formulation of Problem 1 reads as follows

Problem 2 (Weak problem) Find the velocity uuu ∈ L2(0,T ;VVV )∩C0(0,T ;Q2), and the pressure p ∈
L2(0,T ;Q)∩C0(0,T ;Q) s.t.{

m(uuut ,vvv)+b(vvv, p)+ r(uuu,vvv) = 0 ∀vvv ∈VVV ,

n(pt ,q)−b(uuu,q) = F(q) ∀q ∈ Q,

with initial condition uuu(·,0) = uuu0 and p(·,0) = p0 in Ω .

Using standard arguments is possible to prove that Problem 2 is well posed, [11, 27, 51] and satisfies
the following stability estimate, cf. also [45]

sup
0≤t≤T

‖(uuu, p)(t)‖E ≤
∫ T

0
‖c f (s)‖0,Ω ds+‖(uuu0, p0)‖E ,

where
‖(vvv,q)‖2

E := ‖vvv‖2
0,Ω +‖c−1q‖2

0,Ω ∀ (vvv,q) ∈ [L2(Ω)]2×Q . (2.3)

We finally observe that if f = 0 and ΓR = /0 Problem 2 is energy conservative, i.e. the solution (uuu, p)
of Problem 2 satisfies

‖(uuu, p)(t)‖E = ‖(uuu0, p0)‖E ∀t ∈ [0,T ] . (2.4)

3. Mixed Virtual Elements

In this Section we describe the virtual element discretization of Problem 2 on general polygonal meshes.
In particular, in Section 3.1 we introduce the assumptions on the regularity of the polygonal meshes
together with the definition of crucial projector operators that will be fundamental in the construction
of the VE discretization. In Section 3.2 we describe the H(div)-conforming VE spaces, whereas in
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Section 3.3 we present the discrete forms. Finally, in Section 3.4 we introduce the semi-discrete VE
discretization of Problem 2 and we provide the stability bound of the solution and the energy preserving
property of the semi-discrete system.

3.1. Mesh assumptions and polynomial projections

From now on, we will denote by E a general polygon having `E edges e. For each polygon E and each
edge e of E we denote by |E|, hE the measure and diameter of E respectively, by he we denote the
length of e. Furthermore nnne

E (resp. nnnE) denotes the unit outward normal vector to e (resp. to ∂E).
Let {Ωh}h be a sequence of decompositions of Ω into general polygons E, where the granularity h

is defined as h = supE∈Ωh
hE . We suppose that {Ωh}h fulfills the following assumption:

(A1) Mesh assumption. There exists a positive constant ρ such that for any E ∈ {Ωh}h

• Any E ∈ {Ωh}h is star-shaped with respect to a ball BE of radius ≥ ρ hE ;
• Any edge e of any E ∈ {Ωh}h, he ≥ ρ hE .

We remark that the hypotheses above, though not too restrictive in many practical cases, could possibly
be further relaxed, combining the present analysis with the studies in [23, 24, 28].

Referring to Problem 2, we assume that for any h the decomposition Ωh matches with the
subdivision of ∂Ω into ΓD, ΓN , ΓR and with the definition of the piece-wise constant velocity c. We
denote by Σh the set of all the mesh edges and, for any E ∈Ωh, we define Σ E

h the set of the edges of E.
The total number of vertexes, edges and elements in the decomposition Ωh are denoted by LV , Le and
LP, respectively.

Using standard VE notations, for any mesh object ω ∈ Ωh ∪Σh and for any n ∈ N let us introduce
the space Pn(ω) to be the space of polynomials defined on ω of degree ≤ n, with the extended notation
P−1(ω) = {0}. For any n ∈ N and for any non-negative s ∈ R we consider the broken spaces

• Pn(Ωh) = {q ∈ L2(Ω) s.t. q|E ∈ Pn(E) for all E ∈Ωh},
• Hs(Ωh) = {v ∈ L2(Ω) s.t. v|E ∈ Hs(E) for all E ∈Ωh},

equipped with the broken norm and seminorm

‖v‖2
Hs(Ωh)

= ∑
E∈Ωh

‖v‖2
Hs(E) , |v|2Hs(Ωh)

= ∑
E∈Ωh

|v|2Hs(E) .

For any E ∈Ωh, let us introduce the LLL222-projection Π
0,E
n : L2(E)→ Pn(E), given by∫

E
qn(v− Π

0,E
n v)dE = 0 for all v ∈ L2(E) and qn ∈ Pn(E),

with obvious extension for vector functions Π
0,E
n : [L2(E)]2 → [Pn(E)]2. The global counterpart

Π 0
n : L2(Ωh)→ Pn(Ωh), is defined for all E ∈Ωh by

(Π 0
n v)|E = Π

0,E
n v . (3.1)

In the following the symbol . will denote a bound up to a generic positive constant, independent
of the mesh size h and of the time step τ introduced in Section 5, but which may depend on Ω , on the
“polynomial” order k and on the regularity constant appearing in the mesh Assumption (A1).
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3.2. Virtual Element spaces

We start by presenting an overview of the H(div)-conforming Virtual Element space, cf. [15, 16, 39].
Let k ≥ 0 be the “polynomial” order of the method. We thus consider on each polygonal element

E ∈Ωh the virtual space

VVV k(E) =
{

vvv ∈ H(div,E)∩H(curl,E) s.t. (i) divvvv ∈ Pk(E) ,

(ii) curlvvv ∈ Pk−1(E) ,

(iii) (vvv ·nnne
E)|e ∈ Pk(e) ∀e ∈ Σ

E
h

}
.

In the following, we summarize the main properties of the space VVV k(E). We refer to [15, 16, 39] for a
detailed analysis.

(P1) Polynomial inclusion: Pk(E)⊆VVV k(E);
(P2) Degrees of freedom: the following linear operators DV constitute a set of DoFs for VVV k(E): for any

www ∈VVV k(E) we consider

DV1 the element moments of the divergence∫
E
(divwww) pk dE ∀pk ∈ Pk(E)\R,

DV2 the element moments ∫
E

www · (pk−1xxx⊥)dE ∀pk ∈ Pk−1,

where xxx⊥ := (y,−x)T;
DV3 the edge moments ∫

e
(www ·nnne

E) pk de ∀pk ∈ Pk(e), ∀e ∈ Σ
E
h .

Therefore the dimension of VVV k(E) is

dim(VVV k(E)) = `E (k+1)+ k2 +2k .

(P3) Computable quantities: for any www ∈VVV k(E) the DoFs DV allow to compute

Π
0,E
k www , divwww , (www ·nnne

E)|e ∀e ∈ Σ
E
h .

The global virtual element space VVV k is defined by gluing together all local spaces, that is: we require
that for any internal edge e ∈ Σ E

h ∩Σ E ′
h , shared by E and E ′,

www|E ·nnne
E +www|E ′ ·nnne

E ′ = 0 ∀www ∈VVV k,

that is in accordance with the DoFs definition DV1. Therefore we have

VVV k := {vvv ∈VVV s.t. vvv|E ∈VVV k(E) ∀E ∈Ωh}. (3.2)
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The dimension of VVV k is thus given by

dim(VVV k) = (k+1)Le +(k2 +2k)LP .

The discrete pressure space Qk is given by the piecewise polynomial functions of degree k, i.e.

Qk := Pk(Ωh) . (3.3)

3.3. Virtual Element forms

The next step in the construction of our method is the definition of a discrete version of the continuous
forms in (2.2). Following the usual procedure in the VE setting, we need to construct discrete forms
that are computable through the DoFs. Notice that in the light of property (P3), for any vvvh,wwwh ∈VVV k and
qh, ph ∈ Qk the quantities

n(ph,qh) , b(vvvh,qh) , r(vvvh,wwwh) , F(qh)

are computable.
Whereas for arbitrary functions in VVV k the form m(·, ·) is not computable since the discrete functions

are not known in closed form. Employing property (P3) for any vvvh, wwwh ∈ VVV k(E) we define the
computable local discrete bilinear form:

mE
h (vvvh,wwwh) :=

∫
E
(Π 0,E

k vvvh) · (Π 0,E
k wwwh)dE +h−2

E S E(vvvh,wwwh) . (3.4)

The stabilizing term in (3.4) is given by

S E(vvvh,wwwh) = SE((I−Π
0,E
k )vvvh, (I−Π

0,E
k )wwwh

)
,

where SE(·, ·) : VVV k(E)×VVV k(E)→ R is a computable symmetric discrete form. In the present paper we
consider the so-called dofi-dofi stabilization [14] defined as follows: let~vvvh and ~wwwh denote the real
valued vectors containing the values of the local degrees of freedom (properly scaled) associated to vvvh,
wwwh in the space VVV k(E) then

SE(vvvh,wwwh) =~vvvh ·~wwwh .

Under mesh Assumption (A1) the form SE(·, ·) satisfies the following bounds (we refer to [39] for the
details)

‖vvvh‖2
0,E . h2

ESE(vvvh,vvvh). ‖vvvh‖2
0,E , (3.5)

for all vvvh ∈VVV k(E)∩ker(Π 0,E
k ).

The global form mh(·, ·) : (VVV k∪ [Pk(Ωh)]
2)× (VVV k∪ [Pk(Ωh)]

2)→R can be derived adding the local
contributions

mh(vvvh,wwwh) := ∑
E∈Ωh

mE
h (vvvh,wwwh) ∀(vvvh,wwwh) ∈ (VVV k ∪ [Pk(Ωh)]

2) . (3.6)

Notice that, from (3.4) and (3.5), it follows that

mh(pppk,vvvh) = m(pppk,vvvh) ∀pppk ∈ [Pk(Ωh)]
2 ,vvvh ∈ (VVV k ∪ [Pk(Ωh)]

2) , (3.7)

‖vvvh‖2
0,Ω . mh(vvvh,vvvh). ‖vvvh‖2

0,Ω ∀vvvh ∈ (VVV k ∪ [Pk(Ωh)]
2) . (3.8)
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3.4. Virtual Element semi-discrete problem

Referring to the spaces (3.2) and (3.3), the forms (2.2) and the discrete bilinear form (3.6), we can state
the following semi-discrete problem.

Problem 3 (VEM problem) Find uuuh ∈ L2(0,T ;VVV k) ∩ C0(0,T ;Q2), and ph ∈ L2(0,T ;Qk) ∩
C0(0,T ;Qk) s.t. {

mh(uuuht ,vvvh)+b(vvvh, ph)+ r(uuuh,vvvh) = 0 ∀vvvh ∈VVV k,

n(pht ,qh)−b(uuuh,qh) = F(qh) ∀qh ∈ Qk,

with initial condition uuuh(·,0) = Π 0
k uuu0 and ph(·,0) = Π 0

k p0 in Ω .

The well-posedness of Problem 3 follows from:

• discrete inf-sup condition [16]: there exists β̂ > 0 s.t.

inf
qh∈Qk

sup
vvvh∈VVV k

b(vvvh,qh)

‖vvvh‖VVV‖qh‖Q
≥ β̂ .

• coercivity on the discrete kernel: the bilinear form mh(·, ·) satisfies

mh(vvvh,vvvh)& ‖vvvh‖2
VVV ∀vvvh ∈ KKKk ,

where KKKk := {vvvh ∈VVV k s.t. b(vvvh,qh) = 0 ∀qh ∈ Qk}.

Let us introduce the discrete energy norm

‖(vvvh,qh)‖2
Eh

:= mh(vvvh,vvvh)+‖c−1qh‖2
0,Ω ∀ (vvvh,qh) ∈ (VVV k ∪ [Pk(Ωh)]

2)×Qk . (3.9)

Then, using analogous argument to that used for the continuous case, the discrete solution (uuuh, ph) of
Problem 3 satisfies the following stability estimate

sup
0≤t≤T

‖(uuuh, ph)(t)‖Eh ≤
∫ T

0
‖c f (s)‖0,Ω ds+‖(Π 0

k uuu0,Π
0
k p0)‖E ,

where, from (3.7), we have used that

‖(pppk,qh)‖Eh = ‖(pppk,qh)‖E ∀(pppk,qh) ∈ [Pk(Ωh)]
2×Qk .

Furthermore if f = 0 and ΓR = /0, Problem 3 is energy conservative, i.e. the solution (uuuh, ph) of Problem
3 satisfies

‖(uuuh, ph)(t)‖Eh = ‖(Π
0
k uuu0,Π

0
k p0)‖E ∀t ∈ [0,T ] , (3.10)

that is the semi-discrete counterpart of (2.4).

Remark 1 Notice that definitions (2.3) and (3.9) and bounds (3.8) imply the following norm
equivalence

‖(vvvh,qh)‖E . ‖(vvvh,qh)‖Eh . ‖(vvvh,qh)‖E ∀ (vvvh,qh) ∈VVV k×Qk . (3.11)

Remark 2 The proposed approach can be easily extended to more general situations such as the three
dimensional case [15], and domains with curved boundary/interfaces [39, 41]. The analysis could be
developed with very similar arguments to the ones in the forthcoming sections.
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4. Theoretical analysis

In this section, we present some theoretical results for the virtual element Problem 3. In Section 4.1 we
review the interpolation estimates, whereas in Section 4.2 and Section 4.3 we provide the convergence
analysis and the energy error estimate respectively.

4.1. Interpolation estimates

We now recall the optimal approximation properties for the space VVV k (see [39]). We define the linear
Fortin operator Π F

k : [H1(Ω)]2 → VVV k in the following way. For any www ∈ [H1(Ω)]2 and for all e ∈ Σh
and E ∈Ωh, Π F

k www is determined by∫
E

div(www−Π
F
k www) pk dE = 0 ∀pk ∈ Pk(E)\R ,∫

E
curl(www−Π

F
k www) pk−1 dE = 0 ∀pk−1 ∈ Pk−1(E) ,∫

e
(www−Π

F
k www) ·nnne pk de = 0 ∀pk ∈ Pk(e) .

The conditions above implies that the following diagram is commutative, i.e.,

[H1(Ω)]2
div−−−→ Q 0−−→ 0

Π
F
k

y Π
k
0

y
VVV k

div−−−→ Qk
0−−→ 0

where 0 is the map that associates to every function the value 0. In particular, for any www ∈ [H1(Ω)]2 it
holds (see [39])

div(Π F
k www) = Π

0
k divwww , curl(Π F

k www) = Π
0
k−1 curlwww ,

((Π F
k www) ·nnne)|e = (Π 0,e

k (www ·nnne))|e ∀e ∈ Σh .
(4.1)

For the Fortin operator we have the following interpolation estimate (see [39, Proposition 4.1]).

Proposition 4.1 (Approximation property of VVV k) Under Assumption (A1) for any vvv ∈VVV ∩ [Hs(Ωh)]
2

where 1≤ s≤ k+1, Π k
F vvv satisfies the estimate

‖vvv−Π
k
F vvv‖0,Ω . hs|v|s,Ωh .

We now review a classical approximation result for polynomials on star-shaped domains, see for
instance [29].

Lemma 4.1 (Bramble-Hilbert) Under Assumption (A1) and referring to (3.1), for all q ∈ Hs(Ωh)
where 0≤ s≤ k+1, it holds

‖q−Π
0
k q‖Ω ,0 . hs |q|Ωh,s .
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4.2. Convergence analysis

In this section we provide the convergence property for the semi-discrete scheme.

Proposition 4.2 Under Assumption (A1), let (uuu, p) be the solution of Problem 2 and (uuuh, ph) be the
solution of Problem 3. Assume that

uuut , pt ∈ L1(0,T ;Hk+1(Ωh)) and uuu0, p0 ∈ Hk+1(Ωh) .

Then for all t ∈ (0,T ) the following error estimate holds:

‖(uuu−uuuh, p− ph)(t)‖E . hk+1(|uuu0|k+1,Ωh + ĉ |p0|k+1,Ωh + |uuut |L1(0,t;Hk+1(Ωh))
+ ĉ |pt |L1(0,t;Hk+1(Ωh))

)
,

where ĉ := ‖c−1‖L∞(Ω×(0,T )).

Proof For all t ∈ (0,T ), let us introduce the following error quantities

eeeI(t) := uuu(t)−Π
F
k uuu(t) , ρI(t) := p(t)−Π

0
k p(t) ,

eeeh(t) := Π
F
k uuu(t)−uuuh(t) , ρh(t) := Π

0
k p(t)− ph(t) ,

From triangle inequality and (3.11) it holds

‖(uuu−uuuh, p− ph)(t)‖E . ‖(eeeI ,ρI)(t)‖E +‖(eeeh,ρh)(t)‖Eh . (4.2)

The first term on the right-hand side of (4.2) can be bounded by using Proposition 4.1 and Lemma 4.1
getting

‖(eeeI ,ρI)(t)‖E . h(k+1) (|uuu(t)|k+1,Ωh + ĉ |p(t)|k+1,Ωh

)
. hk+1

(
|uuu0|k+1,Ωh + ĉ |p0|k+1,Ωh +

∫ t

0

(
|uuut(s)|k+1,Ωh + ĉ |pt(s)|k+1,Ωh

)
ds
)

= hk+1(|uuu0|k+1,Ωh + ĉ |p0|k+1,Ωh + |uuut |L1(0,t;Hk+1(Ωh))
+ ĉ |pt |L1(0,t;Hk+1(Ωh))

)
.

(4.3)

To estimate the second term on the right-hand side of (4.2) we proceed as follows. We consider Problem
2 and Problem 3 and obtain

m(uuut ,eeeh)+b(eeeh, p)+ r(uuu,eeeh)+n(pt ,ρh)−b(uuu,ρh) = F(ρh),

mh(uuuht ,eeeh)+b(eeeh, ph)+ r(uuuh,eeeh)+n(pht ,ρh)−b(uuuh,ρh) = F(ρh).

Then subtracting the previous equations we get the following error equation

m(uuut ,eeeh)−mh(uuuht ,eeeh)+n((p− ph)t ,ρh)+ r(uuu−uuuh,eeeh)+ηb = 0 , (4.4)

where
ηb := b(eeeh, p− ph)+b(uuuh−uuu,ρh).
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First, we notice that the term ηb vanishes, in fact

ηb = b(Π F
k uuu, p− ph)−b(uuuh, p− ph)+b(uuuh,Π

0
k p− ph)−b(uuu,Π 0

k p− ph)

= b(Π F
k uuu, p− ph)+b(uuu, ph−Π

0
k p)+b(uuuh,Π

0
k p− p)

= b(Π F
k uuu, p− ph)+b(uuu, ph−Π

0
k p) (divuuuh ∈ Pk(Ωh) & def. Π

0
k )

= b(Π F
k uuu, p− ph)+b(Π F

k uuu, ph−Π
0
k p) (ph−Π

0
k p ∈ Pk(Ωh) & (4.1))

= b(Π F
k uuu, p−Π

0
k p)

= 0. (div(Π F
h uuu) ∈ Pk(Ωh) & def. Π

0
k )

(4.5)

Therefore, from (4.4) and (4.5) we infer

mh(eeeht ,eeeh)+n(ρht ,ρh)+ r(eeeh,eeeh) = (mh(Π
F
k (uuut),eeeh)−m(uuut ,eeeh))−n(ρI t ,ρh)− r(eeeI ,eeeh) . (4.6)

Recalling that (eeeh ·nnne)|e ∈ Pk(e) for all e ∈ Σh, and employing (4.1) we have

r(eeeI ,eeeh) = r(uuu−Π
F
k uuu,eeeh) = 0 . (4.7)

Therefore, since r(eeeh,eeeh)≥ 0, from (4.6) and (4.7), and recalling definition (3.9) we obtain

1
2

d
dt
‖(eeeh,eeeh)‖2

Eh
≤ (mh(Π

F
k (uuut),eeeh)−m(uuut ,eeeh))−n(ρI t ,ρh) =: ηuuu +ηp . (4.8)

The first term on the right-hand side of the previous equation can be bounded as follows

ηuuu = mh(Π
F
k (uuut)−Π

0
k (uuut),eeeh)+m(Π 0

k (uuut)−uuut ,eeeh) (by (3.7))

.
(
‖Π F

k (uuut)−Π
0
k (uuut)‖0,Ω +‖uuut −Π

0(uuut)‖0,Ω
)
‖eeeh‖0,Ω (by (3.8))

.
(
‖uuut −Π

F
k (uuut)‖0,Ω +‖uuut −Π

0(uuut)‖0,Ω
)
‖eeeh‖0,Ω (by tri. ineq.)

. hk+1 |uuut |Hk+1(Ωh)
mh(eeeh,eeeh)

1/2

(4.9)

where in the last inequality we used Proposition 4.1, Lemma 4.1 and equation (3.8). Whereas ηp is
estimated by

ηuuu = n(Π 0(pt)− pt ,ρh)≤ ‖c−1(Π 0(pt)− pt)‖0,Ω‖c−1
ρh‖0,Ω

. ĉ hk+1 |pt |Hk+1(Ωh)
‖c−1

ρh‖0,Ω .
(4.10)

Therefore recalling definition (3.9), from (4.8), (4.9) and (4.10) and the Cauchy-Schwarz inequality, we
obtain

d
dt
‖(eeeh,ρh)(t)‖Eh . hk+1

(
|uuut(t)|Hk+1(Ωh)

+ ĉ |pt(t)|Hk+1(Ωh)

)
.

By integrating the previous bound on (0, t) we obtain

‖(eeeh,ρh)(t)‖Eh . ‖(eeeh,ρh)(0)‖Eh +hk+1
(∫ t

0
|uuut(s)|Hk+1(Ωh)

ds+ ĉ
∫ t

0
|pt(s)|Hk+1(Ωh)

ds
)

. ‖(eeeh,ρh)(0)‖E +hk+1
(
‖uuut‖L1(0,t;Hk+1(Ωh))

+ ĉ‖pt‖L1(0,t;Hk+1(Ωh))

)
.

(4.11)
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We finally bound the initial data error

‖(eeeh,ρh)(0)‖E . ‖Π F
k uuu0−Π

0
k uuu0‖0,Ω + ĉ‖p0−Π

0
k p0‖0,Ω

. hk+1
(
|uuu0|Hk+1(Ωh)

+ ĉ |p0|Hk+1(Ωh)

)
.

(4.12)

The thesis now follows combining (4.11), (4.12) and (4.3) in (4.2). �

4.3. Energy error

An important aspect in wave propagation problems is the energy conservation of the continuous and
semi-discrete system (cf. (2.4) and (3.10) rispectively). In the following proposition we estimate the
errors between the energy of the continuous and the semi-discrete energy of the system.

Proposition 4.3 Under assuption (A1), let (uuu, p) be the solution of Problem 2 and (uuuh, ph) be the
solution of Problem 3 with f = 0 and ΓR = /0. Assume that uuu0, p0 ∈ Hk+1(Ωh). Then for all t ∈ (0,T ),
the following estimate holds:

0≤ ‖(uuu, p)(t)‖2
E −‖(uuuh, ph)(t)‖2

Eh
. h2(k+1)(|uuu0|2k+1,Ωh

+ ĉ2 |p0|2k+1,Ωh

)
,

where ĉ := ‖c−1‖L∞(Ω×(0,T )).

Proof . From (2.4) and (3.10) we infer

‖(uuu, p)(t)‖2
E −‖(uuuh, ph)(t)‖2

Eh
= ‖(uuu0, p0)‖2

E −‖(Π 0
k uuu0,Π

0
k p0)‖2

E

= ‖uuu0‖2
0,Ω +‖ccc−1 p0‖2

0,Ω −‖ΠΠΠ 0
kuuu0‖2

0,Ω −‖ccc−1
Π

0
k p0‖2

0,Ω .

Direct application of Pythagorean Theorem yields

‖ζ‖2
0,Ω = ‖Π 0

k ζ‖2
0,Ω +‖ζ −Π

0
k ζ‖2

0,Ω , ∀ζ ∈ L2(Ω) ,

therefore, recalling that c is piece-wise constant w.r.t. Ωh, we infer

‖(uuu, p)(t)‖2
E −‖(uuuh, ph)(t)‖2

Eh
= ‖uuu0−Π

0
k uuu0‖2

0,Ω +‖c−1(p0−Π
0
k p0)‖2

0,Ω . (4.13)

Then, from (4.13) and Lemma 4.1, the following bounds hold

‖(uuu, p)(t)‖2
E −‖(uuuh, ph)(t)‖2

Eh
≥ 0 ,

‖(uuu, p)(t)‖2
E −‖(uuuh, ph)(t)‖2

Eh
. h2(k+1)(|uuu0|2k+1,Ωh

+ ĉ2 |p0|2k+1,Ωh

)
.

�

5. Time integration

In the light of energy conservation (2.4) and (3.10) and the energy error estimate in Proposition 4.3, it
is crucial to understand how the energy is preserved or not under time-stepping schemes.
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In the present section we formulate a fully discrete version of Problem 3 aiming at preserving the
energy of the system. Therefore, we introduce a sequence of time steps tn = nτ , n = 0, . . . ,N, with time
step size τ . Next, we define vvvn

h,τ := vvvh(·, tn) (resp. qn
h,τ := qh(·, tn)) as the approximation of the function

vvvh(·, t) ∈VVV k (resp. qh(·, t) ∈Qk ) at time tn, n = 0, . . . ,N. To integrate in time Problem 3, we take under
consideration the family of θ -method schemes and analyse their energy conservation properties. The
fully discrete systems consequently reads as follows:
Given (uuu0

h,τ , p0
h,τ) = (Π 0

k uuu0,Π
0
k p0), find (uuun

h,τ , pn
h,τ) for n = 0, . . . ,N s.t.

mh

(
uuun+1

h,τ −uuun
h,τ

τ
,vvvh

)
+b(vvvh,θ pn+1

h,τ +(1−θ)pn
h,τ)+ r(θuuun+1

h,τ +(1−θ)uuun
h,τ ,vvvh) = 0 ∀vvvh ∈VVV k,

n

(
pn+1

h,τ − pn
h,τ

τ
,qh

)
−b(θuuun+1

h,τ +(1−θ)uuun
h,τ ,qh) = θFn+1(qh)+(1−θ)Fn(qh) ∀qh ∈ Qk,

(5.1)

where Fn(qh) := ( f (tn),qh)Ω and θ ∈ [0,1]. It is well known that all θ -methods are first order accurate
in time, except for θ = 1/2, i.e., the Crank-Nicolson method, which is second order accurate.

To analyse the energy conservation of the proposed schemes we consider null forcing terms, i.e.
f = 0, and ΓR = /0. Thus, the above system reduces to

mh

(
uuun+1

h,τ −uuun
h,τ

τ
,vvvh

)
+b(vvvh,θ pn+1

h,τ +(1−θ)pn
h,τ) = 0 ∀vvvh ∈VVV k,

n

(
pn+1

h,τ − pn
h,τ

τ
,qh

)
−b(θuuun+1

h,τ +(1−θ)uuun
h,τ ,qh) = 0 ∀qh ∈ Qk .

(5.2)

We start by considering in (5.2)

vvvh = θuuun+1
h,τ +(1−θ)uuun

h,τ ∈VVV k, and qh = θ pn+1
h,τ +(1−θ)pn

h,τ ∈ Qk,

and by summing together the two above equation we get

mh

(
uuun+1

h,τ −uuun
h,τ

τ
,θuuun+1

h,τ +(1−θ)uuun
h,τ

)
+n

(
pn+1

h,τ − pn
h,τ

τ
,θ pn+1

h,τ +(1−θ)pn
h,τ

)
= 0,

that is

θ‖(uuun+1
h,τ , pn+1

h,τ )‖2
Eh
+(1−2θ)

(
mh(uuun+1

h,τ ,uuun
h,τ)+n(pn+1

h,τ , pn
h,τ)
)
= (1−θ)‖(uuun

h,τ , pn
h,τ)‖2

Eh
,

which, rearranging the terms, is

‖(uuun+1
h,τ , pn+1

h,τ )‖2
Eh
+(2θ −1)‖(uuun+1

h,τ −uuun
h,τ , pn+1

h,τ − pn
h,τ)‖2

Eh
= ‖(uuun

h,τ , pn
h,τ)‖2

Eh
. (5.3)

Now, it is easy to see that for n = 0, . . . ,N:

• if θ = 1/2, i.e., for the Crank-Nicolson method, the discrete energy is conserved, i.e.

‖(uuun
h,τ , pn

h,τ)‖Eh = ‖(uuu
0
h,τ , p0

h,τ)‖Eh = ‖(Π
0
k uuu0,Π

0
k p0)‖E ,
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• if 1/2 < θ ≤ 1, that is 2θ −1 > 0, the second term in (5.3) is positive and then we can obtain

‖(uuun+1
h,τ , pn+1

h,τ )‖2
Eh
≤ ‖(uuun

h,τ , pn
h,τ)‖2

Eh
,

that means dissipation of energy, cf. [46],
• if 0≤ θ < 1

2 , that is 2θ −1 < 0, the second term in (5.3) is negative and then we have

‖(uuun+1
h,τ , pn+1

h,τ )‖2
Eh
≥ ‖(uuun

h,τ , pn
h,τ)‖2

Eh
, (5.4)

that is the method produces a nondecreasing energy at each time step, in agreement with [47].

To obtain an explicit nearby energy-conservative scheme, one can consider, for example, the
symplectic Euler scheme, that reduces to:

n

(
pn+1

h,τ − pn
h,τ

τ
,qh

)
−b(uuun

h,τ ,qh) = Fn(qh) ∀qh ∈ Qk,

mh

(
uuun+1

h,τ −uuun
h,τ

τ
,vvvh

)
+b(vvvh, pn+1

h,τ )+ r(uuun
h,τ ,vvvh) = 0 ∀vvvh ∈VVV k .

(5.5)

We refer the reader to [52] for the analysis.

6. Numerical tests

In this section we provide some numerical examples to show the behaviour of the method and give
numerical evidence of the theoretical results derived in the previous sections. We consider three test
cases: the first in Subsection 6.1 presents the expected convergence rates for different approximation
degree over several mesh families. The second test case, given in Subsection 6.2, is focused on
the energy conservation properties of the scheme. Finally, in Subsection 6.3, we consider a wave
propagation problem in a domain having with small curved inclusions. The latter is handled by using
the extension of VEM to curved edges (cf. Remark 2).

6.1. Error decay

In this first test case, we verify the expected convergence rate of the method for different mesh
families:

• tria a simplicial mesh;
• quad a Cartesian mesh;
• hexa composed by distorched hexagons;
• voro a mesh made of Voronoi cells optimized via a Lloyd algorithm.

In order to compute the VEM errors between the exact solution (uuu, p) and the VEM solution (uuuh, ph)
at the final time T , we consider the computable L2-like error quantities,

euuu := ‖uuu(T )−Π
0
k uuuh(T )‖0,Ω and ep := ‖p(T )−Π

0
k ph(T )‖0,Ω .

Let us set the mesh-size parameter

h :=
1

LP
∑

E∈Ωh

hE .
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For each family, we build a sequence of four meshes with decreasing mesh size h. In Figure 1 we depict
one mesh as representative of each family.

tria quad

hexa voro

FIG. 1. Example of the adopted polygonal meshes. Example in Subsection 6.1.

In accordance with Proposition 4.2, the trend of each error indicator is computed and compared to
the expected convergence trend. We consider a problem on Ω = (0,1)2 with analytical solution given
by

uuu(xxx, t) =
[
−2π cos(2πx)cos(2πy)sin(t)

2π sin(2πx)sin(2πy)sin(t)

]
,

p(xxx, t) = cos(2πy)sin(2πx)cos(t).

We set ΓD = ∂Ω , ΓN = ΓR = /0 and choose c = 1. Boundary and initial conditions as well as the forcing
term f in Problem 1 are computed accordingly. Since we are considering the space discretization error,
we set T = 1.e−7 and τ = 1.e−8 with θ = 1 in (5.1).

The computed errors are given in Figure 2 and 3. Such convergence lines are coherent with the
estimates derived in the theoretical results, see Proposition 4.2. For high approximation degree and
fine mesh size, we notice stagnation of the error of the hexa and voro families. This is an expected
behaviour discussed in [25]. A possible solution is to introduce a different basis for the polynomial
expansion that makes the local systems better conditioned. However, this is out of the scope of the
current work and it may be a good starting point for future investigations.
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epquad
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0.00

0.02

0.04

k = 1 k = 2 k = 3 k = 4

FIG. 2. Error decay for different type of meshes. Example in Subsection 6.1.

6.2. Conservation of energy

In this second example, we test the conservation of energy given, for the semi-discrete system, in (3.10).
We consider the same mesh families and approximation degrees of the previous example and we choose
four different time integration schemes: Explicit Euler, i.e. θ = 0 in (5.2), Implicit Euler, i.e. θ = 1 in
(5.2) Crank-Nicolson, i.e. θ = 1

2 in (5.2), and Symplectic Euler (5.5). As observed in Section 3.4, the
space discretization does locally conserve the energy so the possible lack of conservation will be due to
the temporal scheme.

The spatial domain is still the unit square, ΓD = [0,1]×{0,1} i.e. the top and the bottom boundaries,
ΓN = {0,1}× [0,1] i.e. the left and right boundaries, and ΓR = /0. The final time is T = 1 and τ = 1/200.
We set to zero the source term, the characteristic velocity c = 1 and the initial velocity and pressure as

uuu(xxx,0) =
[

sin(x)
cos(y)

]
, and p(xxx,0) = cos(2πy)sin(2πx) .

The conservation of energy is depicted in Figure 4. In these graphs we compute the difference
between the initial energy and the one at a specific time step and we report such values multiplied by a
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FIG. 3. Error decay for different type of meshes. Example in Subsection 6.1.

factor of 104. We notice that for the Explicit Euler the energy tends to increase during time in agreement
with (5.4). This trend becomes more evident for higher approximation degree. For the Implicit Euler
the situation has an opposite behaviour. Indeed, the energy is now dissipated during time. Also for this
scheme, higher approximation degrees tend to dissipate more energy. The semi-implicit Symplectic
Euler scheme mitigates this effect: the energy is not conserved during time, but the absolute error does
not grow and stay limited. Finally, Crank-Nicolson shows a perfect energy conservation property. To
better appreciate this behaviour we report in Table 1 the values

E =
‖(uuuT

h,τ , pT
h,τ)‖Eh −‖(uuu

0
h,τ , p0

h,τ)‖Eh

‖(uuu0
h,τ , p0

h,τ)‖Eh

, (6.1)

being ‖(uuuT
h,τ , pT

h,τ)‖Eh the energy of the system at final time T . The behaviours of these time
discretisation schemes perfectly match the arguments in Section 5.
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E tria quad hexa voro
k = 1 7.4038e-16 8.6677e-15 2.0568e-15 9.0382e-15
k = 2 1.2555e-14 2.7043e-14 2.2665e-15 2.4104e-15
k = 3 2.8832e-14 2.2205e-13 6.3020e-16 1.0358e-14
k = 4 2.9968e-15 1.2107e-13 2.2041e-16 1.6068e-14

TABLE 1 Energy errors E computed as in (6.1) for the Crank-
Nicolson scheme in (5.2).

6.3. Multiple scattering in curved configurations

In this example, we show the qualitative behaviour of the solution computed by the proposed approach
in a domain with multiple circular inclusions. We consider two different configurations that are inspired
by [12]. Both domain are defined in Ω = (0,1)2, but the first one has five holes whose centres are
located at

xxx1 = [a ,c]>, xxx2 = [a ,b]>, xxx3 = [a ,a]>, xxx4 = [b ,a]>, xxx5 = [c ,a]>,

while the second one has three additional circles centred at

xxx6 = [b ,c]>, xxx7 = [c ,c]>, xxx8 = [c ,b]>,

where the values of the three parameters are given by

a = 0.6052631578947355 , b = 0.5, and c = 0.3947368421052622 .

All circles have diameter 0.02. We refer to the first and the second case as fiveHoles and
eightHoles, respectively. The grid is build starting from a structured quadrilateral mesh, where the
cells intersecting with a circle are properly cut. Moreover, since we exploit the possibility to include the
geometry information within VEM spaces [39], we do not need to over-refine edges to get an accurate
representation of the circles themselves. As a consequence, we can reduce the computational effort
without losing the accuracy of the solution, by neglecting spurious waves due to a piece-wise linear
representation of the circles.

For both fiveHoles and eightHoles examples, we build two meshes, see Figure 5. The first
one starting from a square divided in 38×38 uniform squares. Then, the second one is constructed by
refining 2 times only the quadrilateral elements of the first one, see the detail in Figure 6.

Along the external boundaries of Ω , we impose absorbing boundary conditions, while on all the
small circles perimeters we use homogeneous Neumann conditions. Then, we consider c = 1 and the
following source term

f (xxx, t) = 10.e−(t−1)2/σ1e−‖xxx−xxxc‖2/σ2 ,

with σ1 = 0.01 and σ2 = 0.00125 and xxxc = [0.5,0.5]>. The initial values of both uuu and p are set to zero.
We assume approximation degree equal to k = 2. As final time we take T = 10, we divide the interval
[0,T ] into 50 equally spaced sub-intervals and we use the Crank-Nicolson time integration scheme.

In Figure 7 we show the computed pressure solution ph evaluated at quadrature points at different
time steps for the fiveHoles case. On the top panels we show the coarse mesh while, on the bottom
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FIG. 4. Energy error for different schemes. For visualization purposes the values have been magnified by a factor 104. Example
in Subsection 6.2.

ones, we consider the fine mesh. From a qualitative point of view we observe no much difference
between them.
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FIG. 5. Representation of the computational grid for fiveHoles (left) for eightHoles (right). Example in Subsection 6.3.

FIG. 6. Detail of one hole in the inital mesh (left) and in the refined one (right). Example in Subsection 6.3.

In Figure 8 we consider the eightHoles case. Also for this experiment we observe that the
coarser mesh provides similar results of the ones obtained with the refined mesh. Moreover, since the
holes are displaced in a symmetric way with respect to xxxc we expect the waves preserve a symmetric
structure. This is confirmed by the snapshots represented in Figure 8.

7. Conclusions

In this work, we presented a general order virtual element numerical discretization scheme to
approximate the wave equation written in mixed form. The latter results in a first order system of
differential equations in both space and time dimension. We presented the a-priori stability analysis
as well as the convergence property of the scheme in a suitable energy norm and we showed that the
proposed virtual element scheme preserve the semi-discrete energy of the system in absence of external
load. To integrate in time the semi-discrete problem we consider the family of the θ - method schemes
and we discuss their energy conservation properties. We verified the theoretical results on different
benchmark tests and we applied the proposed scheme on a domain with circular inclusions to show
the capabilities of the method in term of accuracy and of flexibility in handling complex geometries.
To conclude, the presented mixed virtual element method allows a robust and flexible numerical
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step 13 step 26 step 42

FIG. 7. Solution obtained with the fiveHoles mesh, on the top with a coarse grid and on the bottom with a finer grid. Example
in Subsection 6.3.

discretization that can be successfully applied to wave propagation problems. Future developments
in this direction may include the study of multi-physics problems (written in a mixed form) such as
vibro-acoustics (with elastic or poroelastic structure) interaction problems.
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