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Abstract

We propose a new low-dimensional registration procedure that exploits the relation-
ship between response and predictor in a function-on-function regression. In this
context, Functional Covariance Components (FCC) provide a flexible and powerful
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tool to represent the data in a low-dimensional space, capturing the most mean-
ingful modes of dependency between the two set of curves. Based on this reduced
representation, our procedure aligns simultaneously the two sets of curves, in a way
that optimizes the subsequent regression analysis. To implement our procedure, we
use both the Continuous Registration algorithm (CR) and a novel parallel algorithm
coded in R. We then compare it to other common registration approaches via simu-
lations and an application to the AneuRisk data.

Keywords: Function-on-Function regression; Functional Data Registration; Covariance Op-
erator.
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1 Introduction

Functional Data Analysis (FDA) has become a very active area of Statistics, offering so-

phisticated tools and methods applicable to scientific fields ranging from the geosciences

to the social and biomedical sciences. A critical issue in FDA is data registration; that

is, the problem of separating phase (horizontal) and amplitude (vertical) variation in a

statistically meaningful way. Among the most common approaches to data registration

are those based on warping functions. These are monotonic functions that transform the

domain of the data, making them as similar as possible to an overall template function.

Kneip and Ramsay (2008) and Wagner and Kneip (2018) recently introduced procedures

that align the data using appropriate representations in reduced functional spaces. The

standard choice to represent the data in a low-dimensional space is through a Functional

Principal Components (FPC) basis.

In a function-on-function regression context, we propose a different choice of basis for

low-dimensional registration; specifically, one that exploits the relationship between re-

sponse and predictor – preserving information relevant to the regression. Functional Co-

variance Components (FCC) naturally provide such a basis: our novel procedure registers

the two sets of curves (response and predictor) simultaneously based on the most significant

modes of covariation between them.

To implement FCC registration, we develop an efficient new parallel algorithm in R,

referred to as H1 throughout the article, which minimizes the H1 distance between each

curve and its projection on the FCC basis. We benchmark our new algorithm against an

algorithm proposed by Ramsay and Silverman (2005) and available in the fda R package,

which we refer to as RS. For each curve, RS minimizes the smallest eigenvalue of the

cross product matrix between the curve and a template – usually the mean curve. In our
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adaptation, the template is not the mean, and it is not the same for all curves. Instead,

for each curve, we use as template its projection on the FCC basis.

We also benchmark FCC registration, implemented with both H1 and RS, against com-

monly used methods such as mean-template registration (Ramsay and Silverman, 2005),

elastic shape registration (Tucker et al., 2013) and principal components registration (Kneip

and Ramsay, 2008). Our simulations show that FCC registration, especially with the novel

H1 algorithm, performs on par with other approaches in terms of alignment, provides an

effective low-dimensional representation of the data, and in fact improves performance in

terms of regression analysis. Also our application to the AneuRisk data demonstrates the

benefits of FCC registration in terms of regression results.

The remainder of the article is organized as follows. In Section 2 we give background on

the low-dimensional registration problem. In Section 3 we introduce our FCC registration

– showing how covariance components can guide the simultaneous alignment of two sets of

curves. In Section 4 we describe the implementation of FCC registration based on RS and

on our novel H1 algorithm. In Section 5 we report simulation results and an application

to AneuRisk data on 52 patients, where we study the relationship between wall shear stress

on the carotid walls and some of its geometrical features. In Section 6 we provide final

remarks and discuss further developments and extensions of our work.

2 Background

Throughout the article, we consider a sample comprising two sets of n (paired) curves,

indicated as x(t) = x1(t), . . . , xn(t) and y(t) = y1(t), . . . , yn(t). The domain is assumed to

be a common interval [a, b], though all our developments hold when domains differ for x and

y. We also assume xi, yi ∈ H2([a, b]); that is, we require curves to be twice differentiable
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with both first and second derivatives belonging to L2([a, b]).

In practice, to construct each curve xi (or yi) starting from any number, say Si, of raw

observations x
(R)
i1 , . . . x

(R)
iSi

, we use a linear combination of J B-spline functions of order b,

ϕb
j, with J − b+ 2 equidistant knots. We write

xi(t) =
J∑

j=1

cijϕ
b
j(t) (1)

where the coefficients cij are chosen to minimize
∑Si

s=1

(
x
(R)
is − xi(s)

)2
+ λ

∫ b

a

(
d2

dt2
xi(t)

)2
dt

(the first term is a sum of least squares distances, the integral is a smoothing penalization

term, and λ is a smoothing parameter). Note that, for any b > 3, we do indeed obtain

curves in H2 – thus meeting our requirement. Of course, different basis systems or entirely

different methods, e.g. free-knot regression splines as in Sangalli et al. (2009b), could be

used to construct the curves. However, a basis system is necessary to define and implement

our registration procedure.

Before proceeding, we introduce further notation similar to Horváth and Kokoszka

(2012). The covariance function between x and y, is defined as σxy(t, s) = E
[(
x(s) −

Ex(s)
)(
y(t)−Ey(t)

)]
, and the variance functions of x and y correspond to σxx and σyy, re-

spectively. The covariance operator between x and y is defined as (Σxyv)(t) =
∫ b

a
σxy(t, s)v(s)ds

for v ∈ L2([a, b]). Similarly we can define Σxx, the variance operator of x, and Σyy,

the variance operator of y. In terms of sample counterparts, the covariance function is

σ̂xy(s, t) = n−1
∑n

i=1

(
xi(s)− x̄(s)

)(
yi(t)− ȳ(t)

)
and the covariance operator is (Σ̂xyv)(t) =∫ b

a
σ̂xy(t, s)v(s)ds, where x̄(t) = n−1

∑n
i=1 xi(t) and ȳ(t) = n−1

∑n
i=1 yi(t) are sample means.
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2.1 Registration with warping functions

Functional data exhibit both amplitude and phase variation. The first pertains to the size

of a curve’s features, e.g. peaks and valleys, ignoring their locations, i.e. their position in

the domain. The second pertains to the location of the features, ignoring their sizes. The

distinction is critical because if the location of features varies among curves, they should not

be compared at the same positions in the domain; for instance, curves may share a common

pattern, but this pattern may be misaligned along the domain. In many applications

ignoring phase variability can lead to an inability to capture important structure in the

data, and to inefficiency in modeling. The problem of separating amplitude and phase

variation in a statistically meaningful way is called registration.

Many registration techniques have been developed over the years. Here, we focus on

registration based on warping functions. Following Ramsay and Silverman (2005), we define

a warping function h as an element of the space H ⊂ H2[(a, b)] of all continuous, strictly

increasing functions such that h(a) = a and h(b) = b. In the registration procedure, each

curve xi is associated to a specific warping function hi which provides a (possibly non-

linear) transformation of the domain capturing the phase variation of the curve. More

specifically, hi is chosen so that the registered function xi(hi(t)) is as similar as possible to

a given template, with a definition of similarity that can vary among different algorithms.

Since monotone transformations do not change shape features, the registered functions

x1(h1(t)), ..., xn(hn(t)) will possess the same sequences of peaks and valleys as the original

functions and, ideally, exhibit only amplitude variation. Note that the condition h(a) = a

and h(b) = b excludes simple horizontal translations – imposing that all registered curves

have common start and end points. This is fairly natural in many applications, see Ramsay

and Silverman (2002), but this requirement can be modified in specific situations.

Among all possible warping representations, we adopt the one used by Kneip and Ram-
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say (2008) and consider functions of the form

h(t;wi) = a+ (b− a)

∫ t

a
ewi(u)du∫ b

a
ewi(u)du

, (2)

where wi ∈ H2([a, b]). It is immediate to note that for any scalar c ∈ R the functions

w and w + c lead to the same warping h. Thus, following Kneip and Ramsay (2008),

we only consider standardized warping functions by imposing that
∫ b

a
wi(t)dt = 0 ∀i and

n−1
∑n

i=1wi(u) = 0 ∀u ∈ [a, b].

2.2 Registration to low dimensional spaces

Many FDA methods are based on identifying low dimensional linear subspaces of functions

that are able to provide accurate approximations of the observed functional data. For this

reason, some recent approaches such as Kneip and Ramsay (2008) and Wagner and Kneip

(2018) consider registration not simply as an alignment problem, but also as a dimension

reduction one. Warping functions are selected in such a way that the resulting registered

curves span a low dimensional linear subspace. Hence, if we have n curves x1(t), . . . , xn(t) ∈

H2([a, b]) the registration problem can be described as in Wagner and Kneip (2018); namely,

identifying a set of warping functions h1(t), . . . , hn(t), a linear subspace LK ⊂ H2([a, b])

and a dimension K for the latter as to have

xi(hi(t)) =
K∑
j=1

aijγj(t), i = 1, . . . , n (3)

for a suitable set of continuous basis functions γ1, . . . , γK with span{γ1, . . . , γK} = LK

and for some coefficients ai1, . . . , aiK ∈ R. Of course many choices are possible for the

basis functions. Kneip and Ramsay (2008) and Wagner and Kneip (2018) use as basis

the Functional Principal Components (FPC) identified by the eigendecomposition of the
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variance operator Σxx. The basic idea behind this choice is to align the curves using as

template a basis expansion that describes the leading modes of variation in the data. Note

that, as pointed out in Wagner and Kneip (2018), the registration problem described in (3)

poses an identifiability issue. Specifically, uniqueness of the LK space is not guaranteed.

3 FCC registration

We now focus on a function-on-function regression context. Assume again to have two sets

of paired curves x(t) = x1(t), . . . , xn(t) and y(t) = y1(t), . . . , yn(t), with xi, yi ∈ H2([a, b])

∀i. Following Horváth and Kokoszka (2012), the function-on-function regression model

with a single predictor is defined as

yi(s) = α(s) +

∫ b

a

xi(s)β(s, t)dt+ ϵi(s) i = 1, . . . , n, (4)

where y is the functional response, x the functional predictor, α the functional intercept in

H2([a, b]), β(s, t) the regression coefficient surface, and the ϵ’s are i.i.d. Gaussian random

elements in H2([a, b]), independent of the x’s, with mean function 0 and common variance

operator. Again, without loss of generality, we assume x and y to have the same domain.

In this framework, we develop a registration procedure that, exploiting the relationship

between x and y, is able to optimize predictive performance in the function-on-function

regression. This registration driven by regression can be compared to the one driven by

clustering introduced in Sangalli et al. (2010): the aim is not only the alignment itself, but

also the performance of a specific statistical analysis. To achieve our goal, we propose FCC

registration. Unlike FPC registration, which utilizes the leading modes of variation within

one set of curves, FCC registration utilizes the leading modes of covariation between two

sets of response and predictor curves. In the remainder of this Section, we describe our FCC
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registration approach, and show how the covariance operator can guide a low-dimensional

registration procedure.

3.1 Functional Covariance Components

To capture the linear associations between two sets of curves, we identify the pair of linear

combinations of the curves having the largest covariance, then (orthogonally) the pair with

the second largest covariance, etc. In the following, we use the terms covariance functions

or Functional Covariance Components (FCC) to refer to these pairs. These are similar

in spirit to the pairs produced by the popular Functional Canonical Correlation Analysis,

first introduced by Leurgans et al. (1993), which maximizes the correlation instead of the

covariance. Notably, whether the components are produced on the basis of covariance or

correlation, they allow a low-dimensional representation of an infinite-dimensional rela-

tionship between two sets of curves. But they are not just an effective tool for dimension

reduction; investigating linear combinations that maximize covariance has proven to be

useful for many statistical problems, including regression. He et al. (2010) proposed a

method to solve functional linear regression using FCC. More generally, the relationship

between classical multivariate Canonical Correlation Analysis and regression was explored

in Borga et al. (1997). Given the two sets of paired curves, the first covariance weights (or

scores) are defined as

⟨ξ1, xi⟩ =
∫ b

a

ξ1(t)
(
xi(t)− x̄(t)

)
dt, i = 1, . . . , n

⟨η1, yi⟩ =
∫ b

a

η1(t)
(
yi(t)− ȳ(t)

)
dt, i = 1, . . . , n

where the covariance functions ξ1 and η1 are chosen to maximize the covariance between

u1 = (⟨ξ1, x1⟩, . . . , ⟨ξ1, xn⟩)′ and v1 = (⟨η1, y1⟩, . . . , ⟨η1, yn⟩)′. The process is then iterated:
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to select the j-th covariance functions ξj and ηj and form the j-th vectors uj and vj, one

again maximizes covariance – adding the requirement that each covariance function is or-

thogonal to prior ones; that is, cov(uℓ, uj) = cov(uℓ, vj) = cov(vℓ, vj) = 0 ∀ℓ < j. cov(uj, vj)

declines at each iteration, until subsequent modes of covariation become negligible.

The identification of FCCs can be seen as an eigen-decomposition problem, and more

specifically as as a Singular Value Decomposition (SVD) problem. Indeed, the pairs of

covariance functions and covariance weights can be obtained from the SVD of the covariance

operator Σxy = UDV T . The ξ’s and the η’s are provided by the columns of U and V ,

respectively; that is, they are the left and right eigenfunctions of Σxy. D is a diagonal

matrix such that (D)jj = cov(uj, vj).

To further underscore the similarity between FCCs and Functional Canonical Correla-

tion Analysis, note that also the latter can be seen as a SVD problem, where instead of the

covariance operator we consider Rxy = Σ
−1/2
xx ΣxyΣ

−1/2
yy (He et al., 2004). However FCCs

has two main advantages. First, Rxy requires inversion of the functional operators Σxx and

Σyy, which may be singular or almost singular in some applications, while Σxy does not

require any operator inversion. Second, the functional bases generated by the SVD of Rxy

do not allow direct reconstruction of the original curves x and y, while the functional bases

generated by the SVD of Σxy do allow such reconstruction.

3.2 Low-dimensional registration through FCC

Here, we describe how to develop a low-dimensional registration based on FCCs. Let

ξ1, . . . , ξKx and η1, . . . , ηKy be the first Kx and Ky left and right eigenfunctions of Σxy,

respectively. We take these as basis systems to define the templates functions in a low-

dimensional registration procedure. For each curve xi (yi), the template x0i (y0i) is given

by projection of xi (yi) on the covariance components ξ1, . . . ξKx (η1, . . . , ηKy). Thus, our
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FCC low-dimensional registration is described by the following system of equations:

x0i(t) = PROΣxy(xi, Kx)(t) =
Kx∑
j=1

aijξj(t) + x̄(t), i = 1, . . . , n

y0i(t) = PROΣxy(yi, Ky)(t) =

Ky∑
j=1

bijηj(t) + ȳ(t), i = 1, . . . , n.

(5)

The coefficients aij and bij are given by:

aij = ⟨ξj, xi(t)− x̄(t)⟩ =
∫ b

a

ξj(t)
(
xi(t)− x̄(t)

)
dt,

bij = ⟨ηj, yi(t)− ȳ(t)⟩ =
∫ b

a

ηj(t)
(
yi(t)− ȳ(t)

)
dt.

We note that, unlike in (3), the goal here is not to find a subspace LK through which to

reconstruct the curves once they have been registered. Instead, we only use the subspace

associated to Σxy to define the registration templates. Therefore, our procedure is not

affected by identifiability issues for LK .

This novel procedure aligns simultaneously x and y exploiting as templates projections

of maximal covariance. Note that, even though x and y are registered concurrently, the

procedure identifies two different sets of warping functions hx and hy (in the following we

will sometimes omit the subscripts in hx and hy for simplicity) and allows one to set two

different dimension Kx and Ky for the basis expansion of x and y. Theoretically, x and y

live in infinite dimensional functional spaces. However, in practice, the rank of the operator

Σxy (and thus the number of possible pairs of covariance components) is finite and bound

above by the minimum between the number of basis functions used for expressing x and

the number of basis functions used for expressing y. In applications, Kx and Ky can be

chosen empirically – according to the complexity of each set of curves and to the number

of components needed to capture their most meaningful modes of variability. Importantly,
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for the registration to be effective, Kx and Ky should not be very large. If they are,

PROΣxy(xi, Kx) and PROΣxy(yi, Ky) capture almost all the variability and resemble very

closely the original unregistered curves x and y – so the procedure ineffectively aligns curves

to templates very similar to the curves themselves. When selecting Kx and Ky we make

sure that PROΣxy(xi, Kx) and PROΣxy(yi, Ky) remain substantially different from x and y,

respectively. Rigorous criteria to select Kx and Ky should be investigated in future work.

4 Algorithms

In this Section, we describe how to implement FCC registration with two different al-

gorithms: RS, proposed by Ramsay and Silverman (2005), and our new H1 algorithm.

They both find warpings making the registered curves as similar as possible to the given

templates, but they consider two different definitions of similarity.

As in (2), each warping function hi is defined starting from the function wi, which in

turn is expressed as a linear combination of B-splines with J = Jw (see(1)). Therefore

hi(t; ci) = a+ (b− a)

∫ t

a
e
∑Jw

j=1 cijϕ
b
j(u)du∫ b

a
e
∑Jw

j=1 cijϕ
b
j(u)du

. (6)

For both algorithms, the target functions for the i-th curves are x0i = PROΣxy(xi, Kx) and

y0i = PROΣxy(yi, Ky), as defined in (5).

For each xi (or yi, separately), RS (coded in the function register.fd of the fda R package)

selects the cij coefficients in (6) to minimize µ2 (T (hi))+λ
∫ b

a

(
d2

dt2
hi(t)

)2

dt, where µ2 is the

smallest eigenvalue of the symmetric operator

T (hi) =

 ∫ b

a
x2
0i(t)dt

∫ b

a
x0i(t)xi(hi(t))dt∫ b

a
x0i(t)x(hi(t))dt

∫ b

a
x2
i (hi(t))dt

 .
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A second derivative roughness penalty is applied to hi for regularization purposes, and

the minimization problem is carried out using a gradient line search method. A strong

limitation of the RS algorithm is pointed out by Vantini (2012); if the L2 norm of xi is

close to 0, then µ2 is also close to 0. Therefore, in some cases, the minimization algorithm

could just reduce the L2 norm of xi, without forcing the curve to be similar to the template.

For each xi (or yi), our H1 selects the coefficients cij to minimize the H1-squared

distance to the target

dH1(xi, x0i)
2 =

∫ b

a

(xi(hi(ci))− x0i)
2 dt+

∫ b

a

(
d
dt
xi(hi(ci))− d

dt
x0i

)2
dt.

Once the cij’s are computed for i = 1, . . . , n, the functions wi, . . . , wn are standardized

so that µw(u) = 1
n

∑n
i=1wi(u) = 0 ∀u ∈ [a, b] and

∫ b

a
wi(u)du = 0 ∀i. The minimization

problem is coded in the function newuoa of the minqua R package . For each curve, newuoa

implements a minimization in Jw dimensions. Note that, unlike RS, we do not introduce a

roughness penalty. However, the warpings are curves of order at most Jw – so choosing a

small Jw limits their complexity and can be seen as a form of regularization. Furthermore,

small Jw values reduce computation time. Note though that the smallest viable Jw is 3;

for Jw = 2 the warpings are linear, and we cannot require them to have the same starting

and ending point (or the registration would not affect the curves at all). In the simulations

in Section 5, Jw = 3 turns out to give the best results both in terms of alignment and in

terms of subsequent regression performance.

Finally, for both RS and H1, each registered xi(hxi
) (or yi(hyi) with its own hy) is

evaluated as follows. First, we evaluate xi(t) and hi(t) on a fine grid tfine to obtain xi,fine

and hi,fine. Then, we build h−1
i (t) considering hi,fine on the abscissa and tfine on the

ordinate axis, producing h−1
i,fine. Lastly, we evaluate xi(hi(t)) considering h−1

i,fine on the

abscissa and xi,fine on the ordinate axis.
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For initialization, we could set all cij’s to 0 in both algorithms. However, in H1 we

increase efficiency using as initial values the cij’s produced by RS. Also, since the mini-

mization occurs separately for each curve, we implemented a parallel version of the H1.

We conclude this section with a few remarks. First, note that instead of determining

the target functions from the SVD of Σxy, one could consider the SVD of Σx(h)y(h) and the

projections of each xi(hi) and yi(hi) – the curves already aligned. However, the operator

Σx(h)y(h) is a function of all cij coefficients – so one would need to solve a minimization

problem in 2n · Jw dimensions, which is very complicated and computationally intensive.

Second, note that both RS and H1 can also be used for FPC registration – replacing the

SVD of Σxy by the eigen-decomposition of Σxx for x, and of Σyy for y. These determine

the target functions x0i = PROΣxx(xi, Kx) and y0i = PROΣyy(yi, Ky). Third, and perhaps

most important for our purposes in this article, note that registration could be improved

applying H1 and RS iteratively (see final remarks in Section 6). In Section 5, we consider

only one iteration for both algorithms, since on our simulated data repeating the procedure

does not lead to a sizable improvement of the results. Code for the H1 algorithm is provided

as a supplementary file. All other codes and scripts, including those for data simulation

(see the next Section), are available upon request.

5 Simulation study and AneuRisk data

5.1 Simulation settings

We now present a simulation study to investigate the performance of FCC registration in

comparison to other registration approaches. Specifically, we apply both the RS and the

new H1 algorithm using different target functions: the projection of the data on the FCC
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Scheme 1 Generation and Processing of Simulated Data

1: Generate the original predictor curves: xorg
i (t), i = 1, . . . , n

2: Generate the regression coefficient surface β(t, s)

3: Generate Gaussian error curves: ϵi(s), i = 1, . . . , n

4: Compute the original response curves: yorgi (s) =
∫ b

a
xorg
i (t)β(t, s)dt+ ϵi(s), i = 1, . . . , n

5: Generate the warpings hxi
(t) and hyi

(t), i = 1, . . . , n

6: Misalign the curves, computing xmsl
i (t) = xorg

i (h−1
xi

(t)) and ymsl
i (t) = yorg(h−1

yi
(t)), i = 1, . . . , n

7: Apply a registration procedure to the misaligned curves, producing ŵxi
and ŵyi

, and thus ĥxi
and ĥyi

,

i = 1, . . . , n

8: Compute the registered curves xaln
i = xmsl

i (ĥxi
) and yalni = ymsl

i (ĥyi
), i = 1, . . . , n

9: Fit the regression of yaln on xaln, producing β̂ and the fitted curves yregi , i = 1, . . . , n

basis, the projection of the data on the FPC basis, and for RS also the mean of the data.

We refer to these registrations as ccRS, ccH1, pcRS, pcH1, and µRS, respectively. We also

consider the elastic registration, er, proposed by Srivastava et al. (2011) and Tucker et al.

(2013) which aligns the curves using their Karcher mean as template. We consider three

different simulation settings as described in Scheme 2, and for each setting we generate

and process the data following Scheme 1.

To evaluate the alignment performance of a registration procedure, we consider the

total squared H1 distances between original and aligned curves
∑n

i dH1(x
org
i , xaln

i )2 and∑n
i dH1(y

org
i , yalni )2. To evaluate the regression performance, we consider three different

criteria: (i) the in-sample H1 prediction error SPE =
∑n

i dH1(y
org
i , yregi )2; (ii) the leave-

one-out H1 prediction error L1OPE =
∑n

i dH1(y
org
i , ypredi )2, where ypredi is the predicted

curve obtained with the β̂(−i) from a fit without the i-th curves pair; (iii) the Euclidean

distance between β and β̂, each evaluated on a fine grid.

In all simulations, we consider n = 20. To generate xorg, β, ϵ, yorg, hx and hy, we

always start from S = 100 equidistant raw observations in [0, 1]. These are obtained as
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Scheme 2 Simulation Scenarios (x and β)

1: Simulation 1

⋆ xi(t) =
∑Npeaks

j=1 (−1)sgnvij |fN (µij , σ
2
ij)|, where:

· fN Normal density · Npeaks = 4 · vij ∼ N(0.5, 0.22) · µij ∼ N(0.2j, 0.0082)

· σij ∼ N(0.1, 0.0082) · sgn = 2 for i = 1, . . . 12, sgn = 1 for i = 13, . . . 24

⋆ β(s, t) = sin(5st)

2: Simulation 2

⋆ xi(t) as in simulation 1, with:

· Npeaks = 9 · vij ∼ N(0.8, 0.032) · µij ∼ N(0.1j, 0.0042) · σij ∼ N(0.048, 0.0042)

· sgn as in simulation 1

⋆ β(s, t) =
∑9

j=1 fN2(µj , sI2), where:

· fN2 bivariate Normal density · I2, 2× 2 identity matrix · s = 0.0004

· µ =
(
(0.1, 0.1)′, (0.9, 0.9)′, (0.1, 0.9)′, (0.9, 0.1)′, (0.3, 0.3)′, (0.7, 0.7)′, (0.3, 0.7)′, (0.7, 0.3)′, (0.5, 0.5)′

)
3: Simulation 3

⋆ xorg
i (t) = sin 1

10(t+0.1) + noisei, where:

· · noisei, vector of 100 samples from N(0, 0.01)

⋆ β(s, t) =
∑5

j=1 fN2
(µj , sI2)−

∑5
j=1 fN2

(µj , sI2), with:

· (µ1, . . . , µ5) =
(
(0.1, 0.1)′, (0.9, 0.9)′, (0.1, 0.9)′, (0.9, 0.1)′, (0.5, 0.5)′

)
· (µ6, . . . , µ9) =

(
(0.7, 0.7)′, (0.3, 0.7)′, (0.7, 0.3)′, (0.5, 0.5)′

)
· s = 0.0004

described in Scheme 2 for xorg and the two directions of β, and from Normal distributions

with mean 0 and variance specific to simulations for ϵ (σ = 1, 1.3, 0.005, as to render errors

commensurate to the size of the coefficients used in the expansion of the response). The

raw observations for yorg are then obtained following the model in Scheme 1. Finally, the

raw observations for hx and hy are obtained from the formula

hi(t) =
ezit − 1

ezi − 1
i = 1, . . . , n,

where zi ∼ N(0, 1). Based on the raw observations, we then use B-splines with J = 20,

order 4 and smoothing parameter λ = 10−7 (see (1)) for xorg, ϵ, yorg, hx and hy. We use
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the same parameters for the B-splines of all target functions employed in the registration

procedures, the FCC and FPC directions, and for the B-splines of xmsl and ymsl. The

B-splines of both directions of β also have J = 20 and order 4, but λ (which is the same for

both directions) is specific to simulations (λ = 10−4, 10−7, 10−8, as to minimize the L1OPE

of the regression performed on the original curves). The B-splines of wx and wy have order

4 and λ = 10−7, but Jw is set to 3 as discussed in Section 4.

Note that in the first two simulation scenarios both predictor and response curves are

designed to form two different groups. This allows us to better illustrate the advantages

of low-dimensional registration procedures in comparison to µRS and er – which are not

capable of retaining the separation between groups. Also, in all simulations, the responses

are constructed without adding an intercept; both the original x’s and y’s have means very

close to 0. For this reason, we do not include the intercept α when applying the linear model

(5). For both FCC and FPC registration and in all three simulation scenarios we choose

Kx = Ky = 1. As we can see in supplemental Figures A.5, A.6 and A.7, just one component

is sufficient to capture the two groups while markedly reducing the complexity of the target

curves. In contrast, PROΣxy(x, 2), PROΣxy(y, 2), PROΣxx(x, 2) and PROΣyy(y, 2) are already

too similar to the unregistered curves. Importantly, we also note that in Simulations 2 and

3 PROΣxy(x, 1) differs markedly from PROΣxx(x, 1), and PROΣxy(y, 1) from PROΣyy(y, 1).

In these scenarios, the FCC and FPC registrations are guided by different templates. We

thus expect them to lead to different results.

5.2 Simulation results

Salient results are summarized in Figures 1 and 2. Figure 1 shows performance in aligning

predictor and response curves, and predicting the latter (out of sample) with different

registration procedures. These performance values, together with the SPE and the distance
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Figure 1: Simulation results. aln(x) and aln(y) are the H1 distances between aligned and original curves,

and L1OPE is leave-one-out H1 prediction error. On the horizontal axis “msl” represents the misaligned

curves, followed by curves registered with different procedures – as indicated. y-axis: Values on the vertical

axis have been rescaled between 0 and 1, where 0 corresponds to results obtained with the original curves.

between β and β̂, are reported in supplemental Table A.1. Figure 2 shows ypred, the leave-

one-out predicted response curves, from function-on-function regressions on the original

data (which are perfectly aligned), the data after misalignment, and the data after the

application of different registration procedures. The true β’s of the 3 simulations are

shown in supplemental Figure A.4.

In Simulation 1 the x curves are characterized by two peaks and are easy to align. The

surface β is smooth, so also the y curves are easy to align. In Figure 2 (upper panels) we see

that the ypred curves produced by µR do not exhibit the two peaks of the original responses,

and those produced by er do not split in two groups. The ypred curves obtained from low-

dimensional registration with FPC and FCC appear very similar – which is not surprising

given the easy nature of the registration problem in this scenario. However, in Figure 1 we

see that FCC outperforms FPC in terms of both alignment and regression. Moreover, our

new H1 algorithm outperforms RS. Regarding estimation of β (see supplemental Table A.1),

all procedures have similar performance. Supplemental Figure A.8 shows how closely β̂
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Simulation 1

Simulation 2

Simulation 3

Figure 2: ypred curves obtained with different regressions. “Original” indicates the regression performed

on the original curves, and “misaligned” the one performed on the misaligned curves. In all other panels

the regression is performed on curves registered with different procedures – as indicated. The two different

colors indicate the two groups in each set of curves.
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obtained from data aligned with our procedure resembles the surface estimated from xorg

and yorg (prior to misalignment). In fact, as can be seen in supplemental Figure A.1, the

registered curves are very similar to the original ones.

In Simulation 2 the x curves have multiple peaks and are difficult to align. The

surface β is also rather rough, leading to hard to align y curves. In this scenario FCC, and

in particular ccH1, gives the best alignment for both the predictor and the response, as we

can see in Figure 1. Indeed, the registered curves produced by ccH1 (shown in supplemental

Figure A.2) are very close to the original ones. Notably, ccH1 improves the performance by

a factor of 10 with respect to er and µRS and by a factor of 3 with respect to pcH1 – and

the latter fails in predicting the order of magnitude of some curves. In terms of regression

results, H1 again dominates RS, and ccH1 outperforms all other registration procedures.

This is also evident in Figure 2 (middle panels): ypred obtained from data aligned with ccH1

and ccRS are very similar to ypred obtained from the original curves (prior to misalignment).

Again, ypred from µRS and er do not clearly split in two groups, and the curves registered

with µRS and er resemble the original xorg and yorg even less than their misaligned versions

xmsl and ymsl. Supplemental Figure A.9 shows the estimated β: none of the algorithms

seems to capture the peaks that characterize the true β and the β estimated on the original

curves. This is due to the difficulty of the registration problem: the aligned curves are not

close enough to xorg and yorg and therefore the relationship that links x and y is described

by a surface that resembles the true β.

In Simulation 3 both the predictor and the response come from just one group. The

x curves are hard to align, as in Simulation 2; here in addition to multiple peaks we have

very different peak amplitudes. The surface β is again rough, resulting in hard to align

y curves. In Figure 1 we see that all procedures, except perhaps for er, do rather poorly

in terms of alignment. Poor alignment performance for our approach is also evident in
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msl µRS er pcRS(1) ccRS(1) pcRS(2) ccRS(2) pcH1(1) ccH1(1) pcH1(2) ccH1(2)

SPE 100 104 31 127 117 126 90 77 76 95 64

L1OPE 100 99 31 122 123 121 99 77 85 95 74

Table 1: AneuRisk data. SPE and L1OPE for the regressions performed on misaligned data, and on data

produced by different registration procedures. For FCC and FPC, performed with H1 and RS, results are

shown for both 1 and 2-dimensional approximations. The values have been rescaled to have SPE and L1OPE

equal to 100 on the misaligned data.

supplemental Figure A.2, where the registered x and y curves produced by ccH1 are not

very close to the original ones. In terms of L1OPE however, our approach seems to gain

an edge – with the best performance once again achieved by ccH1. Figure 2 (lower panels)

shows the ypred curves produced by all procedures. The predicted curves produced by er

and µRS appear more “orderly” but they are, in a way, too smooth – notably, they lose one

of the earlier peaks in the original curves. In contrast, while appearing more “chaotic”, the

predicted curves produced by the low-dimensional registration approaches better preserve

the nature of the data; in particular, each predicted curve retains the same number of peaks

of the corresponding original curve. Figure A.10 shows how, just like in Simulation 2, all

registration procedures (including FCC) fail to produce an accurate estimate of β.

5.3 AneuRisk data

We apply our new registration procedure to the AneuRisk dataset described in Sangalli et al.

(2014). This data was collected by image reconstruction of three-dimensional cerebral an-

giographies of 65 patients, with the aim of investigating the interplay between morphological

properties of artery walls and hemodynamic factors, and shed light on the possible causes

of aneurysmal pathology. Patients in the study belonged to two groups: patients with

an aneurysm on the Willis circle, after the final bifurcation of the Internal Carotid Artery
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(ICA), and patients with an aneurysm on the last tract of the ICA or without an aneurysm.

In this article we analyze the relationship between the axial derivative of the local average

of the ICA wall shear stress (WSS1), our functional response y, and the ICA curvature,

our functional predictor x. y is a hemodynamic factor obtained via computational fluid

dynamics in the ICA geometries (Passerini et al., 2012). x is a morphological feature of

the ICA and is computed as described in Sangalli et al. (2009a). Since y is available only

for 52 out of the 65 patients, the sample size for our analysis is n = 52. We will refer to

these x and y as misaligned curves, even if they have already been registered following the

procedure proposed by Sangalli et al. (2009a) and based on the three spatial coordinates

of the ICA centerline. Here, we find new warping functions and perform an additional

registration – with the goal of capturing the information that links the curvature to the

WSS1. Importantly, if we can predict WSS1 accurately as a function of the curvature,

we can avoid its computationally intense direct calculation. For comparison purposes, we

consider all the procedures presented in the simulation study. For FCC and FPC we align

the curves based on the projection on the first components (Kx = Ky = 1), as well as

on the projections on first and second components (Kx = Ky = 2) – we denote the two

variants adding subscripts “1” and “2” to the procedures’ names. The reason to do this

is that, unlike our simulation scenarios, the AneuRisk data has projections on the first two

components which still differ markedly from the misaligned curves. This is the case for

both x and y (see supplemental Figure A.11).

Regression performance is evaluated based on SPE and L1OPE. Since on real data we

do not know the true original curves, the definition of these quantities is modified as SPE

=
∑n

i dH1(y
aln
i , yregi )2 and L1OPE =

∑n
i dH1(y

aln
i , ypredi )2, where ypredi is again the predicted

curve obtained for i from a fit withholding the i-th curves pair.

For both x and y, we have 450 raw observations for each of the n = 52 subjects.
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er and ccH1 registration, AneuRisk data

Figure 3: Curvature (x) and WSS1 (y) curves for an individual patient. Misaligned curves are drawn in

grey, curves registered by ccH1(2) in light-blue line, and curves registered by er in red .

Their domain is transformed to be [0, 1], and we use B-splines with J = 20, order 4 and

smoothing parameter λ = 10−7 to represent both x and y. Again, the same parameters

are used for the basis of the FPC and FCC directions, the basis of the projections, and

the basis of both the directions of β. The smoothing parameter for β, λβ, varies for each

registration and is selected to minimize the L1OPE. We do not include the intercept α

in (4), since a linear model without intercept improves the L1OPE for all the procedures.

Just as in the simulation study, the basis of the w’s are B-splines with Jw = 3, order 4, and

smoothing parameter λ = 10−7 (increasing the number of basis elements here slows down

the computation and does not appreciably improve performance).

Table 1 contains SPE and L1OPE values achieved by different regressions. Here, SPE

and L1OPE of each procedure are computed contrasting predicted curves to the aligned

response curves produced by the procedure itself. For this reason, comparisons among

procedures should be interpreted with caution. Registering with the RS algorithm, both

in FPC and FCC, leads to poor regression performance – sometimes worse than that

achievable on the misaligned curves. On the contrary, registering with the H1 algorithm

improves regression performance (over the misaligned curves) in all cases. Specifically,
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AneuRisk data

Figure 4: misaligned y (top left); y registered by ccH1(1) (top center); misaligned x (bottom left); x registered

by ccH1(1) (bottom center); ypred curves by ccH1(1) (top right) and by ccH1(2) (bottom right).

ccH1(1) and ccH1(2) give the second best performances both in SPE and in L1OPE.

Notably, er registration appears to outperform all other procedures. However, this

is due to the fact that er produces very complex warping functions, which capture too

much variability and modify the nature of the curves. To illustrate this behavior, consider

the curvature (x) and WSS1 (y) of one patient reported in Figure 3. ccH1(2) moves and

changes the amplitude of the curves’ features, but does not effect their number and the

general pattern of the curves themselves. On the other hand, er leads to over-smoothed

curves for both x and y and does not preserve their features: x has 3 peaks instead of

5, and y has 2 peaks instead of 3. These over-smoothed x and y are more similar to

each other, which explains why it is easier to predict y from x; regression performance

increases, but this entails an unnatural change in the curves’ shape and might lead to

the loss of important information on the relationship between response and predictor.

Predicted response curves based on all registration procedures are displayed in supplemental
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Figure A.12, and estimated β’s in supplemental Figure A.14. Supplemental Figure A.13

shows again predicted response curves based on all registration procedures – but focusing

on just one patient. The original misaligned response curve of the patient is shown as well.

Here one can clearly appreciate how only the curves predicted by FCC procedures retain

all the peaks of the original curve, while other procedures tend to combine together the two

highest peaks. Figure 4 shows the misaligned curves for curvature and WSS1, the curves

registered by ccH1(2), and the predicted response curves based on ccH1(2) and ccH1(1). In

terms of x registration, ccH1(2) combines all the curves’ peaks in two big groups, one at

about 0.3 and one at about 0.6. The registration of y, on the contrary, does not seem to

reveal notable common landmarks or substantially modify the original curves – which have

a more complex nature than the x’s. In terms of predicted response curves, ccH1(1) captures

the general pattern but also clearly misses some modes of variability present in the aligned

y’s. As expected, curves predicted based on ccH1(2) exhibit more variability (considering

two components allows one to generate more complex predictions). However, they are still

substantially different from the registered y’s.

The results presented here, while interesting and informative, are still rather partial.

Beyond the goal of approximating wall shear stress without the computational burden of its

direct calculation, the broader purposes in analyzing this data concern medical diagnosis.

For instance, it would be critical to accurately classify patients in two groups based on the

position of their aneurysm. Further extensions of our FCC registration may provide relevant

insight; in particular, it would be very useful to design a generalization of the procedure

able to handle multiple functional predictors at once, and/or curves with different domains

– for more on this, see Section 6.
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6 Conclusions

In this article we introduced FCC registration, a new low-dimensional registration pro-

cedure based on the covariance operator between a functional response and a functional

predictor. The procedure finds the most important modes of covariation between the two

sets of curves, aligns them simultaneously, and at the same time performs a reduction of

the data. We implement FCC registration using two different algorithms: the continuous

registration algorithm introduced by Ramsay and Silverman (2005), and a new algorithm

based on H1 distances. Both in our simulation study and in our application to the AneuRisk

data, FCC registration improved regression performance in comparison to other registra-

tion approaches. This was particularly the case in its H1 implementation. Furthermore,

FCC registration led to better alignment of the response y. Indeed, our approach leverages

a low-dimensional representation built upon the dependence between functional response

and functional predictor. Notably, in most cases analyzed, even for simulated curves that

comprised two distinct groups, subspaces of dimension 1 were enough to capture significant

modes of covariation.

FCC registration lends itself to numerous further developments. First, as mentioned in

Section 4, the RS and H1 algorithms could be iterated. Iterative registration procedures

have been proposed by Kneip and Ramsay (2008) and Sangalli et al. (2009a). Updating the

covariance operator, and therefore the projections of x and y on the selected basis systems

at each iteration, could substantially improve the registration procedure. Indeed, when per-

forming just one iteration, we add to the projections in (5) the mean of the misaligned data.

This may not resemble at all the mean of ideally aligned data, and thus introduce noise

into the target functions. Iterating can mitigate the problem, since at each iteration one

would add to the target functions the mean of the data as aligned in the previous iteration.
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This may still be imperfect, but would become progressively closer to the “right” mean.

We plan to explore iterations in future work, paying special attention to the definition of

appropriate stopping criteria. A second avenue for further development is extending FCC

registration to regressions with more than one functional predictor. This would greatly ex-

pand its applicability, since many contemporary data sets contain measurements on several

potentially useful predictors. For instance, in the AneuRisk data of Section 5, considering

several predictors could certainly help explain variation in the first derivative of wall sheer

stress. Also interestingly, the ability to simultaneously register the response and multi-

ple predictors would allow us to align the three spatial coordinates of the ICA centerline

before computing the curvature, instead of starting directly from the curvature computed

on coordinates already aligned by Sangalli et al. (2009a). Finally, extending our approach

to warpings that can modify the domains of the curves will also broaden applicability –

allowing one to handle a larger spectrum of real scenarios where curves are measured on

different domains. This extension could proceed in several directions, e.g. allowing shifts,

or pursuing local (as opposed to global) registration of the curves.

We conclude pointing out an important interpretation of FCC registration in the context

of Sufficient Dimension Reduction (SDR). SDR is a set of techniques to handle regression

problems with a large number of predictors (see Cook and Weisberg (2009), Adragni and

Cook (2009) and Ma and Zhu (2013) for details). Unlike variable selection, which assumes

that among all available predictors only a few are truly related to the response, SDR

assumes that the response depends only a few linear combinations – potentially loading on

many, or even all predictors. The goal of SDR is to estimate a subspace able to capture

all the regression information, called the central space, or the effective dimension reduction

(e.d.r) space (Li, 1991). Recently, SDR has been extended to the case of functional data,

see Lee et al. (2013) and Li et al. (2017).
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Starting from the work of Borga et al. (1997) and of Li and Duan (1989) in the finite-

dimensional multivariate context, one can evince the link between covariance components

and SDR. Borga et al. (1997) point out the relationship between Canonical Correlation

Analysis and the direction identified by the OLS regression. Li and Duan (1989) prove

that, under some assumptions on the distribution of the predictors, OLS can be considered

as the very first and simplest SDR technique when the central space has dimension 1. In

the infinite-dimensional functional framework, the reduction produced by our FCC regis-

tration can in fact be seen as an SDR procedure – estimating a subspace of dimension 1

(or larger) which captures the function-on-function regression information. Many interest-

ing developments can be pursued based on this connection, such as finding a registration

procedure based on other SDR techniques, e.g. Sliced Inverse Regression (SIR) (Li, 1991)

and its several functional versions (fSIR) – see Ferré and Yao (2003), Ferré and Yao (2005),

and Wang et al. (2015).
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A SUPPLEMENTARY MATERIAL

simulation 1 simulation 2 simulation 3

aln(x) aln(y) SPE L1OPE β aln(x) aln(y) SPE L1OPE β aln(x) aln(y) SPE L1OPE β

org 0 0 216 241 88 0 0 6822 12329 59 0 0 55 71 48

msl 51581 91981 26937 28903 165 299637 626904 362190 391828 252 7128 2737 1877 2421 142

µRS 55234 357792 138570 136232 86 272671 447316 287644 514350 144 5181 3180 2743 2832 52

er 75100 316671 189336 185892 85 449045 1087473 1057176 1069024 98 1154 2366 2546 2415 58

pcRS 26140 121821 33285 46391 99 219185 404149 317832 344136 130 6480 3142 2160 2244 88

ccRS 12397 14017 7245 8193 81 73634 282772 228127 250489 121 7022 2819 2116 2184 112

pcH1 16858 19640 5950 7453 93 218500 334265 294909 334020 201 6564 2977 2020 2216 83

ccH1 4533 4567 1580 1873 84 57104 144979 119381 151666 161 7326 2538 1599 1685 112

Table A.1: Simulation results. Columns: H1 distances between the curves in each row and the original

x and y curves; in sample H1 prediction error; leave-one-out H1 prediction error; Euclidean distances

between β̂ and the true β. Rows: Org, the original curves; msl, the misaligned curves; followed by curves

registered with different procedures – as indicated.
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Original, misaligned and registered curves - simulation 1

Figure A.1: Simulation 1 original curves (left), misaligned curves (center), registered curves by ccH1R

(right) for y (top) and x (bottom).
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Original, misaligned and registered curves - simulation 2

Figure A.2: Simulation 2 original curves (left), misaligned curves (center), registered curves by ccH1R

(right) for y (top) and x (bottom).
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Original, misaligned and registered curves - simulation 3

Figure A.3: Simulation 3 original curves (left), misaligned curves (center), registered curves by ccH1R

(right) for y (top) and x (bottom).

Original β’s

Figure A.4: Original β for simulation 1 (left), simulation 2 (center) and simulation 3 (right).
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Projections - simulation 1

Figure A.5: Simulation 1 projections of the misaligned curves on the first (top) and second (bottom)

principal components (second and fourth column) and canonical directions (first and third columns) of y

(first and second columns) and x (third and fourth columns).
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Projections - simulation 2

Figure A.6: Simulation 2 projections of the misaligned curves on the first (top) and second (bottom)

principal components (second and fourth column) and canonical directions (first and third columns) of y

(first and second columns) and x (third and fourth columns).
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Projections - simulation 3

Figure A.7: Simulation 3 projections of the misaligned curves on the first (top) and second (bottom)

principal components (second and fourth column) and canonical directions (first and third columns) of y

(first and second columns) and x (third and fourth columns).
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β̂’s - simulation 1

Figure A.8: Simulation 1 estimated β’s by different regressions. Original: the regression is performed on

the original curves; misaligned: the regression is performed on the misaligned curves. In the other cases

the regression is performed on the curves registered by the indicated algorithm. The white zones are values

outside the z-range on the right.
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β̂’s - simulation 2

Figure A.9: Simulation 2 estimated β’s by different regressions. Original: the regression is performed on

the original curves; misaligned: the regression is performed on the misaligned curves. In the other cases

the regression is performed on the curves registered by the indicated algorithm. The white zones are values

outside the z-range on the right.

40



β̂’s - simulation 3

Figure A.10: Simulation 3 estimated β’s by different regressions. Original: the regression is performed on

the original curves; misaligned: the regression is performed on the misaligned curves. In the other cases

the regression is performed on the curves registered by the indicated algorithm. The white zones are values

outside the z-range on the right.
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Projections - AneuRisk

Figure A.11: AneuRisk data, projections of the misaligned curves on the first (top) and second (bottom)

principal components (second and fourth column) and canonical directions (first and third columns) of y

(first and second columns) and x (third and fourth columns).
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Leave-one-out predicted curves - AneuRisk

Figure A.12: AneuRisk data, leave-one-out predicted curves by different regressions.
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Leave-one-out predicted curve for one patient - AneuRisk

Figure A.13: AneuRisk data, leave one predicted curve by different regressions for just one patient. The

top left panel represents the original misaligned curve before any registration.
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β̂’s - AneuRisk

Figure A.14: AneuRisk data, estimated β’s by different the different algorithms. The white zones are values

outside the z-range on the right.
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