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Abstract

Georeferenced compositional data are prominent in many scientific fields and

in spatial statistics. This work addresses the problem of proposing models and

methods to analyze and predict, through kriging, this type of data. To this pur-

pose, a novel class of transformations, named the Isometric α-transformation

(α-IT), is proposed, which encompasses the traditional Isometric Log-Ratio

(ILR) transformation. It is shown that the ILR is the limit case of the α-IT

as α tends to 0 and that α = 1 corresponds to a linear transformation of the

data. Unlike the ILR, the proposed transformation accepts 0s in the compo-

sitions when α > 0. Maximum likelihood estimation of the parameter α is

established. Prediction using kriging on α-IT transformed data is validated on

synthetic spatial compositional data, using prediction scores computed either

in the geometry induced by the α-IT, or in the simplex. Application to land

cover data shows that the relative superiority of the various approaches w.r.t.

a prediction objective depends on whether the compositions contained any zero

component. When all components are positive, the limit cases (ILR or linear

transformations) are optimal for none of the considered metrics. An interme-

diate geometry, corresponding to the α-IT with maximum likelihood estimate,

better describes the dataset in a geostatistical setting. When the amount of

compositions with 0s is not negligible, some side-effects of the transformation

gets amplified as α decreases, entailing poor kriging performances both within

the α-IT geometry and for metrics in the simplex.

Keywords: Geostatistics, Kriging, Isometric Log-Ratio (ILR) transformation,

Compositions with 0s.

1



1 Introduction

In statistics, compositional data are quantitative descriptions of the parts of some whole, conveying

relative information. Mathematically, compositional data are represented by points in a simplex,

i.e. vectors with non-negative coordinates whose sum is constant. In this paper, we are interested

in geostatistics or spatial statistics for compositional data, which is the area of statistics developing

methods to analyze and predict, through kriging, compositional data associated with spatial or

spatio-temporal phenomena.

Georeferenced compositional datasets arise in varied fields of research, from geology to eco-

nomics to chemistry to sociology, although most studies were historically concerned with topics in

the geosciences. In this setting, it took a long time to find a solution to the problem of how to

perform a proper statistical analysis of closed data – namely data with a constant-sum constraint

– by taking into account the consequence of compositional constraints on correlations. Because

some standard statistical techniques lose their applicability and classical interpretation when ap-

plied to compositional data, new techniques were needed. The first theoretically sound solution was

proposed in the 1980’s, when John Aitchison (Aitchison, 1986) built a consistent theory based on

log-ratio transformations of compositional data. Later developments have shown that the mathe-

matical foundation of a proper statistical analysis for this type of data is based on the definition of

a specific geometry on the simplex, referred to as the Aitchison geometry. Based on it and on the

Principles of Compositional Data Analysis (Egozcue et al., 2003), a relatively large body of litera-

ture has established a complete mathematical framework for statistical analysis which is nowadays

widely accepted by the statistical community. Spatial statistics has also been widely treated in

the compositional community (Pawlowsky-Glahn and Olea, 2004; Tolosana-Delgado et al., 2009;

Tolosana-Delgado, 2006; Tolosana-Delgado et al., 2008, 2010, 2011; Tolosana-Delgado and van den

Boogaart, 2013), by following the methods developed in the Aitchison geometry, i.e., by apply-

ing the log-ratio transformations that allow one to respect the Principles of Compositional Data

Analysis. We refer to Pawlowsky-Glahn and Egozcue (2016) for a complete review of the historical

evolution of spatial analysis of compositional data through the Aitchison geometry.

Even though the Aitchison’s approach is nowadays mainstream in the analysis of compositional

data, a number of authors have pushed forward alternative viewpoints, arguing that the choice of

the appropriate method for the statistical data analysis should not be determined a priori from

a set of mathematical principles, but that this choice should rather depend, at least in part, on

the data (Scealy and Welsh, 2014). In this vein, Tsagris et al. (2011) proposed a new family of

transformations, called α-transformations, parameterized by a constant α. This parameter allows

one to control the degree of transformation applied to the data, ranging from a linear transformation

(α = 1) to a log-ratio transformation (α = 0). In this setting, the parameter α is chosen in a data-

driven manner, thus allowing one to render the approach application-specific. Note that the use of

α-transformations also enables one to deal with the presence of 0s in the compositions, unlike the

log-ratio approach which is only suitable for strictly positive compositions. Beside these aspects,

the approach based on α-transformations proved effective in real studies, both in classification

(Tsagris et al., 2016) and in regression (Tsagris, 2015).

This paper follows the line pioneered by Tsagris et al. (2011) and aims to establish a method-
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ological framework for the statistical analysis of spatial compositional data, while finding a balance

between the data-driven approach of Tsagris et al. (2011) and that of the compositional community.

In this vein, a novel set of transformations is considered, based on the concept of α-contrasts –

which generalizes that of log-contrasts upon which the Aitchison geometry is based. We show that,

similarly to Tsagris et al. (2011), our approach coincides with that of Egozcue et al. (2003) for

specific choices of the parameter α, while attaining in general a more flexible framework than that

of the Aitchison simplex. Besides, we shall also establish an explicit link between the covariance

structure induced by the proposed class of transformations and that defined under the Aitchison

geometry, opening broad perspectives of potential application on a wide range of covariance-based

methods for exploratory and inferential data analyses. In fact, the approach we propose is very

general and not limited to spatial datasets. However, for the sake of brevity, this work will mainly

focus on the problem of spatial analysis of compositional data with the lens of spatial prediction

(kriging), which shall drive the formulation of the transformation, and particularly the choice of

the “best” parameterization.

The remaining of this work is organized as follows: Section 2 introduces the theoretical concepts

of compositional data, focusing on the log-ratio transformations, the spatial statistics methodolo-

gies applied in this field and the α-transformations proposed by Tsagris et al. (2011). Section 3

explores the new class of transformations considered in this paper, i.e., the Centered and Isometric

α-transformations (α-CT and α-IT), by discussing their properties, especially in a geostatistical

setting. A maximum likelihood estimation method is proposed which maximizes the Gaussianity

of the transformed data – and, as a consequence, the kriging performances. Section 4 is interested

in the application of the α-IT to a simulated spatial dataset, in order to evaluate the improvement

of this transformation over the classical Aitchison transformations. Section 5 conducts a geostatis-

tical analysis of land cover data, following the approach analyzed throughout the previous sections.

Special attention is given to the analysis of data in presence of 0-parts in the compositions. Re-

sults show that when all parts are positive, the limit cases (ILR or linear transformations) are

optimal for none of the considered metrics. An intermediate geometry, corresponding to the α-IT

with maximum likelihood estimate better describes the dataset in a geostatistical setting. When

the amount of compositions with 0s is not negligible, some side-effects of the transformation gets

amplified as α decreases, entailing poor kriging performances both within the α-IT geometry and

for metrics in the simplex. Finally, Section 6 reviews the main points of the paper.

2 State-of-the-art analysis of spatial compositions

2.1 Compositional Data analysis in the Aitchison simplex

In this section we provide a brief overview of the key concepts underlying the analysis of composi-

tional data through the Aitchison geometry. We refer the reader to, e.g., Pawlowsky-Glahn et al.

(2015) for a deeper account on the subject.

A column vector, x = [x1, . . . , xD]>, is defined as a D-part composition when all its components

are positive real numbers carrying only relative information. The sample space of compositional
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data is the simplex, defined as

SD = {x = [x1, . . . , xD]> | xi > 0, i = 1, . . . , D;
D∑
i=1

xi = κ}, (1)

where κ is an arbitrary constant which can be set to 1 without loss of generality. A D-part

compositional vector z ∈ (0,∞)D can be represented as a point of the simplex SD by use of the

closure operator

C : C(z) = x, xi =
zi∑D
i=1 zi

∀i = 1, . . . , D. (2)

The perturbation of a composition x ∈ SD by a composition y ∈ SD is

x⊕y = C
(

[x1y1, . . . , xDyD]>
)
.

The power transformation of a composition x ∈ SD by a constant α ∈ R is

α� x = C
(

[xα1 , . . . , x
α
D]>

)
.

In particular, (−1) � x = C
(
[1/x1, . . . , 1/xD]>

)
. The neg-perturbation is then defined in the

following way: x	y = x⊕(−1 � y). The simplex (SD,⊕,�), equipped with the perturbation

operation and the power transformation, is a vector space (Aitchison, 1986; Billheimer et al., 2001;

Pawlowsky-Glahn and Egozcue, 2001). This implies that all properties of translation and scalar

multiplication hold. Moreover, by adding an inner product, a norm and a distance on the vector

space, the simplex becomes an Euclidean metric space (i.e., a finite-dimensional Hilbert space). To

refer to the properties of (SD,⊕,�) as an Euclidean metric space, we call it Aitchison geometry on

the simplex. We report here some definitions of the Aitchison geometry that will be useful for this

work. The inner product of x,y ∈ SD is

〈x,y〉a =
1

2D

D∑
i=1

D∑
j=1

ln
xi
xj

ln
yi
yj
, (3)

and the norm of x ∈ SD is ‖x‖a = 〈x,x〉a. The Aitchison distance between x and y ∈ SD is

da(x,y) = ‖x	y‖a =

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln
xi
xj
− ln

yi
yj

)2

. (4)

Aitchison (1986) used the fact that for compositional data absolute quantities and units are

irrelevant – as interest lies in relative proportions of the components measured – to introduce

transformations based on log-ratios. We refer the reader to Aitchison (1986); Mateu-Figueras et al.

(2011); Buccianti et al. (2006) and references therein for a detailed account. Here, we focus on the

Centered Log-Ratio transform (CLR) and on the Isometric Log-Ratio transform (ILR) which will

be necessary for the sequel.

The Centered Log-Ratio transformation (CLR) is defined as

clr : SD → H ⊂ RD

clr(x) =

[
ln

x1
g(x)

, · · · , ln xD
g(x)

]>
,

(5)
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where g(x) is the geometric mean of x, g(x) =
(∏D

i=1 xi

)1/D
.

The CLR transform is an injective transformation between SD and RD which preserves dis-

tances, in the sense that da(x,y) = de(clr(x), clr(y)), with de the Euclidean distance. However, the

CLR is characterized by a constraint on the transformed sample, as the sum of the components of

clr(x) is 0 by definition. The transformed sample thus lie on a hyper-plane, H, which goes through

the origin of RD and is orthogonal to the vector of ones [1, . . . , 1]>. The CLR transformation can-

not be directly associated with an orthogonal coordinate system in the simplex. For this reason,

Egozcue et al. (2003) introduced a new transformation, called Isometric Log-Ratio (ILR), defined

as follows.

Any vector x ∈ SD can be written as

x =
D⊕
i=1

lnxi �wi,

where {w1, . . . ,wD} are the generator vectors wi = C(exp(di)), i = 1, . . . , D, where di is the unit

vector of RD associated to the ith coordinate. Omitting one vector of the generating system, a basis

is obtained, e.g. {w1, . . . ,wD−1}, which is not orthonormal. However, a new basis, orthonormal

with respect to the inner product, can be obtained using the Gram-Schmidt procedure, so that it

is possible to express a composition x ∈ SD as

x =

D−1⊕
i=1

x∗i � ei, x∗i = 〈x, ei〉a,

where {e1, . . . , eD−1} is a generic orthonormal basis of the simplex SD and 〈·, ·〉a is the inner product

in the Aitchison geometry of Equation (3).

The Isometric Log-Ratio (ILR) of a composition x is defined as

ilr : SD → RD−1

ilr(x) = x∗ = [〈x, e1〉a, . . . , 〈x, eD−1〉a]> .

The ILR is an isomorphism between (SD, da) and (RD−1, de) which preserves distances (i.e., it is

an isometry), and it can be retrieved from the CLR transform with the following equality:

ilr(x) = HD clr(x),

where HD is the (D − 1, D) Helmert matrix whose rows are clr(ei). HD satisfies HD H>D = ID−1

and H>D HD = GD, where GD = (ID −D−1 JD) is the D-dimensional centering matrix and JD is

the (D,D) matrix of ones.

2.2 Geostatistics for Compositional Data

Throughout this section, we consider a D-part composition X(s) with Xi(s) > 0, for i =

1, . . . , D, ∀s ∈ D ⊂ Rd. We further assume that it is second-order stationary, i.e. the expected

values of the pairwise log-ratios at each point s exist and do not depend on s, and the cross-

covariances between every pairwise log-ratio at two different points s1 and s2 exist and depend
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only on the directional vector h = s2 − s1. Such a compositional random field is said to be second-

order Log-Ratio (LR) stationary. Let {sj : j = 1, . . . , n} be a set of n spatial locations in a spatial

domain D containing georeferenced compositional data {X(sj)}nj=1 = {[X1(sj), . . . , XD(sj)]
>}nj=1

in SD. Now, let X(s0) be the unobserved vector of compositional data at the prediction location s0.

The task of predicting X(s0) using linear combinations of {X(sj)}nj=1 is known as cokriging in the

geostatistics literature. We refer to Wackernagel (2003) for a general introduction to multivariate

geostatistics and to cokriging.

Direct implementation of cokriging on X(s0) is impractical for several reasons. For instance,

the associated covariance matrix must satisfy the closure relations induced by the constant sum

constraint,
∑D

j=1Cij(h) = 0 for all h ∈ Rd and all i = 1, . . . , D, which result in singular cokriging

matrices. One way around would be to use cokriging on (D − 1) parts and deduce the last part

from the closure property, but this approach also shows drawbacks. Predicted and simulated

compositional vectors are expected to be elements of the simplex SD. Generally speaking, direct

kriging or cokriging of the proportions, if achievable, cannot guarantee this property in all generality

since kriging does not impose non-linear constraints such as positivity (Walvoort and de Gruijter,

2001).

In an ordinary cokriging setting, closure to 1 can be enforced by imposing identical kriging

weights for all parts, since in this case

D∑
i=1

X?
i (s0) =

D∑
i=1

n∑
j=1

λjXi(s0) =
n∑
j=1

λj

D∑
i=1

Xi(s0) =
n∑
j=1

λj = 1,

where [λ1, . . . , λn]> is the unique vector of weights and X?
i (s0) is the cokriging of Xi(s0). Allard

and Marchant (2018) have shown that identical weights are obtained for all s0 and all {X(sj)}nj=1

if and only if the multivariate covariance model for X(s) is proportional, i.e. it is the product of a

covariance matrix and a single spatial covariance function. On the other hand, imposing positivity

is possible, but requires quadratic programming (Walvoort and de Gruijter, 2001).

Moreover, working directly on X(s0) does not account for the relative nature of parts which,

following the above developments, should be properly acknowledged. To sum up, even though direct

cokriging is in theory possible, it is not guaranteed to be optimal. In Tolosana-Delgado (2006), an

approach for geostatistics of compositional data based on the application of the principle of working

in coordinates using Isometric Log-Ratio representations is presented in detail. For a recent review,

see Pawlowsky-Glahn and Egozcue (2016). Following this approach, compositional data belonging

to SD are first transformed to a set of (D − 1) unbounded scores by means of the ILR. Then, the

multivariate geostatistical techniques (e.g., covariance modeling, kriging, stochastic simulation) are

applied to the scores. Finally, the resulting interpolated or simulated scores are back-transformed

to obtain values in SD. Since this technique applies a transformation to the compositional dataset

before any geostatistical method, the spatial structure must be defined on the transformed dataset

(Pawlowsky-Glahn and Olea, 2004), as we describe in the following.

Let X(s) be a second-order LR stationary compositional random field. The variation matrix,

T(h) = [τij(h)]Di,j=1 of X(s) is the (D,D) matrix whose elements are the autocovariances of the
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corresponding log-ratios

τij(h) = Cov

[
ln

(
Xi(s)

Xj(s)

)
, ln

(
Xi(s+ h)

Xj(s+ h)

)]
.

The variation matrix is symmetric in the indices and in h for any two components of X(s).

The covariance matrix of the Centered Log-Ratio (CLR) transformed random field Zclr(s) =

clr(X(s)), called the CLR cross-covariance matrix, is the (D,D) matrix Ξ(h) = [ξij(h)]Di,j=1 which

is the covariance between the elements of the CLR transformed data and the same elements lagged

by h

ξij(h) = Cov [Zclr(s),Zclr(s+ h)]ij = Cov

[
ln

(
Xi(s)

g(X(s))

)
, ln

(
Xj(s+ h)

g(X(s+ h))

)]
.

The covariance matrix of the Isometric Log-Ratio (ILR) transformed data Zilr(s) = ilr(X(s)),

called the ILR cross-covariance matrix (or coordinate cross-covariance matrix in Tolosana-Delgado

(2006)), is the (D − 1, D − 1) matrix Φ(h) = [φij(h)]D−1i,j=1 with

φij(h) = Cov [Zilr(s),Zilr(s+ h)]ij .

These cross-covariance matrices are related to each other in the following way (Pawlowsky-Glahn

and Olea, 2004):

Ξ(h) + Ξ>(h) = −GD T(h) G>D, (6)

where GD is the centering matrix of dimension D defined in Section 2.1. Moreover, the following

relation between Ξ(h) and Φ(h) can be proven by linearity: the ILR cross-covariance matrix Φ(h)

and the CLR cross-covariance matrix Ξ(h) satisfy

Φ(h) = HD Ξ(h) H>D .

2.3 The α-transformation

In the last few years, Tsagris et al. (2011) have proposed a new class of transformations, called

α-transformations, that encompasses the Aitchison transformation in the sense that it allows to

deal with 0-values in the compositions and that it retrieves the Aitchison geometry when α tends

to 0. The α-transformation, for α 6= 0, of any compositional vector x ∈ SD is the mapping

Aα : SD → RD−1

z = Aα(x) = α−1 HD (D uα(x)− 1D) , uα(x) = C(xα),
(7)

where C(·) is the closure operator defined in Equation (2) and the powering is applied component-

wise.

Detailed analyses of this transformation are available in Tsagris et al. (2011), Tsagris (2015) and

Tsagris et al. (2016). Two important benefits of the α-transformation are that it is well-defined for

any α > 0 for compositions containing 0s and that it tends to the ILR transform as α approaches

0.

The α-transformation was shown to yield good results when used to analyze compositional

datasets, especially for classification problems (Tsagris et al., 2016). However, when analyzing the
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peculiarities of this transformation, Tsagris and Stewart (2020) clarified that the images of the

α-transformation lie in a codomain that has a simplex shape, except for α = 0; in this case the

codomain is the entire space RD−1. The simplex shape is due to the fact that a closure opera-

tor is introduced in the transformation, which allows for a closed form for the inverse transform.

Beside this convenient property, the presence of the closure operation (2) does not seem to be

mathematically necessary. Moreover, when embedded in a geostatistical setting, the spatial covari-

ance structure is no longer explicitly connected to the variation matrix as in Equation (6), which

introduces some difficulties for the modeling of the spatial covariance that is needed for spatial in-

terpolation. In order to overcome these limitations, we introduce a new family of α-transformations

in the next Section, that we name Centered and Isometric α-transformations.

3 The Centered and Isometric α-transformations for spatial Com-

positional Data

3.1 The Centered and Isometric α-transformations

We here introduce a new class of transformations called Centered and Isometric α-transformations

(α-CT and α-IT). Let us define SD0 = {x = [x1, . . . , xD]> | xi ≥ 0, i = 1, . . . , D;
∑D

i=1 xi = 1} the

simplex that admits one or more 0-values in its components.

Definition 1. Let α > 0. The Centered α-transformation (α-CT) of a compositional vector x ∈ SD0
is the mapping Aα−CT : SD0 → RD

uα−CT = Aα−CT (x) = α−1 GD xα, (8)

where GD is the (D,D) centering matrix defined above. The Isometric α-transformation (α-IT) of

a compositional vector x ∈ SD0 is the mapping Aα−IT : SD0 → RD−1

zα−IT = Aα−IT (x) = α−1 HD GD xα = α−1 HD xα, (9)

where HD is the (D − 1, D) Helmert matrix defined in Section 2.1.

To better understand the α-CT, it is useful to make the link between Equation (8) and the

CLR transformation (5) more explicit. Indeed, the α-CT of a compositional vector x in SD reads

uα−CT =

[
α−1

(
xα1 −

1

D

D∑
i=1

xαi

)
, . . . , α−1

(
xαD −

1

D

D∑
i=1

xαi

)]>
, (10)

whereas the CLR transform of x in (5) is equivalent to

clr(x) =

[(
ln(x1)−

1

D

D∑
i=1

ln(xi)

)
, . . . ,

(
ln(xD)− 1

D

D∑
i=1

ln(xi)

)]>
. (11)

In fact, similarly as for the CLR transform, the α-CT of x operates a centering of a (power)

transformation of x with respect to its average value, thus yielding a transformed vector uα−CT
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characterized by a zero-sum constraint. Hence, both uα−CT and clr(x) lie on the same hyper-plane

H ⊂ RD defined in Section 2.1. Analogously as for the ILR transform, the α-IT then identifies a

set of (D− 1) coordinates over an orthonormal basis of H. The following Proposition sheds further

light on the link between the proposed class of transformations and those in use under the Aitchison

geometry.

Proposition 1. The CLR transform is retrieved from the Centered α-transformation when α→ 0

and the ILR transform is retrieved from the Isometric α-transformation when α→ 0, provided that

x ∈ SD.

Proof. Since both the ILR transform and the α-IT are defined as the multiplication of the Helmert

matrix HD by the CLR transform and the α-CT respectively, it is sufficient to prove that the

α-CT tends to the CLR transform when α → 0. From the definition of the geometric mean, we

get ln g(x) = D−1
∑D

i=1 lnxi, which does exist since x ∈ SD. Notice that GD xα = xα−mα(x)1D,

where 1D is a D-vector of ones and where the α-mean mα(x) is mα(x) = 1/D
∑D

i=1 x
α
i . From (8)

we get

lim
α→0

ui,α−CT = lim
α→0

xαi −mα

α
= lim

α→0

(
xαi − 1

α
− mα(x)− 1

α

)
= ln(xi)− ln(g(x)) = ln

(
xi
g(x)

)
= clr(x)i.

Hence, we have

lim
α→0

uα−CT = clr(x)

and

lim
α→0

zα−IT = lim
α→0

HD uα−CT = HD clr(x) = ilr(x).

This result establishes that the α-CT and the α-IT are a generalization of the CLR and ILR

transform, respectively. Notice that, when α = 1, these transformations boil down to linear trans-

formations of the compositions. On [0, 1], the parameter α thus offers a modeling flexibility that

allows to interpolate smoothly between linear and log-transformations and therefore, hopefully,

better adapt to the data. Other positive values of α are also possible. Negative values of α can

also be considered for the α-IT and α-CT, provided that the compositions are in SD, i.e., that no

0-values occur. From now on, we will restrict the use of the α-CT and α-IT to α ≥ 0.

It is worth emphasizing that the α-CT and the α-IT (with α > 0) can be applied to any com-

position of SD0 , including those lying on the border of the simplex. This point is an important

improvement with respect to the usual CLR and ILR transforms that cannot be applied to com-

positions with one or more 0s. This point will be further discussed when analyzing the Copernicus

Land Cover dataset in Section 5.3.

3.2 Inverse of the Isometric α-transformation

Let us consider a vector z belonging to the codomain of Aα−IT , with α > 0. In order to obtain

the composition x such that z = Aα−IT (x), one must solve Equation (9). Multiplying both sides
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of the equation by H>D, we get that the composition x solves

H>D z = α−1 GD xα, (12)

owing to the fact that H>D HD = GD. Since GD is not invertible, Equation (12) cannot be solved

directly. Notice that the α-transformation in (7) can easily be inverted because uα(x) is a centered

vector (thus with (D − 1) degrees of freedom), whilst here xα is unconstrained, with D degrees of

freedom. Let us define Qz(y) =
∥∥H>D z−α−1 GD yα

∥∥. Then,

x = A−1α−IT (z) = arg min
y∈SD0

Qz(y).

When z belongs to the codomain of Aα−IT , the minimum of Qz is 0 and x ∈ SD. Otherwise, the

minimum Qz is larger than 0 and it is achieved on the border of SD0 , i.e., with at least one part of x

being equal to 0. In practice, the minimum is found by using the function nlminb in R on w, with

y(w) = exp w /C(exp w), thus guaranteeing the positivity of all components of y and hence of x.

The α-IT only admits a numerical form for the inverse transform, but, as seen above, this does

not hamper its use. If we wanted to have a closed-form of the inverse transformation, but still admit

0-values in the compositions, we should use either the α-transformation (7) introduced in Tsagris

et al. (2011) (which admits an explicit inverse as mentioned in Section 2.3) or the ALR Box-Cox

transformation zalr−BC = [zi,alr−BC ]>, introduced by Barcelò et al. (1996), inspired by the ALR

transform, alr(x) =
[
ln x1

xD
, · · · , ln xD−1

xD

]>
(Aitchison, 1986), and defined, for each i = 1, . . . , D− 1,

as

zi,alr−BC =
(xi/xD)α − 1

α
. (13)

The classical ALR transform is recovered from Equation (13) as α→ 0. Although the two proposed

Box-Cox-like transformations admit an inverse transform, the α-transformation seems harder than

necessary, since it introduces the closure operator (2) in the direct transform, and the ALR Box-Cox

transform has the same issue of the classical ALR transform: it depends on the chosen denominator

xD and cannot deal with 0-values in xD.

One may readily see similarities between the α-CT and the Box-Cox transformation, defined

for any vector x in RD as uBC = ABC(x) = xα−1D
α . The difference between uBC and uα−CT relies

in the constant which is subtracted to xα, namely 1D in the case of the Box-Cox and the α-mean

mα(x) 1D for the α-CT. However, when multiplying uBC and uα−CT by the Helmert matrix HD,

the transformed composition is projected on the hyper-plane orthogonal to vectors colinear to 1D.

Hence, the Isometric coordinates HD uBC and HD uα−CT coincide.

In Figure 1, we plot the codomains of the α-IT (with a ‘shield’ shape) along with the codomains

of the α-transformation (with a triangular shape), when these transformations are applied on

the 3-dimensional simplex S3 for different values of α. When α = 0, the codomains of the two

transformations coincide with R2. For the other values of α, one can notice that the codomains

of the α-IT appear ‘smaller in size’ than those of the α-transformation. This just reflects on a

different scale for the transformed data if using the α-IT or the α-transformation, which has no

relevant impact on their usability in practice.
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Figure 1: Codomains of the α-IT (left) and the α-transformation (right) for different values of α.

3.3 The α-IT-metric

The Isometric α-transformation of Equation (8) leads to a natural distance between observations

x,y ∈ SD0 , denoted by dα−IT (x,y), and hereafter referred to as the α-IT-metric. For all values of

α > 0, dα−IT (x,y) is defined as

dα−IT (x,y) = ‖Aα−IT (x)−Aα−IT (y)‖ , (14)

where ‖·‖ denotes the usual Euclidean distance (in RD−1). When α → 0 we retrieve the

Aitchison’s distance (4), while when α = 1 we retrieve the Euclidean distance d1(x,y) =

[
∑D

i=1 (xi − 1/D − yi + 1/D)2]1/2 = [
∑D

i=1 (xi − yi)2]1/2.
Note that one can define measures of central tendency based on the α-IT-metric, using the

concept of Fréchet mean – similarly as in Pawlowsky-Glahn and Egozcue (2001) and Tsagris et al.

(2011). Indeed, a measure of central tendency for a compositional dataset x1, ...,xn ∈ SD0 can be

defined as

m = arg min
µ∈SD0

{
1

n

n∑
i=1

dα−IT (xi,µ)

}
. (15)

This is equivalent to back-transforming the sample mean of the transformed data, that is

m = A−1α−IT

(
1

n

n∑
i=1

Aα−IT (xi)

)
. (16)

3.4 Spatial structure of the Centered and Isometric α-transformations

As already mentioned, the classical way of performing a geostatistical analysis is to work on the

coordinates of the transformation (Mateu-Figueras et al., 2011; Pawlowsky-Glahn et al., 2015).

As we have seen in Section 2.2, we can directly relate the cross-covariance matrix of the ILR

transformed data with the variation matrix of the composition. This section aims at deriving

analogous results for the Isometric α-transformation.
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Definition 2. Consider a second-order LR stationary compositional random field X(s). The α-IT

covariance matrix is the (D − 1, D − 1) matrix Φα(h) = [φα,ij(h)]D−1i,j=1, given by

Φα(h) = Cov [Zα−IT (s),Zα−IT (s+ h)] = HD Ξα(h) H>D, (17)

where Zα−IT (s) is the Isometric α-transformation of X(s) and Ξα(h) = [ξα,ij(h)]Di,j=1 is the α-CT

covariance matrix whose elements are

ξα,ij(h) = Cov [ui,α−CT (s), uj,α−CT (s+ h)] . (18)

In Equation (18), ui,α−CT and uj,α−CT are two components of the vector of the Centered α-

transformation of X(s) (Equation (8)).

Proposition 2. The CLR covariance matrix Ξ(h) = [ξij(h)]Di,j=1 can be retrieved by taking the

limit for α → 0 of the α-CT covariance matrix Ξα(h) of Equation (18). The ILR covariance

matrix Φ(h) = [φij(h)]D−1i,j=1 can be retrieved by taking the limit for α → 0 of the α-IT covariance

matrix Φα(h) of Equation (17).

Proof. Φ(h) (respectively Φα(h)) is the multiplication of the Helmert matrix HD and its transpose

by the (D,D) matrix Ξ(h) (respectively Ξα(h)). Hence, it is sufficient to verify that the formula

of the CLR covariance matrix Ξ(h) is retrieved by taking the limit of Ξα(h) for α→ 0:

lim
α→0

ξα,ij(h) = Cov
[

lim
α→0

ui,α−CT (s), lim
α→0

uj,α−CT (s+ h)
]

= Cov [lnXi(s)− ln g(X(s)), lnXj(s+ h)− ln g(X(s+ h))]

= Cov

[
ln

Xi(s)

g(X(s))
, ln

Xj(s+ h)

g(X(s+ h))

]
= ξij(h),

where we use the fact that limα→0 hα(x) = lnh0(x) = ln g(x). Finally,

lim
α→0

φα,ij(h) = φij(h).

Proposition 2 shows that Ξα(h) is a generalization of the CLR covariance matrix. An analogous

result holds for the α-IT covariance matrix Φα(h) with respect to the ILR covariance matrix Φ(h).

When analyzing Equation (18), the difference between ui,CT (s)− uj,CT (s+ h) that is involved

in the computation of the covariance matrix can be interpreted as a contrast; as α tends to 0,

this contrast tends to a contrast of logs, i.e., a log-ratio. This observation echoes with the need

for working on ratios put forward by Aitchison (1986) and by the compositional community in

Pawlowsky-Glahn and Olea (2004), Tolosana-Delgado and van den Boogaart (2013) and Tolosana-

Delgado et al. (2009). One could argue that, more generally, one needs to work on α-contrasts as

those reported in Equation (18). In this way, not only the Aitchison geometry and in particular the

ILR transformation leads to a well-defined spatial structure, but also the geometry derived from

the Isometric α-transformation.
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3.5 Geostatistics with the Isometric α-transformation

In the spatial analysis of compositional data, we follow the approach of the compositional commu-

nity which makes use of the ‘Principle of working in coordinates’ (Mateu-Figueras et al., 2011), but

we ground the analysis upon the α-IT. Having transformed the data, we apply prediction methods

as cokriging within the Euclidean codomain of the α-IT. The results obtained in RD−1 are finally

back-transformed to the simplex through numerical inversion of the α-IT (see Section 3.2). We

discuss on the choice of the value of α to use in the α-IT in Section 3.6.

An important remark is that the restriction of the codomain of the α-IT with α > 0 to a subset

of RD−1 (see Figure 1) does not reflect on serious limitations for its use in practice. One could argue

that sometimes the geostatistical predictions would fall out of the codomain of the α-IT, implying

the actual impossibility to back-transform the results. Although possible in principle, this would

rarely happen in kriging – and, in fact, it never happened during the numerical experiments carried

out in this work. Recall that ordinary kriging is an interpolation technique based on a linear

combination of the data with coefficients adding up to 1. When all weights are positive, the result

of kriging is a convex combination of the data – and it is thus guaranteed to lie within the ‘shield’

domain of the α-IT, for all α. When some weights are negative, kriging could give interpolation

results out of the convex hull of the data. This can be seen as a limitation of the approaches based

on the α-IT (as well as of the α-transformation of Tsagris et al. (2011)), which however can be

faced, e.g., by constraining the kriging weights to be positive (Cressie, 1993). This point is not

investigated further in this paper, as predictions outside the codomain have never been observed.

3.6 Estimating the parameter α

Kriging is the Best Linear Unbiased predictor in the L2 sense and it is the overall optimal L2

predictor when the data being analyzed are Gaussian (Cressie, 1993). In order to achieve good

prediction performances, the parameter α of the transformation will thus be estimated using max-

imum likelihood, assuming that the transformed values are independent multivariate Gaussian

vectors. We first consider that all compositions have positive parts, i.e., xk ∈ SD, k = 1, . . . , n.

Compositional vectors with at least one null part will be considered later. Since it is equivalent

and more convenient to maximize the log-likelihood, the maximum likelihood estimator is thus

α̂ = arg maxα L(α; x1, . . . ,xn), with

L(α; x1, . . . ,xn) = −n
2

ln |Σ̂| − 1

2

n∑
k=1

(zk−µ̂)>Σ̂
−1

(zk−µ̂) +
n∑
k=1

ln |J(xk)|, (19)

where |J(x)| is the determinant of the Jacobian of the transformation Aα−IT and zk = Aα−IT (xk)

is a (D − 1) Gaussian vector vector with expectation µ and covariance matrix Σ – both being

common to all the observations because of stationarity. The Jacobian J(x) is the (D − 1, D − 1)

matrix whose elements are

Jij(x) =
∂zi
∂xj

= Hijx
α−1
j −HiD(1− x1 · · · − xD−1)α−1 = Hijx

α−1
j −HiDx

α−1
D , (20)

with 1 ≤ i, j ≤ D − 1. Here, the index k was dropped for convenience of notation. In (19), µ̂ and

Σ̂ are the ML estimators of µ and Σ respectively, given the multi-Gaussian vectors (z1, . . . , zn).
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We now consider the case where some of the components of x are equal to 0, implying that the

Jacobian in Equation (20) is undefined when α ∈ [0, 1). In this case, the D dimensional Gaussian

distribution is actually concentrated on a simplex with dimension D′ < D. The proper way of

dealing with this situation is thus to consider that the composition lies in SD′ and that the α-IT

vector z′ is given by z′ = α−1 HD′ x
′, where x′ is the D′ dimensional subvector of x with positive

parts only.

The full log-likelihood to be maximized is then

L0 = L+
D∑
i=1

Li +
D∑
i=1

D∑
j=i+1

Li,j + · · · . (21)

where L is the log-likelihood of the data lying in SD, given in Equation (19). Li is the log-likelihood

of the (D− 1)-dimensional data obtained by removing the coordinate xi = 0 and such that xj > 0,

with j 6= i. Li,j is the log-likelihood of the (D − 2)-dimensional data obtained by removing the

coordinates xi = xj = 0 and such that xk > 0, with k 6∈ {i, j}. The sum continues with decreasing

dimensions until the lowest possible dimension D′ = 2, corresponding to edges, with S2 = (0, 1). If

D = 3, there are 4 terms to be considered in L0. When D = 4, the number of terms increases to

11. Notice that each log-likelihood in Equation (21) necessitates at least D′ data to be properly

computed since Σ̂ must be of full rank. If there are less than D′ data, the contribution of this

sub-simplex is simply ignored.

Note that, if the Gaussian hypothesis on the multivariate random field Z(s) generating the data

is in force, the transformed data move away from Gaussianity as |α− α̂| increases, making kriging

sub-optimal, in the sense that there exists a non-linear predictor improving on kriging in the L2

sense. In this sense, α̂ is expected to be the value of α optimizing the performance of kriging.

4 A simulation study

The aim of this section is to analyze the Isometric α-transformation introduced in Section 3.1, by

applying it to simulated spatial compositional data. Here, we will evaluate the performances of this

approach in comparison to the classical log-ratio transformations introduced by Aitchison (1986)

and Egozcue et al. (2003).

4.1 Simulation process

We focus here on spatial compositional data in SD, D = 3, but the same approach could be applied

to any dimension D ∈ N, up to some minor modifications. The spatial domain D is the square

[0, 10]× [0, 10] filled with 2000 random uniform locations {sj : j = 1, . . . , 2000}. At these locations,

bivariate Gaussian values {Z(sj)} are simulated from a parsimonious bivariate Whittle-Matérn

Model (Gneiting et al., 2010) with covariance Cij(h) = cijWνij (h/sij). Each function Wνij is given

by

Wνij (r) =
21−νij

Γ(νij)
rνijKνij (r), (22)
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where νij > 0 and Kν is the modified Bessel function of second kind. B = 100 different realizations

from this bivariate Whittle-Matérn model are drawn using the R package RandomFields with the

following parameters: cii = 1, cij,i6=j = 0.8, νii = νij,i6=j = 0.5, sii = sij,i6=j = 1.

Using shifting and scaling of the bivariate data according to Znew(sj) = σ(Z(sj)− z̃),∀j, where

σ and z̃ are a scaling and shifting parameter respectively, various scenarios are built from these

realizations. The values σ and z̃ are chosen such that for a given α0 (hereafter set to α0 = 0.2

or α0 = 0.6) the simulated sets lie within the shield-shaped codomain of the α-IT. Compositional

data are then computed using the inverse α-IT presented in Section 3.2 for each vector Znew(sj),

with j = 1, . . . , 2000. Thanks to the different scaling and shifting scenarios, different patterns of

compositional data are created in the simplex.

Figure 2 shows the shifted and scaled data located in the center, at the border and in the corner

of the shield-shaped codomain, along with the corresponding compositional datasets once the data

have been back-transformed to the simplex with α0. The specific values of α0, σ and z̃ that will be

used throughout this work are given in Table 1.

Pattern α0 = 0 α0 = 0.2 α0 = 0.6 α0 = 1

Center z̃ (0, 0) (0, 0) (0, 0) (0, 0)

σ 1 0.50 0.15 0.065

Border z̃ (−2.3, 1) (−2.3, 1) (−2.3, 1) (−2.3, 1)

σ 1 0.50 0.15 0.065

Corner z̃ (4,−3) (4,−3) (4,−3) (4,−3)

σ 1 0.38 0.11 0.045

Table 1: Shifting and scaling parameters used to create patterns of data in the center, at the border

and in a corner of the simplex.

To evaluate the kriging performances, each of the compositional datasets plotted at the bottom

of Figure 2 is then divided into a training set of n = 200 data randomly sampled from the realization

and a test set made of the remaining N = 1800 data. A bivariate proportional model is estimated

on the training set and kriging is performed to predict at the test locations. Predicted values are

then back-transformed into the simplex. On each of the B = 100 realizations, this procedure is

applied for a sequence of values of α ranging in [0, 1]. Note that the locations of the training and

test sets are fixed among all the B different realizations.

4.2 Distances and prediction scores

Since a composition in SD can be seen as a discrete distribution over {1, . . . , D}, we will use distances

between distributions to assess the prediction performances. Note that, even though we here

consider scores based on distances between distributions, other measures of discrepancy could be

used for the same purpose, such as those based on the concept of divergence, e.g., Kullback-Leibler

divergence (Kullback and Leibler, 1951) or the α-divergence (Medak and Cressie, 1991). Specifically,

we will use the Hellinger distance and the Total Variation distance. These distances allow us

to look at the prediction performances of compositional data in an objective way that does not
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Figure 2: Top: bivariate data after shifting and scaling. The continuous line shows the limit of the

codomain for α0 = 0.2. Bottom: corresponding compositional datasets once transformed with the

inverse α0-IT, as in Equation 12. Shades of color follow the z1 axis.

depend upon a specific transformation of the data. These distances are defined between probability

measures but for our purposes we here introduce their definition when discrete distributions are

concerned. Consider two discrete probability distributions P = (p1, . . . , pD) and Q = (q1, . . . , qD).

The Hellinger distance, dH , is defined as

dH(P,Q) =
1√
2

√√√√ D∑
i=1

(
√
pi −

√
qi)2, (23)

and the Total Variation distance, dTV , is

dTV (P,Q) =
1

2

D∑
i=1

|pi − qi|. (24)

Classical inequalities between L1 and L2 norms provide

d2H(P,Q) ≤ dTV (P,Q) ≤
√

2dH(P,Q).

For each simulation b, with b = 1, . . . , B, the prediction scores will be the average of the Hellinger

(respectively Total Variation) distances between the kriging prediction x∗j at location sj ∈ D and

the corresponding true value, xj , with j = 1, . . . , N . These average distances, denoted δbH and δbTV ,

are thus

δbH =
1

N

N∑
j=1

dH(x∗j,b,xj,b), δbTV =
1

N

N∑
j=1

dTV (x∗j,b,xj,b). (25)
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Finally, we also use the α-IT-distance defined in Equation (14) and we compute

δbα =

 1

N

N∑
j=1

dα−IT (x∗j,b,xj,b)
2

1/2

. (26)

We recall that the parameter α used to compute this distance is not necessarily equal to the

parameter α0.

4.3 Results

First, the Maximum Likelihood Estimator (MLE) is computed following the method detailed in

Section 3.6. Table 2 reports the averages and standard deviations of the MLE estimates computed

from B = 100 realizations with nS = 500 sample points, in several situations and for 4 different

values of α0, including α0 = 0 which corresponds to an ILR model and α0 = 1 which corresponds

to conditional Gaussian compositions. Overall, the MLE shows good performances. The parameter

α tends to be slightly underestimated, at the exception of α0 = 0. In this case, the true value is

at the border of the possible values for α, so that estimation errors are one-sided. The standard

deviation increases with α0. For α0 = 0.6 and border data, the average standard deviation have

also been computed with increasing numbers of sample points, i.e. nS = 500, 1000, 2000. The

averages on B = 100 realizations of independent random vectors were (0.591, 0.592, 0.615, 0.601).

The standard deviation of α̂ was equal to (0.208, 0.128, 0.082, 0.062) indicating that it decreases

roughly at the n−1/2 rate. Similar results have been obtained on further simulations (not reported

here). In presence of spatial dependence, the rate of convergence was found to be slower under

increasing domain asymptotics. Convergence under infill asymptotics has not been explored, this

point being left to further research. An important issue was to check whether MLE is able to

estimate correctly α when the data correspond to an ILR transformation (α = 0) or to a linear

transformation (α = 1). Our findings provide evidence that this is indeed the case.

Pattern α0 = 0 α0 = 0.2 α0 = 0.6 α0 = 1

Center 0.025 (0.03) 0.181 (0.09) 0.563 (0.24) 0.957 (0.37)

Border 0.051 (0.07) 0.190 (0.08) 0.574 (0.26) 0.940 (0.41)

Corner 0.053 (0.07) 0.178 (0.05) 0.587 (0.18) 0.997 (0.36)

Table 2: Average (standard deviation) of α̂ for different configurations of data (as described in

Table 1). B = 100 realizations with nS = 500 samples.

Starting from the compositional datasets, we then explore the kriging performance for different

values of α, pretending that the true parameter α0 is not known. Specifically, for a given value

α ∈ [0, 1], the α-IT is applied to the compositional training set, thereby defining zα = (z1,α, z2,α) in

R2. Notice that when α 6= α0, zα will be different from the original simulated values, which are only

retrieved when α = α0. A Linear Model of Coregionalization (LMC) is then fitted on zα using the

R package RGeostats. Cokriging is then applied at the N locations of the test set. Predicted values

17



are then back-transformed to S3 with the parameter α. Finally, the prediction scores, presented in

Section 4.2, are computed. This process is repeated for several values of α ranging from 0 to 1.

We first assess the performance in the (transformed) Euclidean space by computing the average

kriging RMSE, which is nothing but the average over the B simulations of the metric δbα defined

in (26). Results are plotted in Figure 3 for different values of α. Each point represents the average

metric δα =
∑B

n=1 δ
b
α/B, normalized by σ, which is the empirical standard deviation computed on

the transformed vectors zα. In the left panel, the data are originated from the inverse α-IT with

α0 = 0.2, while the right panel represents the data generated with α0 = 0.6. We note that the

minimum of the kriging RMSE is attained around α = α0 in the two cases. As α gets away from

α0, the RMSE becomes larger.

Figure 3: Average kriging RMSE δα/σ over B = 100 tests for center, border and corner data in R2

before inverse α-IT for α0 = 0.2 (left) and α0 = 0.6 (right).

In Figure 4 we plot the average of the kriging prediction scores (Total Variation and Hellinger

metric defined in Equation (25)) computed on the data in the simplex after inverse α-IT over the

B = 100 simulations for the center data with α0 = 0.2 and α0 = 0.6. Even though the difference is

less marked, this plot does indicate that a value of α = α0 achieves the best scores. The parameter

α resulting in minimal kriging error is thus close to the value α0 used to simulate the data and also

close to the ML estimates reported in Table 2. These findings provide good support for the use of

ML estimation for estimating the parameter α when analyzing data.

Prediction scores based on Total Variation and Hellinger metrics are less variable with respect

to α than the kriging errors computed in the Euclidean space R2. This is due to the fact that the

inverse transform shrinks the data (both observed and kriged) into a smaller area of the simplex

causing the absolute error to decrease.

Figure S1 in the Supplementary Material shows the same result as Figure 4 for the extreme cases

α0 = 0 (data simulated from inverse ILR) and α0 = 1 (data simulated from linear transformation).

As expected, the plot shows that the Total Variation metric and the Hellinger metrics recover α = 0

(respectively α = 1) not far from the best value of α for kriging.

Figure 5 shows the normalized averages of the kriging errors of the center data with α0 = 0.2

and α0 = 0.6 for different Isometric α-metrics. The result shown in the plot is less straightforward
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Figure 4: Average error over B = 100 tests for center data after α-IT with different α and α0 = 0.2

(left) and α0 = 0.6 (right): Total Variation metric in blue dashed lines and Hellinger metric in red

continuous lines.

to interpret, since the minimal kriging error computed with the normalized α-IT metric is attained

close to the value α used in the metric instead of being close to α0 as one would expect. This

implies that the choice of the metric influences the result of the analysis in a sort of self-confirming

way and that it is thus safer to use metrics that are not related to the transformation of the

compositional data, as it is the case for the Total Variation or the Hellinger metrics. In particular,

this result indicates that one should not use the Aitchison metric, corresponding to α = 0, in all

circumstances, irrespective of data at hand.

Figure 5: Average of normalized α-IT error over B = 100 tests for center data after α-IT with

different α and α0 = 0.2 (left) and α0 = 0.6 (right).

Finally, Figure S2 in the Supplementary Material shows the same scores of Figure 4, but for

border and corner data. We remark that the evolutions of the errors are very similar to the center

case. We note that in none of the plots (center, border or corner) the value α = 0, which corresponds
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to the classical ILR transform, leads to the lowest error in kriging.

5 Application to the Copernicus Land Cover Map

A geostatistical analysis of a spatial compositional dataset is now conducted following the lines

presented above: cokriging of the transformed data by α-IT followed by the back-transformation

into the simplex. Using Monte Carlo cross-validation, we shall assess the performance of our

approach for several values of α, including the value α∗ maximizing the likelihood (21), even

though the transformed variables are not necessarily multivariate Gaussian.

5.1 The dataset

The Copernicus Dynamic Land Cover Map (CGLS-LC100) (Buchhorn et al., 2019) delivers a global

land cover map at 100 m spatial resolution, offering a primary land cover scheme. The different

proportions of covers sum to 1 for every pixel, since each of them represents the proportion of the

pixel covered by that given land cover. These proportions can thus be considered as compositional

data since they are positive and sum to 1. Scientists in spatial analysis of compositional data

have been using land cover datasets to apply prediction techniques; recent works can be found in

Lungarska and Chakir (2018), Nguyen et al. (2021) and Thomas-Agnan et al. (2021).

For our study, we consider only a part of the Copernicus dataset that corresponds to the

Po’ Valley in Italy, a major geographical feature of Northern Italy. It extends approximately

650 km in an E-W direction, with an area of 46, 000km2. As standard practice in geostatistics,

latitude/longitude coordinates are transformed into the corresponding UTM coordinate system.

In a set of 2000 pixels, randomly picked in the spatial domain, we select the 4 main parts of the

compositional samples, i.e., those which explain the highest proportion of the composition, and

create a new compositional dataset with 4 parts, crops, shrub, grass and tree, belonging to the

simplex S40. Since some land covers are not found in each pixel, some of the parts are equal to 0,

which makes this dataset an interesting case study for assessing how performances vary with the

amount of data containing parts equal to 0.

The predictive performances will be measured using a Monte Carlo cross-validation approach,

in which the following procedure is repeated B = 20 times on the set of 2000 pixels: for each

b = 1, . . . , 20, a random sample of size 500 is selected to be the training set and the remaining

1500 compositions form the validation set; an LMC is fitted to the α-IT transformed data and

cokriging is performed for prediction at the validation locations. Scores are computed using the

Total Variation and the Hellinger metrics introduced in Equation (25).

5.2 Spatial analysis with positive parts

We first consider data belonging to S4, i.e., data with positive values for all parts. With this setting,

a fair comparison is possible with the classical ILR transform. In Figure 6 (right), the set of 2000

data is represented in stacked barplots, where each bar represents a compositional sample. The

same data are mapped in Figure 7, where each of the four components varies between 0 and 1.
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Visual inspection confirms that the area is quite homogeneous, and that stationarity can reasonably

be assumed for the purpose of this study.

The log-likelihood (21) is maximized with respect to α for each of the B training samples,

thereby providing B estimates of α?. The average of these estimates is equal to 0.120 and their

standard deviation is 0.048, showing a small variability around the average value. It is noticeable

that α = 0 lies outside the 2-standard deviations confidence interval, a fact that provides strong

evidence that setting α = 0 for an ILR transform is not supported by the data. For the rest of

this Section, we shall thus consider that α∗ = 0.12 corresponds to the ML estimates of the α-IT

transform.

Figure 6: Stacked barplots for the compositional set of size 2000 excluding compositions with 0s.

Figure 7: Compositional set of size 2000 excluding compositions with 0s.

Figure 8 displays the scatterplots of the 2000 transformed data after the α-IT with α = 0,

α? = 0.12 and α = 1. When α = 1 the triangular shapes reflect that a linear transformation has

been applied on the data originated from the simplex S4. When α = 0, one can notice that groups

of data are slightly separated from the main cluster of data. We shall return to this in Section 5.3.

Once the data have been transformed to the Euclidean space R3 for each value of α ∈ A =
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Figure 8: Scatterplot of z1, z2 and z3 after Isometric α-transformation with α = 0 (left), α? = 0.12

(center) and α = 1 (right).

{0, α?, 0.3, 0.5, 0.75, 1}, the empirical (co)variograms are computed and an LMC is fitted to the

transformed data. Figure 9 shows the empirical and fitted (co-)variograms for α? = 0.12. One can

observe the presence of a significant nugget effect – larger than the partial sill in every direct or

cross-variogram – entailing a possible effect on the quality of kriging predictions. Similar fit were

obtained for all values of α. The shapes were identical, but the sill decreased as α increases, owing

to the associated reduction of the codomain in R3 (see Figure 1).

The average of the kriging errors at the validation locations across the B simulations for different

values of α computed for the two metrics (Hellinger metric and Total Variation metric) presented

in Equation (25) are reported in Figure 10. According to the Total Variation metric, α? = 0.12

leads to the best result compared to all other values of α, including α = 0 and α = 1. Regarding

the Hellinger metric, the minimum of the kriging error among the 6 values of α is obtained for

α = 0.3, which is not exactly the value that corresponds to the maximal proximity to Gaussianity

(i.e., α? = 0.12), but it is close to this value. Notice that the true minimum could be attained for

some other value within the range (0.12, 0.50), but this has not been evaluated here. Figure 11

shows the back-transformed proportions of the kriging values over a grid made of 10000 points after

the α-IT with α? = 0.12 given 500 observed points. Notice that at each location, these predicted

proportions are non-negative and that their sum is equal to 1.

To summarize, this analysis has shown that the values α = 0 and α = 1, corresponding to the

Aitchison and the linear transformation respectively, are not optimal for both the Hellinger and

the Total Variation metrics. An intermediate geometry, corresponding to the α-IT with α? = 0.12,

seems to better describe the dataset in a geostatistical setting.

5.3 Spatial analysis with 0s

In the complete Copernicus dataset the land cover proportion is actually equal to 0 for at least one

of the four parts in about half of the pixels (53% of compositions without 0s, 31% with 1 zero, 12%

with 2 zeros, 4% with 3 zeros). A compositional geostatistical analysis thus requires to address

the issue raised by null values in the vector of proportions. Dealing with 0s is a challenge for the
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Figure 9: Variograms and cross-variograms for z1, z2, z3 of the dataset without 0s after α-IT with

α? = 0.12.

Figure 10: Average of the kriging errors: Total Variation metric in blue dashed lines and Hellinger

metric in red continuous lines.
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Figure 11: Kriging proportions over a grid of 10000 points with α? = 0.12. Proportions are positive

and sum to 1.

log-ratio approach. In Tolosana-Delgado et al. (2009), the authors propose to use the undersampled

cokriging, where, even if some coordinates of the observation vectors may be missing, it is possible

to look for both an interpolation of full vectors at unsampled locations and the completion of the

missing variables at the sampled locations. Mart́ın-Fernández et al. (2003); Palarea-Albaladejo

and Mart́ın-Fernández (2007); Mart́ın-Fernández et al. (2011); Templ et al. (2016) propose various

methods to impute 0s with small values before the statistical analysis of the data; as an alternative,

these authors suggest to remove the samples with at least one 0.

As discussed in Section 3.1, the α-IT (with α > 0) can be applied to compositions that include

one or more components equal to 0, thus overcoming the theoretical limitations of the log-ratio

approach. In order to test our approach on such datasets, the Monte Carlo cross-validation as-

sessment presented in Section 5.2 is here repeated on the data containing 0s. Two settings are

considered. In the first setting, a moderate proportion of data (set to 10%) presents at least one

part being equal to 0. Among those, the proportion of data with one and two parts equal to 0

reflects the proportion seen in the data. In the second setting, the sample of size 2000 is drawn

from the general dataset regardless of the number of null compositions. Hence, on average, about

half of the data contain at least one part equal to 0. In both settings, data with a single positive

part (thus equal to 1) are excluded.

In the first setting, the average of the 20 ML estimates for α is equal to 0.120 and the standard

deviation is 0.036. In the second setting, the average of ML estimates is equal to 0.089 and the

standard deviation is 0.040. Notice that α = 0 lies outside the confidence interval in all cases.

The α-IT is performed with α ∈ A′ = {0.01, α?, 0.3, 0.5, 0.75, 1}, where 0.01 was chosen as an

approximation of 0 (0 being not acceptable). Figure 12 represents the Total Variation and the

Hellinger scores of the kriged compositions as a function of α. The errors are maximal when α is

close to 0. There is a local minimum at 0.12 and 0.30 in the first and second setting respectively.

Then, the scores reach a floor when α > 0.5 and they remain almost equal up to α = 1. The same

behavior can be observed on the normalized α-IT prediction error (in the Euclidean space) instead

of Total Variation or Hellinger distances (in the simplex). For example, in the second setting, δ̄α/σ

is equal to (1.64, 1.58, 1.49, 1.56, 1.42 and 1.41) as α goes from 0.01 to 1 in A′.
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The results above thus show that even though the ML estimates are close to α = 0.1, the

prediction scores are minimized close to α = 1, suggesting that absence of transformation of the

data is a good option when it comes to kriging in presence of compositions with null parts.

Figure 12: Hellinger and Total Variation metrics computed on prediction errors for 20 random

sample datasets with 0s. Thick line: average; light shadow : ±2σ envelopes. Left: moderate (10%)

amount of 0s. Right: large amount of 0s.

In order to understand this counter-intuitive behavior, Figure 13 offer a 3D representation of

the set of data with a large proportions of compositions with null parts, along with the kriged

vectors in the Simplex (left) and in the 3D Euclidean space (right). Two values of α are considered:

in the top row, α is the ML estimate α?, and in the bottom row, α = 1 is used. It is clearly visible

that the α-IT produces clusters of data in the Euclidean space. These clusters are associated to

different groups of data. The most numerous group lies in the center, and corresponds to data

with positive values for all parts. Then, there are four clusters corresponding to the four possible

groups of data with exactly one part equal to 0, i.e. data belonging to one of the facets of the

tetrahedron. Finally, there are six smaller groups corresponding to data with two parts equal to

0. These data lie on the edges of the tetrahedron. When α = 1, the transformation is linear, and

these clusters are as close to each other as in the original dataset. As α gets smaller, the distance

between these clusters increases. When α approaches 0, the distance between clusters tends to

infinity, in relation with the fact that the logarithm of 0 is undefined. The likelihood in Equation

(21) is the sum of partial likelihoods computed within each group, but it does not account for the

distance between groups. The maximum of the likelihood is thus reached when the groups are the

closest to Gaussianity, regardless of the clustering effect.

When kriging is computed at a target location, data in the neighborhood can belong to different

clusters (some data with only positive parts, some others with one or two 0s, possibly not for the

same parts). In this case, kriging, which is the weighted average of values belonging to different

clusters, can be located in an area of the Euclidean space where there are no data. This is the case

for the light blue points represented in Figure 13. The kriging RMSE in the α-IT geometry will

then increase as α decreases. Once back-transformed, these points will end up in regions in the

simplex where there are no data, implying high values of the Total Variation and Hellinger metrics.
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Figure S3 represents the same plots for a moderate proportion of compositions with null parts.

In conclusion, the clustering effect due to compositions with 0s is amplified as α decreases,

entailing poor kriging performances both within the α-IT geometry and for metrics in the simplex.

Note that a similar problem is addressed in Compositional Data Analysis when analyzing the so-

called essential zeros, i.e., 0s which are not due to rounding or low sensitivity of the measurement

instrument. In these cases, zero-replacement is clearly not appropriate. A strategy of analysis

proposed by some authors (e.g., Aitchison and Kay (2003)) consists of two separate steps, namely

(i) analyzing the patterns of zeros (i.e., the data clusters) and (ii) analyzing, within clusters, the

non-zero parts according to the Aitchison geometry. A similar strategy can be envisioned in the

setting of α-IT, including an explicit modeling of the clusters induced by the presence of 0s. A

relevant advantage here would be that the geometry induced by the α-IT is well-defined over all

the compositions, thus allowing modeling across clusters, and not only within clusters.

6 Discussion and conclusion

A new class of α-transformations, named α-IT, has been proposed, to allow for the geostatistical

analysis of compositional data. The transformation has been proved to converge to the Isometric

Log-Ratio transformation as α approaches 0, while it reduces to a linear transformation when α = 1.

In this sense, the α-IT represents a compromise between the Aitchison geometry (α = 0) and the

Euclidean one (α = 1). Nonetheless, the presence of the parameter α controlling the degree of

transformation applied to the data offers the relevant advantage of letting the problem suggest the

most appropriate transformation to use on the data. As far as kriging is concerned, we proposed a

maximum likelihood estimator for α, which maximizes the Gaussianity of the transformed data –

hence the kriging performances. On simulations of compositions originating from Gaussian random

fields with inverse α-IT, our results show that the ML estimator provides close to unbiased estimates

for α, i.e., it allows to correctly identify the α-IT yielding to data Gaussianity and optimizing kriging

performances.

It is worth mentioning that, unlike alternative classes of α-transformations nowadays available

(Tsagris et al., 2011), the α-IT also allows for an explicit characterization of the covariance structure

of the field according to the geometry induced by the transformation. In particular, this enables one

to formulate a generalization of the so-called ILR covariance matrix (see Section 2.2) – widely-used

in compositional data analysis – while drawing a direct connection with the latter as α approaches

0.

Simulation results and data analyses on Copernicus land cover data confirm that the Aitchison

geometry – retrieved for α = 0 – may not be optimal for kriging, as it proved to be outperformed

by the α-IT when α was set through ML. On the other hand, the α-IT allows one to explicitly deal

with compositions with 0s, for which the log-ratio approach is not well-defined. Our investigation

on this point provides evidence that the use of a small value for α may not be appropriate in

the presence of null parts, because this amplifies the grouping structure merely induced by the

0 themselves, with detrimental effect on kriging performances. Our results indeed suggest that

the use of a geometry close to the Euclidean one (α ' 1) may be more appropriate in these cases
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Figure 13: Original data (violet) and kriging predictions (light blue) with a high (about 50%)

fraction of data with 0s (second setting). Left: simplex. Right: Euclidean space. Top: α? = 0.089.

Bottom: α = 1.
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instead. These findings complement, from a different perspective, the theoretical results established

in Allard and Marchant (2018), which state that linear combinations of the data (and thus kriging

with α = 1) are the only unbiased central tendency characteristics satisfying a small set of axioms,

namely continuity, reflexivity, and marginal stability.

In this work, we computed the cokriging of the transformed vector Z(s0) at unsampled locations

s0, conditional on the vectors Z(sj) = Aα−IT (X(sj)), j = 1, . . . , n. Ultimately, the goal is to predict

the compositional vector X(s0) given the same information. However, by back-transforming the

predictions from RD−1 to SD with a non-linear transformation A−1α−IT , one actually introduces a

bias even though the prediction of Z(s0) is unbiased. This issue is closely related to the above

mentioned results in Allard and Marchant (2018). However, it should be noted that the definition

of the bias is tightly related to the geometry under consideration. Implicitly, the geometry in use

when evaluating the bias on the prediction of X(s0) is the Euclidean geometry in the simplex,

whilst the geometry implied by the α-IT distance defined in Section 3.3 is equal to the Euclidean

distance in the transformed space. Defining and correcting the bias is an interesting yet very broad

issue worth to be further investigated. The problem of dealing with missing data, when some of

the compositional vectors are incomplete, has not been tackled here. It is also left for future work.

More in general, we remark that, while this work focuses on the analysis of spatial compositional

data with a focus on spatial prediction (kriging), the α-IT transformation can be used for any

type of compositional analysis, ranging from exploratory analysis, to classification, inference and

regression. In these settings, one may use the α-IT to convert the original compositional data into

Euclidean data, analyze them according to the Euclidean geometry, and then transform back the

results to the simplex, with the same process as that demonstrated in this work. While we generally

envision a clear path of research to this scope, further research is needed to export the idea here

presented to further settings, in the direction of, e.g., establishing criteria to set the optimal value

for α. Nonetheless, our α-IT can be a promising alternative to other transformations for the very

same reasons that led us to its development in the spatial setting.

Acknowledgments

The authors are grateful to four anonymous reviewers for their very careful reading and the many

valuable comments that helped to improve the manuscript. R scripts reproducing our analyses can

be found at http://github.com/luciclar/alphaIT_spatial_compositional.

28

http://github.com/luciclar/alphaIT_spatial_compositional


References

Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman & Hall Ltd.

Aitchison, J. and Kay, J. (2003). Possible solution of some essential zero problems in composi-
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7 Supplementary Material

Figure S1: Average error over B = 100 tests for center data after α-IT with different α and α0 = 0

(left) and α0 = 1 (right): Total Variation metric in blue dashed lines and Hellinger metric in red

continuous lines.
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Figure S2: Average error over B = 100 tests for border (up) and corner (down) data after α-IT

with different α and α0 = 0.2 (left) and α0 = 0.6 (right): Total Variation metric in blue dashed

lines and Hellinger metric in red continuous lines.

2



Figure S3: Original data (violet) and kriging predictions (light blue) with a moderate (10%) fraction

of data with 0s (first setting). Left: simplex. Right: Euclidean space. Top: α? = 0.12. Bottom:

α = 1.

3



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

63/2021 Rosafalco, L.; Torzoni, M.; Manzoni, A.; Mariani, S.; Corigliano, A.
Online structural health monitoring by model order reduction and deep
learning algorithms

62/2021 Lupo Pasini, M.;  Burcul, M.; Reeve, S.; Eisenbach, M.; Perotto, S.
Fast and accurate predictions of total energy for solid solution alloys with
graph convolutional neural networks

60/2021 Rosafalco, L.; Manzoni, A.; Mariani, S.; Corigliano, A.
Fully convolutional networks for structural health monitoring through
multivariate time series classification

61/2021 Buchwald, S.; Ciaramella, G.; Salomon, J.; Sugny, D.
A greedy reconstruction algorithm for the identification of spin distribution

59/2021 Stella, S.; Regazzoni, F.; Vergara, C.; Dede', L.; Quarteroni, A.
A fast cardiac electromechanics model coupling the Eikonal and the
nonlinear mechanics equations

58/2021 Tassi, T., Zingaro, A., Dede', L. 
Enhancing numerical stabilization methods for advection dominated
differential problems by Machine Learning algorithms

57/2021 Roberto Piersanti, Francesco Regazzoni, Matteo Salvador, Antonio F. Corno, Luca Dede', Christian Vergara, Alfio Quarteroni
3D-0D closed-loop model for the simulation of cardiac biventricular
electromechanics

56/2021 Zingaro, A.; Fumagalli, I.; Dede' L.; Fedele M.; Africa P.C.; Corno A.F.; Quarteroni A.
A multiscale CFD model of blood flow in the human left heart coupled with a
lumped parameter model of the cardiovascular system

54/2021 Ciaramella, G.; Gander, M.J.; Mamooler, P.
HOW TO BEST CHOOSE THE OUTER COARSE MESH IN THE DOMAIN
DECOMPOSITION METHOD OF BANK AND JIMACK

53/2021 Ciaramella, G.; Mechelli, L.
On the effect of boundary conditions on the scalability of Schwarz methods


	qmox64-copertina
	mox-2021101514309
	Introduction
	State-of-the-art analysis of spatial compositions
	Compositional Data analysis in the Aitchison simplex
	Geostatistics for Compositional Data
	The -transformation

	The Centered and Isometric -transformations for spatial Compositional Data
	The Centered and Isometric -transformations
	Inverse of the Isometric -transformation
	The -IT-metric
	Spatial structure of the Centered and Isometric -transformations
	Geostatistics with the Isometric -transformation
	Estimating the parameter 

	A simulation study
	Simulation process
	Distances and prediction scores
	Results

	Application to the Copernicus Land Cover Map
	The dataset
	Spatial analysis with positive parts
	Spatial analysis with 0s

	Discussion and conclusion
	Supplementary Material

	qmox64-terza_di_copertina

