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Abstract

Nowadays, a vast amount of georeferenced data pertains to human and natural activities occurring in complex network-
constrained regions, such as road or river networks. In this article, our research focuses on spatio-temporal point pat-
terns evolving over time on linear networks, which we model as inhomogeneous Poisson point processes. Within this
framework, we propose an innovative nonparametric method for intensity estimation that leverages penalized maxi-
mum likelihood with roughness penalties based on differential operators applied across space and time. We provide
an efficient implementation of the proposed method, relying on advanced computational and numerical techniques
that involve finite element discretizations on linear networks. We validate the method through simulation studies
conducted across various scenarios, evaluating its performance compared to state-of-the-art competitors. Finally, we
illustrate the method through an application to road accident data recorded in the municipality of Bergamo, Italy,
during the years 2017-2019.

Keywords: Nonparametric likelihood estimation, Roughness penalties, Finite element method.

1. Introduction

In this work, we propose an innovative method for non-separable spatio-temporal intensity estimation in inho-
mogeneous Poisson point processes in network-constrained regions. Spatio-temporal point pattern data on linear
networks are becoming increasingly prevalent. The integration of georeferencing precision technologies, such as
the Global Positioning System (GPS), into smartphones, vehicles, and wearable devices has resulted in a massive
increase in the availability of georeferenced event data pertaining to human activities on road networks. A typical ex-
ample concerns traffic accidents. For instance, Figure[I|shows accident data recorded in the municipality of Bergamo,
Italy, during the years 2017-2019. The point pattern under consideration is strongly influenced by the shape of the
road network, exhibiting spatial variation in accident risks. Despite the higher concentration of restricted traffic zones
and pedestrian areas in the city center, accidents occur more frequently there than in residential areas. As expected, a
similar trend is observed along major roadways connecting peripheral areas to the city center or other cities.

Other common event data on road networks include street crimes, such as vehicle theft, vandalism, drug dealing,
and robbery. Georeferenced data on linear networks are also widely studied in environmental sciences and ecology, for
example, to monitor the presence of rare plant species or endangered fish populations in contaminated river networks.
Important examples of this type of data also arise in industrial and life sciences, particularly in applications involving
fiber-optic cables or nerve fibers.

Spatial point processes over regular two-dimensional regions have been the subject of an extensive literature; see,
e.g., the textbooks by [Mgller and Waagepetersen| (2003); [Daley and Vere-Jones| (2003} 2008); [[llian et al. (2008));
Baddeley et al| (2015) and the references therein. However, the complex geometry of linear networks hinders the
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Figure 1: Locations of 5176 road accidents that occurred in Bergamo, Italy, during the years 2017-2019. The observed point pattern exhibits
different behaviors across the road network, showing spatially varying accident risks when comparing roads in urban and suburban districts. The
green-bordered box contains the subnetwork relevant to the application study. The other boxes mark four zones of interest, each exhibiting distinct
behaviors in terms of accident risk: the orange-bordered boxes contain roads in the upper and lower zones of the city center (Citta Alta and Citta
Bassa), whereas the blue-bordered boxes contain ring roads and highway junctions (Rondo delle Valli and Raccordo Autostradale).

use of classical statistical methodologies when the point pattern is constrained to a network. One immediate reason
for this is the inadequacy of the classical Euclidean metric in R?, which fails to provide an accurate measure of
the distances between points on a network. Additionally, the stationary assumption is often unreasonable for point
processes defined on linear networks (see, e.g.,[Baddeley et al.,[2017). These factors have directed research towards the
idea that the spatial domain in which events occur can significantly influence the phenomenon under study, offering
valuable insights into it (Okabe and Sugiharal, 2012). This idea has inspired the flourishing of dedicated literature
on linear networks, primarily within the purely spatial framework. In fact, some classical methods have already
been adapted to handle points constrained to network-constrained regions by computing alternative distance metrics,
such as the shortest-path distance along the network. With the main goal of solving intensity estimation problems,
various kernel estimators have been proposed in both the Geographical Information Systems (GIS) research field
(Borrusol 2003|2005}, 2008}, Xie and Yan| 2008}, [Okabe et al., 2009 [Anderson|, 2009} [Okabe and Sugiharal 2012) and
the spatial statistics community (Baddeley et all, 2014}, [McSwiggan et al, 2017, Moradi et al., 2018}, [Rakshit et al.,
[2019; [Briz-Redén et al, 2019} [McSwiggan et al., [2020; Moradi et al., 2019), with different proposals for selecting
both the smoothing kernel and the bandwidth. Interestingly, most of these kernel-based techniques are illustrated
through applications to event data observed on road networks; for a review of these techniques, the reader may refer

to Baddeley et al.|(2021). More recently, penalized smoothing approaches have also been developed (Schneble and
[Kauermann|, 2022} [Clemente et al., [2023a). These methods have the advantage of not requiring the computation of
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distances on linear networks, which can quickly become computationally prohibitive in practical applications. In such
cases, even networks of moderate size often consist of thousands of vertices and edges. For example, the road network
of the municipality of Bergamo, shown in Figure[T] spans a total length of 349.4 km and comprises 3 724 vertices and
4559 edges.
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Figure 2: Locations of 5176 road accidents that occurred in Bergamo, Italy, during the years 2017-2019, at different time slots: 3 947 accidents
during working days (first row) and 1229 during weekends and holidays (second row). The observed point pattern evolves differently over time
across the road network, with distinct accident risks when comparing peak hours and off-peak hours. Although the plots refer to time intervals of
3 hours, the data are continuously recorded over time. For clarity of visualization, plots show the subnetwork contained within the green-bordered
box in Figure[T}

In addition to exhibiting complex spatial dependencies on linear networks, point patterns may also evolve over
time, as in the case of the application to road accident data mentioned above. Figure[2]shows the evolution of the point
pattern on a subnetwork of interest during workdays (first row), and during weekends and holidays (second row), with
all available data aggregated by day type. The phenomenon under consideration depends on time at various levels,
including year, month, day, time slot, and potential interactions among these levels. As expected, the risk of road
accidents varies with traffic conditions, which change over time due to intrinsic factors (e.g., workdays vs. weekends
and holidays, peak vs. off-peak hours, and summer vs. winter seasons) or external influences affecting mobility trends
(e.g., the COVID-19 pandemic, road closures, and construction sites).

Incorporating the time dimension into the modeling of spatio-temporal point patterns on linear networks intro-
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duces additional challenges compared to the purely spatial case, as it happens in classical studies on regular spatial
regions (see, e.g., |Digglel 2013} |Cressie and Wikle, 2015; |Gonzalez et al., |2016). These modeling complexities are
further compounded by network-specific challenges, especially those related to computational costs. As a result, sta-
tistical methodologies for estimating the spatio-temporal intensity of point patterns on linear networks have lagged
behind those developed for purely spatial data. To reduce the complexity of the problem being investigated, methods
often adopt simplifying assumptions. The most common assumption is the first-order spatio-temporal separability of
the considered point process, which requires the underlying intensity function to be expressed almost everywhere as
a (non-unique) factorization into non-negative spatial and temporal components. Under the separability assumption,
Moradi and Mateu| (2020) presents a nonparametric kernel-based intensity estimator that leverages two-dimensional
convolutions of the kernel for the spatial component of the intensity, as proposed by Rakshit et al.| (2019). This esti-
mator exploits fast Fourier transforms for efficient computation of these convolutions (Silverman [1982a)). D’ Angelo
et al.| (2022) develops parametric estimators for the separable intensity of an inhomogeneous Poisson point process.
Mateu et al.[ (2020) extends the purely spatial resample-smoothing technique introduced in Moradi et al.| (2019) to
the spatio-temporal framework, proposing a pseudo-separable Voronoi intensity estimator. The relaxation of the full
separability assumption allows for a more flexible estimation method that accounts for potential interactions between
spatial and temporal components. Other works combine the network kernel density estimator with GIS-based statis-
tics for spatial and temporal analysis of road accident and crime hotspot mapping on road networks, using a separable
approach; see, e.g., [Khalid et al.| (2018)); [Vemulapalli et al.[| (2017). However, we point out that separability rarely
holds in practice and should be rigorously assessed using statistical tests, such as those proposed by Diaz-Avalos et al.
(2013); [Fuentes-Santos et al.| (2018)); |Ghorbani et al.| (2021)). Existing non-separable techniques for spatio-temporal
point patterns typically rely on the Euclidean distance in R?, which clearly does not appropriately account for the
network-constrained nature of the data, as already commented. To the best of our knowledge, there is currently a lack
of methods for non-separable spatio-temporal intensity estimation that can successfully handle event data observed
over network-constrained regions. In addition to model limitations, most existing techniques for spatio-temporal point
patterns on linear networks rely on the computation of shortest-path distances along the network, which can become
computationally infeasible in practical applications involving large networks.

In this paper, we overcome the main theoretical and computational limitations of existing methods for spatio-
temporal point processes on linear networks. In particular, the proposed approach does not assume separability in
space and time, hence offering high modeling flexibility and allowing for the estimation of strongly localized signals.
Furthermore, the method does not rely on shortest-path distances and instead leverages numerical discretization and
implementation strategies, making it computationally feasible even for large networks. Specifically, we propose a non-
parametric penalized likelihood approach for intensity estimation. This approach is inspired by nonparametric density
estimation methods developed within the purely spatial framework by |Silverman|(1982b); Goodd and Gaskins|(1971));
Tapia and Thompson| (1978); \Gu and Qiuf (1993)); |Gu et al.| (2013) for point patterns observed over one-dimensional
or regular two-dimensional domains, and by [Ferraccioli et al.[(2021); |Arnone et al.| (2022);|Das et al.| (2024)) for point
patterns observed over irregular planar and curved regions. We begin this study by considering the spatio-temporal
density estimation method recently presented by [Begu et al.| (2024), which employs roughness penalties involving
differential operators in both space and time. To uplift this approach to the problem under investigation, we rely on
a classical result concerning the equivalence between intensity estimation in inhomogeneous Poisson point processes
and density estimation based on independent and identically distributed observations (see, e.g., Diggle and Marron|
1988)). Moreover, following the preliminary study by |Clemente et al.| (2023a) in the context of purely spatial data,
the proposed method employs a roughness penalty based on a differential operator suitably defined on the considered
linear network, utilizing notions of metric graphs and quantum graphs (see, e.g., Berkolaiko and Kuchment, 2013)).
This roughness penalty is designed to yield smooth estimates that inherently respect the network geometry. To handle
the differential operator defined upon the linear network and solve the estimation problem, we resort to a numerical
discretization based on finite elements specifically tailored to the network (Arioli and Benzi, 2018)). This discretization
technique provides the proposed method with high flexibility and efficiency, ensuring feasible computational costs,
also when dealing with large networks. The developed method is available in the £daPDE (Arnone et al., 2025) C++/R
library, which implements a comprehensive class of spatial data analysis methods with Partial Differential Equation
(PDE) regularization.

The remainder of the article is organized as follows. Section [2]introduces the mathematical framework for spatio-
temporal inhomogeneous Poisson point processes on linear networks. Section [3] outlines the statistical model for
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addressing intensity estimation problems and describes the numerical analysis and optimization techniques used in
the implementation. Section[d]presents simulation studies conducted in various settings to evaluate the performance of
the proposed method in comparison with state-of-the-art techniques. Section [5]demonstrates the use of the proposed
method for modeling real-world data, specifically road accidents, as shown in Figure 2] Finally, Section [6] offers
a concluding discussion and delineates potential avenues for future research. Additional material is reported in the
Appendix.

2. Spatio-temporal Poisson point processes on linear networks

This section presents the mathematical framework for spatio-temporal inhomogeneous Poisson point processes
on linear networks. Section 2.T]introduces the necessary concepts for treating networks as spatial regions, leveraging
notions of metric and quantum graphs (see, e.g., Berkolaiko and Kuchment, 2013). Section [2.2] provides the formal
definition of the intensity function on the spatio-temporal region under study.

2.1. Linear networks

Let G = (V,E) be a linear network embedded in R?, which is an undirected graph with a set of vertices V =
{vilf,, where v, € R?, and a set of edges E = {e,}>_,, where ¢, € V x V. For an introduction to graph theory,
the reader may refer to the classical textbooks by [Bondy and Murty| (1976); West| (2001). For potential practical
applications, Marshall et al.| (2018)) gives an overview of key street network models, introducing detailed terminology
and graph representations. The left panel of Figure [3|shows the benchmark road network of Eastbourne, UK, which
has been used in several studies on point patterns in network-constrained regions (see, e.g.,[Mateu et al.| [2020; [Moradi
2020), and is employed in this work for simulation studies in Section ] This simpler geometry, with
respect to that of the road network of Bergamo shown in previous figures, enables comparisons with all available
competing techniques, some of which are computationally infeasible in the application to road accidents in Bergamo,
and facilitates the visualization of the estimates without the need for zoomed-in views of the spatial support.

Figure 3: Left: Road network of Eastbourne, UK, imported from the R package st1lnpp (Moradi et al., [2022), used in the simulation studies
presented in SectionE Right: discretization of the road network of Eastbourne into a mesh with 461 nodes and 496 edges.

Any edge e € E, connecting a node v; € V to another node v, € V in the linear network G, can be linearly
reparameterized by a map x, : [0, £,] — R2, which takes value v; at 0 and v, at the edge length £,. This map allows



for the definition of a measure on the edge, and, consequently, the integral of a function over the linear network.
Specifically, for a function f : G — R, its integral over a Borel subnetwork A = (Vy4, E4) C G is defined as

f f(p)dp =
A

It is also possible to define differential operators over a linear network. In particular, for any point p on the edge
e € E, the first and second derivatives of the function f are defined as the operators

af(p) & f(p)
dx.(p)’ axx(p)

f J(xe(p)) dx.(p) . ey

ecEy

f= f= 2

2.2. Inhomogeneous Poisson Point Processes

To model spatio-temporal point patterns on linear networks we refer to the theory of Poisson point processes;
see, e.g., the textbooks by |Daley and Vere-Jones|(2008); |Diggle| (2013)); |Cressie and Wikle| (2015) and the references
therein. Let X be a spatio-temporal inhomogeneous Poisson point process on the product space G X [0, T], with T > 0,
and Nx(A X B) be the number of points in the set (A X B) N X, where A C G is a Borel subnetwork and B C [0, T]. We
assume that X is finite, meaning that Nx(G X [0, T']) < co with probability one (see, e.g.,[Daley and Vere-Jones|, 2003)).
Starting from one realization of X, that is {(p;, #;)}_; € G X [0, T, our goal is to characterize such a point process X.
This corresponds to estimating the unknown inhomogeneous intensity function that governs the phenomenon under
study. We recall that the intensity function of X is defined as the function y : G x [0, T] — R* satisfying

E [Nx(A X B)] = f f y(p, 1) drdp =: T(A x B)
AJB

for any A X B C G x [0, T], where the integration over the subnetwork A C G is defined as in Equation (T). We refer
to I'(G X [0, T']) as the intensity measure.

3. Proposed method: nonparametric spatio-temporal intensity estimation

This section outlines the proposed approach for intensity estimation in spatio-temporal inhomogeneous Poisson
point processes on linear networks. Section [3.1] presents the model, highlighting the key contributions of the article.
Section[3.2] details the estimation procedure developed to solve the estimation problem.

3.1. Model

To estimate the unknown intensity, we develop a nonparametric method that does not rely on additional assump-
tions, such as the first-order spatio-temporal separability of the underlying point process. In particular, we build on the
work of |Begu et al.| (2024), which proposes a penalized likelihood approach for estimating the unknown probability
density function from a sample of independent and identically distributed spatio-temporal realizations over simpler
two-dimensional domains. The classical result by [Diggle and Marron| (1988)) allows us to equivalently reformulate
this density estimation problem in terms of intensity, leveraging the theory of Poisson point processes, as detailed in
To naturally comply with the non-negativity constraint on y, we parameterize the estimation problem
in terms of the log-intensity function u := logy rather than the unknown intensity v itself. Thus, we propose to find
the log-intensity # by minimizing the following penalized (negative) log-likelihood of the underlying inhomogeneous
Poisson point process:

n T
L(u) = — Z u(p;, t;) + f f ¢“PD drdp + R(u; A). 3)

i=1 GJ0
We denote by R(u; A) the penalization term, which ensures the regularity of the estimate in space and time, thereby

preventing degenerate solutions associated with unbounded likelihoods. We define R(u; A) as the sum of two roughness
penalties, one in space and one in time, as follows:

n T (0%u(p, 1) 8u(p, 1)
R(u,/l).—/leGfo (ax(p)2) drdp +/lrff( . ) drdp, 4)




where the second-order differential operator in space, for functions defined on the linear network G, as well as the
integration over G, are defined as in Section The first roughness penalty is specifically designed to produce
smooth estimates in space, inherently respecting the geometry of the network, while the second penalty controls the
smoothness of the estimate in time. In the estimation functional in Equation @ the regularization R(u; Q) is traded

off against the log-likelihood. The vector of positive smoothing parameters A := [/l(;, /lT]T regulates this trade-off,
balancing the data adaptation and the smoothness of the estimate. These smoothing parameters can be calibrated using
k-fold cross-validation, as detailed, e.g., by Begu et al.|(2024)) in the context of spatio-temporal density estimation over
two-dimensional domains.

3.2. Estimation procedure

The solution to the infinite-dimensional intensity estimation problem in Equation (3) cannot be obtained analyti-
cally and must, therefore, be approximated numerically. To achieve this, we introduce a functional basis that enables
the representation of functions defined over the network. Following the works of |Clemente et al.| (2023alb) on re-
gression methods and density estimation for purely spatial data, we apply a discretization based on the finite element
method, which has been adapted for solving partial differential problems over graphs by |Arioli and Benzi| (2018).

Let G, = (Vy, Ey) be a spatial discretization of the original linear network G = (V, E), where V), = {vk},':gl and
E, = {es}fﬁ , denote the sets of nodes and edges of G,. V), is a superset of the set of nodes V of the original network G.
For example, the right panel of Figure [3|displays the regular mesh of the road network of Eastbourne, UK, used in the
simulation studies, consisting of 461 nodes and 496 edges. A practical criterion for constructing regular meshes is to
set a maximum allowed edge length that results in approximately equally spaced nodes along each edge of the original
network. The C++/R library £daPDE (Arnone et al.| 2025)), which implements the proposed methodology, also offers
additional options for mesh refinement. Intuitively, the mesh should be fine enough to capture the spatial features of
the signal. However, ultrafine meshes (i.e., meshes with a resolution significantly exceeding that of the signal) are
unnecessary, as they yield comparable accuracy, at a substantially higher computational cost; see Section .2] for an
illustration of this aspect. When dealing with large networks, adaptive meshes, whose resolution varies spatially based
on the observed data, can also be considered to optimize computational cost.

Starting from the discretized network G, we define a functional basis over G as follows. For each node v, with
k=1,..., K, we consider the linear finite element basis function i (p) as the continuous piecewise linear function
on G that takes value 1 at v; and value 0 at each other node v, i.e., Yy (v;) = oy for k,l =1, ..., K. As an illustration,
Figure [] shows two linear finite element basis functions on a simple linear network. The figure displays a linear
finite element basis function centered at the node located at a junction of the network (left panel), and a linear finite
element basis function centered at an internal node (right panel). With the vector of finite element basis functions

Vo= [(//1, ces z//Kh]T, it is then possible to represent any continuous piecewise linear function on Gy. It should be
noted that higher-order finite elements can also be considered within this procedure. In fact, the implementation of
the proposed method in the £daPDE library already supports second-order finite elements (i.e., quadratic basis) and
also enables the definition of higher-order basis functions. However, considering higher-order finite elements leads
to higher overall computational complexity for the same mesh. In our experience, it is computationally convenient to
use linear finite element basis functions and increase the number of mesh nodes, if necessary, rather than switching to
higher order basis functions while keeping the mesh fixed.

To discretize over time, we consider a vector of M), cubic B-spline functions defined over the time interval [0, T'].
This vector is denoted by ¢ = [1,01, R gth]T; see, e.g.,/De Boor|(1978). We then seek the minimizer of the objec-
tive functional in Equation (3)) within the space of log-intensity functions that can be expressed as linear combinations
of the basis functions in space and time, that is,

Ky M,
u(p,1) = )" > Cnthi(PXom(®), 5)
k=1 m=1
where cy,, are the coefficients in the basis expansion, fork = 1,...,K,and m = 1,..., M;. Let ¥ and ® denote the

evaluations of the K, spatial basis functions at the » spatial data locations {p;}!_, and of the M, temporal basis functions
at the n temporal data instants {#;};_,, respectively, i.e., ¥ = (P)u = ¥r(pi) € R™>Ki and @ = (D), = @u(t) €
T

R™M: Let ¢ denote the vector of basis expansion coefficients, i.e., ¢ == [c“, ceey Clms  evvs Ckly ovvs CK/lM,,] .
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0.25

Figure 4: Two examples of linear finite element basis functions, one at a node located at a junction (left) and the other at an internal node (right) of
a simple linear network.

Moreover, we define the spatial mass matrix Ry € RX>X: the temporal mass matrix Ky € R¥>*M:_and the spatial
stiffness matrix R; € RX>*K_defined as follows:

T dy; dy;
(Ro)ij = Z fgbj:,b, dp, (Ko)ij :=j(; pjp;dt, (Ry)ij = Z f d‘ij df
N e€E, ¢ ¢

e€Ey

.
Additionally, we set ¢,, = [624p1 10, ..., 52<PM,, /61‘2] as the vector of second-order derivatives of the temporal
bases with respect to time. These quantities enable the discretization of the regularization term through the following
penalty matrices:

T
P; = R]R,'R; € RF>Ki | Pr = f @,p, € RMMiqy
0

We also introduce the matrix Y € R™KiMi whose ith row is given by (T); = (®); ® (¥);, fori = 1,...,n, where
® denotes the Kronecker product between matrices. In order to discretize the second addendum of L(u), we employ
standard Gaussian quadrature rules in space and time, with g and r nodes respectively, and associated weights wg € R?
and wr € R”. We consistently adopt the same quadrature settings throughout all simulation and application studies;
specifically, we set ¢ = 3 and r = 5. Provided that the mesh is sufficiently fine, the choice of quadrature rule has a
negligible impact on the estimates. The evaluations of the basis functions at the quadrature nodes are stored in the
matrices ¥, € Rk in space and ®, € R™M: in time.

Thanks to these quantities, we can discretize the objective functional L(u) in Equation (3) as follows:

I(¢):=—1"Yc+n Z Z k(wr ® wg) " exp{(®, ® P,) ¢} + Age (Ko ® Pg)e + Are (Pr ® Ro)e. ©)
1C[0,T] e€Gy,

Hence, the problem of determining the log-intensity u € V as the minimizer of L(u) is now faced by seeking the coef-
ficients ¢ € RXM: in the basis expansion in Equation (3] that minimize the discretized functional L(c) in Equation (6).
To address this minimization problem, we resort to classical iterative optimization algorithms; see, e.g., Nocedal and
Wright (1999); ILange| (2013)). In particular, the default option in the £daPDE library is the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method (Liu and Nocedal, [1989; Nocedal, [1980), with 5 correction vectors and
two-loop recursion.



4. Numerical Experiments

This section demonstrates the performance of the proposed method, across different scenarios, comparing it with
available alternative techniques. For most simulations, we use the road network of Eastbourne as the spatial support, as
it serves as a benchmark in the literature. Section[4.1|presents a simulation study with a spatio-temporal Poisson point
process with a widely distributed inhomogeneous intensity; Section considers an inhomogeneous intensity with
more strongly localized features in space and time. Finally, Section 4.3] provides additional simulation studies with
separable spatio-temporal intensities. For all simulations, data generation and the computation of the corresponding
estimates are repeated 50 times.

The proposed method, named Spatio-Temporal Density and intensity Estimation with PDE regularization (here-
after STDE-PDE), is implemented in the C++ /R library £daPDE (Arnone et al., 2025). For the simulation studies based
on the Eastbourne road network, the method uses the mesh displayed in the right panel of Figure[3] consisting of 461
nodes and 496 edges. The use of a different mesh and its impact on the estimates are discussed in Section[4.2] For the
temporal discretization, we set 4 equally spaced internal knots within the considered interval [0, 1]. In all simulations,
we select the smoothing parameters using 10-fold cross-validation.

Unlike the proposed STDE-PDE, the competing techniques assume the first-order separability of the underlying
point process. This means that they seek intensities of the form y(p,?) = ys(p)yr(t), where yg and yr are two
(non-unique) non-negative functions defined on G and [0, T'], respectively (Gonzalez et al., 2016)). The considered
competing techniques primarily differ in the strategy adopted for estimating the spatial component y;. To date, most
of them employ kernel functions, based on the shortest-path distance, as defined in|[Baddeley et al.[(2021). Among the
Spatio-Temporal Kernel Density Estimation methods, hereafter referred to as STKDE, we consider the following:

STKDE-EPAN: the method described by (Okabe and Sugiharal (2012) in Section 9.2.3, and implemented within the
spatstat.linnet (Baddeley et al.,[2023) R package. STKDE-EPAN computes the equal-split continuous rule
with Epanechnikov 1D smoothing kernel (Okabe et al., 2009).

STKDE-HEAT: the method described by |(Okabe and Sugiharal (2012) in Section 9.2.3, and implemented within the
spatstat.linnet (Baddeley et al., |2023) R package. The actual computation is performed efficiently by
solving the classical time-dependent heat equation on the network, following the approach outlined in [Mc-
Swiggan et al.|(2017)); see also (Baddeley and Turner| 2005} [Baddeley et al., [2015). STKDE-HEAT differs from
STKDE-EPAN in the choice of the kernel function, which in this case is a Gaussian smoothing kernel.

STKDE-QUICK: the method presented in [Moradi and Mateu| (2020), and implemented within the st1lnpp (Moradi
et al., 2022) R package. STKDE-QUICK estimates y; through the fast kernel smoothing technique of [Rakshit
et al.| (2019), based on the convolution of the point locations and the network itself with an Euclidean two-
dimensional kernel. As for yr, STKDE-QUICK resorts to the Gaussian kernel density estimator. The network and
time smoothing bandwidths are automatically selected using Scott’s (Scott, [2015) and Silverman’s (Silverman,
2018)) rules of thumb, respectively.

In addition to the kernel-based methods above, we also compared STDE-PDE estimates with other approaches. These
include the first-order pseudo-separable intensity estimation methods presented in [Mateu et al.| (2020), and imple-
mented in the st1npp (Moradi et al., 2022) R package. These methods are based on the Voronoi-Dirichlet tessellation
(Barr and Schoenberg, 2010), resulting in weighted sums of intensity estimates calculated according toMoradi et al.
(2019). However, these techniques proved to be less accurate than the competing methods listed above and have
therefore been omitted for the sake of space.

To assess the accuracy of the competing methods, we compute the L?-norm percentage error over the spatio-
temporal domain, namely

o T, .
”y - y”iz((),T;LZ(G)) _ j(‘-; L (Y(p’ t) - Y(P, t))2 dt dp
2 - T
IVIZ20.7:2269) I J5 oo 1)’ drdp

errp2(9,y) =

where integrals over G X [0, T'] are numerically approximated.



4.1. Simulation 1: A widely distributed inhomogeneous intensity

In Simulation 1, we define the target intensity as a Gaussian distribution with a relatively large variance and a
mean that moves along the network over time. We emphasize that this signal is based on distances computed along
the network, rather than Euclidean distances in R2. With reference to the left panel of Figure |5l the mean follows
over time the trajectory from A to B. The standard deviation of the Gaussian distribution is set to 0.3, resulting in a
widely distributed signal. We also introduce an appropriate scaling factor to ensure that the desired expected number
of points, namely 5000, is obtained. To sample data points, we use the rpoistlpp function (Moradi et al.| 2022),
with the true intensity provided as an input parameter.

The first row of Figure [/| displays the data sampled in the first simulation replicate, over short time windows
centered around the five considered time instants. The point pattern exhibits a smooth variation over space and time,
consistent with the true intensity shown in the second row of the same figure. The remaining rows of the figure report
the mean intensity estimates computed by the proposed STDE-PDE and the competing methods listed above, based on
the 50 simulation replicates, at the five considered time instants. Since the underlying point process is not separable,
STDE-PDE turns out to outperform alternative approaches. In particular, kernel-based methods are less suited for
describing this signal, as they capture average spatial trends rather than the instantaneous features of the signal. These
qualitative insights find quantitative validation in the left panel of Fi gure@ in terms of the L?-norm percentage errors,
that highlights the strong comparative advantage of the proposed STDE-PDE method. Concerning computational
times, in this setting, STDE-PDE and STKDE-EPAN take an average of approximately 80 and 60 seconds per process,
respectively, while the others techniques take about half as long on a standard laptop (Intel Core i7-1065G7, 3.9 GHz,
quad core, 16 GB RAM) under the same working conditions.

Figure 5: Left: the intensity used for data generation in Simulation 1 is a Gaussian distribution based on distances along the network, with a large
constant variance and a mean that moves over time from point A to point B. Right: the intensity used for data generation in Simulation 2 is a
mixture of four Gaussian distributions based on distances along the network, each with equal and relatively small variances, and with means that
move over time: from point A to point B, from point C to point D, from point E to point F, and from point G to point H, respectively.

4.2. Simulation 2: A highly localized inhomogeneous intensity

In Simulation 2, we design the true intensity to have strongly localized features in space and time, in order to
mimic the behavior of road accidents. This intensity is defined as a mixture of four Gaussian distributions, each
with equal and relatively small variances, and with means that move along the network over time. The right panel
of Figure [5] displays the four trajectories followed by the means of the Gaussian components of the mixture over
time: from A to B, C to D, E to F, and G to H. We set the standard deviation of each Gaussian component to 0.075,
which yields the desired clustered behavior. Similarly to Simulation 1, we introduce a scaling factor to ensure that, on
average, 5 000 data points are sampled in each of the 50 simulation replicates.

The first row of Figure |8 displays the data sampled in the first simulation replicate, over short time windows
centered around the five considered time instants. The point pattern appears clustered in space and time, in accordance
with the true intensity shown in the second row of the same figure. The remaining rows of the figure report the mean
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intensity estimates computed by the proposed STDE-PDE and the competing methods listed above, based on the 50
simulation replicates, at the five considered time instants. The advantage of the proposed method over the others
is even more pronounced in this non-separable setting compared to the previous simulation. Unlike kernel-based
techniques, which fail to capture highly localized features in space and time, STDE-PDE demonstrates its ability to
accurately estimate this inhomogeneous intensity. This is further confirmed by the L>-norm percentage errors reported
in the middle panel of Figure[6] Computational times are alike those of Simulation 1.

To illustrate the aspects concerning the definition of an appropriate discretization of the network, as discussed in
Section we here compare the estimates provided by the proposed method STDE-PDE, using three meshes with
increasing levels of refinement, as shown in the top panels of Figure[9} the first mesh, MESH-1 (117 nodes), coincides
with the original network and therefore includes only the nodes necessary to define the geometry of the network, as
also represented in the left panel of Figure[3} the second mesh, MESH-2 (461 nodes), is the one used in the simulation
studies and also shown in the right panel of Figure [3} the third mesh, MESH-3 (922 nodes), contains twice as many
nodes as the second. The top left panel of Figure [0]shows the data sampled in the first replicate of Simulation 2, over
a short time window centered around 0.50. The second row of that figure represents the true intensity at time 0.50,
along with the STDE-PDE mean estimates over 50 simulation replicates at time 0.50, obtained using the three meshes
displayed in the corresponding top panels. Qualitatively, the estimate obtained with MESH-1, which coincides with
the original network, does not appear to allow the method to capture the localized features of the signal, resulting in
an overly smooth intensity. The estimates obtained with MESH-2 and MESH-3 appear indistinguishable and provide a
very accurate reconstruction of the true intensity. The right panel of Figure@represents the L2-norm percentage errors
of STDE-PDE using the three different meshes, highlighting a strong reduction in error when moving from MESH-1
to MESH-2, while MESH-3 does not appear to offer a significant competitive advantage over MESH-2. As already
discussed in Section[3.2] the results highlight that the mesh should be sufficiently fine to capture the localized features
of the signal, whereas ultrafine meshes (i.e., meshes with a resolution exceeding that of the signal) are unnecessary, as
they provide comparable accuracy at a substantially higher computational cost. In this regard, we report that the three
simulation settings require, on average, approximately 4, 80, and 580 seconds per process, respectively.
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Figure 6: Boxplots, based on 50 simulation replicates, of the L?>-norm percentage error of the estimates provided by the proposed STDE-PDE and the
competing methods introduced in Section ] namely STKDE-EPAN, STKDE-HEAT, and STKDE-QUICK, in Simulation 1 (left panel) and Simulation
2 (middle panel). The right panel shows the boxplots of the L?-norm percentage error of the estimates provided by the proposed STDE-PDE, using
three meshes with progressively finer levels of refinement, as detailed in FigureE}
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Figure 7: Simulation 1. Views of the sample from the first simulation replicate (first row), the true intensity (second row), and the mean estimates
over 50 simulation replicates obtained using STDE-PDE (third row), STKDE-EPAN (fourth row), STKDE-HEAT (fifth row), and STKDE-QUICK (sixth
row), all evaluated at different time instants in the interval [0, 1]. All plots share the same color scale, with bluish colors corresponding to low
intensity values. The competing methods are detailed in SectionE
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Figure 8: Simulation 2. Views of the sample from the first simulation replicate (first row), the true intensity (second row), and the mean estimates
over 50 simulation replicates obtained using STDE-PDE (third row), STKDE-EPAN (fourth row), STKDE-HEAT (fifth row), and STKDE-QUICK (sixth
row), all evaluated at different time instants in the interval [0, 1]. All plots share the same color scale, with bluish colors corresponding to low
intensity values. The competing methods are detailed in SectionEl
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SAMPLE MESH-1: 117 nodes MESH-2: 461 nodes MESH-3: 922 nodes
time = 0.50 original network used in Simulations ultrafine mesh

TRUE INTENSITY STDE-PDE: MESH-1 STDE-PDE: MESH-2 STDE-PDE: MESH-3

e /‘,

Figure 9: Top panels: view of the sample from the first simulation replicate at time 0.50, and three meshes with progressively finer levels of
refinement: MESH-1 coincides with the original network, including only the nodes necessary to define the geometry of the network; MESH-2
is the mesh used in the various simulation studies on the Eastbourne road network, as also shown in the right panel of Figure [3} MESH-3
contains twice as many nodes as MESH-2. Bottom panels: view of the true intensity and STDE-PDE mean estimates over 50 simulation
replicates, obtained using the three meshes displayed in the corresponding top panels, all evaluated at time 0.50.

4.3. Additional simulation studies

The proposed STDE-PDE method is specifically designed to estimate non-separable intensities. In non-separable
frameworks, Simulations 1 and 2 demonstrate its superiority over the alternative techniques listed in Section [d] We
now assess the performance of STDE-PDE when the underlying point processes satisfy instead the assumption of first-
order spatio-temporal separability. To this end, we conduct two additional simulation studies on the road network of
Eastbourne, applying all the considered methods with the same implementation settings used in Simulations 1 and 2.

In Simulation 3, we define the true intensity as the product of a smooth Gaussian spatial component with a fixed
mean and a standard deviation of 0.3, and a temporal component with a negative exponential decay, exp(—¢), on
the time interval [0, 1]. This separable intensity function generates, on average, 5 000 data points. The left panel
of Figure summarizes the L?>-norm percentage errors, based on 50 simulation replicates, while Figure in
reports the sample generated in the first simulation replicate and the mean intensity estimates provided
by the different methods. The results highlight the superiority of the proposed STDE-PDE method also in the separable
setting considered here, despite the fact that STDE-PDE does not assume separability, unlike competing techniques.
Computational times for the STDE-PDE, STKDE-EPAN, STKDE-HEAT, and STKDE-QUICK methods are approximately
40, 55, 30, and 35 seconds per process, respectively, on average.

In Simulation 4, we further confirm the insight just stated for separable Poisson point processes. We consider a
spatio-temporal homogeneous Poisson point process, which is inherently first-order separable, as the target intensity
function is defined as a constant positive scalar. Specifically, the signal corresponds to the ratio between the expected
number of sampled data points, which we set to 5000, and the measure of the spatio-temporal domain of interest,
which, in the adopted setting, is given by the total length of the road network of Eastbourne. The middle panel
of Figure summarizes the L?>-norm percentage errors, based on 50 simulation replicates, while Figure in
reports the sample generated in the first simulation replicate and the mean intensity estimates provided
by the different methods. The proposed method can also accurately estimate this homogeneous intensity, whilst all
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competing techniques exhibit some artifacts. From a computational point of view, in this setting, the flat signal, on the
linear network and over time, causes the iterative algorithm of the proposed method to reach the maximum number of
iterations, thereby increasing the average computational time to approximately 3 minutes per process. In contrast, as
expected, the computational times for the other methods remain consistent with those of the previous simulation.

Finally, in Simulation 5, we assess the performance of STDE-PDE on a network with a different geometry. In
particular, we here replicate the test setting presented in Section 3.1.1 of Mateu et al.| (2020). The target intensity
function is given by y(p, 1) = 1.5 exp {sin (#(x + y))}, with (p, 7) = ((x,¥),1) € G x [0, 1], where G is here the easynet
linear network, available from the R package stlnpp (Moradi et all |2022). Unlike in previous simulations, this
signal is not based on a distance along the linear network; instead, it is defined on R?, as it depends on the x and
y coordinates in R?. For STDE-PDE, we consider a spatial mesh with 318 nodes and 325 edges, along with the
same temporal discretization previously employed. For the competing techniques, we consider the implementations
outlined in Section |4} The right panel of Fi gurerepresents the L2-norm percentage errors, based on 50 simulation
replicates, while Figure B.3in[Appendix B|displays the sample in the first simulation replicate and the mean intensity
estimates provided by the different methods. STDE-PDE performs better than the competitors even in this simulation
setting. The comparatively small advantage of the proposed method over its competitors, compared to the results from
the other simulation studies, is primarily due to the limited number of sampled data points here. The average sample
size, determined by the definition of the target intensity, is approximately 500. In this setting, the high regularity
of the signal on the spatial support increases the computational times for STDE-PDE to approximately 1.5 minutes
per process on average. However, the increase in computational times for STKDE-EPAN and STKDE-HEAT is even
more pronounced, as they take around 14 minutes and 3 minutes per process, on average, respectively. As stated by
the developers, the computational times for these methods scale exponentially with the spatial bandwidth [Baddeley
et al.| (2023), which is automatically set to a relatively high value in this simulation setting, compared to previous
simulations, due to the smoothness of the signal and the fact that it is defined on the plane, rather than on the network,
implying longer distances between areas of the network with similar behavior of the point pattern.
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Figure 10: Boxplots, based on 50 simulation replicates, of the L>-norm percentage error of the estimates provided by the proposed STDE-PDE and
the competing methods introduced in Section[d] namely STKDE-EPAN, STKDE-HEAT, and STKDE-QUICK, in Simulation 3 (left panel), Simulation 4
(middle panel), and Simulation 5 (right panel).

5. Application to road accidents in Bergamo, Italy

This section provides an illustrative application of the proposed method to the road accident data introduced in
Section[I] According to the Global status report on road safety 2023, published by the World Health Organization at
https://www.who.int/publications/, approximately 1.19 million people died worldwide in 2021 as a result of
road traffic crashes, corresponding to a rate of 15 road traffic deaths per 100 000 people. Moreover, road traffic injury
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is the leading cause of death for children and young adults aged 5-29 years. Developing advanced methodologies for
hotspot detection on critical roads is essential for implementing prevention policies and modifying traffic codes, with
the aim of enhancing safety for citizens during periods of heightened risk. For this reason, spatio-temporal modeling
of road accidents has become a rapidly growing field of applied research. Various models have been developed
within geostatistical frameworks. Classical studies have primarily focused on road crash incidence at the areal level.
However, the geometry of road networks has prompted further research into event aggregation at the street level
(Deublein et al., |2013; 'Wang et al., 2013} [Fan et al., 2018}; |[Kalair et al., |2021}; Ramirez and Valencia, 2021} |Gilardi
et al., 2022; |Chaudhuri et al., 2023} |Gottlich and Schillinger, 2023 |Gilardi et al., [2024a)). Returning to point-pattern
modeling, in addition to the various techniques already discussed and compared in this paper, other recent works
propose deep learning approaches for predictive modeling of traffic accidents or congestion (see, e.g.,|Okawa et al.
2019; Zhu et al.| 2021} [Liu et al.| [2022).

The dataset considered in this work is publicly available at https://www.dati.lombardia.it/, and it com-
prises 5176 road accidents that occurred in the municipality of Bergamo, Italy, during the years 2017-2019. The
original road network is not entirely linear, as some of its edges are curved. For this reason, we use the R packages
osmextract (Gilardi et al.|[2024b) and sfnetworks (van der Meer et al.| [2024), which offer tools to extract Open-
StreetMap data from various providers and convert it into accurate linear network approximations of real-world road
networks. Figure [T] shows the locations of all events recorded on the resulting network, within the administrative
boundary of the municipality, while Figure [2| displays the events on a subnetwork of interest, during different hour
slots, aggregating and categorizing them according to the day type, either working day or weekend/holiday. We con-
sider the 24 hours of a day as the time domain. Concerning the implementation of the proposed method, for spatial
discretization, we refine the network provided by osmextract into a mesh with 3 724 nodes and 4 559 edges. For
temporal discretization, we use four equally spaced internal knots over the interval from 00:00 to 24:00.

Figures |11 and [12] present the estimates of road accident risk on the subnetwork contained within the green-
bordered box in Figure (1} for working days and weekends or holidays, respectively. The estimates are shown at the
same three time instants around which the three temporal windows, used to display the point pattern in Figure 2|
are centered. For clarity of visualization, the bottom panels of these figures show zoomed-in views of the results for
a confined urban area in the lower part of the city center, the Citfa Bassa, and for a suburban area with a highway
junction, the Raccordo Autostradale. We compare the STDE-PDE intensity estimates, in the first rows of Figures
and with those computed by the STKDE-QUICK method, in the second rows of these two figures. We do not include
the results obtained from the other competing methods listed in Section[4] as their computational costs are prohibitive
when dealing with the large network under consideration, and code execution for these competing techniques was
halted after one day of running.

STKDE-QUICK estimates turns out to be heavily influenced by the number of observed accidents, which is naturally
uneven when comparing the phenomenon on working days and on weekends and holidays, leading to overfitting and
underfitting behaviors in the bandwidth selection, respectively. The non-separable behavior of the signal under study
compromises the accuracy of this technique. In contrast, the proposed STDE-PDE method effectively captures strongly
localized peaks of heightened criticality on certain roads and during specific hours. The estimates exhibit different
spatial patterns across the network and over time. As expected, roads in the lower part of the city center (Citta Bassa)
are characterized by a high risk due to heavy urban traffic, particularly during rush hours in the morning and evening.
This is further emphasized in the zoomed-in views in the bottom panel of Figure The presence of points of
interest such as workplaces, schools, and services, makes this area highly frequented by cars during peak hours. The
phenomenon is heightened by the railway station, which is the major cause of significant flows of commuters either
arriving in the city or traveling to nearby cities, such as Milan. Conversely, the upper part of the city center (Citta
Alta) is primarily residential and touristic, with many restricted traffic zones and pedestrian-only areas that reduce
the number of accidents. A moderate risk is also observed near ring road and highway junctions during rush hours
(Raccordo Autostradale and Rondo delle Valli). On weekends and holidays, the trends are different. Accident risk
becomes more localized to roads in the city center, with relatively high intensity estimates observed at night, likely
due to weekend nightlife, as also emphasized in the zoomed-in views of Raccordo Autostradale in the bottom panel

of Figure[12]
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Figure 11: Intensity estimates of road accidents in the municipality of Bergamo during working days. Top panels contrast the estimates provided
by STDE-PDE and STKDE-QUICK, evaluated at different time instants. The bottom panels display zoomed-in views of these estimates in the areas
of Citta Bassa and Raccordo Autostradale.
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Figure 12: Intensity estimates of road accidents in the municipality of Bergamo during weekends and holidays. The top panels contrast the estimates
provided by STDE-PDE and STKDE-QUICK, evaluated at different time instants. The bottom panels display zoomed-in views of these estimates in
the areas of Citta Bassa and Raccordo Autostradale.



6. Discussion and future research directions

As extensively validated through simulation studies and an application to road accident data, the proposed STDE-PDE
method represents a valid and effective alternative to state-of-the-art techniques for intensity estimation in spatio-
temporal Poisson processes in network-constrained regions. Indeed, STDE-PDE demonstrates robust performance
across the various settings considered, being able to accurately estimate non-separable intensities, even in challenging
scenarios characterized by sharply localized features.

The method can be further extended in several directions. An interesting direction involves incorporating addi-
tional information about the observed point pattern. For example, in the application case study, the data could be
enriched with characteristics of road accidents, such as the number of vehicles involved, the number of injured indi-
viduals, or the extent of damage. For this purpose, the presented nonparametric approach for Poisson point processes
could be expanded to model marked Poisson point processes, where each point is assigned additional attributes, within
a spatio-temporal framework. Moreover, instead of computing two separate estimates for the aggregated data accord-
ing to day type, a single intensity estimate could be computed by using all available data and encoding the day type
with an appropriate dummy variable. As a side note, it is worth mentioning that time instants can be treated as posi-
tive real-valued marks of a purely spatial point pattern (see, e.g., Daley and Vere-Jones, 2008 |Vere-Jones} [2009). In
this sense, the proposed STDE-PDE could also be employed to model marked Poisson point processes within a purely
spatial framework over linear networks (see, e.g., Eckardt and Moradil, 2024)).

Alternatively, we could include covariates through semiparametric statistical models for point processes, extend-
ing the presented approach to accommodate different types of likelihood. For example, extensions to Gibbs point
processes (Chiu et al.l 2013} |l[llian et al., 2008) could account for both attraction and repulsion behaviors, yielding
estimates of pairwise interactions based on covariates at point locations. To this end, a viable strategy would be to
employ penalized composite-likelihood approaches, as discussed in|[llian and Hendrichsen|(2010);|Guan et al.| (2015));
Daniel et al.[(2018)). A valid alternative would involve semiparametric spatio-temporal Hawkes point processes, com-
bining parametric and nonparametric estimations of the background and triggering effects, as proposed by |Alaimo
D1 Loro et al.|(2024)); D’ Angelo et al.[(2024), for example.

Finally, in this work, we have focused on undirected linear networks. The analysis of data observed over directed
networks has been more extensively investigated in geostatistical settings, rather than in the point process literature,
with contributions by |Ganio et al.| (2005)); |Skgien et al.| (2006); Ver Hoef et al.[(2006)); Ver Hoetf and Peterson| (2010));
Laaha et al.| (2013)); |Som et al.| (2014); Zhong et al.| (2016)); [Ver Hoef et al.| (2019); Barbi et al.| (2023). However, the
directionality of the network may constitute an important feature to take into account even in point pattern analysis,
as it could strongly affect the phenomenon under investigation. Examples in this regard concern the spatial analysis
of traffic safety in road networks (Briz-Redon et al., [2019) and environmental measurements in rivers and streams
(Cressie et al.L|2006). Spatio-temporal point patterns evolving on directed linear networks over time could be accom-
modated within the proposed methodology by using physics-informed penalties, such as those discussed in |Arnone
et al.| (2019) in regression settings, rather than explicitly accounting for edge orientations during the discretization
stage. This would call for the inclusion of transport terms defined on the graph in the partial differential equation
that regularizes the negative log-likelihood provided in Section Including such transport terms would enable the
proposed method to capture the complex behaviors of spatio-temporal Poisson processes on directed networks, further
broadening its utility to encompass even more challenging scenarios.
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Appendix

Appendix A. Equivalence to density estimation

The intensity estimation problem in spatio-temporal inhomogeneous Poisson point processes, as introduced in
Section can be equivalently reformulated as a nonparametric density estimation problem. A point pattern can be
modeled as a set of # mutually independent spatio-temporal pairs (p;, #;);_,; drawn from a common distribution, with
the probability density function given by:

¥,

(G x[0,T]’

where y is the inhomogeneous intensity defined in Section [3.1] Thus, the log-density function g := log f can be
derived by minimizing the following objective functional:

fi=

1 n T 1
Lin() == > et + [ [ e ardp s LR, (A1)
i=1

where the last term can also be expressed as R(g; Agens), With the positive smoothing parameter Agens == 4 / 1.
Minimizing Lgens(g) in Equation (A:T)) is equivalent to minimizing L(x) in Equation (3], up to a constant factor of

n. Specifically, § = it — log n, or equivalently, f = % / n, where n is a realization of N, and therefore an estimate of

E[N]. This result can be formally derived by exploiting the arguments in Appendix B of Begu et al.| (2024)), using the

notion of integration over networks and the differential operators over networks provided in Section [2.T]of this work.

Appendix B. Additional simulation studies

In this section, we include Figures and which show the results from additional simulation studies
on first-order separable intensities (Simulations 3 and 4) and on a network with a different geometry (Simulation
5), as described in Section £.3] Each figure displays the data sampled in the first simulation replicate (first row),
the corresponding true intensities (second row), and the mean intensity estimates computed across 50 simulation
repetitions by the proposed STDE-PDE method (third row) and its competitors (remaining rows), all evaluated at the
five considered time instants.
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Figure B.1: Simulation 3. Views of the sample from the first simulation replicate (first row), the true intensity (second row), and the mean estimates
over 50 simulation replicates obtained using STDE-PDE (third row), STKDE-EPAN (fourth row), STKDE-HEAT (fifth row), and STKDE-QUICK (sixth
row), all evaluated at different time instants in the interval [0, 1]. All plots share the same color scale, with bluish colors corresponding to low
intensity values. The competing methods are detailed in SectionH
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Figure B.2: Simulation 4. Views of the sample from the first simulation replicate (first row), the true intensity (second row), and the mean estimates
over 50 simulation replicates obtained using STDE-PDE (third row), STKDE-EPAN (fourth row), STKDE-HEAT (fifth row), and STKDE-QUICK (sixth
row), all evaluated at different time instants in the interval [0, 1]. All plots share the same color scale, with bluish colors corresponding to low
intensity values. The competing methods are detailed in SectionE
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Figure B.3: Simulation 5. Views of the sample from the first simulation replicate (first row), the true intensity (second row), and the mean estimates
over 50 simulation replicates obtained using STDE-PDE (third row), STKDE-EPAN (fourth row), STKDE-HEAT (fifth row), and STKDE-QUICK (sixth
row), all evaluated at different time instants in the interval [0, 1]. All plots share the same color scale, with bluish colors corresponding to low
intensity values. The competing methods are detailed in SectionH
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