
MOX-Report No. 63/2024

Deep learning enhanced cost-aware multi-fidelity uncertainty

quantification of a computational model for radiotherapy

Vitullo, P.; Franco, N.R.; Zunino, P. 

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it



Deep learning enhanced cost-aware multi-fidelity

uncertainty quantification of a computational

model for radiotherapy

Piermario Vitullo1, Nicola Rares Franco1 and Paolo Zunino1

1MOX, Department of Mathematics, Politecnico di Milano, Italy

Abstract

Forward uncertainty quantification (UQ) for partial differential equations
is a many-query task that requires a significant number of model evalu-
ations. The objective of this work is to mitigate the computational cost
of UQ for a 3D-1D multiscale computational model of microcirculation.
To this purpose, we present a deep learning enhanced multi-fidelity Monte
Carlo (DL-MFMC) method that integrates the information of a multiscale
full-order model (FOM) with that coming from a deep learning enhanced
non-intrusive projection-based reduced order model (ROM). The latter is
constructed by leveraging on proper orthogonal decomposition (POD) and
mesh-informed neural networks (previously developed by the authors and
co-workers), integrating diverse architectures that approximate POD co-
efficients while introducing fine-scale corrections for the microstructures.
The DL-MFMC approach provides a robust estimator of specific quantities
of interest and their associated uncertainties, with optimal management
of computational resources. In particular, the computational budget is
efficiently divided between training and sampling, ensuring a reliable esti-
mation process suitably exploiting the ROM speed-up. Here, we apply the
DL-MFMC technique to accelerate the estimation of biophysical quanti-
ties regarding oxygen transfer and radiotherapy outcomes. Compared to
classical Monte Carlo methods, the proposed approach shows remarkable
speed-ups and a substantial reduction of the overall computational cost.

1 Introduction

Uncertainty quantification (UQ) is a key aspect of computational modeling [45].
The challenge of UQ becomes even more pronounced in the context of life sci-
ences, where the complexity of physical models is combined with the high uncer-
tainties of the data [11]. A particular case of this broad scenario, and the focus
of this work, is the problem of microcirculation and oxygen transfer in biological
tissues, here addressed using the multiscale model proposed in [39]. Quantify-
ing how uncertainties propagate through these models, which are governed by
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complex partial differential equations (PDEs), requires extensive computational
resources. In fact, to obtain robust and reliable estimates, numerous simulations
are required, which means that the numerical solver has to be queried multiple
times (a so-called many-query scenario). For this reason, traditional UQ meth-
ods that rely solely on high-fidelity simulations are often impractical, especially
when it comes to multiscale models, where different scales need to be resolved
accurately, and parametric data are high-dimensional [49].

To address these issues, the state-of-the-art in UQ has been evolving rapidly,
with multi-fidelity methods emerging as a promising approach to mitigate the
computational burden [33]. Simply put, multi-fidelity methods are based on
the concept of combining high-fidelity models with one or more lower-fidelity
models. The idea is that, being computationally cheaper but less accurate,
lower-fidelity models can be used to inform and accelerate the computation
performed by the high-fidelity model [33, 29, 19, 10]. Furthermore, the applica-
bility of multi-fidelity techniques has been further enhanced by recent advances
in the reduced-order modeling literature, a research field devoted to the de-
velopment of suitable surrogate models encompassing accuracy and efficiency
[6, 20, 42]. In particular, a major contribution along this direction has been
provided by nonintrusive techniques based upon interpolation and regression
algorithms [1, 2, 3, 4, 5, 8, 21, 18, 15, 52]. In general, these approaches have
gained traction in UQ due to its ability to significantly reduce computational
time while maintaining acceptable levels of accuracy and robustness [7, 9].

Over the years, multi-fidelity methods have evolved from simple model hier-
archies to more sophisticated techniques that intelligently balance the trade-off
between computational cost and accuracy. One such technique is the multi-
fidelity Monte Carlo (MFMC), which, complemented by a suitable strategy for
optimal management of computational resources, has shown great promise in ef-
ficiently estimating the statistics of model outputs under uncertainty [32]. This
methodology, provides a comprehensive framework for combining an arbitrary
number of surrogate models while also balancing offline and online costs. Sci-
entifically speaking, its derivation is particularly innovative, as it moves away
from the traditional reliance on error decay rates. Instead, it introduces an op-
timization problem that accounts for both errors and costs, acknowledging the
fact that ROMs require a training phase in order to be operational. The paper
demonstrates that, under certain mild conditions, the optimization problem ad-
mits a unique analytic solution, thus providing a practical way to manage the
computational budget.

In this work, we contribute to the evolving landscape of MFMC methods
by extending the ideas in [32] to the case of deep learning-based ROMs, with
a strong emphasis on our motivating application in relation to a multiscale
computational model for microcirculation. More precisely, referring to the com-
prehensive model presented in [37, 39], we address oxygen transfer from mi-
crovessels to interstitial tissue. This model provides a description of the oxygen
field in the microvascular environment, which directly affects the performance
of radiotherapy: see, e.g., [40] and references therein.

Our approach integrates a full-order model (FOM) with a non-intrusive
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projection-based reduced order model (ROM) enhanced by deep learning, previ-
ously developed by the authors in [51]. Simply put, the latter integrates proper
orthogonal decomposition (POD) with mesh-informed neural networks [16], ef-
fectively relying on a closure modeling technique that resembles a separation of
scales approach. This combination not only reduces the computational cost, but
also retains the essential features captured by the FOM, spanning both local
and global scales. We term our deep learning-enhanced MFMC approach as
DL-MFMC.

Building upon [32], we construct the DL-MFMC approach in order to ac-
count for two additional sources of computational cost: on the one hand, the
training of the neural network architectures; on the other hand, the compu-
tational effort required to generate the input data, which, in microcirculation
studies can be non-negligible. By applying our method to the estimation of
statistics related to oxygen transfer and radiotherapy in microcirculation, we
demonstrate its effectiveness in performing robust and reliable UQ analysis in a
computationally efficient manner. In this sense, our work not only contributes
to the development of UQ multi-fidelity methods, but it also addresses a specific
challenge in the context of microcirculation and radiation therapy.

The paper is organized as follows. First, in Section 2 we set the notation and
present the DL-MFMC approach in full generality, discussing the construction
of our multi-fidelity estimator and the corresponding optimal management of
computational resources. Then, in Section 3 we dive into the details of our
motivating application, presenting the FOM, the ROM, and the quantities of
interest that we wish to estimate. Finally, we devote Section 4 to the numerical
experiments and draw the corresponding conclusions in Section 5.

2 A deep learning enhanced multi-fidelity Monte
Carlo estimator

In this section, we briefly review two different approaches to estimate the statis-
tics of specific quantities of interest and provide suitable confidence intervals.

2.1 Problem setup

We are given a parametrized partial differential equation (PDE) of the form{
Lµuµ = fµ in Ω,

Bµuµ = gµ on ∂Ω,
(1)

where Lµ denotes a (semilinear, second order) elliptic operator, whereas Bµ

is a boundary operator exemplifying Dirichlet, Neumann or Robin conditions
applied to uµ on ∂Ω, including problems with mixed-type conditions. Clearly,
the solution u = uµ to (1) depends on the parameter vector µ. Here, we assume
µ to be taking values in some parameter space P ⊂ Rd, endowed with suitable
probability distribution P modeling uncertainties.
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At the continuous level, we assume that the solution to (1) can be sought
within a given Hilbert space V . Our main goal is to quantify how uncertainties
in the model parameters can propagate through the PDE, ultimately affecting
certain outputs of interest. To this end, let us fix the notation and formally
introduce a (nonlinear) functional

Q : V → R,

representing the quantity of interest (QoI). Then, our objective is to come up
with an efficient strategy for computing the average response, that is, Eµ∼P [Q(uµ)].

As a first step, we assume that a suitable high-fidelity discretization of (1)
is available (the so-called FOM). For simplicity, we shall assume that the lat-
ter consists of a Galerkin projection of (1) onto a Finite Element (FE) space
Vh ⊂ V of dimensionNh = dim(Vh). As in the continuous case, the FOM defines
a map P 7→ Vh mapping parameters onto FOM solutions µ 7→ uFOM

µ . From
the discrete standpoint, the FOM is equivalent to a (large) system of algebraic
equations of the form

Aµu
FOM
µ = fµ (2)

where uFOM
µ ∈ RNh is the vector of degrees of freedom in the FE approximation.

With little abuse of notation, we shall write Q(uFOM
µ ) to intend Q(uFOM

µ ), that
is: we identify Q with its discrete counterpart, so as to directly operate with
vectors rather than functions.

From a theoretical point of view, the output of interest, namely Eµ∼P
[
Q(uFOM

µ )
]
,

can be estimated by classical Monte Carlo sampling. However, this approach
would require solving (2) multiple times, resulting in a massive consumption of
computational resources. For this reason, we resort to multi-fidelity strategies
relying upon ROMs. Mathematically speaking, the ROM is a computational
unit that acts as a suitable surrogate of the FOM, that is

ROM : µ 7→ uROM
µ with uROM

µ ≈ uFOM
µ .

Notice that, since the ROM approximates FOM solutions as a whole, it is not
bound to any specific QoI, resulting in a highly flexibile and potentially very
useful surrogate. Of note, this approach is further motivated by some recent
advancements in the ROM literature, which suggest that approximating the
parameter-to-solution map can be more effective compared to directly address-
ing the parameter-to-QoI map: we refer the interested reader to [22]. Here,
we assume that the ROM consists of several neural network architectures, all
trained within a supervised learning framework. In other words, to be oper-
ational, the ROM requires a preliminary training phase, which is conducted
on a selected collection of labeled FOM simulations, {(µi,u

FOM
i )}ni=1, where

uFOM
i := uFOM

µi
.

In general, the idea is to train a ROM and construct a multi-fidelity estimator
of the QoI, named ÊMFMC

m0,m1
and defined later on, by combining m0 high-fidelity
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simulations, which are accurate but expensive, with m1 low-fidelity simulations,
computed via the ROM, which are cheaper to evaluate but less accurate. Clearly,
the whole procedure must be carried out in a suitable way that ensures an actual
reduction in the overall computational cost. To better appreciate this, let w0

and w1 be the computational times associated with the FOM and ROM simula-
tions, respectively. Assume that the ROM is trained on n high-fidelity samples,
whereas the multi-fidelity estimator is constructed using m0 evaluations of the
FOM and m1 evaluations of the ROM. Then, the overall computational cost is

nw0 + t(n) +m0w0 +m1w1,

where t = t(n) is the training time associated with the ROM. In contrast, a
classical Monte Carlo estimator ÊFOM

N , constructed using N FOM simulations,
entails a computational cost of Nw0. Assuming the case of unbiased estimators,
the uncertainties in the two estimates can be computed as

Var(ÊMFMC
m0,m1

) and Var(ÊFOM
N ).

It is then clear that, given a computational budget p, a multi-fidelity approach
would only advantageous if for p = nw0 + t(n)+m0w0 +m1w1 = Nw0, one has
Var(ÊMFMC

m0,m1
) < Var(ÊFOM

N ). We note that the computational cost (generally
measured in terms of floating-point operations) and the CPU time (measured
in clock ticks or in seconds and highly dependent on the machine architecture)
are considered here to be mutually proportional and used interchangeably.

Our purpose is to obtain a reduction of computational cost by proposing
a suitable strategy for optimal management of the computational resources,
together with an explicit multi-fidelity estimator that leverages on the deep
learning nature of the ROM. Before doing so, however, it is worth recalling
some of the basic ideas underlying Monte Carlo and multi-fidelity Monte Carlo
methods, such as confidence intervals and mean-square-error metrics.

2.2 Monte Carlo uncertainty quantification

We start by recalling the standard Monte Carlo estimator for the mean of a QoI.
Given a computational budget p, the latter is computed using FOM simulations
as

ÊFOM
N =

1

N

N∑
i=1

Q(uFOM
µi

), (3)

where N is the number of high-fidelity evaluations, N = ⌊p/w0⌋, with w0 being
the cost of a single FOM evaluation. Here, we assume that the realizations of
the input parameters µ1, . . .µN are drawn independently and according to P.

By definition, the FOM estimator is unbiased, in the sense that

E
[
ÊFOM

N

]
= E

[
Q
(
uFOM
µ

)]
. (4)

Note that here the expected value on the right-hand-side is taken with respect
to µ ∼ P. Conversely, the one on the left is taken with respect to all possible
outcomes of the sampling procedure, that is, µ1, . . . ,µN ∼ P⊗ · · · ⊗ P.
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As a direct consequence of (4), the mean-squared-error (MSE) of the esti-
mator

MSE(ÊFOM
N ) := E

∣∣∣ÊFOM
N − E

[
Q(uFOM

µ )
]∣∣∣2 , (5)

is equal to the variance of the estimator. Due to independence, the latter is

Var(ÊFOM
N ) = Var

(
1

N

N∑
i=1

Q(uFOM
µi

)

)
=

1

N2

N∑
i=1

σ2
0 =

σ2
0

N
, (6)

where σ2
0 := Var Q(uFOM

µ ) is the variance of the QoI, taken with respect to
µ ∼ P. In practice, σ2

0 is usually estimated as

σ̂2
0 :=

1

N − 1

N∑
i=1

(
ÊFOM

N −Q(uFOM
µi

)
)2

. (7)

Using classical results from the theory of statistical estimators, these consider-
ations can be exploited to construct confidence intervals, which are naturally
ways to quantify uncertainties of pointwise estimates, such as (3). We report a
precise definition below.

Definition 2.1 (MC-FOM confidence interval). Let µ1, . . . ,µN be N ran-
dom independent realizations of µ ∼ P. Let Q be a given quantity of interest.
Fix a confidence level γ ∈ (0, 1). The MC-FOM confidence interval of level γ,
IγFOM ⊂ R, is

IγFOM := ÊFOM
N ± t 1−γ

2 ,N−1

√
σ̂2
0

N
, (8)

where ÊFOM
N and σ̂2

0 are as in Eq. (3) and (7), respectively. Here, tα,q denotes
the quantile of the level 1 − α of a t-student distribution with q degrees of
freedom.

The MC-FOM confidence interval provides a better estimate of the QoI,
as it enriches the estimate in (3) with a quantification of uncertainties. The
confidence level, γ, is related to how conservative we want our estimate to be:
the higher γ, the larger the interval (since we want to be more confident about
the fact that the interval captures the actual ground truth E[Q(uFOM

µ )]). More
precisely, the formula in (8) is constructed in such a way that

Prob
(
E[Q(uFOM

µ )] ∈ IγFOM

)
≈ γ,

where Prob = P ⊗ · · · ⊗ P is the joint probability distribution of the random
sample, encoding the stochasticity of the confidence interval.

For a fixed confidence level, (8) clearly shows that the uncertainty in the
estimate decreases as a function of the FOM samples N . However, the decay
is fairly slow, ∼ N−1/2. Consequently, a robust estimate may require a large
number of FOM simulations. If the computational budget p is limited and the
cost of a single simulation w0 is high, this approach may not be feasible.
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2.3 Multi-fidelity Monte Carlo estimator

The driving idea behind multi-fidelity Monte Carlo (MFMC) is reduce the un-
certainties in the final estimate by integrating Eq. (3) with some additional
information, correlated with the QoI, but cheaper to compute. Here, this is
achieved by relying on the ROM. For now, let us assume that the ROM is
already available and fully operational (no training required). Following our
notation in Section 2.1, let w0 be the computational time of a FOM simulation,
and let w1 be that of a ROM simulation. Let

µ1, . . . ,µm0
, µm0+1, . . . ,µm1

,

be m1 independent realization of the input parameter µ ∼ P, where m0 < m1.
The MFMC approach is based on the following (unbiased) estimator,

ÊMFMC
m0,m1

:= ÊFOM
m0

+ λ
(
ÊROM

m1
− ÊROM

m0

)
, (9)

where ÊFOM
m0

is as in Equation (3), whereas ÊROM
mk

:= m−1
k

∑mk

i=1 Q(uROM
µi

) is
the ROM counterpart of the FOM estimator. Here, λ > 0 is a suitable coupling
parameter that regulates the impact of the ROM correction over the FOM
estimate.

Note that, while we sampled a total ofm1 inputs, onlym0 of those were elab-
orated by the FOM (and the ROM). Instead, the remaining m1 −m0 were only
processed by the ROM. Thus, the overall computational cost of this procedure
is m0w0 +m1w1. From a UQ perspective, we also note that

MSE
(
ÊMFMC

m0,m1

)
=

σ2
0

m0
+

(
1

m0
− 1

m1

)
(λ2σ2

1 − 2λρσ1σ0) (10)

where

σ1 := Var
(
Q(uROM

µ )
)

and ρ =
Cov

(
Q(uFOM), Q(uROM

µ )
)

σ0σ1
.

In other words, the uncertainty associated to (9) depends on m0,m1, λ, σ0, σ1

and ρ. In general, given a computational budget p, the idea of the MFMC
approach is to choose m0,m1 and λ by minimizing the uncertainty in (10),
subject to the constraints 0 ≤ m0 ≤ m1 and m0w0 +m1w1 = p.

In practice, this results in an optimization problem, whose optimal solution,
m∗

0,m
∗
1, λ

∗, is known in closed form (at least under suitable mild assumptions:
cf. [32]). Notably, the optimal coupling parameter turns out to be λ∗ = ρσ0/σ1,
meaning that λ∗ ̸= 0 whenever ρ ̸= 0. Since the FOM and the ROM are typically
correlated, this suggests favoring MFMC over MC-FOM. Indeed, if the ROM
is sufficiently cheap to evaluate, it can be shown that, compared to a naive
MC-FOM estimator using all computational resources for FOM simulations, i.e.
with N = ⌊p/w0⌋, the optimal MFMC estimator entails a lower MSE (and thus,
a lower uncertainty). For the interested reader, we refer to [32, Corollary 3.5].
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Here, it is only worth mentioning that the MSE of the optimal MFMC estimator
reads

MSE(ÊMFMC
m∗

0 ,m
∗
1
) =

σ2
0

p

(√
w0(1− ρ2) +

√
w1ρ2

)2
(11)

This property will come in handy for our construction in Section 2.

While fascinating, this analysis has a major limitation. In fact, by taking the
ROM for granted, it completely ignores the offline cost regarding the construc-
tion and the training of the ROM. In fact, in order to be operational, ROMs
typically necessitate of a preliminary training phase, in which they learn to ap-
proximate FOM simulations. Thus, part of the computational budget must be
devoted to the generation of a suitable training set.

In the literature, this fact was first acknowledged by Farcas, et al. in [14].
There, the authors noted that, if the ROM is trained on n FOM simulations:

i) the remaining budget for a MFMC routine is p− nw0;

ii) the quality of the ROM, especially in terms of QoI correlations, may de-
pend on n.

Consequently, an optimal management of the computational resources requires
a careful understanding of how n enters into the equations. In [14], by leveraging
on correlation bounds, the authors characterize the optimal training size n = n∗
as the solution to a suitable optimization problem involving the MSE of the
MFMC estimator.

Here, instead of diving into details of the approach proposed by Farcas, et
al., we directly present our adaptation to Deep Learning based ROMs. Com-
pared to [14], our analysis exhibits two major differences. First of all, aside from
the generation of the training data, we also include the training time t = t(n)
within the offline costs, acknowledging the fact that some of the computational
resources must be devoted to the actual training of the neural network architec-
tures. Secondly, we account for the fact that, in complex applications, even the
sampling of the input parameters may be computationally demanding. Finally,
since Deep Learning based ROMs are extremely efficient, we set w1 ≡ 0: that
is, we assume ROM evaluations to have a negligible computational cost.

2.4 A deep learning enhanced multi-fidelity estimator

We are now ready to present our deep multi-fidelity estimator (DL-MFMC),
specifically tailored for non-intrusive Deep Learning based ROMs. Similarly to
the MFMC approach, our objective is to obtain a reduction of the uncertainties
while also providing an optimal management of the computational resources.
We articulate our presentation into three steps: i) definition of the DL-MFMC
estimator, ii) formulation of the optimization problem, and iii) implementation
of the optimal policy and construction of confidence intervals.

8



2.4.1 Notation

As for the previous Sections, we assume to have access to a FOM, capable of
producing high-quality simulations. In the case of complex multiscale systems,
such as the microcirculation, oxygen transfer and radiotherapy model, a FOM
simulation consists of two steps: the sampling of the parametric scenario and
the consequent evaluation of the FOM solver. In general, the first step may
entail a nonnegligible computational cost. For example, in the case of oxygen
transfer models, the sampling step may be concerned with the computational
synthesis of anatomically realistic vascular networks, encoded as a metric graph.
For this reason, we model the cost of a single FOM simulation as

g + w0,

where g and w0 are the generation and the evaluation costs, respectively. The
first term, g, is intrinsic to the complexity of the problem, while the second one,
w0, is specific of the FOM.

Similarly to Section 2.3, we also assume that a suitable ROM technique
has been chosen. For example, it may consist of a collection of multiple neural
network architectures interacting in a suitable way, such as in the POD-NN [21],
DL-ROM [16] and POD-MINN approaches [51]. As we already mentioned, to
be operational, the ROM must be trained on a collection of FOM samples (the
so-called offline phase). We model the corresponding offline cost as

n(g + w0) + t(n),

where n is the number of FOM simulations in the training set. The first term,
n(g + w0), is the sampling time, which corresponds to the generation of the
training data. The second term, instead, corresponds to the actual training of
the neural network architectures, here modeled through some non-decreasing
monotone map t : N0 → R+. Instead, after training, the computational cost of
a ROM simulation is g+w1 (input generation plus ROM evaluation). Here, we
set w1 ≡ 0 to emphasize the fact that online evaluations of Deep Learning-based
ROMs can be carried out at negligible cost.

2.4.2 Optimal training costs management

We now reformulate the optimization problem proposed by Farcas, et al. in
[14], by adapting it to our framework. Let p ∈ R+ be a computational budget.
We note that if we were to train a ROM on n FOM simulations, we would be
left with a computational budget pn = p− (g +w0)n− t(n). At the same time,
however, we would also have access to a trained ROM, available for multi-fidelity
estimation. Specifically, we could leverage the MFMC paradigm, outlined in
Section 2.3, to optimally utilize the remaining resources. In practice, for a fixed
n, this procedure would bring us to the following estimator

ÊDL-MFMC
n := ÊFOM

m∗
0(n)

+ λ∗(n)
(
ÊROM

m∗
1(n)

− ÊROM
m∗

0(n)

)
, (12)
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where m∗
0(n), m

∗
1(n), and λ∗(n) are the optimal policy associated the computa-

tional budget pn. More precisely,

λ∗(n) = ρ(n)
σ0

σ1(n)
,

where ρ = ρ(n) and σ1 = σ1(n) are the correlation between FOM and ROM
QoIs, and the variance of ROM QoIs, respectively. Here, we allow both to
depend on n, so as to account for the role played by the training procedure.
Similarly,

m∗
0(n), m

∗
1(n) =

= argminm0,m1

{
σ2
0

m0
−
(

1

m0
− 1

m1

)
ρ2(n)σ2

0 s.t.
0 ≤ m0 ≤ m1,
m0w0 +m1g = pn

}
,

which is nothing but (10) up to substituting λ with λ∗(n). Note that, differently
from Section 2.3, the multi-fidelity sampling cost is now m0w0 + m1g, rather
than m0w0 +m1w1. In fact, the multi-fidelity routine entails:

i) generating m1 parameter instances 7→ cost: m1g;

ii) evaluating the FOM on m0 of such instances 7→ cost: m0w0;

iii) evaluating the ROM on all parameter instances, 7→ cost: negligible.

By leveraging on the theory of MFMC estimators, one can then easily prove the
following.

Proposition 2.2. Let p > 0 be a given budget and let n ∈ N+ be an admissible
training size such that p− (g + w0)n− t(n) > 0. Assume that w0ρ

2(n) > g(1−
ρ2(n)). Then

MSE(ÊDL-MFMC
n ) =

σ2
0

p− (g + w0)n− t(n)

(√
w0(1− ρ(n)2) +

√
gρ(n)2

)2
.

(13)

Proof. As we noted previously, for a fixed training size n, and a corresponding
trained ROM, constructing the DL-MFMC estimator is equivalent to construct-
ing a MFMC estimator with budget pn = p− (g+w0)n− t(n) and cost function
m0,m1 7→ m0w0 +m1g. Then, (13) can be easily derived from (11) up to sub-
stituting p with pn and w1 with g. Here, the formula can be applied, since
condition w0ρ

2(n) > g(1 − ρ2(n)) precisely translates into the efficiency condi-
tion required in the MFMC paradigm: see, e.g., [32, Theorem 3.4].

Since Eq. (13) only depends on n, this suggests the possibility of finding
an optimal sample size, n = n∗, by minimizing (13) with respect to n. Indeed,
this is what we are going to do. To this end, we start by characterizing the
dependency of t = t(n) and ρ = ρ(n) on n. We do this by relying on the
following assumptions.
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Assumption 2.3. ∃ζ, c1, c2 > 0 such that 1−ρ2(n) ≤ c1n
−ζ + c2 for all n ∈ N,

n ≥ 1.

Assumption 2.4. ∃c3, c4 > 0 such that t(n) ≤ c3n+ c4 for all n ∈ N, n ≥ 1.

Assumption 2.5. ∀n ∈ N+, one has w0ρ
2(n) > (1− ρ2(n))g.

The first assumption states that the quality of ROM QoIs increases for larger
datasets. The bounding expression is similar to the one proposed in [14], but
also comes with an additional term, namely c2 > 0, which accounts for poten-
tial limitations inherent in the ROM. In fact, even if provided with an infinite
amount of data, certain ROMs might still be incapable of replicating FOM
simulations in their entirety.

The second assumption, instead, states that the training time is linear in
the sample size n. In practice, deep learning-based ROMs always satisfy this
assumption. In fact, the training of a neural network model ϕ : X → Y typically
involves the minimization of a loss function of the form

L (ϕ) =

n∑
i=1

ℓ(ϕ(xi), yi), (14)

where {(xi, yi)}ni=1 ⊂ X × Y denote an abstract training set, whereas ℓ : Y ×
Y → [0,+∞) is a suitable discrepancy measure. Clearly, up to fixing a total
number of training epochs, minimizing (14) requires at most O(n) operations:
in fact, each term in the sum can be tackled separately, even when computing
gradients. Here, the constant c4 models a fixed cost, in relation, for example,
to the initialization of the ROM.

Finally, the third assumption states that most of the cost lies in the evalu-
ation of the FOM solver, rather than in the generation of the input data. In
fact, whenever w0 > g, which is the typically scenario, Assumption 2.5 reduces
to ρ2(n) ≥ 1/2.

Under these assumptions, the MSE in Eq. (13) can be bounded as follows.

Lemma 2.6. Let Assumptions 2.3 - 2.5 hold. For all n ∈ N, n ≥ 1, the MSE
of ÊDL-MFMC

n can be bounded as

MSE(ÊDL-MFMC
n ) ≤ 2σ2

0

p− (g + w0)n− c3n− c4

(
c1w0n

−ζ + c2w0 + g
)
. (15)

Proof. By Assumptions 2.3-2.5, we have

MSE(ÊDL-MFMC
n ) =

σ2
0

p− (g + w0)n− t(n)

(√
w0(1− ρ2(n)) +

√
gρ2(n)

)2
≤ σ2

0

p− (g + w0)n− c3n− c4

(√
c1w0n−ζ + c2w0 +

√
g
)2

11



≤ 2σ2
0

p− (g + w0)n− c3n− c4

(
c1w0n

−ζ + c2w0 + g
)
,

where we exploited the fact that ρ(n)2 ≤ 1, and (a + b)2 ≤ 2(a2 + b2) for all
a, b ∈ R.

Now, the idea is choose the training size n by minimizing the upper bound
in Lemma 2.6 rather than the MSE of the estimator itself. As we shall prove in
a moment, this results in a minimization problem admitting a unique minimizer
n∗, consistent with the budget constraint. We formalize these considerations in
Proposition 2.8, right after the auxiliary Lemma 2.7. As a side note, we point out
that such semplification, although commonly adopted within the literature [14,
32, 33], may lead to suboptimal results, especially if the bounds in Assumptions
2.3 and 2.4 are not tight enough.

Lemma 2.7. Let A > 0 and ζ > 0. The functions

φ1(x) :=
1

A− x
, φ2(x) :=

x−ζ

A− x

are convex in (0, A) ⊂ R. Specifically, φ′′
1(x) > 0 and φ′′

2(x) ≥ 0 for all x ∈
(0, A).

Proof. It is straightforward to see that

φ′′
1(x) = 2(A− x)−3

for all x ∈ (0, A). Thus, φ′′
1 > 0 in (0, A). As for φ2, a direct computation shows

that

φ′′
2(x) =

(ζ + 1)ζ(A− x)2x−ζ−2 − 2x−ζ−1ζ(A− x) + 2x−ζ

(A− x)3
.

The numerator in the above can be rewritten and bounded as

x−ζ−2
[
(ζ + 1)ζ(A− x)2 − 2xζ(A− x) + 2x2

]
≥ x−ζ−2

[
ζ2(A− x)2 − 2xζ(A− x) + 2x2

]
= x−ζ−2 [ζ(A− x)− x]

2
.

The conclusion follows.

Proposition 2.8 (Existence and uniqueness of the global minimum). Let p > 0
be a given budget. Fix any w0, g, c1, c2, c3, c4, ζ > 0 and let nmax := (p−c4)/(g+
w0 + c3). Then, the following function is strictly convex in (0, nmax):

F : n 7→ 2σ2
0

p− (g + w0)n− c3n− c4

(
c1w0n

−ζ + c2w0 + g
)
,

Furthermore, it admits a unique global minimum n∗ within (0, nmax).

12



Proof. We note that

F (n) =
2σ2

0c1w0

g + w0 + c3
· n−ζ

nmax − n
+

2σ2
0(c2w0 + g)

g + w0 + c3
· 1

nmax − n
.

Thus, by Lemma 2.7, F is the positive sum of two convex functions, one of
which is strictly convex. Consequently, F ′′ > 0 in (0, nmax). Since F goes to
infinity at the boundaries, F (n) → +∞ for n → 0 and n → nmax, it follows that
F admits a unique global minimum within (0, nmax).

Using Proposition 2.8, we finally propose the following optimal management
policy:

1. Fix a computational budget p > 0;

2. Generate a preliminary collection of FOM samples n0, by consuming a
small portion of the budget, n0(w0 + g) ≪ p;

3. Initialize and train the ROM for different sample sizes n1 < · · · < nk ≤ n0,
as to obtain auxiliary records about training times, t(n1), . . . , t(nk), and
QoI correlations, ρ(n1), . . . , ρ(nk);

4. Estimate the coefficients c1, c2, c3, c4, ζ by leveraging on {nj , t(nj), ρ(nj)}kj=1;

5. Find the optimal sample size n∗ by solving the minimization problem in
Proposition 2.8. Without loss of generality, we assume n∗ > n0;

6. Augment the training set by generating ∆n = n∗ − n0 new FOM simula-
tions. The remaining budget is now p− (g + w0)n∗;

7. Train a final ROM surrogate by using all n∗ FOM simulations, and com-
pute the corresponding QoI correlation coefficient ρ = ρ(n∗). The remain-
ing budget is now p− (g + w0)n∗ − t(n∗);

8. Compute m∗
0 = m∗

0(n∗), m
∗
1 = m∗

1(n∗) and λ∗ = λ∗(n∗) according to the
MFMC paradigm, that is,

m∗
0 =

p− (g + w0)n∗ − t(n∗)

w0 + w1r
,

m∗
1 = rm∗

0,

λ∗ =
ρ(n∗)σ0

σ1
,

(16)

where r2 := (w0ρ
2(n∗))/(g(1− ρ2(n∗));
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9. Construct the DL-MFMC estimator

ÊDL-MFMC := ÊDL-MFMC
n∗

, (17)

by sampling the required FOM-ROM simulations, thus exhausting the
computational budget.

Remark 2.9. We stress that, in practice, the values of m∗
0, m

∗
1 and λ∗ are

approximated by leveraging on empirical estimates of ρ(n∗), σ0 and σ1(n∗):
however, in order to keep the notation lighter, we choose not to make this dis-
tinction explicit. Operationally, the idea goes as follows. First, we exploit the
training data to calculate a preliminary estimate of ρ(n∗), which we use to cal-
culate the optimal sample sizes m∗

0, m
∗
1. Then, following the MFMC paradigm,

we compute m∗
0 new independent FOM simulations. On these simulations we

derive the final estimates of ρ(n∗), σ0, σ1(n∗), and consequently, λ∗.

Remark 2.10. Step 3 in the optimal policy pipeline concerns estimating the
correlation coefficients ρ(n1), . . . , ρ(nk). One way to achieve this is to directly
utilize the training data. For any j ∈ 1, . . . , k, let ROMj denote the ROM in its
jth training iteration. Let µ1, . . . ,µnj

be the input parameters observed during
training. Then

nj∑
i=1

[
Q(uFOM

µi
)Q(u

ROMj
µi

)−
(

1
nj

nj∑
b=1

Q(uFOM
µb

)

)(
1
nj

nj∑
b=1

Q(u
ROMj
µb

)

)]
√

nj∑
i=1

[
Q(uFOM

µi
)−

(
1
nj

nj∑
b=1

Q(u
ROMj
µb

)

)]2 nj∑
i=1

[
Q(u

ROMj
µi

)−
(

1
nj

nj∑
b=1

Q(u
ROMj
µb

)

)]2
(18)

can be a crude approximation of ρ(nj). However, (18) would likely result in

biased estimate: indeed, Q(u
ROMj
µ1

), . . . , Q(u
ROMj
µnj

) are, in general, statistically

correlated (notice, in fact, that ROMj itself depends on the whole training set).
To account for this, a better approach is to rely on a different set of data,
independent of the training set. Operationally, this can be achieved by picking
nk such that nk < n0. In this way, the remaining n0 − nk observations can be
used as a common ”test set”, shared within the j trainings. In other words, in
iteration j, the ROM is trained on µ1, . . . ,µnj

, but formula (18) is evaluated
on µn0−nk

, . . . ,µn0
.

Concerning these preliminary training stages, we also mention that all train-
ings should be carried out independently by optimizing the ROM from scratch,
as to favor unbiased estimates of the regression coefficients. Furthermore, the
computational cost δ > 0 of this procedure should be nearly negligible com-
pared to the overall computational budget p (for instance, for our application
in Section 4 we had δ ≈ 10 minutes and p ≥ 9 hours). If that is not the case,
then the budget p should be replaced with p̃ = p − δ in all the formulas from
Step 4 on.
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2.4.3 DL-MFMC estimator and uncertainty quantification

Given a computational budget p > 0, the DL-MFMC estimator ÊDL-MFMC

can be constructed following the optimal management policy in Section 2.4.2.
By combining FOM and ROM simulations, the latter provides an efficient and
robust estimate of Eµ∼P[Q(uFOM

µ )], characterized by a significant reduction of
the uncertainties. In practice, this fact becomes apparent when considering
confidence intervals, rather than crude pointwise estimates.

Definition 2.11 (DL-MFMC confidence interval). Let Q be a given quan-
tity of interest. For a given computational budget p > 0, let ÊDL-MFMC be
the DL-MFMC estimator, computed as in Section 2. Fix a confidence level
γ ∈ (0, 1). The DL-MFMC confidence interval of level γ is

IγDL-MFMC := ÊDL-MFMC ± z 1−γ
2

√
σ̂2
0

m∗
0(n∗)

−
(

1

m∗
0(n∗)

− 1

m∗
1(n∗)

)
ρ̂2(n∗)σ̂2

0 ,

(19)
where zγ denotes the quantile of level 1−γ of the standard Gaussian distribution
N (0, 1).

Similarly to the MC-FOM case, the DL-MFMC confidence interval is con-
structed such that

Prob
(
E[Q(uFOM

µ )] ∈ IγDL-MFMC

)
≈ γ.

Notice, however, that Definition 2.11 uses normal quantiles rather than t-student
ones. In fact, while the latter appear naturally when considering uncorrelated
Monte Carlo samples, they do not extend to multi-fidelity estimators (which,
in contrast, leverage on correlated observations). For this reason, we rely on
more general quantiles, derived from the Gaussian distribution. The heuristics
behind this choice lies in the Central Limit Theorem, according to which the
independent sum of identically distributed random variables is asymptotically
normally distributed. Since

ÊDL-MFMC = ÊFOM
m∗

0(n∗)
+ λ∗(n∗)Ê

ROM
m∗

1(n∗)
− λ∗(n∗)Ê

ROM
m∗

0(n∗)
,

the DL-MFMC estimator can be seen as the sum of three random variables,

X = ÊFOM
m∗

0(n∗)
, Y = λ∗(n∗)Ê

ROM
m∗

1(n∗)
, Z = −λ∗(n∗)Ê

ROM
m∗

0(n∗)
,

each of which is asymptotically normal. Then, since the sum of normal random
variables is also normal, we can approximate the distribution of ÊDL-MFMC as

N
(
E[X + Y + Z], Var(X + Y + Z)

)
= N

(
E[Q(uFOM

µ )], MSE(ÊDL-MFMC)
)
,

thus motivating the formula in Definition 2.11.
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3 A model for oxygen transport in microcircu-
lation and radiotherapy

In this Section and in the following, we present an application of our approach to
a comprehensive mathematical model of microcirculation, with a specific focus
on the intricate interplay between oxygen transport and its implications for
radiotherapy. Initially, we introduce the biophysical model of reference along
with its associated quantities of interest; then, we provide a succinct overview
of the FOM and its corresponding surrogate model. We point out that these
three stages modeling of the physical phenomenon, high-fidelity discretization,
and model order reduction were previously undertaken by the authors and their
collaborators in earlier works: the interested reader can refer to [37], [39], and
[51], respectively.

Having established the groundwork, we then move to the actual application
of the DL-MFMC approach, offering a comprehensive discussion in Section 4.

3.1 Oxygen transport in microcirculation: mechanistic
model and quantities of interest

To model oxygen transport, we rely on the model presented by Possenti et
al. in [37, 39], which encompasses blood flow, hematocrit transport coupled
with interstitial flow, and oxygen transport in both blood and tissue through
vascular-tissue exchange.

The general model describes flow in two distinct domains: the tissue domain
(Ω ⊂ R3 with dim(Ω) = 3), where the unknowns encompass fluid pressure pt,
fluid velocity ut and oxygen concentration Ct; and the vascular domain (Λ ⊂ R3

with dim(Λ) = 1), representing a metric graph that describes a network of
connected one-dimensional channels. In this domain, unknowns involve blood
pressure pv, blood velocity uv, and vascular oxygen concentration Cv. The
model for oxygen transport uses velocity fields uv and ut to describe blood flow
in the vascular network and plasma flow in tissue. The governing equations for
the oxygen transfer model are as follows:
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∇ · (−Dt∇Ct + ut Ct) + Vmax
Ct

Ct + αt pm50

= ϕO2
δΛ on Ω

πR2 ∂

∂s

(
−Dv

∂Cv

∂s
+ vv Cv + vv k1 H

Cγ
v

Cγ
v + k2

)
= −ϕO2 on Λ

ϕO2 = 2πR PO2(Cv − Ct) + (1− σO2)

(
Cv + Ct

2

)
ϕv on Λ

ϕv = 2πRLp

(
(pv − pt)− σ(πv − πt)

)
Cv = Cin on ∂Λin

−Dv
∂Cv

∂s
= 0 on ∂Λout

−Dt∇Ct · n = τO2 (Ct − C0,t) on ∂Ω.

(20)
Specifically, the first equation governs the oxygen distribution within the

tissue, the second outlines how oxygen is transported through the bloodstream,
and the third defines the transfer of oxygen between the two domains, Ω and
Λ. In particular, the flux ϕO2

is derived under the assumption that the vascular
wall acts as a semi-permeable membrane. Complementing this model is a set of
boundary conditions detailed in the final three equations: at the vascular inlets
∂Λin, we prescribe the oxygen concentration; at the vascular endpoints ∂Λout,
null diffusive flux is enforced; and for the boundary of the tissue domain ∂Ω, we
simulate the presence of an adjacent tissue domain with boundary conductivity
τO2

and a concentration in the far field C0,t.
The symbols Dt, Dv, Vmax, αt, pm50 , k1, k2, C

γ
v , PO2 , σO2 , Lp, σ, πv, πt repre-

sent constants independent of the model solution. For a complete explanation
of the physical significance of these variables, refer, for example, to [39].

Our main interest is to perform a reliable analysis of certain quantities of in-
terest, relevant for radiotherapy applications, when the topology of the vascular
network Λ, and the values of the physical parameters Vmax, Cin, PO2 are uncer-
tain. The choice of these parameters is motivated by the sensitivity analysis
study recently performed in [50]. As we shall see in a moment, these quantities
of interest can be expressed as certain functionals of the tissue oxygenation map
Ct, herein measured in mLO2

/mLB . We refer to Figure 1 for a visual example.
In this sense,

uµ = Ct and µ = [Λ, Vmax, Cin, PO2 ],

according to our notation in Section 2. Here, we shall focus on three quantities of
interest: average partial pressure, partial pressure variability, and tumor control
probability. We detail them below.
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Figure 1: The tissue oxygenation map, measured in mLO2/mLB , is visually de-
picted on the left panel through the FOM solution (light blue corresponds to low
oxygen). On the right panel, we showc the 1D embedded vascular microstruc-
ture, which visibly impacts the oxygen map. Furthermore, oxygen concentration
in the blood, indicated as Cv, is also reported.

Average oxygen partial pressure pO2

To start, we consider the spatial average of the oxygen partial pressure, pO2,
computed as

pO2 =
1

∥Ω∥

∫
Ω

Ct(x)

αt
, (21)

where αt is the oxygen solubility in the tissue. We note that pO2 = Q(Ct),
where Q : L2(Ω) → R is linear and continuous with respect to the L2-norm.

Oxygen partial pressure range ∆pO2

Since the average partial pressure provides a global perspective on tissue perfu-
sion, it is also interesting to consider different QoIs which are more sensitive to
local fluctuations. To this end, we introduce a further QoI, ∆pO2, measuring
the difference between the maximum and the minimum partial pressure. We
call the latter oxygen partial pressure range. Operationally, this is computed as

∆pO2 =
maxx∈Ω Ct(x)−minx∈Ω Ct(x)

αt
. (22)

From a clinical point of view, ∆pO2 quantifies the abundance of local hypoxic
effects in the tissue. We note that, unlike the average partial pressure, this
QoI is non-smooth and not even defined on L2(Ω) as a whole. However, it
can be regarded as continuous functional with respect to the L∞-norm, that is:
∆pO2 = Q(Ct) with Q : L∞(Ω) ⊂ L2(Ω) → R.
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Tumor Control Probability (TCP)

As a final example, we consider a radiotherapy-related QoI regarding the proba-
bility of tumor eradication (Tumor Control Probability, TCP for short). To this
end, we model radiotherapy treatment using the linear-quadratic (LQ) model,
which is the most widely used radiological model. The latter is based on two
different parameters that describe the radiosensitivity of cells or tissue. The first
parameter α describes the lethal damage resulting from a single hit, while β is
related to multiple hits, namely the interaction of multiple radiation tracks [27].
Combining these two parameters and the dose administered (D), we model the
surviving fraction Sf as a spatially dependent map, adopting the model pro-
posed by Tinganelli et al. in [48] that accounts for the effect of oxygen on
radiotherapy:

Sf (D, pO2,x) = exp

(
−α

D

OER(x, pO2, LET )
− β

(
D

OER(x, pO2, LET )

)2
)
,

(23)
where pO2 = Ct/αt is the oxygen partial pressure, whereas the Oxygen En-
hancement Ratio (OER) is a suitable transformation operating a change of
scale:

OER(0, LET ) =
LET δ +M a

a+ LET δ
,

OER(x, pO2, LET ) =
b OER(0, LET ) + pO2(x)

b+ pO2(x)
,

DOER(x, pO2, LET ) =
D

OER(x, pO2, LET )
.

Here, M , a, δ, b > 0 are the model parameters fitted to the experimental data,
LET is the linear energy transfer of ionizing radiation, and DOER(x, pO2, LET )
is the dose corrected for the oxygen effect, to be included in the LQ model. The
admissible values of Sf range from 0 to 1, representing the fraction of cells that
survived treatment with the specified dose D, assumed as a constant.

Based on that, we define the Tumor Control Probability (TCP), which de-
scribes the probability of successful treatment. It is based on the number of cells
that survive treatment Sf and the distribution of the initial number of clono-
genic cells N = N(x). For a fixed radiation dose D, and under the assumption
of unicellular independence, following the approach proposed by Strigari et al.
[46], the TCP can be expressed as

TCP = exp

(
−
∫
Ω

N(x)Sf (D,Ct/αt,x)dx

)
. (24)

Although the definition of the TCP is far more involved compared to the one of
the average partial pressure, the TCP can be realized as a Lipschitz continuous
nonlinear functional of the oxygen concentration Ct with respect to the L2-norm.
More precisely, TCP = Q(Ct) for some smooth operator

Q : L2
+(Ω) → R,
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where L2
+(Ω) := {u ∈ L2(Ω) s.t. u ≥ 0}. The interested reader can find a formal

derivation of this fact in Remark 3.1.

Remark 3.1. We first notice that, for every L-Lipschitz continuous real-valued
map f : [0,+∞) → [0,+∞), the composition operator Tf : g 7→ f ◦ g is L-
Lipschitz from L2

+(Ω) onto itself. In fact,

∥f ◦ g1 − f ◦ g2∥L2(Ω) =

√∫
Ω

|f(g1(x))− f(g2(x))|2dx ≤

≤

√∫
Ω

L2|g1(x)− g2(x)|2dx = L∥g1 − g2∥L2(Ω),

for all g1, g2 ∈ L2
+(Ω). From here, up to fixing M,a, δ, b,D > 0 and N = N(x) ∈

L∞(Ω), the Lipschitz continuity of the TCP is easily proven, as it can be derived
by composition. In fact, we notice that the TCP is computed as

Q(Ct) = f3 ◦ N ◦ Tf2 ◦ Tf1(Ct/αt), (25)

where

f1 : z 7→ D(b+ z)/(bOER(0, LET ) + z), f2 : z 7→ exp
(
−αz − βz2

)
,

N : g 7→
∫
Ω

Ng, f3 : z 7→ exp(−z).

Due boundness of their derivatives over [0,+∞), the maps f1, f2, f3 are clearly
Lipschitz continuous: in turn, this implies the smoothness of Tf1 and Tf2 , as
argued previously. Finally, since the operators N and Ct 7→ Ct/αt are both
linear and continuous, Eq. (25) immediately implies the Lipschitz continuity of
Q.

3.2 Description of the FOM: a high-fidelity model lever-
aging on the finite element method

As a high-fidelity model, we consider a FOM based off a Finite Element dis-
cretization of problem (20). Following the approach outlined in [37], we achieve
this by discretizing both the interstitial domain Ω, representing a 3D slab with
dimensions of 1,mm in edge length and 0.15,mm in thickness, and the embed-
ded 1D vascular network Λ.

For the interstitial domain, we utilize a structured mesh composed of tetra-
hedral elements arranged in a 20× 20× 3 grid, resulting in Nh = 1764 degrees
of freedom. Over this mesh, we define a corresponding space of piecewise linear
continuous Lagrangian finite elements, denoted as Vt,h = X1

h(Ω). To discretize
the vascular network, instead, we subdivide each vascular branch Λi into multi-
ple linear segments. Subsequently, we associate each branch with a correspond-
ing finite element space V i

v,h = X1
h(Λi), comprising piecewise linear continuous
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Lagrangian elements. With this setup, we instruct the FOM solver to produce
a numerical solution to (20) as

(Ct, Cv) ∈ Vt,h × Vv,h,

where Vv,h =
(⋃Nb

i=1 V
i
v,h

)⋂
C0(Λ).

Notice, however, that in order to assemble (and solve) the oxygen transfer
model, one first needs to solve the underlying fluid flow problem, which takes
place in the vascular microenvironment [37, 39]. Figure 2 illustrates the sequen-
tial calculation of velocity, pressure, and discharge hematocrit in both tissue
and vascular networks using the finite element method. We refer to [39] for
more details on the derivation and validation of the model.

Figure 2: General layout of the full order model for the whole vascular microen-
vironment.

As we already mentioned, our main interest is to characterize the behavior
of certain quantities of interest, related to Ct, under suitable uncertainties in
the model parameters. In particular, following an earlier sensitivity analysis
performed by Vitullo et al. [50], we focus our attention on the role played by
Vmax, Cv,in, PO2

and Λ.
In order to explore different scenarios, we sample the model parameters as

follows. For the physical parameters —specifically Vmax, Cv,in, and PO2
— we

randomly select values within the physiological range of variation in a uniform
manner (see Table 1). For the vascular network, instead, we utilize a random
generator implementing a biomimetic algorithm that emulates the natural pro-
cess of new blood vessel formation. The output of this algorithm is driven by the
value of two geometrical parameters: the vascular surface area per unit volume
of tissue, denoted as S/V , and the percentage of seeds for angiogenesis. Essen-
tially, the former represents the overall density of the vascular network, affecting
the number and spacing of blood vessels within the tissue, while the latter gov-
erns the distribution of initial point seeds, serving as starting points for the
algorithm to initiate new blood vessel growth. Together, these two parameters
allow the generation of complex vascular networks, with different configurations
of the blood vessels and extravascular regions of varying dimensions: see, e.g.,
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Figure 3. Similarly to the physical parameters, the values of the geometrical
parameters are sampled randomly within the corresponding range of variation.

(a) Low vascularization, homogeneous
distribution

(b) Low vascularization, high extravascu-
lar distance

(c) High vascularization, homogeneous
distribution

(d) High vascularization, high extravas-
cular distance

Figure 3: Examples of architectures with maximum extravascular distance in-
creasing from left to right and higher vascular density from top to bottom.
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Symbol Parameter Unit Range of variation

PO2
O2 wall permeability m/s 0.35 · 10−4 − 3.00 · 10−4

Vmax O2 consumption rate
mLO2

cm3·s 0.40 · 10−4 − 2.40 · 10−4

Cv,in O2 concentration at the inlets
mLO2

mLB
2.25 · 10−3 − 3.75 · 10−3

%
SEEDS(−)

SEEDS(+)
Seeds for angiogenesis % 0− 75

S/V Vascular surface per unit volume m−1 5 · 103 − 7 · 103

Table 1: In the first three rows, the biophysical parameters of the ROM are
presented along with their respective ranges of variation. The last two rows
outline the hyper-parameters utilized to initialize the algorithm responsible for
generating the vascular network.

3.3 Description of the ROM: a nonintrusive surrogate model
based on the POD-MINN+ approach

To construct the ROM, we exploit the POD-MINN+ approach, a nonintrusive
model order reduction technique recently presented in [51], which the authors
specifically designed to address for parametrized problems with embedded mi-
crostructure. The goal of this strategy is to derive a parameter-to-solution map
using physical and geometric inputs and to generate a reconstruction of the
high-fidelity oxygen concentration map in the tissue from which we calcuate the
QoIs.

Simply put, the POD-MINN+ technique consists of a projection-based re-
gression model, incorporating neural networks and Proper Orthogonal Decom-
position (POD), as in [21], combined with a closure model that captures high
frequency components by introducing suitable local corrections. For this pur-
pose, the POD-MINN+ approach leverages on a specific class of neural network
architectures, termed Mesh-Informed Neural Networks (MINNs) [16]. A sketch
of the methodology is shown in Figure 4. In formulas, the whole idea can be
synthesized as

uROM
µ := VMrb(µ) +Mc(Λ), (26)

where V ∈ RNh×k is the POD basis, while Mrb and Mc are suitable neural
network architectures. The first one maps the model parameters, µ, onto the
corresponding POD coefficients, while the second one introduces a local correc-
tion that only depends on the vascular network Λ.

In general, bothMrb andMc need to process information about the vascular
graph. To this end, we parametrize Λ in terms of the extravascular distance
d ∈ RNh and the inlet characteristic function η ∈ RNh : the former maps each
point in the tissue domain to its distance from the nearest point in the vascular
network; the latter, instead, assigns a unit value to the nodes located near the
inlets within the computational mesh of the tissue domain.
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We avoid considering a large number of POD modes for the low-fidelity ap-
proximation of the solution manifold in the framework of complex microstruc-
tures, where the Kolmogorov n-width can be slow decaying. In this case, we
exploit the information contained in the degrees of freedom corresponding to
the extravascular distance d and the inlet characteristic function η.

Coherently with our presentation in Section 2, the POD-MINN+ approach
is a model order reduction technique that leverages on a supervised learning
strategy. In particular, it necessitates of some training data. The idea goes
as follows. First, we exploit the FOM solver to construct a suitable training
set {(µi,u

FOM
i )}ni=1. As a second step, we collect all high-fidelity simulations

in a matrix of snapshots and perform a Singular Value Decomposition in or-
der to capture the most relevant modes: this results in the construction of the
POD basis V ∈ RNh×k, with k ≪ Nh. In general, although problems featuring
complex microstructures have a slow-decay in the Kolmogorov n-width [51], we
avoid considering a large number of POD modes, as the higher frequencies will
be incorporated in the closure term.

Once the POD matrix has been constructed, we use it to project the solution
manifold onto a linear trial subspace of dimension k ≪ Nh: thanks to this ma-
neuver, we can move our attention from FOM solutions to POD coefficients. At
this point, we assemble a neural network unit responsible for the approximation
of the parameter-to-POD-coefficients map. Following [51], we construct the lat-
ter using two MINNs, Mrb,η andMrb,d, and a deep feed forward neural network,
Nrb,ph. The first two account account for embedded 1D structure, while the last
one models the effects of the physical parameters µph = [Vmax, Cv,in, PO2 ]. The
three components act as

Mrb(µ) =
(
Mrb,η(η)⊙Mrb,d(d)

)
Nrb,ph(µph), (27)

where we recall that µ = [Λ, Vmax, Cv,in, PO2
] = [d,η,µph]. Here ⊙ is the

Hadamard product, modeling a suitable interaction between the inlets function
η and the extravascular distance d. Operationally, we design the three neural
network architectures, in terms of width, depth, and nonlinearities, following
[51]. In particular, we rely on mesh-informed layers and hyperbolic tangent
activations: for further details, we refer to [51].

We train the parameter-to-POD-coefficient network, Mrb, by minimizing
the loss function

E(Mrb) =
1

Ntrain

Ntrain∑
i=1

∥VTuFOM
i −Mrb(µi)∥.

To this end, we rely on the L-BFGS optimizer (default learning rate, no batch-
ing), combined with an ensamble learning strategy, i.e. by initializing and opti-
mizing the network multiple times.

The final step of the POD-MINN+ technique concerns the training of the
closure model. Similarly to the case of POD coefficients, we process the in-
formation concerning the vascular graph using two distinct MINNs, Mc,d and
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Figure 4: A sketch of the POD-MINN+ method. The macroscale parameters
and the microscale ones are fed to two separate architectures, whose outputs are
later combined to approximate the POD coefficients. The coefficients are then
expanded over the POD basis, V, and the ROM solution is further corrected
with a closure term computed by a third network that accounts for the local
features related to the high frequencies.

Mc,η, so that we can effectively isolate the individual impact of d and η. Math-
ematically speaking, we let

Mc(d,η) = Mc,η(η)⊙Mc,d(d). (28)

Both architectures consist of a suitable combination of mesh-informed and dense
layers: we refer to [51] for further details about the design of Mc,d and Mc,η.

In order to train the closure model, the following loss function is minimized:

E(Mc) =
1

Ntrain

Ntrain∑
i=1

[
ξ∥uFOM

i − VMrb(µi)−Mc(d,η)∥2,Nh

+ (1− ξ)∥uFOM
i − VMrb(µi)−Mc(d,η)∥∞,Nh

]

Here, only the weights and biases associated with Mc undergo the optimiza-
tion process, while those of Mrb are frozen. Notice also the hyperparameter ξ,
which controls the trade-off between 2-norm and ∞-norm regularization. As
before, we rely on the L-BFGS optimizer, combined with an ensamble learning
strategy, for the minimization of the loss function.
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4 Application of the DL-MFMC method to oxy-
gen transport and radiotherapy

4.1 Computational setup for numerical simulations

We implemented the FOM solver using a C++ based in-house code [37], de-
veloped using the GetFem++ library [43]. On our workstation, consisting of
an AMD EPYC 7301 16-Core Processor with 2 sockets and 16 cores, each
FOM simulation required roughly w0 = 25 minutes, while the generation of
a single vascular network took approximately g = 1 second. For the imple-
mentation of the ROM, instead, we rely on a custom Python library combining
Pytorch and FEniCS. In this case, we conducted all trainings and evaluations on
a Tesla V100-PCIE-32GB GPU accelerator. Each online evaluation of the Deep
Learning-based ROM requires approximately w1 = 0.01s with the available com-
putational resources. This shows consistency with respect to the assumption to
set w1 ≡ 0 in the optimal policy presented in the previous section.

The POD-MINN+ approach has been implemented projecting the discrete
solution manifold over a trial linear subspace consisting of k = 10 POD basis
functions, as, given the diffusive nature of the problem, those were sufficient to
capture the main global features of the PDE solutions. As discussed in Section
3.3, the training phase consisted of two distinct steps: (i) the approximation of
the POD reduced coefficients, and (ii) the correction with the closure model.
During first phase, the neural networks were trained for at most 50 epochs,
before undergoing a lifting with respect to the original finite element space of
dimension Nh = 1764. Then, in the second and final step, we trained the clo-
sure model for a total of 10 epochs. The rationale behind this decision revolves
around balancing the computational resources needed to construct the estima-
tor with the intricate complexity of the neural network architecture defining the
closure model. In fact, the considerable number of degrees of freedom in the
closure map Mc, stemming from the high-dimensionality of the input and out-
put data, can pose significant challenges. Hence, it becomes essential to impose
appropriate constraints on the training time to prevent over-fitting phenomena,
and, consequently, a substantial degradation of the ROM as a whole. For what
concerns the loss function, we set the regularization parameter to ξ = 0.75, as
that provides an acceptable fit. Refer to [51] for more details on the empirical
tests supporting this choice.

We conclude with a final remark on the definition of the radiotherapy-related
QoI that we considered for this study, that is, the Tumor Control Probability
(TPC). As discussed in Section 3.1, we computed the TCP by leveraging on
the tissue oxygen concentration map Ct and the linear-quadratic model. Here,
we initialized the latter using the values in Table 3, where the ratio α/β has
been prescribed for a tumor tissue scenario. Finally, we set the radiation dose
to D = 20Gy.
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Table 2: Prescribed values of input parameters in the comprehensive compu-
tational model for the high-fidelity approximation of the solution through the
finite element method.

Symbol Parameter Unit Value Ref. #

L characteristic length m 1 · 10−3 –

R average radius m 4 · 10−6 [37]

K tissue hydraulic conductivity m2 1 · 10−18 [24, 37]

µt interstitial fluid viscosity cP 1.2 [47]

µv blood viscosity cP 3.0 [41]

Lp wall hydraulic conductivity m2 s kg−1 1 · 10−12 [37]

δπ oncotic pressure gradient mmHg 25 [37]

σ reflection coefficient − 0.95 [25]

Dv vascular diffusion coefficient m2/s 2.18 · 10−9 [26]

N ·MCHC max. hemoglobin-bound O2
mLO2

mLRBC
0.46 [44]

γ Hill constant – 2.64 [53, 26]

ps50 O2 at half-saturation mmHg 27 [53, 28]

αt O2 solubility coefficient
mLO2

/mL

mmHg 3.89 · 10−5 [44]

Dt tissue diffusion coefficient m2/s 2.41 · 10−9 [26]

C Characteristic O2 concentration
mLO2

mLB
1.50 · 10−3 –

4.2 Optimal management of the computational budget

As we detailed in Section 2.4.2, the implementation of the DL-MFMC estimator
entails a preliminary analysis (steps 2 - 5), necessary for the estimation of the
optimal sample size n∗, and the optimal sampling policy m∗

0,m
∗
1, λ∗. In par-

ticular, one of the first steps concerns the estimation of the trend coefficients
ζ, c1, c2, c3, c4, modeling the behavior of training times t = t(n) and QoI corre-
lations for varying sample size ρ = ρ(n), cf. Assumptions 2.4-2.3. Of note, this
analysis can be conducted on a small pool of FOM simulations, regardless of
the computational budget p.

Here, we performed this preliminary analysis on a restricted pool of n0 = 300
FOM simulations, recording the behavior of t and ρ for varying sample sizes,
40 ≤ n1 < . . . n6 ≤ 200 < n0, with the nj ’s forming a uniform partition of
[40, 200]. For each nj we trained the ROM multiple times as to obtain ad-
ditional records for t(nj) and ρ(nj), with correlations being estimated over a
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Symbol Parameter Unit Value Ref. #

D radiation dose Gy 20 –

α radiosensitivity parameter for ’single’ hit Gy−1 0.178 [23]

β radiosensitivity parameter for ’multiple’ hits Gy−2 0.0455 [23]

δ TIN parameter - 1.38 [40]

M TIN parameter - 2.81 [40]

a TIN parameter keV/µm 522.45 [40]

b TIN parameter mmHg 1.24 [40]

Nc Clonogenic cells in the interstitial volume - 108 [12]

LET Linear Energy Transfer in photons keV/µm 2 [13]

Table 3: Input parameters values assigned in the linear-quadratic model to
compute the TCP QoI.

test set of size n0 − nj ; then, we estimated the trend coefficients by fitting a
suitable regression model. Results are in Figure 5 and 6. Note that, although
the regression curves do not bound all the data points in a strict sense, they
do bound nearly all the observations referring to successful trainings (i.e., for
each nk, those reporting the lowest 1 − ρ2(nk)). In this sense, we consider our
estimates to be satisfactory.

Figure 5: Regression models for the law 1− ρ2(nj) ≤ c1n
−ζ
j + c2 for each QoI,

pO2, ∆pO2, TCP , varying the sample sizes as j = 1, ..., k.
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Among the three QoIs, the strongest correlation between FOM and ROM is
observed for the average oxygen partial pressure, pO2. In general, this is not
very surprising, in fact, deep learning-based ROMs are known to yield better
approximations when it comes to smooth operators, see, e.g., [15, 17].

On the other hand, the performances of the ROM are considerably more
limited when considering less smooth operators, such as ∆pO2, or operators
that result in nearly unimodal distributions, as the TCP. Further evidence of
this claim lies in the estimates obtained for c2, i.e., in the coefficient modeling
the intrinsic correlation gap. In fact, we obtained higher values for ∆pO2 and
TCP, respectively 0.126 and 0.151, as opposed to the smaller estimate associated
with pO2, where c2 = 0.003. In particular, this goes to show that the ROM
would perform better on smoother operators even when provided with an infinite
amount of data. Another interesting aspect concerns the estimated decay rate
of 1 − ρ(n)2, namely ζ. In fact, although the functions settle to a higher limit
value, the correlation between ROM and FOM for the variability of the partial
pressure spatial and the TCP increases faster (ζ ∼ −2) than the corresponding
map related to the spatial average (ζ ∼ −1/2).

Let us now discuss the results for the linear upper bound concerning the
training time. As shown in in Figure 6, the initialization of the ROM con-
stitutes the most relevant source of computational cost. In fact, the actual
computational time required for the optimization of the loss function is barely
affected by the number of training samples n. The main reason for this lies in
our design choice of limiting the number of training epochs below 50. Running
the optimization process for a larger number of iterations would make the curve
in Figure 6 become steeper, with c3 gaining dominance over c4.

Figure 6: Regression model for the law describing the ROM training time
t(nj) ≤ c3nj + c4, varying the sample sizes as j = 1, ..., k.

After estimating the regression coefficients ζ, c1, c2, c3, c4, we focused on the
retrieval of the optimal sample size n∗, obtained by minimizing the upper bound
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in Lemma 2.6. The results of this step, however, depend on the overall compu-
tational budget p > 0, as that appears explicitly in the objective function to be
minimized. For this reason, we postpone the discussion right below, together
with the UQ analysis.

4.3 Results of the uncertainty quantification analysis

For the actual UQ analysis, we consider a variable computational budget of p ∈
{9, 12, 15, 18, 21,24} hours. As a first step, we leverage on the previous results
to estimate the optimal sample size n∗, which we use to train the final ROM
surrogate through the aforementioned POD-MINN+ approach. Subsequently,
following steps 7-8 in the optimal policy pipeline, we estimate the number of new
high-fidelity and low-fidelity evaluations, m∗

0 andm∗
1, required for acceleration of

QoI statistics and their variance reduction. Table 4 shows a synthetic overview
of such analysis, reporting the results for three budgets of reference, namely 12,
18 and 24 hours.

QoI Budget p n∗ m∗
0 m∗

1 % n∗

n∗+m∗
0

12h 136 232 8311 36.96%

pO2 18h 199 342 13522 36.78%

24h 259 451 19082 36.48%

12h 126 266 6037 32.14%

∆pO2 18h 151 426 10053 26.17%

24h 171 590 14202 22.47%

12h 98 292 6168 25.13 %

TCP 18h 116 462 9996 20.07%

24h 130 635 13914 16.99%

Table 4: Number of FOM and ROM simulations employed for a UQ analysis
of the oxygen transfer processes with the DL-MFMC estimator for three fixed
reference computational budgets. In particular in the last column we report the
percentage of FOM simulations required in the training phase.

First of all, we note that the computational speed-up achieved through model
order reduction and the short training time are effectively utilized: in fact, there
is a difference of 1−2 orders of magnitude between the number of reduced order
model (ROM) and full order model (FOM) simulations. Additionally, we ob-
serve a significant distinction in the outcomes when comparing the three QoIs.
Once again, the greater smoothness of the spatial-average operator, pO2, re-
sults in a increased reliance on the high-fidelity solver. The described trend is
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observed also when comparing the different allocation of FOM simulations be-
tween the training and the sampling phase, since we obtain higher percentages
for pO2. As we shall see in a moment, these considerations will also be repeated
in the analyses that follow.

Given m∗
0 and m∗

1, we finally moved to the sampling phase, which allowed us
to estimate the coupling coefficient λ∗ and eventually construct the DL-MFMC
estimator. As we discussed in Section 2, our main interest is to provide a quan-
tification of the uncertainties, and thus construct suitable confidence intervals
based on our estimator. To appreciate the reduction in the uncertainties, we
report the confidence intervals obtained by the DL-MFMC approach in com-
parison with those obtained via standard Monte Carlo (MC-FOM): we refer to
Definition 2.11 and 2.1, respectively. Hereon, the confidence level has ben set
to γ = 99%.

To start, we report below the results obtained for p = 24h, where the ro-
bustness of the DL-MFMC estimator is particularly evident.

pO2 :

{
IγDL-MFMC = 29.99mmHg ± 0.33mmHg ,

IγFOM = 30.09mmHg ± 0.58mmHg .

∆pO2 :

{
IγDL-MFMC = 16.92mmHg ± 0.48mmHg ,

IγFOM = 17.55mmHg ± 0.75mmHg .

TCP :

{
IγDL-MFMC = 50.06%± 1.35%,

IγFOM = 49.75%± 2.20%.

In general, both approaches report consistent pointwise estimates. However, the
DL-MFMC estimator entails a much smaller uncertainty when compared to the
classical one based on standard Monte Carlo.

Notably, the same behavior was also reported for the other computational bud-
gets, as depicted in Figure 7 and Table 5. In Figure 7 we highlight for each
QoI the trend of the point estimates ÊDL-MFMC and ÊFOM with respect to
the available computational budget p and the contours of the uncertainties of
the associated 99% confidence intervals. The plots reveal various noteworthy
aspects:

i) the confidence intervals associated with the DL-MFMC estimator are con-
sistently smaller than the ones obtained via standard Monte Carlo;

ii) in the DL-MFMC approach, the point estimate of E[Q(uFOM)] is more
stable for pO2 than for ∆pO2 and TCP ;

iii) the stability of the point estimate of pO2 is reached with a smaller budget
p.
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Figure 7: Confidence intervals estimates for all the QoIs, comparing the DL-
MFMC estimator with the standard Monte-Carlo FOM-based, fixed γ = 99%.

As before, (ii) and (iii) are easily motivated by the additional regularity of the
spatial average operator pO2, which a linear and continuous functional of Ct, as
stated in Section 3.2.

These qualitative considerations are further confirmed by the quantitative anal-
ysis in Table 5. There, we focused on three reference budgets, p = 12, 18, 24
hours, and we reported the uncertainties attained by the DL-MFMC approach
(computed as the amplitude of the associated confidence interval), together with
the total number of FOM simulations required by the computational pipeline
(i.e., encompassing both the training and sampling phases). The results are re-
ported in comparison with the MC-FOM approach, emphasizing the reduction
in uncertainties and number of FOM evaluations.

In general, the advantage of the DL-MFMC approach becomes more and
more pronounced for higher budgets. This is not particularly surprising if we
consider that the ROM becomes more reliable when provided with a larger
amount of data. In particular, as the correlation between FOM and ROM
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QoI Budget p FOM simulations Uncertainty

12h 368 (-19.12%) 0.54 mmHg (-36.24%)

pO2 18h 541 (-20.79%) 0.42 mmHg (-38.68%)

24h 710 (-22.06%) 0.33 mmHg (-43.41%)

12h 392 (-13.85%) 1.03 mmHg (-6.50%)

∆pO2 18h 577 (-15.52%) 0.58 mmHg (-34.98%)

24h 761 (-16.47%) 0.48 mmHg (-36.33%)

12h 390 (-14.29%) 2.75% (-12.33%)

TCP 18h 578 (-15.37%) 1.84% (-28.30%)

24h 765 (-16.03%) 1.35% (-38.44%)

Table 5: Computational cost and UQ for the DL-MFMC estimator. FOM
simulations = total number of high-fidelity simulations required by the compu-
tational pipeline, namely n∗ +m∗

0. Uncertainty = amplitude of the DL-MFMC
confidence interval, Eq. (2.11). In parentheses, the comparison with the stan-
dard Monte Carlo estimator. E.g.: in the first row, we see that, compared to
standard Monte Carlo, the DL-MFMC estimator reduced the uncertainty by
36.26% while simultaneously requiring 19.12% less FOM simulations.
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(a) pO2 (b) ∆pO2 (c) TCP

Figure 8: Computational budget spent to achieve a fixed level of uncertainty
for both the considered estimators, considering three different QoIs.

increases, the multi-fidelity approach starts to rely more and more on the surro-
gate model, ultimately reducing the number of FOM evaluations. Once again,
this phenomenon is particularly evident for the average partial pressure, the
QoI associated with the smoothest operator. However, it is interesting to note
that, while the computational gain is nearly constant for pO2, the trend is
much steeper for ∆pO2 and TCP . For instance, when increasing the computa-
tional budget, the reduction in the uncertainties for ∆pO2 goes from −6.5% to
−36.33%, highlight a substantial boost in the performances.

Further confirmation of this fact is provided in Figure 8, where we compared
computational resources with model uncertainties. Coherently with our previous
observation, we note that for pO2 there is a constant computational gap between
the Monte Carlo and the DL-MFMC estimators. Instead, for QoIs associated to
either less regular or strongly nonlinear operators, such as ∆pO2 and TCP , the
DL-MFMC estimator becomes more advantageous when increasingly accurate
estimates are required. Still, the improvement compared to a standard MC
estimator remains consistent across a wide range of uncertainties.

5 Conclusion

This work addresses the significant computational demands associated with for-
ward UQ for partial differential equations in multi-physics models. In particular,
we propose an improvement of multi-fidelity methods [32, 33, 29], integrating
state-of-the-art deep learning techniques [15, 16] to increase the efficiency and
robustness of predictions.

The primary contribution of our research lies in the development of the Deep
Learning-Enhanced Multi-Fidelity Monte Carlo (DL-MFMC) method. This ap-
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proach, building upon several foundational works in multi-fidelity methods and
deep learning, introduces a novel synergy between full-order models (FOM)
and reduced-order models (ROM), based on a supervised learning approach
enhanced by deep neural networks. The result is a significant reduction in
computational costs while retaining the critical features necessary for accurate
modeling. By applying our DL-MFMC method to oxygen transfer in the micro-
circulation, using quantities of interest related to radiotherapy, we have demon-
strated its ability to perform robust and reliable UQ analysis in complex, real-
world scenarios. We have compared our method against traditional Monte Carlo
approaches, demonstrating substantial speed-ups and increased robustness.

Looking ahead, further research should focus on refining the integration
of deep learning with multi-fidelity methods, as well as improving the inter-
pretability and scalability of these models remains a crucial area for continued
development. In conclusion, our research contributes to the rapidly evolving
field of computational modeling and uncertainty quantification in life sciences.
The DL-MFMC approach offers a promising path forward in tackling the in-
herent challenges of computational expense and model accuracy in multi-scale,
multi-fidelity scenarios.
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