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Abstract

We introduce and analyze a discontinuous Galerkin method for the numerical modelling of the equations
of Multiple-Network Poroelastic Theory (MPET) in the dynamic formulation. The MPET model can compre-
hensively describe functional changes in the brain considering multiple scales of fluids. Concerning the spatial
discretization, we employ a high-order discontinuous Galerkin method on polygonal and polyhedral grids and we
derive stability and a priori error estimates. The temporal discretization is based on a coupling between a New-
mark β-method for the momentum equation and a θ-method for the pressure equations. After the presentation of
some verification numerical tests, we perform a convergence analysis using an agglomerated mesh of a geometry
of a brain slice. Finally we present a simulation in a three dimensional patient-specific brain reconstructed from
magnetic resonance images. The model presented in this paper can be regarded as a preliminary attempt to
model the perfusion in the brain.

1 Introduction

Poroelasticity models the interaction among fluid flow and elastic deformations in porous media. The precursor
Biot’s equations [1] are able to correctly model the physical problems; however, complete and detailed modelling
sometimes requires a splitting of the fluid component into multiple distinct network fields [2]. Despite initially the
multiple networks poroelastic (MPET) model being applied to soil mechanics [3], more recently, the separation of
fluid networks was proposed in the context of biological flows. Indeed, to model blood perfusion, it is essential to
separate the vascular network into its fundamental components (arteries, capillaries and veins). This is relevant
both in the heart [4, 5], and the brain [6] modelling.

In the context of neurophysiology, where blood constantly perfuses the brain and provides oxygen to neurons,
the multiple network porous media models have been used to study circulatory diseases, such as ischaemic stroke
[7, 8]. The cerebrospinal fluid (CSF) that surrounds the brain parenchyma is related to disorders of the central
nervous system (CNS), such as hydrocephalus [9, 10], and plays a role in CNS clearance, particularly important in
Alzheimer’s disease, which is strongly linked to the accumulation of misfolded proteins, such as amyloid beta (Aβ)
[11, 12].

Despite the MPET equations find application in different physical contexts, at the best of our knowledge, a
complete analysis of the numerical discretization in the dynamic case is still missing. Concerning the discretization
of the quasi-static MPET equations, some works proposed an analysis using both the Mixed Finite Element Method
[13] and the Hybrid High-Order Method (HHO) [14]. The quasi-static version neglects the second-order derivative
of the displacement in the momentum balance equation. The physical meaning of neglecting this term is that
inertial forces have small impact on the evolution of the fields. However, this term ought to be considered in the
application to brain physiology, because of the strong impact of systolic pressure variations on the vascular and
tissue deformation [6]. In the context of applications, the fully-dynamic system has been applied to model the
aqueductal stenosis effects [9].

∗Funding: PFA has been partially funded by the research grants PRIN2017 n. 201744KLJL. PFA, LD and AMQ has been partially
funded by the research grants PRIN2020 n. 20204LN5N5 funded by the Italian Ministry of Universities and Research (MUR). MC,
PFA, LD and AMQ are members of INdAM-GNCS.
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Figure 1: Example of infinitesimal volume element in which we consider the coexistence of both the solid part
(brown) and multiple fluid networks, as we can see in the image: CSF (light-blue), arterial blood (red) and venous
blood (blue)

From a numerical perspective, the discretization of second-order time-dependent problems is challenging. In
this work, the time discretization scheme applies a Newmark-β method [15] for the momentum equation. Due to
the system structure, a continuity equation for each pressure field requires a temporal discretization method for
first-order ODEs. We choose the application of a θ−method in this work.

In terms of accuracy, to guarantee low numerical dispersion and dissipation errors, high-order discretization
methods are required, cf. for example [16]. In this work for space discretization, we proposed a high-order Discon-
tinuous Galerkin formulation on polygonal/polyhedral grids (PolyDG). The PolyDG methods are naturally oriented
to high-order approximations. Another strength of the proposed formulation is its flexibility in mesh generation;
due to the applicability to polygonal/polyhedral meshes. Indeed, the geometrical complexity of the brain is one of
the challenges that need to be considered. The possibility of refining the mesh only in some regions, handling the
hanging nodes and eventually using elements which are not tetrahedral, is easy to implement in our approach. For
all these reason, intense research has been undertaken on this topic [17, 18, 19, 20], in particular concerning porous
media and elasticity in the context of geophysical applications [21, 22, 23]. Moreover, PolyDG methods exhibit low
numerical dispersion and dissipation errors, as recently shown in [24] for the elastodynamics equations.

The paper is organized as follows. Section 2 introduces the mathematical model of MPET, proposing also some
changes for the adaptation to the brain physiology. In Section 3, we introduce the PolyDG space discretization of
the problem. In Section 4 we prove stability of the semi-discretized MPET system in a suitable (mesh dependent)
version. Section 5 is devoted to the proof of a priori error estimates of the semi-discretized MPET problem. In
Section 6, we introduce a temporal discretization by means of Newmark-β and θ-methods. In Section 7 we show
some numerical results considering convergence tests with analytical solutions. Moreover, we present some realistic
simulations in physiological conditions. Finally, in Section 8, we draw some conclusions.

2 The mathematical model

In this section, we present the multiple-network poroelasticity system of equations. We consider a given set of labels
J such that the magnitude is a number |J | ∈ N, corresponding to the number of fluid networks. The problem is
dependent on time t ∈ (0, T ] and space x ∈ Ω ⊂ Rd (d = 2, 3). The unknowns of our problem are the displacement
u = u(x, t) and the network pressures pj = pj(x, t) for j ∈ J . The problem reads as follows:
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Figure 2: A domain Ω with associated boundary conditions for both the displacement u of the tissue and a generic
fluid pressure pj for j ∈ J .

Find u = u(x, t) and pj = pj(x, t) such that:
ρ
∂2u

∂t2
−∇ · σE(u) +

∑
k∈J

αk∇pk = f , in Ω× (0, T ],

cj
∂pj
∂t

+∇ ·
(
αj
∂u

∂t
− Kj

µj
∇pj

)
+
∑
k∈J

βjk(pj − pk) + βe
jpj = gj , in Ω× (0, T ] ∀j ∈ J.

(1)

In Equation (1), we denote the tissue density by ρ, the elastic stress tensor by σE, and the volume force by
f . Moreover for the j-th fluid network, we prescribe a Biot-Willis coefficient αj , a storage coefficient cj , a fluid
viscosity µj , a permeability tensor Kj , an external coupling coefficient βe

j and a body force gj . Finally, we have a
coupling transfer coefficient βjk for each couple of fluid networks (j, k) ∈ J × J .

Assumption 1 (Coefficients’ regularity). In this work, we assume the following regularities for the coefficients and
the forcing terms:

• ρ ∈ L∞(Ω).

• f ∈ L2((0, T ], L2(Ω,Rd)).

• αj ∈ L∞(Ω) and Kj ∈ L∞(Ω,Rd×d) for any j ∈ J .

• cj > 0, µj > 0, and βe
j ∈ L∞(Ω) for any j ∈ J .

• gj ∈ L2((0, T ], L2(Ω)) for any j ∈ J .

• βjk ∈ L∞(Ω) for each couple of fluid networks (j, k) ∈ J × J .

More detailed information about the derivation of this problem can be found in [6]. For the purpose of brain
poromechanics modelling, we introduce two main modifications to the model:

• In the derivation we use a static form of the Darcy flow, as in [3]:

wj = −Kj

µj
∇pj . (2)

This is considered a good approximation for the medium-speed phenomena. Indeed, in brain fluid dynamics
we do not reach large values of the fluid velocities.
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• We add to the equation a reaction term βe
jpj for each fluid network j. Indeed, we aim simulating brain

perfusion, so we use a diffuse discharge in the venular compartment of the form:

βe
V(pV − p̃Veins), (3)

considering the large veins pressure p̃Veins and comprising this in the gV in the abstract formulation. This
mimicks what proposed in the context of heart perfusion [25].

It is important to notice that in each infinitesimal volume element we have both the existence of the solid component
and of the fluid networks, as represented in Figure 1.

We assume small deformations, that is to consider linear elasticity constitutive relation for the tissue [26]:

σE(u) = CE[ε(u)] = 2µε(u) + λ(∇ · u)I, (4)

where µ ∈ L∞(Ω) and λ ∈ L∞(Ω) are the Lamé parameters, I is the second-order identity tensor, and ε(u) =
1

2
(∇u + ∇⊤u) is the symmetric part of the displacement gradient. Moreover, defined S as the space of second-

order symmetric tensors, CE : S → S is the fourth order stiffness tensor. This assumption allows us to neglect the
differentiation between the actual configuration domain Ωt and the reference one Ω̂. For this reason, we consider
Ω = Ω̂ ≃ Ωt, as in Equation (1).

We supplement Equation (1) with suitable boundary and initial conditions. Concerning the initial conditions,
due to the second-order time-derivative, we need to impose both a displacement u0 and a velocity v0. Moreover,
we need also an initial pressure pj0 for each fluid-network j ∈ J . The strong formulation reads:

ρ
∂2u

∂t2
−∇ · σE(u) +

∑
k∈J

αk∇pk = f , in Ω× (0, T ],

cj
∂pj
∂t

+∇ ·
(
αj
∂u

∂t
− Kj

µj
∇pj

)
+
∑
k∈J

βjk(pj − pk) + βe
jpj = gj , in Ω× (0, T ] ∀j ∈ J,

σE(u) · n−
∑
k∈J

αkpkn = hu, on ΓN × (0, T ],

Kj

µj
∇pjn = hj , on Γj

N × (0, T ] ∀j ∈ J,

u = uD, on ΓD × (0, T ],

pj = pDj , on Γj
D × (0, T ] ∀j ∈ J,

u(0) = u0, in Ω,

∂u

∂t
(0) = v0, in Ω,

pj(0) = pj0, in Ω ∀j ∈ J.

(5)

2.1 Weak formulation

In order to introduce a numerical approximation to Equation (5), we recall the turn to its variational formulation.
Let us consider a subset ΓD ⊂ ∂Ω with positive measure |ΓD| > 0, then we define the Sobolev space V = H1

ΓD
(Ω,Rd)

such that:
H1

ΓD
(Ω,Rd) := {v ∈ H1(Ω,Rd) : v|ΓD

= 0}. (6)

Analogously, for a subset Γj
D ⊂ ∂Ω with positive measure |Γj

D| > 0 with j ∈ J , we can define the Sobolev space
Qj = H1

Γj
D

(Ω) such that:

H1
Γj
D

(Ω) := {qj ∈ H1(Ω) : qj |Γj
D
= 0}. (7)
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Moreover, we employ standard definition of scalar product in L2(Ω), denoted by (·, ·)Ω. The induced norm is
denoted by || · ||Ω.For vector-valued and tensor-valued functions the definition extends componentwise [27].

Finally, given k ∈ N and an Hilbert space H we use the notation Ck([0, T ], H) to denote the space of functions
u = u(x, t) such that u is k-times continuously differentiable with respect to time and for each t ∈ [0, T ], u(·, t) ∈ H,
see e.g. in [27].

The same equation can be also rewritten in an abstract form using the following definitions:

• a : V × V → R is a bilinear form such that:

a(u,v) = 2µ (ε(u), ε(v))Ω + λ (∇ · u,∇ · v)Ω ∀u,v ∈ V (8)

• bj : Qj × V → R is a bilinear form such that:

bj(qj ,v) = αj (qj ,∇ · v)Ω ∀qj ∈ Qj ∀v ∈ V (9)

• F : V → R is a linear functional such that:

F (v) = (f ,v)Ω + (hu,v)ΓN
v ∈ V (10)

• sj : Qj ×Qj → R is a bilinear form such that:

sj(pj , qj) =

(
Kj

µj
∇pj ,∇qj

)
Ω

∀pj , qj ∈ Qj , (11)

• Cj :

(
×
k∈J

Qk

)
×Qj → R is a bilinear form such that:

Cj ((pk)k∈J , qj) =
∑
k∈J

(βjk(pj − pk), qj)Ω + (βe
jpj , qj)Ω (12)

• Gj : Qj → R is a linear functional such that:

Gj(qj) = (gj , qj)Ω + (hj , qj)Γj
N

∀qj ∈ Qj . (13)

The weak formulation of problem (5) reads:

Find u(t) ∈ V and qj(t) ∈ Qj with j ∈ J such that ∀t > 0:

ρ

(
∂2u(t)

∂t2
,v

)
Ω

+ a(u(t),v)−
∑
k∈J

bk(pk(t),v) = F (v), ∀v ∈ V,

cj

(
∂pj
∂t

, qj

)
Ω

+ bj

(
qj ,

∂u

∂t

)
+ sj(pj , qj) + Cj ((pk)k∈J , qj) = Gj(qj), ∀qj ∈ Qj j ∈ J,

u(0) = u0, in Ω,

∂u

∂t
(0) = v0, in Ω,

pj(0) = pj0, in Ω j ∈ J,

u(t) = uD(t), on ΓD,

qj(t) = qDj (t), on Γj
D j ∈ J.

(14)

The complete derivation of this formulation is reported in Appendix A.
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3 PolyDG semi-discrete formulation

Let us introduce a polytopic mesh partition Th of the domain Ω made of polygonal/polyhedral elements K such
that:

∀Ki,Kj ∈ Th |Ki ∩Kj | = 0 if i ̸= j
⋃
j

Kj = Ω

where we for each element K ∈ Th, we denote by |K| the measure of the element and by hK its diameter. We set
h ∈ maxK∈Th

hK .
Then we can define the interface as the intersection of the (d − 1)−dimensional facets of two neighbouring

elements. We distinguish two cases:

• case d = 3, in which the interface consists in a generic polygon, we further assume that we can decompose
each interface into triangles; we denote the set of these triangles with Fh;

• case d = 2, in which the interfaces are always line segments; then we denote such a set of segments with Fh.

It is now useful to subdivide the set into the union of interior faces F I
h and FB

h exterior faces lying on the boundary
of the domain ∂Ω:

Fh = F I
h ∪ FB

h .

Moreover the boundary faces set can be split according to the type of imposed boundary condition of the tissue
displacement:

FB
h = FD

h ∪ FN
h ,

where FD
h and FN

h are the boundary faces contained in ΓD and ΓN , respectively. Implicit in this decomposition,
there is the assumption that Th is aligned with ΓD and ΓN , i.e. any F ∈ FB

h is contained in either ΓD and ΓN . The
same splitting can be done according to the type of imposed boundary condition of the generic j-th fluid network:

FB
h = F

Dj

h ∪ F
Nj

h ,

where F
Dj

h and F
Nj

h are the boundary faces contained in Γj
D and Γj

N , respectively. Implicit in this decomposition,

there is the assumption that Th is aligned with Γj
D and Γj

N , i.e. any F ∈ FB
h is contained in either Γj

D and Γj
N .

Let us define Ps(K) as the space of polynomials of degree s over a mesh element K. Then we can introduce the
following discontinuous finite element spaces:

QDG
h = {q ∈ L2(Ω) : q|K ∈ Pq(K) ∀K ∈ Th},

VDG
h = {w ∈ L2(Ω;Rd) : w|K ∈ [Pp(K)]d ∀K ∈ Th},

where p ≥ 1 and q ≥ 1 are polynomial orders, which can be different in principle.
Finally, we introduce some assumptions on Th.

Definition 1 (Polytopic regular mesh). Let Th be a mesh, we say it is polytopic regular if:

∀K ∈ Th ∃{SF
K}F⊂∂K such that ∀F ⊂ ∂K F = ∂K ∩ SF

K and hK ≲ d|SF
K | |F |−1,

where {SF
K}F⊂∂K is a set of non-overlapping d-dimensional simplices contained in K and hK is the diameter of

the element K.

We remark that the union of simplices {SF }F⊂∂K does not have to cover, in general, the whole element K, that
is
⋃

{ S̄F }F⊂∂K ⊂ K̄.

Assumption 2. The mesh sequence {Th}h satisfies the following properties:

1. {Th}h>0 is uniformly polytopic-regular

2. For each Th ∈ {Th}h there exists a shape-regular, simplicial covering T̂h of Th such that for each pair K ∈ Th

and K̂ ∈ T̂h with K̂ ⊂ K it holds:

(a) hK ≲ hK̂ ;

(b) max
K∈Th

|K ′| ≲ 1 where K ′ ∈ Th : K ′ ∩ K̂ ̸= 0, K̂ ∈ T̂h,K ⊂ K̂.
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3. A local bounded variation property holds for the local mesh sizes:

∀F ∈ FhF ⊂ ∂K1 ∩ ∂K2 K1,K2 ∈ Th ⇒ hK1 ≲ hK2 ≲ hK1

where the hidden constants are independent of both discretization parameters and number of faces of K1 and
K2.

We next introduce the so-called trace operators [28]. Let F ∈ F I
h be a face shared by the elements K±. Let

n± by the unit normal vector on face F pointing exterior to K±, respectively. Then, assuming sufficiently regular
scalar-valued functions q, vector-valued functions v and tensor-values functions τ , we can define:

• the average operator {{·}} on F ∈ F I
h:

{{q}} =
1

2
(q+ + q−), {{v}} =

1

2
(v+ + v−), {{τ}} =

1

2
(τ+ + τ−), (15)

• the jump operator [[·]] on F ∈ F I
h:

[[q]] = q+n+ + q−n−, [[v]] = v+ · n+ + v− · n−, [[τ ]] = τ+n+ + τ−n−, (16)

• the jump operator [[[·]]] on F ∈ F I
h for a vector-valued function:

[[[v]]] =
1

2
(v+ ⊗ n+ + n+ ⊗ v+) +

1

2
(v− ⊗ n− + n− ⊗ v−), (17)

where the result is a tensor in Rd×d
sym .

In these relations we are using the superscripts ± on the functions, to denote the traces of the functions on F taken
within the of interior to K±.

In the same way, we can define analogous operators on the face F ∈ FB
h associated to the cell K ∈ Th with n

outward unit normal on ∂Ω:

• the average operator {{·}} on F ∈ FB
h :

{{q}} = q, {{v}} = v, {{τ}} = τ , (18)

• the standard jump operator [[·]] on F ∈ FB
h which does not belong to a Dirichlet boundary:

[[q]] = qn, [[v]] = v · n, [[τ ]] = τn, (19)

• the jump operator [[[·]]] on F ∈ FB
h which belongs to a Dirichlet boundary, with Dirichlet conditions g, g and

γ:
[[q]] = (q − g)n, [[v]] = (v − g) · n, [[τ ]] = (τ − γ)n, (20)

• the jump operator on F ∈ FB
h for a vector-valued function which does not belong to a Dirichlet boundary:

[[[v]]] =
1

2
(v ⊗ n+ n⊗ v). (21)

• the jump operator on F ∈ FB
h for a vector-valued function which belongs to a Dirichlet boundary, with

Dirichlet condition g:

[[[v]]] =
1

2
((v − g)⊗ n+ n⊗ (v − g)). (22)

We recall the following identity will be useful in the method derivation:

[[qv]] = [[v]]{{q}}+ {{v}} · [[q]], ∀F ∈ F I
h. (23)

Finally, we remark also the following identities [29, 30] for τ ∈ L2(Ω,Rd×d
sym), v ∈ H1(Ω,Rd), and q ∈ H1(Ω):∑

K∈Th

∫
∂K

qv · nK =
∑

F∈Fh

∫
F

{{v}} · [[q]] +
∑

F∈F I
h

∫
F

{{q}} · [[v]], (24)

∑
K∈Th

∫
∂K

v · (τnK) =
∑

K∈Th

∫
∂K

τ : (v ⊗ nK) =
∑

F∈Fh

∫
F

{{τ}} : [[[v]]] +
∑

F∈F I
h

∫
F

{{v}} · [[τ ]], (25)

where nK is the outward normal unit vector to the cell K.
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3.1 Semi-discrete formulation

To construct the semi-discrete formulation, we define the following penalization functions η : Fh → R+ and
ζj : Fh → R+ for each j ∈ J , which are face-wise defined as:

η = η0C̃K
E


p2

{h}H
, on F ∈ F I

h

p2

h
, on F ∈ FD

h

ζj = zj
kKj√
µj


q2

{h}H
, on F ∈ F I

h

q2

h
, on F ∈ FB

h

, (26)

where we are considering the harmonic average operator {·}H on K±, C̃K
E =

∣∣∣∣∣∣√CE|K
∣∣∣∣∣∣2
2
and kKj = ||

√
Kj |K ||22 for

any K ∈ Th
1 and η0 and zj are parameters at our disposal (to be chosen large enough). The parameters zj require

to be chosen appropriately in particular for small values of kKj , which are typical in applications. Moreover, we
need to define the following bilinear forms:

• AE : VDG
h ×VDG

h → R is a bilinear form such that:

AE(u,v) =

∫
Ω

σE(u) : ∇hv +
∑

F∈F I
h∪FD

h

∫
F

(η[[[u]]] : [[[v]]]− {{σE(uh)}} : [[[vh]]]− [[[uh]]] : {{σE(vh)}}) dσ, (27)

for all u,v ∈ VDG
h .

• Bj : Q
DG
h ×VDG

h → R is a bilinear form for any j ∈ J such that:

Bj(pj ,v) =

∫
Ω

αjpj(∇h · v)−
∑

F∈F I
h∪F

Dj
h

∫
F

αj{{pjhI}} : [[[vh]]]dσ ∀pj ∈ QDG
h ∀v ∈ VDG

h . (28)

• APj : QDG
h ×QDG

h → R is a bilinear form such that:

APj
(pj , qj) =

∫
Ω

Kj

µj
∇hpj · ∇hqj −

∑
F∈F I

h∪F
Dj
h

∫
F

1

µj
{{Kj∇hpj}} · [[qj ]]+

−
∑

F∈F I
h∪F

Dj
h

∫
F

1

µj
{{Kj∇hqj}} · [[pj ]] +

∑
F∈F I

h∪F
Dj
h

∫
F

ζj [[pj ]] · [[qj ]] pj , qj ∈ QDG
h .

(29)

By exploiting the definitions of the bilinear forms, we obtain the following semi-discrete PolyDG formulation.

Find uh(t) ∈ VDG
h and pjh(t) ∈ QDG

h with j ∈ J such that ∀t > 0:

ρ (üh(t),vh)Ω + AE(uh(t),vh)−
∑
k∈J

Bk(pkh(t),vh) = F (vh), ∀vh ∈ VDG
h

cj (ṗjh(t), qjh)Ω + Bj (qjh, u̇h(t)) + APj (pjh(t), qjh) + Cj ((pkh)k∈J , qjh) = Gj(qjh), ∀qjh ∈ QDG
h

uh(0) = u0h, in Ωh

u̇h(0) = v0h, in Ωh

pjh(0) = pj0h, in Ωh

uh(t) = uD
h (t), on ΓD

qjh(t) = qDjh(t), on Γj
D

(30)

1In this context || · ||2 is the operator norm induced by the L2-norm in the space of symmetric second order tensors.
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The complete derivation of this formulation is reported in Appendix B. Summing up the weak formulations we
arrive to the following equivalent equation, we will use in the analysis:

ρ (üh(t),vh)Ω +AE(uh(t),vh) +
∑
k∈J

(
− Bk(pkh(t),vh) + ck (ṗkh(t), qkh)Ω + APk

(pkh(t), qkh)

+Bk (qkh, u̇h(t)) + Ck ((pjh)j∈J , qkh)

)
= F (vh) +

∑
k∈J

Gk(qkh) ∀vh ∈ VDG
h ∀qkh ∈ QDG

h .

(31)

4 Stability analysis of the semi-discrete formulation

To carry out a complete stability analysis of the problem (31), we introduce the following broken Sobolev spaces
for an integer r ≥ 1:

Hr(Th) = {vh ∈ L2(Ω) : vh|K ∈ Hr(K) ∀K ∈ Th},

Hr(Th;Rd) = {vh ∈ L2(Ω;Rd) : vh|K ∈ Hr(K;Rd) ∀K ∈ Th}.

Moreover, we introduce the shorthand notation for the L2-norm || · || := || · ||L2(Ω) and for the L2-norm on a set of

faces F as || · ||F =
(∑

F∈F || · ||L2(F )

)1/2
.

These norms can be used to define the following DG-norms:

||p||DG,Pj
=
∣∣∣∣∣∣√Kj

µj
∇hp

∣∣∣∣∣∣+ ||
√
ζj [[p]]||L2(F I

h∪F
Dj
h )

∀p ∈ H1(Th) (32)

||v||DG,E =
∣∣∣∣∣∣√CE[εh(v)]

∣∣∣∣∣∣+ ||√η[[[v]]]||L2(F I
h∪FD

h ) ∀v ∈ H1(Th;Rd) (33)

For the analysis, we need to prove some continuity and coercivity properties of the bilinear forms.

Proposition 1. Let Assumption 2 be satisfied, then the bilinear forms AE(·, ·) and APj (·, ·) are continuous:

|AE(vh,wh)| ≲ ||vh||DG,E||wh||DG,E ∀vh,wh ∈ VDG
h , (34)

|APj (pjh, qjh)| ≲ ||pjh||DG,Pj
||qjh||DG,Pj

∀pjh, qjh ∈ QDG
h ∀j ∈ J, (35)

and coercive:
AE(vh,vh) ≳ ||vh||2DG,E ∀vh ∈ VDG

h , (36)

APj
(pjh, pjh) ≳ ||pjh||2DG,Pj

∀pjh ∈ QDG
h ∀j ∈ J, (37)

provided that the penalty parameters eta and ζj for any j ∈ J are chosen large enough.

The proof of these properties can be found in [24].

Proposition 2. Let Assumption 2 be satisfied. The bilinear form Bj is also continuous:

|Bj(qjh,vh)| ≲ ||vh||DG,E||qjh|| ∀vh,∈ VDG
h ∀qjh ∈ QDG

h (38)

The proof of these properties can be found in [31].

Proposition 3. Let Assumption 2 be satisfied, then:∣∣∣∣∣∣
∑
j∈J

Cj ((pkh)k∈J , qjh)

∣∣∣∣∣∣ ≲
∑
k∈J

∑
j∈J

||pkh|| ||qjh|| ∀pkh, qkh ∈ QDG
h , (39)

∑
j∈J

Cj ((pkh)k∈J , pjh)) ≳
∑
j∈J

||
√
βe
jpjh||

2 ∀pjh ∈ QDG
h . (40)
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Proof. First of all, to simplify the computations let us introduce the following quantity:

B = max

{
max
j,k∈J

{
||βjk||L∞(Ω)

}
,max
j∈J

{
||βe

j ||L∞(Ω)

}}
(41)

The proof of the continuity trivially derives from the application of triangular inequality and Hölder inequality,
using relation (41):∣∣∣∣∣∣

∑
j∈J

Cj ((pkh)k∈J , qj)

∣∣∣∣∣∣ ≤
∑
k∈J

∑
j∈J

|(βkjpkh, qkh)Ω|+
∑
k∈J

∑
j∈J

|(βkjpjh, qkh)Ω|+
∑
j∈J

|(βe
jpjh, qjh)Ω| ≤

≤
∑
k∈J

∑
j∈J

(2B||pkh|| ||qkh||+ B||pjh|| ||qkh||) ≲
∑
k∈J

∑
j∈J

||pjh|| ||qkh||

In the last step, we are observing that in the second sum we are also controlling the case j = k.
To prove the coercivity, we introduce the definition of β̃j =

∑
k∈J βkj + βe

j =
∑

k∈J βjk + βe
j > 0. Then we

proceed as:∑
j∈J

Cj ((pkh)k∈J , pjh)) =
∑
j∈J

∑
k∈J

(βjk(pjh − pkh), pjh)Ω +
∑
j∈J

(βe
jpjh, pjh)Ω =

=
∑
j∈J

∑
k∈J

||
√
βjk pjh||2 +

∑
j∈J

||
√
βe
j pjh||

2 −
∑
j∈J

∑
k∈J

(βjkpkh, pjh)Ω ≥

≥
∑
j∈J

∑
k∈J

||
√
βjk pjh||2 +

∑
j∈J

||
√
βe
j pjh||

2 −
∑
j∈J

∑
k∈J

|(βjkpjh, pkh)Ω| ≥ Hölder inequality

≥
∑
j∈J

∑
k∈J

||
√
βjk pjh||2 +

∑
j∈J

||
√
βe
j pjh||

2 −
∑
j∈J

∑
k∈J

||
√
βjkpjh|| ||

√
βkjpkh|| ≥ Young inequality

≥
∑
j∈J

∑
k∈J

||
√
βjk pjh||2 +

∑
j∈J

||
√
βe
j pjh||

2 − 1

2

∑
k∈J

∑
j∈J

||
√
βjkpjh||2 −

1

2

∑
k∈J

∑
j∈J

||
√
βkjpkh||2 ≥

≥
∑
j∈J

||
√
βe
j pjh||

2,

and the thesis follows.

4.1 Stability estimate

For the sake of simplicity, we assume homogeneous boundary conditions, both on Neumann and Dirichlet boundaries,
i.e. uD = 0, hu = 0, hj = 0 and pDj = 0 for any j ∈ J .

Definition 2. Let us define the following energy norm:

||(uh,(pkh)k∈J)(t)||2ε =

=||√ρu̇h(t)||2 + ||uh(t)||2DG,E +
∑
k∈J

(
||
√
ckpkh(t)||2 +

∫ t

0

(
||pkh(s)||2DG,Pk

+ ||
√
βe
k pkh(s)||

2
)
ds

)
(42)

Theorem 1 (Stability estimate). Let Assumptions 1 and 2 be satisfied and let (uh, (pkh)k∈J) be the solution of
Equation (31) for any t ∈ (0, t̂]. Let the stability parameters be large enough for any k ∈ J . then, it holds:

||(uh, (pkh)k∈J)(t̂)||ε ≲ ϑ0 +

∫ t̂

0

(
1
√
ρ
||f(t)||+

∑
k∈J

1
√
ck

||gk(t)||

)
dt, (43)

where we use the following definition:

ϑ20 := ||√ρu̇0
h||2 + ||u0

h||2DG,E +
∑
k∈J

||
√
ckp

0
kh||2 (44)
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Proof. We start from the Equation (31) and we choose vh = u̇h and qkh = pkh. Then we find:

ρ (üh, u̇h)Ω + AE(uh, u̇h) +
∑
k∈J

(
−Bk(pkh, u̇h) + ck (ṗkh, pkh)Ω + APk

(pkh, pkh)

+Bk (pkh, u̇h) + Ck ((pjh)j∈J , qkh)

)
= F (u̇h) +

∑
k∈J

Gk(pkh).

This choice allows us to simplify the bilinear form Bk, because for any k ∈ J it appears in the equation with
different signs. Then, we obtain:

ρ (üh, u̇h)Ω + AE(uh, u̇h) +
∑
k∈J

(
ck (ṗkh, pkh)Ω + APk

(pkh, pkh) + Ck ((pjh)j∈J , qkh)

)
= F (u̇h) +

∑
k∈J

Gk(pkh).

Now, we recall the integration by parts formula:∫ t

0

(v̇(s), w(s))∗ds = (v(t), w(t))∗ − (v(0), w(0))∗ −
∫ t

0

(v(s), ẇ(s))∗ds (45)

which holds for each v and w regular enough and for any scalar product (·, ·)∗.
The application of this gives rise to the following estimates:∫ t

0

ρ (üh(s), u̇h(s))Ω ds = ρ (u̇h(t), u̇h(t))Ω − ρ
(
u̇0
h, u̇

0
h

)
Ω
−
∫ t

0

ρ (üh(s), u̇h(s))Ω ds∫ t

0

AE(uh(s), u̇h(s))ds = AE(uh(t),uh(t))− AE(u
0
h,u

0
h)−

∫ t

0

AE(uh(s), u̇h(s))dsds∫ t

0

ck (ṗkh(s), pkh(s))Ω ds = ck (pkh(t), pkh(t))Ω − ck
(
p0kh, p

0
kh

)
Ω
−
∫ t

0

ck (ṗkh(s), pkh(s))Ω ds

Then, integrating the equation, we obtain:

||√ρu̇h(t)||2 − ||√ρu̇0
h||2 + AE(uh(t),uh(t))− AE(u

0
h,u

0
h) +

∑
k∈J

(
||
√
ckpkh(t)||2 − ||

√
ckp

0
kh||2+

+2

∫ t

0

APk
(pkh(s), pkh(s))ds+ 2

∫ t

0

Ck ((pjh(s))j∈J , qkh(s)) ds

)
= 2

∫ t

0

F (u̇h(s))ds+ 2
∑
k∈J

∫ t

0

Gk(pkh(s))ds.

Now we can use continuity and coercivity estimates we stated in Equation (44):

||(uh, (pkh)k∈J)(t)||2ε ≤

≤||√ρu̇h(t)||2 + ||uh(t)||2DG,E +
∑
k∈J

(
||
√
ckpkh(t)||2 + 2

∫ t

0

(
||(pkh(s)||2DG,Pk

+ ||
√
βe
k pkh(s)||

2
)
ds

)
≲

≲||√ρu̇0
h||2 + ||u0

h||2DG,E +
∑
k∈J

||
√
ckp

0
kh||2 + 2

∫ t

0

F (u̇h(s))ds+ 2
∑
k∈J

∫ t

0

Gk(pkh(s))ds =

=ϑ20 + 2

∫ t

0

F (u̇h(s))ds+ 2
∑
k∈J

∫ t

0

Gk(pkh(s))ds

Then we use Equation (44) and then the continuity of the linear functionals, to obtain:

||(uh, (pkh)k∈J)(t)||2ε ≲ϑ20 + 2

∫ t

0

||f(s)|| ||u̇h(s)||ds+ 2
∑
k∈J

∫ t

0

||gk(s)|| ||pkh(s)||ds ≲

≲ϑ20 +
∫ t

0

2
√
ρ
||f(s)|| ||√ρu̇h(s)||ds+

∑
k∈J

∫ t

0

2
√
ck

||gk(s)|| ||
√
ckpkh(s)||ds ≲

≲ϑ20 +
∫ t

0

(
2
√
ρ
||f(s)||+

∑
k∈J

2
√
ck

||gk(s)||

)
||(uh, (pkh)k∈J)(s)||εds
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Using Grönwall Lemma [16], we reach the thesis:

||(uh, (pkh)k∈J)(t)||ε ≲ ϑ0 +

∫ t

0

(
1
√
ρ
||f(s)||+

∑
k∈J

1
√
ck

||gk(s)||

)
ds

5 Error analysis

In this section, we derive an a priori error estimate for the solution of the PolyDG semi-discrete problem (31). For
the sake of simplicity we neglect the dependencies of the inequality constants on the model parameters, using the
notation x ≲ y to say that ∃C > 0 : x ≤ Cy, where C is function of the model parameters (but it is independent of
the discretization parameters).

First of all, we need to introduce the following definition:

|||p|||DG,Pj
= ||p||DG,Pj

+
∣∣∣∣∣∣ζ− 1

2
j

1

µj
{{Kj∇hp}}

∣∣∣∣∣∣
L2(F I

h∪F
Dj
h )

∀p ∈ H2(Th), (46)

|||v|||DG,E = ||v||DG,E +
∣∣∣∣∣∣η− 1

2 {{
√

CE[εh(v)]}}
∣∣∣∣∣∣
L2(F I

h∪FD
h )

∀v ∈ H2(Th,Rd), (47)

We introduce the interpolants of the solutions uI ∈ VDG
h and pkI ∈ QDG

h of the continuous formulation (14).
Then, for a polytopic mesh Th which satisfies Assumption 2, we can define a Stein operator E : Hm(K) → Hm(Rd)
for any K ∈ Th and m ∈ N0 such that:

E v|K = v ||E v||Hm(Rd) ≲ ||v||Hm(K), ∀v ∈ Hm(K).

Proposition 4. Let Assumption 2 be fulfilled. If d ≥ 2, then the following estimates hold:

∀v ∈ Hn(Th;Rd) ∃vI ∈ VDG
h : |||v − vI|||2DG,E ≲

∑
K∈Th

h
2min{p+1,n}−2
K

p2n−3
||E v||2Hn(K,Rd), (48)

∀pj ∈ Hn(Th) ∃pjI ∈ QDG
h : |||pj − pjI|||2DG,Pj

≲
∑

K∈Th

h
2min{q+1,n}−2
K

q2n−3
||E pj ||2Hn(K). (49)

5.1 Error estimates

First of all let us consider (uh, (pkh)k∈J) solution of (30) and (u, (pk)k∈J) solution of (14). To extend the bilinear
forms of (30) to the space of continuous solutions we need further regularity requirements. We assume element-wise
H2-regularity of the displacement and pressures together with the continuity of the normal stress and fluid flow
across the interfaces F ∈ F I

h for all time t ∈ (0, T ]. In this context, we need to provide additional boundedness
results for the functionals of the formulation:

Proposition 5. Let Assumption 2 be satisfiedThen:

|AE(v,wh)| ≲ |||v|||DG,E||wh||DG,E, ∀v ∈ H2(Th;Rd),∀wh ∈ VDG
h (50)

|APj
(pj , qjh)| ≲ |||pj |||DG,Pj

||qjh||DG,Pj
, ∀pj ∈ H2(Th),∀qjh ∈ QDG

h (51)

|Bk(qkh,v)| ≲ |||v|||DG,E||qkh|| ∀v ∈ H2(Th;Rd), ∀qkh ∈ QDG
h (52)

|Bk(qk,vh)| ≲ ||v||DG,E|||qkh|||DG,Pj
∀vh ∈ VDG

h , ∀qk ∈ H2(Th) (53)

The proof of these relations could be found in [23, 22, 32].

Theorem 2. Let Assumptions 1 and 2 be fulfilled and let (u, (pj)j∈J) be the solution of (14) for any t ∈ (0, T ] and
let it satisfy the following additional regularity requirements:

u ∈ C1((0, T ];Hm(Ω;Rd)) pj ∈ C1((0, T ];Hn(Ω)) ∀j ∈ J (54)
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for m,n ≥ 2. Let (uh, (pjh)j∈J) be the solution of (31) for any t ∈ (0, T ]. Then, the following estimate holds:

||| (eu, (epj )j∈J) (t)|||2ε ≲
∑

K∈Th

h
2min{p+1,m}−2
K

p2m−3

[
||Eu(t)||2Hm(K,Rd) +

∫ t

0

||E u̇(s)||2Hm(K,Rd)ds+

∫ t

0

||E ü(s)||2Hm(K,Rd)ds

]

+
∑

K∈Th

h
2min{q+1,n}−2
K

q2n−3

∑
j∈J

[
||E pj(t)||2Hn(K) +

∫ t

0

||E pj(s)||2Hn(K)ds+

∫ t

0

||E ṗj(s)||2Hn(K)ds

]
,

(55)

where eu = u− uh and epj = pj − pjh for any j ∈ J .

Proof. Subtracting the resulting equation from problem (30), we obtain:

ρ (ü− üh,vh)Ω +AE(u− uh,vh) +
∑
k∈J

(
− Bk(pk − pkh,vh) + ck (ṗk − ṗkh, qkh)Ω

+APk
(pk − pkh, qkh) + Bk (qkh, u̇− u̇h) + Ck ((pj − pjh)j∈J , qkh)

)
= 0.

We define the errors for the displacement euh = uI−uh and euI = u−uI. Analogously, for the pressures epk

h = pkI−pkh
and epk

I = pk − pkI. Then we can rewrite the equation above as follows:

ρ (ëuh, ė
u
h)Ω +AE(e

u
h, ė

u
h) +

∑
k∈J

(
− Bk(e

pk

h , ė
u
h) + ck (ė

pk

h , e
pk

h )
Ω
+ APk

(epk

h , e
pk

h ) + Bk (e
pk

h , ė
u
h)

+Ck

(
(e

pj

h )j∈J , e
pk

h

))
= ρ (ëuI , ė

u
h)Ω + AE(e

u
I , ė

u
h) +

∑
k∈J

(
− Bk(e

pk

I , ė
u
h) + ck (ė

pk

I , e
pk

h )
Ω

+APk
(epk

I , e
pk

h ) + Bk (e
pk

h , ė
u
I ) + Ck

(
(e

pj

I )j∈J , e
pk

h

))

Due to the symmetry of scalar product and AE we can rewrite the problem:

ρ

2

d

dt
(ėuh, ė

u
h)Ω +

1

2

d

dt
AE(e

u
h, e

u
h) +

∑
k∈J

(
ck
2

d

dt
(epk

h , e
pk

h )
Ω
+ APk

(epk

h , e
pk

h ) + Ck

(
(e

pj

h )j∈J , e
pk

h

))

=ρ (ëuI , ė
u
h)Ω +

d

dt
AE(e

u
I , e

u
h)− AE(ėuI , e

u
h) +

∑
k∈J

(
− d

dt
Bk(e

pk

I , e
u
h) + Bk(

˙epk

I , e
u
h) + ck (ė

pk

I , e
pk

h )
Ω

+Bk(e
pk

h , ė
u
I ) + APk

(epk

I , e
pk

h ) + Ck

(
(e

pj

I )j∈J , e
pk

h

))
.

Now we integrate between 0 and t. We remark that euh(0) = 0,ėuh(0) = 0 and epk

h = 0 for each k ∈ J . Then, by
proceeding in an analogous way to what we did in the proof of Theorem 1, we obtain:

||| (euh, (e
pk

h )k∈J) (t)|||2ε ≲AE(e
u
I (t), e

u
h(t))−

∑
k∈J

Bk(e
pk

I (t), euh(t)) +

∫ t

0

ρ (ëuI (s), ė
u
h(s))Ω −

∫ t

0

AE(ė
u
I (s), e

u
h(s))

+
∑
k∈J

(∫ t

0

Bk(
˙epk

I (s), euh(s)) +

∫ t

0

ck (ė
pk

I (s), epk

h (s))
Ω
+

∫ t

0

Bk(e
pk

h (s), ėuI (s))

+

∫ t

0

APk
(epk

I (s), epk

h (s)) +

∫ t

0

Ck

(
(e

pj

I (s))j∈J , e
pk

h (s)
))

.
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Then exploiting the continuity relations in Proposition 5:

||| (euh, (e
pk

h )k∈J) (t)|||2ε ≲|||euI (t)|||DG,E||euh(t)||DG,E +
∑
k∈J

|||epk

I (t)|||DG,Pj
||euh(t)||DG,E

+

∫ t

0

||√ρëuI (s)|| ||
√
ρėuh(s)||+

∫ t

0

|||ėuI (s)|||DG,E||euh(s)||DG,E

+
∑
k∈J

(∫ t

0

|||ėpk

I (s)|||DG,Pj
||euh(s)||DG,E +

∫ t

0

||
√
ckė

pk

I (s)|| ||
√
cke

pk

h (s)||

+

∫ t

0

(||epk

h (s)||DG,Pj
|||ėuI (s)|||DG,E +

∫ t

0

||epk

h (s)||DG,Pj
|||epk

I (s)|||DG,Pj

+
∑
j∈J

∑
k∈J

∫ t

0

B||c−
1
2

j e
pj

I (s)|| ||
√
cke

pk

h (s)||

)
.

Then using the definition of the energy norm and both Hölder and Young inequalities we obtain:

||| (euh, (e
pk

h )k∈J) (t)|||2ε ≲ |||euI (t)|||2DG,E +
∑
k∈J

|||epk

I (t)|||2DG,Pj
+

∫ t

0

(
|||ėuI (s)|||2DG,E +

∑
k∈J

|||epk

I (s)|||2DG,Pk

)

+

∫ t

0

|| (euh, (e
pk

h )k∈J) (s)||ε

(
||√ρëuI (s)||+ |||ėuI (s)|||DG,E +

∑
k∈J

(
|||ėpk

I (s)|||DG,Pj
+ ||

√
ckė

pk

I (s)||+ ||c−
1
2

k epk

I (s)||
))

.

Then by application of the Grönwall lemma [16], we obtain:

||| (euh, (e
pk

h )k∈J) (t)|||2ε ≲ |||euI (t)|||2DG,E +
∑
k∈J

|||epk

I (t)|||2DG,Pj
+

∫ t

0

(
|||ėuI (s)|||2DG,E +

∑
k∈J

|||epk

I (s)|||2DG,Pk

)

+

∫ t

0

(
||√ρëuI (s)||2 + |||ėuI (s)|||2DG,E +

∑
k∈J

(
|||ėpk

I (s)|||2DG,Pj
+ ||

√
ckė

pk

I (s)||2 + ||c−
1
2

k epk

I (s)||2
))

.

Then by using the relations of Proposition 4, we find:

|||
(
euh, (e

pj

h )j∈J

)
(t)|||2ε ≲

∑
K∈Th

h
2min{p+1,n}−2
K

p2n−3

[
||Eu(t)||2Hn(K,Rd) +

∫ t

0

||E u̇(s)||2Hn(K,Rd)ds+

∫ t

0

||E ü(s)||2Hn(K,Rd)ds

]

+
∑

K∈Th

h
2min{q+1,n}−2
K

q2n−3

∑
j∈J

[
||E pj(t)||2Hn(K) +

∫ t

0

||E pj(s)||2Hn(K)ds+

∫ t

0

||E ṗj(s)||2Hn(K)ds

]
.

Then, we use the triangular inequality to estimate the discretization error.

||| (eu, (epj )j∈J) (t)|||2ε ≤ |||
(
euh, (e

pj

h )j∈J

)
(t)|||2ε + |||

(
euI , (e

pj

I )j∈J

)
(t)|||2ε

Finally, by applying the result in Equation (5.1) and the interpolation error, the thesis follows.

6 Time discretization

By fixing a basis for the discrete spaces (φn)
Nu
n=0 ⊂ VDG

h and (ψn)
Np

n=0 ⊂ QDG
h , where Nu = dim(VDG

h ) and
Np = dim(QDG

h ), such that:

uh(t) =

Nu∑
n=0

Un(t)φn pkh(t) =

Np∑
n=0

Pkn(t)ψn ∀k ∈ J. (56)

We connect the coefficients of the expansion of uh and pjh for any j ∈ J in such a basis in the vectors U ∈ R3Nu

and P k ∈ RNp for any k ∈ J . By using the same basis, we are able to define the following matrices:

[Mu]ij = (ρφj ,φi)Ω (Elasticity mass matrix) [Ku]ij = AE(φj ,φi) (Elasticity stiffness matrix)
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[Mk]ij = (ckψj , ψi)Ω (k−th pressure mass matrix) [Kk]ij = APk
(ψj , ψi) (k−th pressure stiffness matrix)

[Bk]ij = Bk(ψj ,φi) (Pressure− displacement coupling matrix)

[Ckl]ij = (βklψj , ψi)Ω (Pressure− pressure coupling matrix)

[Ce
k]ij = (βe

kψj , ψi)Ω (Pressure external− coupling matrix)

Moreover, we define the forcing terms:

[F ]j = F (φj) [Gk]j = Gk(ψj)

By exploiting all these definitions, we rewrite the problem (30) in algebraic form:

MuÜ(t) + KuU(t)−
∑
k∈J

B⊤
k P k(t) = F (t), t ∈ (0, T )

MkṖ k(t) + BkU̇(t) + KkP k(t) +
∑
j∈J

Ckj(P k(t)− P j(t)) + Ce
kP k(t) = Gk(t), t ∈ (0, T ) ∀k ∈ J

U(0) = U0

U̇(0) = V 0

P k(0) = P k0, ∀k ∈ J

(57)

Then after the introduction of the vector variable P = [P j1 ,P j2 , ...,P jn ]
⊤ with j1, j2, ..., jn ∈ J , we can construct

the following matrices:

B =


Bj1

Bj2
...

Bjn

 , Mp =


Mj1 0 · · · 0
0 Mj2 · · · 0
...

...
. . .

...
0 0 · · · Mjn

 , G =


Gj1

Gj2
...

Gjn

 ,

Kp =



Kj1 +
∑
i∈J

Cj1i +Ce
j1 −Cj1j2 · · · −Cj1jn

−Cj2j1 Kj2 +
∑
i∈J

Cj2i +Ce
j2 · · · −Cj2jn

...
...

. . .
...

−Cjnj1 −Cjnj2 · · · Kjn +
∑
i∈J

Cjni +Ce
jn


,

Then, we write the Equation (57) in a compact form, as follows:

MuÜ(t) + KuU(t)− B⊤P (t) = F (t), t ∈ (0, T )

MpṖ (t) + BU̇(t) + KpP (t) = G(t), t ∈ (0, T )

U(0) = U0 U̇(0) = V 0

P (0) = P 0

(58)

Let now construct a temporal discretization of the interval (0, T ) by constructing a partition of N intervals
0 = t0 < t1 < ... < tN = T . We assume a constant timestep ∆t = tn+1− tn for each n = 0, ..., N . Let now construct
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a discretized formulation by means of the Newmark β-method for the first equation. We introduce a velocity vector
Zn, and an acceleration one An. Then, we have the following equations to be solved at each timestep tn:

(
1

β∆t2
Mu +Ku

)
Un+1 − B⊤P n+1 = F n+1 +

1

β∆t2
MuU

n +
1

β∆t
MuZ

n +
1− 2β

2β
MuA

n

An+1 =
1

β∆t2
(Un+1 −Un)− 1

β∆t
Zn +

2β − 1

2β
An

Zn+1 = Zn +∆t(γAn+1 + (1− γ)An)

(59)

We couple the problem above with a θ-method for the pressure equations. To obtain the formulation we consider
first the definition of the velocity Z = U̇ at time-continuous level, which gives us the following expression:

MpṖ (t) + BZ(t) + KpP (t) = G(t), t ∈ (0, T ). (60)

Using this form of the equation, the derivation of the discretized equation naturally follows:

MpP
n+1 =MpP

n +∆tθ(Gn+1 − BZn+1 −KpP
n+1) + ∆t(1− θ)(Gn − BZn −KpP

n) =

=MpP
n +∆tθ(Gn+1 − γ

β∆tB(U
n+1 −Un)− (1− γ

β )BZ
n − (1− γ

2β )∆tBA
n −KpP

n+1)

+∆t(1− θ)(Gn − BZn −KpP
n)

(61)

The final algebraic discretized formulation reads as follows:

(
1

β∆t2
Mu +Ku

)
Un+1 − B⊤P n+1 = F n+1 +

1

β∆t2
MuU

n +
1

β∆t
MuZ

n +
1− 2β

2β
MuA

n(
1

∆t
Mp + θKp

)
P n+1 +

θγ

β∆t
BUn+1 =θGn+1 + (1− θ)Gn +

(
1

∆t
Mp − (1− θ)Kp

)
P n +

θγ

β∆t
BUn

+

(
θγ

β
− 1

)
BZn − θ

(
1− γ

2β

)
∆tBAn

An+1 =
1

β∆t2
(Un+1 −Un)− 1

β∆t
Zn +

2β − 1

2β
An

Zn+1 = Zn +∆t(γAn+1 + (1− γ)An)

(62)

In order to rewrite Equation (62) in matrix form, we introduce the following matrices:

A1 =



Mu

β∆t2
+Ku −B⊤ 0 0

θγ

β∆t
B

Mp

∆t
+ θKp 0 0

0 0 I −∆tγI

− I

β∆t2
0 0 I


Xn =


Un

P n

Zn

An



A2 =



Mu

β∆t2
−B⊤ Mu

β∆t

1− 2β

2β
Mu

θγB

β∆t

Mp

∆t
− θ̃Kp

(
θγ

β
− 1

)
B

(
θ − θγ

2β

)
∆tB

0 0 I ∆t(1− γ)I

− I

β∆t2
0 − I

β∆t

2β − 1

2β
I


Sn+1 =


F n+1

θGn+1 + θ̃Gn

0
0



Finally, we the algebraic formulation reads as follows:

A1X
n+1 = A2X

n + Sn+1 n > 0. (63)

7 Numerical results

In this section, we aim at validating the accuracy of the method practice. All simulations are carried out considering
the following choice of Newmark parameters β = 0.25 and γ = 0.5; moreover, we choose θ = 0.5.
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Parameter Value Parameter Value
ρ 1.00 [Kg/m3] kj (j = 1, ..., 4) 1.00 [m2]
λ 1.00 [Pa] µj (j = 1, ..., 4) 1.00 [Pa · s]
µ 1.00 [Pa] β12, β34 1.00 [m2/(N · s)]

αj (j = 1, ..., 4) 0.25 [−] β13, β14, β23, β24 0.00 [m2/(N · s)]
cj (j = 1, ..., 4) 0.10 [m2/N] βe

j (j = 1, ..., 4) 0.00 [m2/(N · s)]

Table 1: Physical parameter values used in the 3D simulation.

h
P1 − P2 P1 − P1

||eu||DG,e rocuDG

∑
k∈J ||√ckepk || rocpL2 ||eu||DG,e rocuDG

∑
k∈J ||√ckepk || rocpL2

0.866 1.97× 10−2 - 9.52× 10−3 - 7.26× 10−2 - 2.01× 10−2 -
0.433 3.69× 10−3 2.42 2.56× 10−3 1.89 2.87× 10−2 1.34 5.56× 10−3 1.85
0.217 6.53× 10−4 2.50 6.23× 10−4 2.04 1.06× 10−2 1.43 1.42× 10−3 1.94
0.108 1.44× 10−4 2.18 1.49× 10−4 2.06 4.43× 10−3 1.26 3.67× 10−4 1.98

h
P2 − P3 P2 − P2

||eu||DG,e rocuDG

∑
k∈J ||√ckepk || rocpL2 ||eu||DG,e rocuDG

∑
k∈J ||√ckepk || rocpL2

0.866 4.26× 10−3 - 9.42× 10−4 - 1.97× 10−2 - 2.28× 10−3 -
0.433 3.91× 10−4 3.44 1.17× 10−4 3.00 3.69× 10−3 2.41 2.24× 10−4 3.34
0.217 4.02× 10−5 3.28 1.38× 10−5 3.10 6.54× 10−4 2.49 1.89× 10−5 3.56
0.108 6.23× 10−6 2.70 1.64× 10−6 3.07 1.47× 10−4 2.15 1.80× 10−7 3.38

h
P3 − P4 P3 − P3

||eu||DG,e rocuDG

∑
k∈J ||√ckepk || rocpL2 ||eu||DG,e rocuDG

∑
k∈J ||√ckepk || rocpL2

0.866 7.79× 10−4 - 1.88× 10−4 - 4.26× 10−3 - 2.34× 10−4 -
0.433 3.44× 10−5 4.50 1.17× 10−5 4.02 3.91× 10−4 3.44 1.95× 10−5 3.58
0.217 2.00× 10−6 4.10 7.31× 10−7 3.99 4.02× 10−5 3.28 1.37× 10−6 3.84
0.108 1.63× 10−7 3.62 4.59× 10−8 3.99 6.22× 10−6 2.70 8.80× 10−8 3.96

Table 2: Error estimates and convergence rates for the 3D test case.

7.1 Test case 1: convergence analysis in a 3D case

For the numerical test in this section, we use the FEniCS finite element software [33] (version 2019). We use a cubic
domain with structured tetrahedral mesh. Concerning the temporal discretization, we use a timestep ∆t = 10−5

and a maximum time T = 5 × 10−3. We consider the following manufactured exact solution for a case with four
pressure fields:

u(x, y, z, t) = sin(πt)

− cos(πx) cos(πy)
sin(πx) sin(πy)

z


p1(x, y, z, t) = p3(x, y, z, t) = π sin(πt)(cos(πy) sin(πx) + cos(πx) sin(πy))z

p2(x, y, z, t) = p4(x, y, z, t) = π sin(πt)(cos(πy) sin(πx)− cos(πx) sin(πy))z

(64)

A fundamental assumption in this section is the isotropic permeability of the pressure fields Kj = kjI for j = 1, ..., 4.
We report the values of the physical parameters we use for this simulation in Table 1.

In Table 2 we report the computed errors in both the DG and L2 norms, together with the computed rates of
convergence (roc) as a function of the mesh size h. The results reported in Table 2 left (right) have been obtained
with polynomials of degree q = 1, 2, 3 for the pressure fields and with polynomials of degree q (q + 1) for the
displacement one. We observe that the theoretical rates of convergence are respected both in the cases of Pq +Pq+1

elements and Pq + Pq ones. Indeed, the rate of convergence of the displacement in DG−norm is exactly the degree
of approximation of the displacement in all the cases. At the same time, the L2−norm rates of convergence for the
pressures are equal to q + 1. This fact is coherent with our energy stability estimate, in the first case, while we
observe a superconvergence in the case of L2−norm in pressure with Pq −Pq elements. The rate of convergence can
be observed also in Figure 3.

A convergence analysis concerning the order of discretization is also performed. The results are reported in
Figure 4.
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Figure 3: Test case 1: computed errors and convergence rates.

7.2 Test case 2: convergence analysis on 2D polygonal grids

The first numerical test we perform is a two-dimensional setting on a polygonal agglomerated grid. Starting from
structural Magnetic Resonance Images (MRI) of a brain from the OASIS-3 database [34] we segment the brain by
means of Freesurfer [35]. After that, we construct a mesh of a slice of the brain along the frontal plane by means
of VMTK [36].

The triangular resulting mesh is composed of 14 372 triangles. However, the generality of the PolyDG method
allows us to use mesh elements of any shape, for this reason, we agglomerate the mesh by using ParMETIS [37] and
we obtain a polygonal mesh of 51 elements, as shown in Figure 5. This mesh is then used to perform a convergence
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Figure 4: Test case 1: computed errors against the order of DG approximation.

Parameter Value Parameter Value
ρ 1000.00 [Kg/m3] k1 = k2 3.50× 10−11 [m2]
λ 505.00 [Pa] µ 216.00 [Pa]

µ1 = µ2 3.50× 10−3 [Pa · s] β12 10−7 [m2/(N · s)]
α1 0.49 [−] α2 0.51 [−]

c1 = c2 10−6 [m2/N] βe
1 = βe

2 0.00 [m2/(N · s)]

Table 3: Physical parameter values used in the 2D brain simulation.

Figure 5: Test case 2: computed solution (PolyDG of order 6) at the final time

analysis, by varying the polynomial order.
To test the convergence we consider the following exact solution for a case with two pressure fields (|J | = 2):

u(x, y, t) = sin(πt)

[
− cos(πx) cos(πy)
sin(πx) sin(πy)

]
,

p1(x, y, t) = 104π sin(πt)(cos(πy) sin(πx) + cos(πx) sin(πy)),

p2(x, y, t) = 104π sin(πt)(cos(πy) sin(πx)− cos(πx) sin(πy)).

(65)

Concerning the time discretization, we use a timestep ∆t = 10−7 and a maximum time T = 10−5. The forcing
terms are then constructed to fulfil the continuous problem. The simulation is performed considering isotropic
permeability Kj = kjI for j = 1, 2 and the values of the physical parameters used in this simulation are reported
in Table 3. These values are chosen to be comparable in dimensions to the parameters used in patient-specific
simulations in literature [38, 39].

In Figure 5, we report the computed solution using the PolyDG of order 6 both in displacement and pressures at
the final time. We can notice that the exact solution is smoothly approximated using the polygonal mesh. Unless
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Figure 6: Test case 2: computed errors against the order of PolyDG approximation on the brain section.

Figure 7: Test case 3: brain 3D mesh. An external view of the mesh (on the left), an internal view with the
ventricles in red (in the middle) and a visualization of ventricles boundary in red and skull in trasparency (on the
right).

the mesh contains few elements we are able to achieve the solution.
We report in Figure 6, the convergence results for this test case. We can observe a spectral convergence increasing

the polynomial order q. Finally, we observe that after q = 5 we arrive to the lower bound of the pressure errors.
This is due to the temporal discretization timestep we choose and it is coherent with the theory of space-time
discretization errors.

7.3 Test case 3: simulation on a brain geometry

Finally, we perform a three-dimensional simulation starting from a structural MRI from the OASIS-3 database [34]
and we segment it employing Freesurfer [35] and 3DSlicer [40]. Finally, the mesh is constructed using the SVMTK
library [41]. The tetrahedral resulting mesh is composed of 81’194 elements. The problem is solved by means of a
code implemented in FEniCS finite element software [33] (version 2019).

In this case we refer to the mathematical modelling of [6], which proposed the simulation of four different fluid
networks: arterial blood (A), capillary blood (C), venous blood (V) and cerebrospinal/extracellular fluid (E). In
this context, the boundary condition are constructed by dividing the boundary of the domain into the ventricular
boundary ΓVent and the skull ΓSkull, as visible in Figure 7.
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Figure 8: Test case 3: solution of the MPET dynamic system in the patient-specific geometry at t = 0.25 s. From
left to right: pA, pE and |u|.

The discretization is based on a DG method in space with polynomials of order 2 for each solution field.
Moreover, we apply a temporal discretization with ∆t = 10−3 s by considering a heartbeat of duration 1s. Indeed,
we apply periodic boundary conditions to the problem. Concerning the elastic movement, we consider a fixed skull,
while the ventricles boundary can deform under the stress of the CSF inside the ventricles:

u = 0 on ΓVent, σE(u)n−
∑
j∈J

αjpjn = −p̃Vent
E n on ΓSkull. (66)

Concerning the arterial blood, we impose sinusoidal pressure on the skull, to mimic the pressure variations due to
the heartbeat, with a mean value of 70mmHg. At the same time, we do not allow inflow/outflow of blood from the
ventricular boundary:

pA = 70 + 10 sin(2πt) mmHg, on ΓVent, ∇pA · n = 0, on ΓSkull. (67)

Concerning the capillary blood, we do not allow any inflow/outflow of blood from the boundary:

∇pC · n = 0, on ∂Ω. (68)

For the venous blood, we impose the pressure value at the boundary:

pV = 6 mmHg, on ∂Ω. (69)

Finally, we assume that the CSF can flow from the parenchyma to the ventricles and we impose a pulsatility around
a baseline of 5 mmHg. Indeed we impose:

pE = 5 + (2 + 0.012) sin(2πt) mmHg on ΓVent, pE = 5 + 2 sin(2πt) mmHg on ΓSkull. (70)

We add the discharge term to the venous pressure equation with a parameter βe
V = 10−6 m2/(N · s) and we consider

an external veins pressure p̃Veins = 6 mmHg. To solve the algebraic resulting problem, we apply a monolithic
strategy, by using an iterative GMRES method, with a SOR preconditioner.

In Figure 8 we report the numerical solution computed at time t = 0.25s with the parameters from [13]. As
we can observe, we obtain maximum values of displacement on the ventricular boundary. The pressure values
obtained are coherent with the imposed boundary conditions and the largest gradients are related to the arterial
compartment. Concerning venous and capillary pressures, we do not report the maps of values inside the brain.
Indeed, the computed values are near to spatially constant at 6 mmHg and 38 mmHg, respectively. This is coherent
to what is found in similar studies [11].

8 Conclusions

In this work, we have introduced a numerical polyhedral discontinuous Galerkin method for the solution of the
dynamic multiple-network poroelastic model in the dynamic version. We derived stability and convergence error
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estimates for arbitrary-order approximation. Moreover, we proposed a temporal discretization based on the coupling
of Newmark β-method for the second order equation and θ-method for the first order equations.

The numerical convergence tests were presented both in two and three dimensions. In particular, we presented
a test on a slice of brain, with an agglomerated polygonal mesh. These tests confirmed the theoretical results of
our analysis and the possibility to use this formulation to solve the problem on coarse polygonal meshes. Finally,
we performed a numerical simulation on a real 3D brain geometry.
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A Derivation of the weak formulation

Considering the momentum equation we can introduce a test function v ∈ V and write the weak formulation:∫
Ω

ρ
∂2u

∂t2
· v −

∫
Ω

∇ · σE(u) · v +
∑
k∈J

∫
Ω

αk∇pk · v =

∫
Ω

f · v ∀v ∈ V. (71)

Each component can be treated separately to reach:∫
Ω

ρ
∂2u

∂t2
· v =ρ

(
∂2u

∂t2
,v

)
Ω

,

∫
Ω

∇ · σE(u) · v =−
∫
Ω

σE(u) : ∇v +

∫
∂Ω

(σE(u) · n) · vdσ =

=− 2µ

∫
Ω

ε(u) : ∇v − λ

∫
Ω

(∇ · u)(∇ · v) +
∫
ΓN

σE(u) · n · vdσ

=− 2µ (ε(u), ε(v))Ω − λ (∇ · u,∇ · v)Ω + (σE(u) · n,v)ΓN
,

∫
Ω

αk∇pk · v =−
∫
Ω

αkpk(∇ · v) +
∫
∂Ω

αk(pkn · v)dσ

=− (αkpk,∇ · v)Ω + αk(pkn,v)ΓN
,

∫
Ω

f · v = (f ,v)Ω.

Finally, exploiting the Neumann boundary condition on the boundary ΓN for the momentum equation, we have:

(σE(u) · n,v)ΓN
−
∑
k∈J

αk(pkn,v)ΓN
=

(
σE(u) · n−

∑
k∈J

αkpkn,v

)
ΓN

= (hu,v)ΓN
,
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this identity leads us to the final weak formulation of the momentum equation:

ρ

(
∂2u

∂t2
,v

)
Ω

+ 2µ (ε(u), ε(v))Ω + λ (∇ · u,∇ · v)Ω −
∑
k∈J

(αkpk,∇ · v)Ω =

=(f ,v)Ω + (hu,v)ΓN
∀v ∈ V.

(72)

Substituting the definitions of the bilinear forms into the equation (72) we obtain:

ρ

(
∂2u

∂t2
,v

)
Ω

+ a(u,v)−
∑
k∈J

bk(pk,v) = F (v) ∀v ∈ V. (73)

The other conservation equations in Equation (5) can be derived following the same procedure. For j ∈ J , we
multiply by a test function qj ∈ Qj and we integrate over the domain Ω:

cj

∫
Ω

∂pj
∂t

qj +

∫
Ω

∇ ·
(
αj
∂u

∂t
− Kj

µj
∇pj

)
+
∑
k∈J

∫
Ω

βjk(pj − pk)qj +

∫
Ω

+βe
jpjqj =

∫
Ω

gjqj ∀qj ∈ Qj . (74)

We treat each component separately:∫
Ω

cj
∂pj
∂t

qj =

(
cj
∂pj
∂t

, qj

)
Ω

,

∫
Ω

∇ ·
(
αj
∂u

∂t

)
qj =αj

(
∇ ·
(
∂u

∂t

)
, qj

)
Ω

,

∫
Ω

∇ ·
(
Kj

µj
∇pj

)
qj =−

∫
Ω

Kj

µj
∇pj · ∇qj +

∫
∂Ω

(
Kj

µj
∇pj

)
· qjn dσ =

=−
(
Kj

µj
∇pj ,∇qj

)
Ω

+

(
Kj

µj
∇pj · n, qj

)
Γj
N

=

=− Kj

µj
(∇pj ,∇qj)Ω + (hj , qj)Γj

N
,

∫
Ω

βjk(pj − pk)qj =(βjkpj , qj)Ω − (βjkpk, qj)Ω,

∫
Ω

βe
jpjqj =(βe

jpj , qj)Ω,

∫
Ω

gjqj =(gj , qj)Ω.

We sum up the terms and we obtain the following equation:

cj

(
∂pj
∂t

, qj

)
Ω

+αj

(
∇ ·
(
∂u

∂t

)
, qj

)
Ω

+
Kj

µj
(∇pj ,∇qj)Ω +

∑
k∈J

(βjkpj , qj)Ω−

−
∑
k∈J

(βjkpk, qj)Ω + (βe
jpj , qj)Ω = (gj , qj)Ω + (hj , qj)Γj

N
∀qj ∈ Qj ∀j ∈ J.

(75)

Introducing now the definitions of the bilinear forms, we can rewrite problem (75) in an abstract form:

cj

(
∂pj
∂t

, qj

)
Ω

+ bj

(
qj ,

∂u

∂t

)
+ sj(pj , qj) + Cj ((pk)k∈J , qj) = Gj(qj) ∀qj ∈ Qj j ∈ J. (76)

Finally, the weak formulation of problem (5) reads:
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Find u(t) ∈ V and qj(t) ∈ Qj with j ∈ J such that ∀t > 0:

ρ

(
∂2u(t)

∂t2
,v

)
Ω

+ a(u(t),v)−
∑
k∈J

bk(pk(t),v) = F (v), ∀v ∈ V,

cj

(
∂pj
∂t

, qj

)
Ω

+ bj

(
qj ,

∂u

∂t

)
+ sj(pj , qj) + Cj ((pk)k∈J , qj) = Gj(qj), ∀qj ∈ Qj j ∈ J,

u(0) = u0, in Ω,

∂u

∂t
(0) = v0, in Ω,

pj(0) = pj0, in Ω j ∈ J,

u(t) = uD(t), on ΓD,

qj(t) = qDj (t), on Γj
D j ∈ J.

(77)

B Derivation of PolyDG semi-discrete formulation

In this section, we derive the PolyDG formulation of the Equation (14). First, we rewrite the momentum equation
in a Discontinuous Galerkin (DG) framework. We proceed as usual to obtain:∫
Ω

∇ · σE(uh) · vh =
∑

K∈Th

∫
K

∇ · σE(uh) · vh

=−
∑

K∈Th

∫
K

σE(uh) : ∇vh +
∑

K∈Th

∫
∂K

(σE(uh) · n) · vhdσ =

=−
∫
Ω

σE(uh) : ∇hvh +
∑

F∈F I
h∪FD

h

∫
F

{{σE(uh)}} : [[[vh]]]dσ +
∑

F∈F I
h∪FD

h

∫
F

[[[uh]]] : {{σE(vh)}}dσ+

−
∑

F∈F I
h∪FD

h

∫
F

η[[[uh]]] : [[[vh]]]dσ +

∫
ΓN

(σE(uh) · n) · vhdσ ∀vh ∈ VDG
h

Moreover, we have to treat also the pressure component of the momentum for each fluid network j ∈ J :∫
Ω

αj∇pjh · vh =

∫
Ω

αj∇ · (pjhI) · vh =

=−
∑

K∈Th

∫
K

αjpjhI : ∇vh +
∑

K∈Th

∫
∂K

αj(pjhI · n) · vhdσ =

=−
∫
Ω

αjpjhI : ∇hvh +
∑

F∈F I
h∪F

Dj
h

∫
F

αj{{pjhI}} : [[[vh]]]dσ +

∫
ΓN

αj(pjhI · n) · vhdσ =

=−
∫
Ω

αjpjh(∇h · vh) +
∑

F∈F I
h∪F

Dj
h

∫
F

αj{{pjhI}} : [[[vh]]]dσ +

∫
ΓN

αj(pjhI · n) · vhdσ ∀vh ∈ VDG
h

By exploiting the definitions of the bilinear forms, we arrive at the PolyDG semi-discrete formulation of the mo-
mentum equation for any t ∈ (0, T ]:

ρ (üh(t),vh)Ω + AE(uh(t),vh)−
∑
k∈J

Bk(pkh(t),vh) = F (vh) ∀vh ∈ VDG
h . (78)

Following similar arguments, we can rewrite the continuity equations for the fluid networks, from the Darcy flux
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component:

−
∫
Ω

∇ ·
(
Kj

µj
∇pjh

)
qjh =−

∑
K∈Th

∫
K

∇ ·
(
Kj

µj
∇pjh

)
qjh =

=
∑

K∈Th

∫
K

Kj

µj
∇pjh · ∇qjh −

∑
K∈Th

∫
∂K

(
Kj

µj
∇pjh · n

)
qjh =

=

∫
Ω

Kj

µj
∇hpjh · ∇hqjh −

∫
Γj
N

hjqjh −
∑

F∈F I
h∪F

Dj
h

∫
F

1

µj
{{Kj∇hpjh}} · [[qjh]]+

−
∑

F∈F I
h∪F

Dj
h

∫
F

1

µj
{{Kj∇hqjh}} · [[pjh]] +

∑
F∈F I

h∪F
Dj
h

∫
F

ζj [[pjh]] · [[qjh]] qjh ∈ QDG
h ,

The continuity equation reads as for any t ∈ (0, T ]:

cj (ṗjh(t), qjh)Ω + Bj (qjh, u̇h(t)) + APj
(pjh(t), qjh) + Cj ((pkh)k∈J , qjh) = Gj(qjh) ∀qjh ∈ QDG

h . (79)

To conclude the PolyDG semi-discrete formulation of the MPET problem reads as:

Find uh(t) ∈ VDG
h and pjh(t) ∈ QDG

h with j ∈ J such that ∀t > 0:

ρ (üh(t),vh)Ω + AE(uh(t),vh)−
∑
k∈J

Bk(pkh(t),vh) = F (vh), ∀vh ∈ VDG
h

cj (ṗjh(t), qjh)Ω + Bj (qjh, u̇h(t)) + APj (pjh(t), qjh) + Cj ((pkh)k∈J , qjh) = Gj(qjh), ∀qjh ∈ QDG
h

uh(0) = u0h, in Ωh

u̇h(0) = v0h, in Ωh

pjh(0) = pj0h, in Ωh

uh(t) = uD
h (t), on ΓD

qjh(t) = qDjh(t), on Γj
D

(80)
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