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Abstract

Within a structural health monitoring (SHM) framework, we propose a simulation-
based classification strategy to move towards online damage localization. The proce-
dure combines parametric Model Order Reduction (MOR) techniques and Fully Con-
volutional Networks (FCNs) to analyze raw vibration measurements recorded on the
monitored structure. First, a dataset of possible structural responses under varying
operational conditions is built through a physics-based model, allowing for a finite set
of predefined damage scenarios. Then, the dataset is used for the offline training of
the FCN. Because of the extremely large number of model evaluations required by the
dataset construction, MOR techniques are employed to reduce the computational bur-
den. The trained classifier is shown to be able to map unseen vibrational recordings, e.g.
collected on-the-fly from sensors placed on the structure, to the actual damage state,
thus providing information concerning the presence and also the location of damage.
The proposed strategy has been validated by means of two case studies, concerning a
2D portal frame and a 3D portal frame railway bridge; MOR techniques have allowed
us to respectively speed up the analyses about 30 and 420 times. For both the case
studies, after training the classifier has attained an accuracy greater than 85%.

Keywords: structural health monitoring, deep learning, reduced order models, fully
convolutional networks, damage localization.

1 Introduction

Physics-based models are derived from first principles expressing the laws of nature,
and from accurate and efficient numerical methods for their approximation, such as Finite
Elements (FE). Dual to the physics-based paradigm is the data-driven paradigm, according
to which laws and patterns governing complex data systems are unveiled by using statistical
tools, among which Machine Learning (ML) stands out. Physics-based and data-driven
paradigms are not mutually exclusive, even if in the past they were mostly applied separately.
Indeed, when dealing with data assimilation, data-driven modelling might be exploited to
establish a link between physics-based models and experimental data [1, 2]. Structural
Health Monitoring (SHM) is one of the research fields in which this combination is more
promising [3].
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SHM aims at detecting, locating and quantifying the inception and propagation of dam-
age in a structure by analysing data acquired through pervasive sensor networks [4]. As said,
the above paradigms yield two frameworks in SHM: the model-based and the data-driven
approaches. Model-based approaches deal with the monitoring of civil infrastructures by
relying on the update of a numerical model (e.g. through Kalman filters [5, 6, 7] or opti-
mization procedures [8]). They enable a mechanical intuition of the structural degradation
process and the forecasting of the system evolution (prognosis). On the other hand, model-
based approaches hardly manage to deal with the great amount of (noisy) data acquired
through sensor networks. For this reason, data-driven approaches have become more and
more widespread [9, 10].

Among data-driven approaches, we can distinguish supervised [11] and unsupervised
[12, 13, 14, 15, 16] methods. Supervised methods employ labeled data referring both to the
undamaged condition, assumed as baseline, and to the damage scenarios possibly affecting
the structure. Unsupervised methods rely only on unlabeled data collected from the un-
damaged condition. When coming to damage localization and quantification, supervised
methods are more powerful, although they feature an obvious drawback: experimental data
referring to possible damage conditions of the structure are, a priori, not available.

To cope with this issue, model-based and data-driven approaches are combined by intro-
ducing a physics-based model to simulate the effect of damage on the dynamic response of
the structure. Specifically, SHM is approached as a classification problem [17] and different
damage scenarios, featuring a range of damage classes, are numerically simulated and used
as dataset to train a ML-based classifier. This approach is called Simulation-Based Clas-
sification (SBC) [18, 19, 20]. To be effective, the construction of the dataset should take
into account the effect of varying operational and environmental conditions. In this respect,
Model Order Reduction (MOR) techniques for parametrized systems, such as the Reduced
Basis (RB) method [21], can be exploited to speed up the generation of the dataset, thus re-
placing the solution of a high-fidelity, Full Order Model (FOM) with a cheaper, yet accurate,
approximation obtained through a Reduced Order Model (ROM). The RB method provides
a low-dimensional approximation of the set of solutions of the FOM, within a prescribed
parameters range. It combines a handful of FOM solutions (or snapshots) computed for
a set of parameter values to generate a low dimensional space exploiting, e.g., the Proper
Orthogonal Decomposition (POD). After the ROM has been built (offline), the associated
approximation for the input parameters within the range of interest can be obtained (online)
in an almost inexpensive way.

In this paper, a ML-based classifier has been designed by using concepts typical of Deep
Learning (DL), a branch of ML: the processing of raw data and the classification task are
enveloped through the minimization of a single loss function [22] by exploiting a suitable
Neural Network (NN) architecture [23, 24], called Fully Convolutional Network (FCN). This
latter is trained to assign labels (or classes) to input data given by vibrational measurements
of the monitored structure. The strength of this architecture, already successfully applied
in [25, 20], relies on the repeated convolution operations. It has been proven to be much
less resource-demanding than the feed-forward NN one; as it is also tailored to detect the
correlation within a time series and also across different time series, it looks appropriate
for SHM purposes as correlations are actually induced by the vibrations of the structure
excited by the external loads. Alternative architectures have been recently proposed to
approximate the solution of partial differential equations, by adopting the energy of the
system as a ”natural loss function for a machine learning method”, see [26].

While in the past MOR techniques [18, 19] and DL [24] have been explored separately,
here their use is advantageously combined to exploit the physical knowledge of the system,
to minimize the efforts and time required by data processing, but also to efficiently cope
with uncertainties (due to, e.g., the operational conditions of the structure). Moreover,
by constructing the training dataset and by training the classifier offline, we allow for an
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extremely efficient online monitoring of the structure, given that the trained NN only needs
to apply a fixed sequence of linear mappings and nonlinear (activation) functions to the
incoming vibration recordings to obtain the classification outcome.

The assessment of the proposed procedure has been done through two numerical case
studies addressing several operative issues, from the influence of the ROM reconstruction
error on the classification accuracy, to the effect of different measurement noise levels on
the procedure performance. Experimental data, still not investigated in this paper, will be
addressed in future works.

The reminder of the paper is organized as follows. In Sec. 2, we detail our methodology,
highlighting the stochastic treatment of the operational and damage conditions faced by the
structure, the construction of the (reduced order) physics-based model, and the setting of
the FCN. In Secs. 3 and 4 two numerical case studies are discussed, dealing with a two-
dimensional portal frame and an integral concrete portal frame railway bridge, respectively.
Conclusions, remarks and future developments are finally discussed in Sec. 5.

2 Methodology

In the following, we present our methodology. Specifically: in Sec. 2.1 we detail the
content of the dataset D used to train and validate the classifier G; in Sec. 2.2 we focus on
the high-fidelity FOM of the structure; in Sec. 2.3 we show how a ROM is next obtained
through a MOR technique; finally, in Sec. 2.4, we discuss the peculiarities of the employed
NN architecture.

2.1 Dataset definition

A set of N0 sensors is exploited to track the vibrational response of the monitored
structure [27, 28, 29]. Within the observation interval (0, T ), each sensor is assumed to
provide L measurements of the local displacement with fixed sampling rate, all collected in
the vector un ∈ RL (n = 1, . . . , N0); the same holds if accelerations ün are sensed. Here, we
consider only displacement measurements, even if (see Sec. 3-4) our methodology can cope
with acceleration recordings too. Obviously, both the duration T of the time interval and
the sampling rate must be chosen according to the structural frequencies to be handled and
to the sensor characteristics.

We call instance a set of recordings Ui =
[
ui1, . . . ,u

i
N0

]
∈ RL×N0 , i = 1, ..., I, related

to the same time interval. The dataset D, used to train and validate the classifier G, is
constructed by collecting I instances

D = {(U1, g1) , . . . , (UI , gI)}, (1)

where: I = Itr + Ival; gi labels the damage state (if any) in the structure.
The goal of the classifier G is to build the underlying mapping between Ui and gi [30].

During the training phase (see Sec. 2.4), Itr instances are employed by the classifier to learn
how to model this mapping [31], while Ival instances are later used to validate the learning
process by verifying that the training data are not simply memorized. Once trained, the
classifier should be able to map an unseen instance Ui, uniquely defined by the damage state
gi = 0, . . . , G (gi = 0 refers to the undamaged condition) and by the operational conditions,
into the correct damage class gi. Only a finite number G of damage states is allowed for,
coherently with the classification framework within which we approach the SHM problem.
Both the possible damage states and operational conditions must be determined through a
preliminary study, by evaluating the mechanical behavior of the structure.

The vector of parameters ηi ∈ H ⊂ RQ (e.g. acting as load multipliers) is used to
describe the operational conditions relevant to the i−th instance. We assume that ηi does
not vary in (0, T ); in other words, a time independent set of parameters is associated to
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each instance. Even the damage state gi is assumed to be frozen within the time interval of
interest, coherently with the damage growth typically faced by a civil structure [5]. The q-th
parameter ηiq (q = 1, . . . , Q) is sampled from a continuous probability density function (pdf)
Pq, preliminarily set (see, e.g., [32, 33], where the authors talk about probabilistic input data).
Similarly, the occurrence of the considered damage state is sampled from a discrete pdf Pg.
Different sampling strategies, both random (e.g. Latin Hypercube [34]) and quasi-random
(e.g. Sobol’ sequences [35]) can be adopted to explore the parametric space defined by the
combination between the parameters governing the operational conditions and the damage
states. In this work, a Latin Hypercube Sampling (LHS) has been adopted, as it provided
a good compromise between randomness and coverage of the parameter domain [36]. The
instance Ui, corresponding to the sampled {g,η}i, is simulated through a numerical model.

To slightly simplify the notation, in the following the index i relevant to the instance
will be dropped. Anyhow, it must be remembered that the discussion refers to the i−th
instance only, and computations must be therefore repeated I times at varying loading and
operational conditions.

2.2 Full Order Model construction

Before coming to the details related to the FOM setting, few hypotheses concerning
the response of a civil infrastructure under varying operational conditions are discussed.
The strains and displacements are assumed to be small and, if not specified otherwise,
damping effects are disregarded; see e.g. [5, 37] for some results regarding the relevance of
damping in the identification of continuously excited structures. Damage is modeled as a
localized reduction in stiffness, temporarily frozen in time. Despite the simplicity of this last
assumption, which rests on a time scale separation between damage evolution and health
assessment, many engineering problems can be tackled as discussed, e.g., in [38].

To describe the behavior of the structure, we rely upon linear elasto-dynamics. By space
discretizing the governing equation through Finite Elements (FEs), we obtain the following
semi-discretized problem: Mv̈ + K (g) v = f (η) , t ∈ (0, T )

v(0) = v0 (η)
v̇(0) = v̇0 (η)

(2)

where: v = v (t) ∈ RM is the displacement vector, while v̇ and v̈ are the corresponding
velocity and acceleration vectors; M ∈ RM×M is the mass matrix; K (g) ∈ RM×M is the
elastic stiffness matrix; f (η) is the vector collecting the external loadings. Here M denotes
the total number of degrees of freedom (dofs) of the FE space.

A time discretization of the monitoring window (0, T ) is next determined on the ba-
sis of the sensor sampling rate. By adopting a suitable time integration scheme (like the
generalised-α method [39]), the displacements vl (with l = 0, . . . , L) related to the sampled
{g,η} are provided. Displacements vl are then all collected in V = [v1, . . . ,vL] ∈ RM×L
and, through a Boolean matrix T ∈ RN0×M , whose (n,m)-th entry is equal to 1 if and only
if the position and orientation in space of the n-th sensor and of the m-th dof coincide, the
corresponding instance

U = (TV)
T
, (3)

is obtained.

2.3 Reduced Order Model construction

To get a high quality dataset D, the number of required instances may be extremely
high. By increasing I, we enhance the performance of G even if, beyond a certain threshold,
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the gain becomes marginal. To speed up the dataset construction, we propose to adopt
parametric MOR techniques [21, 40] as detailed below.

The FOM solution is approximated as v ≈WvR, vR ∈ RW , through a linear combina-
tion of W � M basis functions ww ∈ RM (with w = 1, . . . ,W ) collected into the matrix
W = [w1, . . . ,wW ] ∈ RM×W . To determine the ROM solution vR, we enforce the orthog-
onality between the residual v − vR and the subspace span{w1, . . . ,wW }; in other words,
we perform a Galerkin projection onto the subspace span{w1, . . . ,wW }. The governing
equation of the ROM then becomes MRv̈R + KR (g) vR = fR (η) , t ∈ (0, T )

vR(0) = WTv0 (η)
v̇R(0) = WT v̇0 (η)

(4)

where
MR = WTMW, KR (g) = WTK (g) W, fR = WT f .

Eq. (4) is integrated in time to obtain VR = [vR1, . . . ,vRL] ∈ RW×L, and then projected
back onto the original FOM space to obtain the whole solution V ≈WVR.

If the FOM arrays in Eq. (2) exhibit an affine parametric dependency, it is possible to
write

K (g) =

Pk∑
p=1

ψp (g) Kp, f (η) =

Pf∑
p′=1

ψ′p′ (η) fp′ ,

where ψp (g) : {0, . . . , G} → R (with p = 1, . . . , Pk) and ψ′p′ (η) : H→ R (with p′ = 1, . . . , Pf )

are two sets of scalar functions; Kp ∈ RM×M (with p = 1, . . . , Pk) is a set of g-independent
matrices; fp′ ∈ RM (with p′ = 1, . . . , Pf ) is a set of η-independent vectors. For the case at
hand, affine parametric dependency is built-in in the formulation of the FOM, since param-
eters governing both the operational conditions and the damage states are taken as constant
in time, and piecewise constants over different spatial subdomains, thus yielding the possi-
bility to factor them out of the assembled matrices. Nonaffine parametric dependency, on
the other hand, would require the use of suitable hyper-reduction techniques, to restore an
approximate affine parametric dependency, see, e.g. [21].

Under the assumption of affine parametric dependency, assembling the ROM arrays in
Eq. (4) can be made independent of the FOM dimension M for any {g,η}. Indeed, we have

KR (g) =
∑Pk
p=1 ψp (g) WTKpW =

∑Pk
p=1 ψp (g) Kp

R,

fR (η) =
∑Pf
p′=1 ψ

′
p′ (η) WT fp′ =

∑Pf
p′=1 ψ

′
p′ (η) fp

′

R ,

given that

Kp
R = WTKpW ∈ RW×W , fp

′

R = WT fp′ ∈ RW ,

can be computed and stored once for all, with KR (g), fR (η) constructed without repeating
the costly assembling operations required by the FE model.

To set W, a Proper Orthogonal Decomposition (POD) is performed on the matrix
S = [v1, . . . ,vS ] ∈ RM×S collecting S snapshots of the FOM. The collected snapshots must
embody both the dependence on {g,η} and on t; details on basis construction in elasto-
dynamics are reported in Algorithm 1. The total number of snapshots collected is S = Y ×X,
where Y ≥ 1 +G is the number of samples of {g,η}, so that each damage state is sampled
at least once, and X is the number of samples in time. In order to guide the choice of Y and
X, we refer, e.g. to [6]: here, we only remark that the constraint X ≤ L must be always
satisfied. Indeed, to speedup the ROM construction there is often the possibility to restrict
the snapshot collection to a small portion of the time window of interest, given that enough
information on the dynamic evolution of the system is still captured.
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Algorithm 1 POD bases determination in elasto-dynamics, as proposed in [25].

1: Sample η1 via Latin Hypercube Sampling
2: Collect S1 = [v (g1,η1, t1) | . . . |v (g1,η1, tX)]
3: W = POD (S1)
4: FOR τ = 2, . . . , Y DO
5: Sample ητ via Latin Hypercube Sampling
6: Collect Sτ = [v (gτ ,ητ , t1) | . . . |v (gτ ,ητ , tX)]
7: Wτ = POD (Sτ )
8: S = [W|Wτ ]
9: W = POD (S)

10: END FOR

POD of matrix S ∈ RM×S is performed via a singular value decomposition according to

S = PΣZT (5)

where: P = [w1, . . . ,wM ] ∈ RM×M is an orthogonal matrix whose columns are the left
singular vectors of S; Z = [z1, . . . , zS ] ∈ RS×S is an orthogonal matrix whose columns are
the right singular vectors of S; Σ ∈ RM×S collects the singular values of S. When M > S,

Σ =



σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σr
...

...
...

...
0 0 . . . 0


,

where σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0 and r is the rank of S.
The POD bases W = [w1, . . . ,wW ] are then obtained by retaining the first W ≤ S left

singular vectors in P. Among all possible approximations of S of rank W , W captures as
much energy of S as possible [21, 41]. The normalized reconstruction error ε obtained by
retaining the first W modes can be related to the discarded singular values as

ε =

√√√√∑S
s=W+1 σ

2
s∑S

s=1 σ
2
s

, (6)

By prescribing a tolerance εtol, such that ε < εtol, we can automatically set the dimension
W of the ROM.

2.4 Fully Convolutional Networks

Once D has been constructed according to Eq. (1), Itr instances are used to train the
classifier G. First, G performs a series of (nonlinear) mappings through basis functions
ruled by tunable weights Ω [30], whose overall effect is to make the damage classes linearly
separable [42]. In this way, a linear mapping, ruled by a weight matrix Θ and followed by
a softmax function, proves sufficient to perform the classification task. In details, denoting
by ϑ = (ϑ0, . . . , ϑG)T ∈ RG+1 the outcome of the linear mapping, the softmax function

computes a vector % = (%0, . . . , %G)T ∈ [0, 1]
G+1

, with

%g =
eϑg∑G
j=0 eϑj

g = 0, . . . , G, (7)
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denoting the probability by which the input U is assigned to the g-th damage class. The
classification task is then performed by selecting the class g corresponding to the highest %g
value.

During the training stage, the classification error is quantified by a loss function C,
assumed to be the cross entropy

C (Z,%) = −
G∑
g=0

Zglog (%g) , (8)

where Zg ∈ {0, 1} is the confidence with which the g-th damage class should be assigned to
U; Z is the vector that collects the confidence values. The training consists in minimizing
C by tuning Ω and Θ through an iterative procedure; Adam [43], a first-order stochastic
gradient descend algorithm, is employed with this aim. At each iteration, a certain number
of instances, called mini-batch, are analyzed simultaneously. In the forthcoming example
sections, we have employed mini-batches containing B = 16 instances, but in the following
we assume that each mini-batch counts just one of them, in order to simplify the notation.
At the end of the training, the Itr instances are processed a number of times named epochs.

The nonlinear mappings ruled by Ω and the final classification ruled by Θ have been
performed employing a NN called Fully Convolutional Network (FCN), resembling the one
proposed in [23]. The chosen NN architecture, depicted in Fig. 1, can analyze multivariate
time series, so that each channel un is not treated separately, and correlations between
different channels can be exploited to improve the classifier effectiveness. The functioning
of each block depicted in Fig. 1 is detailed in the following.

Figure 1: FCN architecture.

A NN is a computational algorithm that assembles basic units called neurons [42]. Each
neuron computes a scalar output Y by operating first a linear mapping of the input U ∈ Rλ
(which reads un for the first layer of the NN, see below) through a weight vector ω ∈ Rλ
and a bias term β, and by using next a nonlinear activation function ζ according to

Y = ζ (ω · U + β) .

Typical choices for the activation function are the hyperbolic tangent or the Rectified Lin-
ear Unit (ReLU). Thanks to the use of activation functions, NNs can perform tasks that go
beyond the ones accomplished by a sequence of linear projections [30]. If λ neurons simul-
taneously deal with U , the output of the transformation is a vector Y ∈ Rλ: this collection
of λ neurons is called layer. In a DL framework, more layers are usually stacked in order
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to form a deep architecture. Several layer typologies exist, differing in terms of the way in
which the neurons are connected to the inputs: the layer typology described so far is called
fully-connected.

In our NN architecture, convolutional layers are exploited. Convolutional layers are
widespread in computer vision [44] and they are gaining attention in signal processing too
[45, 46]. In particular, three convolutional layers Lk (with k = 1, 2, 3) have been employed,
each one together with a Batch Normalization (BN) Bk and a ReLU activation Rk. We call
convolutional block the computational unit made up by Lk, Bk and Rk. By putting three
convolutional blocks in sequence and by applying a Global Average Pooling (GAP) [47] to
their output, the first part of the NN is constructed.

We now detail how the convolutional units and the GAP work. The adopted nota-
tion holds for the first convolutional block and, for this reason, the input is denoted by
U = [u1, . . . ,uN0

]; the same reasoning holds for the second and third convolutional blocks,
for which the inputs are the outputs of the first (Ȳ1 ∈ RL×N1) and second convolutional
blocks (Ȳ2 ∈ RL×N2), respectively.

The output Y1 =
[
y1
1, . . . ,y

1
N1

]
∈ RL×N1 of L1 is computed as

y1
b =

N0∑
n=1

ω1n
b ∗ un b = 1, . . . , N1, (9)

where: ∗ :
(
RH1 × RL

)
→ RL is the discrete convolution operator [48]; Ω1

b =
[
ω11
b , . . . ,ω

1N0

b

]
∈ RH1×N0 are the weights, called filter kernels, applied to un; Ω1 =

[
Ω1

1, . . . ,Ω
1
N1

]
∈

RH1×N0×N1 is the overall weights set of L1. Bias terms are omitted to simplify the notation.
As a second step, the BN zero-centers and normalizes y1

b , in order to address the issue
of the vanishing/exploding gradient [49] that frequently affects the training of NNs in DL.

Finally, the adopted ReLU activation function reads

ȳ1lb = R1

(
B1
(
y1lb
))

= max
(
0,B1

(
y1lb
))

l = 1, . . . , L, (10)

where y1lb is the l-th entry of y1
b .

Both the BN and the ReLU activation function do not involve any tunable parameter,
so that the outcome of the first part of the NN is ruled just by Ω =

[
Ω1|Ω2|Ω3

]
, where

Ω1, Ω2 and Ω3 are the weights employed by L1, L2 and L3, respectively. Each channel
ȳ3
b , output of the third computational block, is still shaped as a time series of length L,

but does not represent a displacement time history anymore, as it becomes a feature of U.
A feature is an optimized representation of U, optimality being meant in the sense of the
minimization of the loss function C. Also the GAP does not use any tunable parameter:
the input Ȳ3 =

[
ȳ3
1, . . . , ȳ

3
N3

]
∈ RL×N3 is handled to compute an average value for each

channel ȳ3
b as

GAP
(
ȳ3
b

)
=

1

L

L∑
l=1

ȳ3lb b = 1, . . . , N3. (11)

The GAP outcomes are synthetic description of the channel contents, highly informative for
the classification task.

The implementation of the FCN architecture has been developed making use of the Keras
API, based on Tensorflow. The hyperparameters featured by the NN (e.g. the number of
filters Nk) and controlling the training (e.g. the number of epochs) have been initially set
according to [23, 20]. A further hyperparameter tuning has been carried out through the
repeated evaluation of the classification accuracy of G on the case studies discussed next.
Specific attention has been paid to avoid overfitting of the training data: in Tab. 1 the
hyperparameters values employed for the two case studies are reported.
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Portal frame Integral bridge

N0 6 4
N1, N2, N3 16, 32, 16 16, 32, 16
H1, H2, H3 8, 5, 3 8, 5, 3

B 16 16
I 10, 000 10, 000

no epochs 500 1000

Table 1: FCN hyperparameters.
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Figure 2: Methodology flowchart.

In this section, we have discussed the elements constituting the proposed methodology:
the definition of a stochastically parametrized FOM of the monitored structure; the deter-
mination of a ROM keeping track of the system parametric and temporal dependence; the
construction of a dataset D; the training of a FCN-based classifier G. To further clarify the
connection between these different steps, Fig. 2 is reported.

3 Case study 1 - Portal frame

The proposed methodology has been first used for a two-dimensional, single-storey frame
subjected to a dynamic load. The purpose of this analysis is to verify the impact on the
classifier performance of the ROM handling a variable damage level and of different values
of the Signal to Noise Ratio (SNR) characterizing the sensor accuracy.
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3.1 Portal frame - FOM

The two-dimensional portal frame depicted in Fig. 3 has been numerically modeled
via a FE discretization consisting of 1882 constant strain triangles (CSTs) and 1884 dofs.
Time discretization has been performed by partitioning (0, T ) into subintervals of size 5 ·
10−3 s. The structural thickness has been assumed to be 0.1 m, so that a plane stress
condition has been adopted. The structure has been assumed to be made of concrete, whose
mechanical properties are: Young’s modulus E = 30 GPa, Poisson’s ratio ν = 0.2, density
ρ = 2500 kg/m3. The structure has been excited by a distributed load, acting on the left
column in correspondence of the deck, varying in time as q (t) = A |sin (2πft)|. The load
amplitude A and the frequency f of the load have been modeled as random variables, with
uniform pdfs UA (10, 50) kPa and Uf (50, 95) Hz.

In Fig. 3, the considered damage scenarios are shown on the right. Each relevant struc-
tural state g ∈ {1, 2, 3, 4} is linked to a damage of the corresponding subdomain Ω1, . . . ,Ω4,
while the undamaged scenario is given by g = 0. If not stated otherwise, damaged and un-
damaged scenarios have been assumed to have equal probability to be encountered during
the monitoring stage, therefore a discrete uniform pdf Ug (0, . . . , 4) has been assumed for g.
The damage level δ, which represents the stiffness reduction applied to the considered sub-
domain, has been modeled as a continuous random variable with uniform pdf Uδ (2%, 25%).
Therefore, for the current analysis the parametric dependence has involved η = {A, f, δ}. As
load amplitude A, load frequency f and damage level δ may vary continuously, the adopted
pdfs UA, Uf and Uδ are continuous too; on the other hand, since the damage scenario can
only take values in the discrete set {0, 1, 2, 3, 4}, a discrete pdf Ug has been adopted.

q(t)

6.00 m

0.50 m

5.50 m
 0.25 m

y
x

 0.10 m 0.75 m

1.50 m

0.75 m

Ω 1y
x

1.50 m

Ω 2

Ω 4

Ω 3

Figure 3: Portal frame: (left) loading and space discretization; (right) considered damage
scenarios in the subdomains Ω1, . . . ,Ω4.

The dataset D has been built by collecting instances, together with the corresponding
labels, obtained for parameters sampled via LHS from the parametric space spanned by g
and η. In Tab. 2 the first eight vibration frequencies and relevant periods of vibration of
the model are listed. The monitoring system consists of N0 = 6 sensors, recording either the
horizontal or vertical accelerations as depicted in Fig. 4. The signals have been recorded with
a sampling frequency of 200 Hz, allowing to properly account for the first seven structural
frequencies without incurring in aliasing. Each numerical simulation covers 1 s of duration:
therefore, in the monitoring interval, each record includes L = 200 samples.

10



Mode fNum [Hz] Period [s]

1 4.02 0.2488
2 24.18 0.0413
3 31.31 0.0319
4 36.71 0.0272
5 79.44 0.0126
6 80.89 0.0124
7 96.70 0.0103
8 128.66 7.77 · 10−3

Table 2: Portal frame:
structural frequencies.

Figure 4: Portal frame: sensor system arrangement.

3.2 Portal frame - ROM

To build the ROM, the snapshots have been collected for different values of {g,η}. At
this stage, no noise has been added to corrupt the model outcomes. The number of samples
of {g,η} has been fixed to Y = 200; the number of samples in time has been instead fixed
to X = 100 for time windows of 0.5 s. The total number of collected snapshots therefore
amounts to S = 200× 100 = 20000.

Including the damage level δ inside η proved necessary in order to identify the presence
of either a minimal or a moderate structural damage. Indeed, it has been observed that a
classifier trained for a fixed damage level does not work properly in recognizing structural
states characterized by a different level of damage. As an example, Tab. 3 provides the
performance, given in terms of classification accuracy, of a classifier G trained for δ = 25%
in recognizing instances characterized by different values of δ. The performance drops while
moving away from the training value, due to major difficulties in recognizing a lower damage
level, and to the fact that the NN has only been trained to distinguish between the conditions
characterized by either δ = 25% or δ = 0%.

The damage level δ also shows a close relationship with the number W of POD bases:
Tab. 4 shows how W tends to reduce, as δ decreases. This happens because the smaller
the ROM dimension W by which the prescribed error tolerance ε = 10−4 is achieved, the
more similar are the scenarios to be described. This also means that the ROM is much more
prone to fail when modelling structural states characterized by smaller value of δ, because
a smaller number of POD bases hardly catches the effect of small damages, as confirmed
by the classification performance obtained with different classifiers trained and tested for
an assigned value of δ, see Tab. 5. Even if not reported here for the sake of brevity, such
accuracy has turned out to be not affected by the structural damping: the same analyses
have been run by allowing for a Rayleigh damping featuring a ratio of 5% for the first two
structural modes, with no variations with respect to the values reported in Tab. 5.

Additional results have been obtained by considering the discrete pdf Ug relevant to
the damage scenarios to be not uniform. This may be traced back to a former inspection
of the structure, to ascertain if a specific damage state can occur more likely than others

11



(maybe due to some defects in the initial state), or to a global sensitivity analysis to provide
insights into the links between input loading and probability to incept a specific damage
pattern. Datasets can be generated handling different Ug; results are here discussed for a
case featuring a probability of damage scenario g = 2 to occur, twice the others. The load
amplitude and frequency have been instead extracted from the same pdfs UA and Uf defined
before. Maps of the sampled values are reported in Fig. 5, in terms of projections onto the
planes A− f , A− g and f − g, where it can be easily recognized that the damage scenario
g = 2 has a higher probability testified by the denser distribution of the samples at varying
magnitude and frequency of the load. For δ = 25%, the accuracy in classification relevant
to case (a) has been the already considered 100% reported in Tab. 5; the same accuracy
has been obtained for case (b). This outcome testifies that the proposed method is robust
against improper assumptions regarding the probability of the different damage scenarios to
occur.

δ [%] Accuracy [%]

25 100
20 90
15 82
10 36
5 22
2 22

Table 3: Portal frame:
accuracy performance
obtained with a classifier
trained for δ = 25%, in
recognizing structural
states characterized by
different values of the
damage level δ.

δ [%] POD bases

25 65
20 64
15 58
10 56
5 53
2 47

Table 4: Portal frame:
number W of POD bases
at varying damage level
δ.

δ [%] Accuracy [%]

25 100
20 100
15 96
10 92
5 84
2 62

Table 5: Portal frame:
accuracy performance
obtained with classifiers
trained and tested for
several values of the
damage level δ.

The ROM has been built according to the procedure described in Algorithm (1). In
Figs. 6-7, the normalized singular values σTs /σ

T
1 and σgηs /σgη1 , with their typical descendant

behavior, are reported for the POD in time and over the parametric space, respectively. The
dashed horizontal line in the graph refers to the last selected POD basis, thus the correspon-
dent abscissa identifies the overall number of selected POD bases ensuring a reconstruction
error below the prescribed error tolerance ε < εtol = 10−4. An excellent approximation
capacity has been achieved by relying upon 59 POD bases only, instead of the original 1884
dofs. In Fig. 8 the first 8 POD bases are reported: higher order POD bases feature more
complex shapes, useful to simulate the effect of localized damages. Due to the mentioned
reduction in the number of the dofs from the FOM to the ROM, the computing time required
by each simulation has decreased from 45 s to 1.5 s, with a speedup of 30 (computations
have been run on a PC featuring an Intel (R) Core™, i5 CPU @ 2.6 GHz and 8 GB RAM).

Since acceleration measurements have been exploited for SHM purposes, we have kept
εtol small also considering that ε has been based on the reconstruction of the displacement
field. As an example, in Fig. 9 the FOM and ROM time histories are compared for the
(unobserved) horizontal acceleration at the top-right corner of the frame, for different values
of εtol and for g = 0 (undamaged state), A = 30 kPa, f = 80 Hz, δ = 0. The ROM solution
relevant to εtol = 10−3 has turned out to be excessively inaccurate, so that εtol = 10−4 has
been adopted for the construction of D.

12



(a) (b)

(c) (d)

(e) (f)

Figure 5: Portal frame: sampled values of load amplitude A, load frequency f and damage
scenario g in: (left column) case (a), featuring a uniform pdf Ug over all the damage scenarios;
(right column) case (b), featuring a probability of scenario g = 2 to occur twice the others.

3.3 Portal frame - Classification outcomes

According to the NN hyperparameters setting discussed in Sec. 2.4, G has been trained
and validated on Itr + Ival = 10, 000 instances with ratio 75 : 25, for 500 epochs. A further
discussion on the employed number of filters N1, N2 and N3 will be provided in the following.

For the noise-free case, Figs. 10 and 11 show the evolutions of the loss and of the accuracy
during training, respectively. The iteration number, determined by the number of epochs
and by the dimension of the mini-batches, accounts for the number of times the NN weights
are modified during the training process. As expected, the first portion of training shows
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Figure 6: Portal frame: POD in time.
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Figure 7: Portal frame: POD over pa-
rameters. Descent of the singular values
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Figure 8: Portal frame: POD bases.

the highest gains in terms of classification accuracy. The spikes, observable both in the
loss and accuracy graphs, are due to the different classification performances obtained on
different mini-batches. At the end of the training, we have obtained classification accuracies
of 98.91% and 97.68%, respectively for the training and validation sets.

The generalization capabilities of G have been evaluated against a test set made of 200
pseudo-experimental instances generated through the FOM. The classification test results
are summarized by the confusion matrix in Fig. 12. Even for this test, no noise effects have
been taken into account. The classification task has been carried out with a global accuracy
of 84.5%, but two different sources of error can be highlighted. First, 40% of test instances
featuring the scenario g = 2 have been misclassified as g = 1; with a smaller frequency,
22.5%, the same happens for g = 4 and g = 3. This is due to the similar influence of
those damage scenarios on the structural response, by virtue of the structural layout and
of the applied load. Second, 15% of test instances featuring g = 0 have been misclassified
as well. This is due to the variability of δ, as smaller values of δ provide the additional
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Figure 9: Portal frame: comparison between acceleration time histories
generated through the FOM and the ROM for different values of εtol.

issues discussed before: an increased difficulty to distinguish a damaged scenario from an
undamaged one; a major difficulty for the ROM to properly describe the damaged scenarios.
The other way around, none of the damaged scenarios has been misclassified as undamaged.
These effects of δ have been observed for a relevant number of tests, carried out with the
same classifier, by processing different test sets characterized by a fixed damage level δ;
corresponding outcomes are summarized in Tab. 6.
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Figure 10: Portal frame: FCN
training. Loss function evolution on
the training and validation sets for
the noise-free case.
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Figure 11: Portal frame: FCN
training. Accuracy function evolu-
tion on the training and validation
sets for the noise-free case.
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Figure 12: Portal frame: testing of
the FCN. Confusion matrix for the
noise-free case.

δ [%] Accuracy [%]

25 66
20 78
15 94
10 94
5 78
2 60

Table 6: Portal frame: clas-
sification accuracy in recog-
nizing structural states char-
acterized by a fixed damage
level δ for the noise-free case.

To assess the impact of the noise level on the performance of G, the classifier has been
next trained and tested on datasets featuring SNR = 100, 50 and 20. The chosen SNR values
are representative of the self-noise of accelerometers usually employed in the monitoring of
civil structures [50, 51]. A certain SNR, indicator of the noise level affecting the vibration
signals, can be obtained by adding a white noise to the synthetic structural recordings.
Despite the relative simplicity of this procedure, the white noise allows to accurately mimic
the signal perturbation affecting the measurements of real-life sensors, among which also
micro-electro mechanical accelerometers [52, 53].

To get a more clear picture on how SNR affects the classification accuracy together with
the ROM complexity, three ROMs, each of them featuring a specific εtol = 10−3, 10−4 and
10−5, have been used for the generation of D. The classification outcomes are reported in
Tab. 7 for two different choices of the NN filters, N1 = 8, N2 = 16 and N3 = 8 in Tab.7a and
N1 = 16, N2 = 32 and N3 = 16 in Tab. 7b, respectively. The performance of G has been
evaluated against the aforementioned three FOM test sets, with the results obtained after
training the classifier for each one of the nine combinations of εtol and SNR levels. From
the results in Tab. 7, it can be observed that both εtol and SNR have a relevant impact on
the accuracy of G. Lower performances follow lower SNRs, especially when combined with
large values of εtol. Nevertheless, by setting εtol small enough (e.g. to εtol = 10−4), a global
accuracy larger than 75% can be always attained. By enhancing the approximation capacity
of the ROM, the classifier thus gets more robust against the noise.

A further insight into the effects of εtol and of SNR on the classification accuracy can be
gained by looking at the confusion matrices reported in Fig. 13. The two main sources of
errors highlighted before, i.e. the misclassification between g = 1 and g = 2, and between
g = 3 and g = 4, are encountered even under different SNR levels. Smaller values of SNR
worsen the classification performance, even without showing a clear path to penalize some
specific damage scenarios.

Tab. 7 has been reported to clarify the criteria used to set the number of filters N1, N2

and N3. By comparing the classification accuracy on the training and validation sets, the
classifier employing N1 = 16, N2 = 32 and N3 = 16 seems to slightly overfit the training
data. Indeed, there is a disparity between the higher performance on the training set and the
lower performance on the validation set. This tendency is even more evident when datasets
featuring high SNR values are considered, due to the combined effect of the high number
of NN weights and of the greater uninformative content induced by noise. The combination
of these factors does not lead the NN to filter noise, because the NN has enough weights to
keep memory of it. Similar outcomes are reported for the training and test sets. By lowering
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(a) SNR= 100; εtol = 10−5
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(b) SNR= 50; εtol = 10−5
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(c) SNR= 20; εtol = 10−5
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(d) SNR= 100; εtol = 10−4
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(e) SNR= 50; εtol = 10−4
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(f) SNR= 20; εtol = 10−4
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(g) SNR= 100; εtol = 10−3
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(h) SNR= 50; εtol = 10−3
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(i) SNR= 20; εtol = 10−3

Figure 13: Portal frame: FCN testing. Confusion matrices at varying values of εtol and
SNR.

the number of filters to N1 = 8, N2 = 16 and N3 = 8, that is by halving the overall number
of weights in Ω, it is possible to reduce this tendency; on the other hand, the accuracy of
the NN is reduced. In light of this, we have chosen an architecture employing N1 = 16,
N2 = 32 and N3 = 16 to carry out the analysis, even if it slightly overfits the data.

To assess the robustness of the proposed methodology, the classifier G has been tested in
recognizing structural states characterized by a stiffness reduction in subdomains different
from those used to train it, see Fig. 3 and compare it with Fig. 14: the damaged subdomains
are approximately half in size of those used to construct D. In this case, a noise-free
condition has been considered. The pseudo-experimental instances used for testing have
been generated via FOM. The obtained results, summarized by the confusion matrix in Fig.
15, confirm the robustness of our methodology. The global accuracy is practically unchanged
with respect to the previous case (85.50% vs 84.50%) and, furthermore, the sources of the
misclassification error look almost the same. The only remarkable difference is linked to a
misclassification of the damaged scenarios as undamaged; this outcome is somehow expected
since, as shown in Tab. 8, the damaged subdomains reduced in size do have a smaller impact
on the structural response to the given loadings.
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training set validation set test set

εtol \ SNR 100 50 20 100 50 20 100 50 20

10−5 87.9% 86.3% 79.3% 81.0% 80.7% 72.2% 79.5% 79.5% 71.5%
10−4 87.3% 86.6% 80.1% 82.2% 79.8% 72.6% 81.5% 81.5% 68.5%
10−3 90.0% 88.0% 84.2% 85.2% 82.2% 76.0% 64.0% 59.5% 62.5%

(a) N1 = 8, N2 = 16, N3 = 8.

training set validation set test set

εtol \ SNR 100 50 20 100 50 20 100 50 20

10−5 96.3% 94.5% 92.7% 87.3% 85.0% 78.7% 86.5% 85.5% 78.5%
10−4 96.1% 94.9% 93.3% 87.6% 84.2% 79.5% 87.5% 85.0% 75.5%
10−3 93.8% 95.9% 95.0% 86.7% 85.1% 79.8% 59.0% 69.0% 57.5%

(b) N1 = 16, N2 = 32, N3 = 16.

Table 7: Classification performance, in terms of global accuracy on the
training, validation and test sets, as affected by the values of SNR and εtol.
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Figure 14: Portal frame: reduced-size damaged regions.

4 Case study 2 - Railway bridge

The second case study adopted to assess the performance of the proposed methodology,
consists of an integral concrete portal frame railway bridge. Here, the effect of the sensor
noise has been disregarded as the focus is on handling the effects of a dynamic moving load.
The railway bridge, located along the Bothnia line in the urban area of Hörnefors in the
northern Sweden, is depicted in Fig. 16. The bridge has a span of 15.7 m, a free height of
4.7 m, a width of 5.9 m (edge beams excluded) and it does not have any expansion joint
or supporting device in between the deck and the abutments. The deck has a thickness
of 0.5 m, whilst the frame walls have a thickness of 0.7 m; the wing walls, stretching out
in longitudinal direction up to 8 m at the top, have a thickness of 0.8 m. The foundation
system consists in a couple of plates connected by two stay beams and supported by pile
groups. The bridge superstructure consists of a single ballasted track resting on sleepers
spaced 0.65 m apart, while the ballast layer is assumed to have a depth of 0.6 m and a width
of 4.3 m.
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Figure 15: Portal frame: FCN test-
ing. Confusion matrix for the reduced
damage scenarios.

δ [%] Accuracy

25 74
20 84
15 92
10 66
5 56
2 42

Table 8: Portal
frame: FCN test-
ing. Classification
accuracy obtained in
recognizing damaged
regions reduced in size
and characterized by
a damage level δ in
the noise-free case.

Figure 16: Hörnefors railway bridge.

. .. . . . .

Figure 17: Gröna T̊aget train type (adapted from [54]).

The structure is loaded by the passage of trains of type Gröna T̊aget (Fig. 17), composed
of two wagons, in transit with a speed γ ranging between 160 km/h and 215 km/h, and
having in total 8 axles. All the geometrical and mechanical data used to model the structure
and the loads have been taken from [54, 55], where the relevant soil-structure interaction
was studied.
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Figure 18: FE discretization of the Hörnefors railway bridge.

4.1 Railway bridge - FOM

The structure has been discretized with 15, 075 four node tetrahedral elements, as shown
in Fig. 18, with a total of 15, 300 dofs. To properly account for the acting loads, the
characteristic size of the elements has been set to 0.15 m for the deck, while it has been set
to 0.80 m elsewhere. The bridge has been assumed to be perfectly clamped at the bases. The
adopted mechanical properties are those of a concrete class C35/45: E = 34 GPa, ν = 0.2,
ρ = 2500 kg/m3. The ballast layer, whose density is ρ = 1800 kg/m3, has been accounted
for by modifying the density of concrete of the deck and the edge beams, thus providing the
additional mass resting on the deck. Time discretization has been performed by partitioning
(0, T ) with subintervals of size 2.5 · 10−3 s, set to account for the maximum train speed of
215 km/h with the element size of 0.15 m. The embankments have been modelled through
distributed springs over the lateral surfaces in contact with the ground: this is equivalent
to adopting a Robin mixed boundary condition (with elastic coefficient aRobin = 108 N/m3)
in the numerical model.

Six damaged structural states g ∈ {1, 2, 3, 4, 5, 6}, schematically represented in Fig. 19,
have been considered further to the undamaged state g = 0: the damaged states feature
a stiffness reduction in the corresponding subdomain Ω1, . . . ,Ω6. Each time the mechan-
ical problem has been solved, the damage scenario g and the damage level δ have been
respectively sampled via LHS from the uniform discrete pdf Ug (0, . . . , 6) and from the uni-
form continuous pdf Uδ (5%, 25%), respectively. The extreme values of pdf Uδ have been
selected in order to assess if small damage events can be detected, distinguished from those
characterized by a much larger reduction of the local mechanical properties, and also local-
ized in real-life applications. This approach is obviously intended to work at the structural
level, and disregard the features of microcracking patterns in the concrete structure, which
are wholly measured through the adopted damage indices. Such an approach was already
adopted in the context of SHM is several studies; without any aim to provide an exhaus-
tive account of the literature, readers are referred to, e.g. [56, 57] and also standards like [58].
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The monitoring system has been assumed to be composed of N0 = 6 sensors, placed as
shown in Fig. 20, and recording the vertical displacements of the deck and the horizontal
displacements at the top of the frame walls. All the signals have been recorded with a
sampling frequency of 400 Hz within a monitoring window T = 1.5 s, which allows the train
to completely cross the bridge even if traveling at the lowest speed.

Figure 19: Railway bridge: considered sub-
domains Ω1, . . . ,Ω6. The g-th damage sce-
nario refers to a localised stiffness reduction
in the g-th subdomain.

Figure 20: Railway bridge:
monitoring system.

As for the train, the convoy velocity γ and the mass β carried by a single axle (or
equivalently the load F released by the single axle to the rails) have been modelled as random
variables with uniform pdf Uγ (160, 215) km/h and Uβ (16, 22) ton. The load is transmitted
from the rails to 25 sleepers that cover the entire deck; the compressive distributed load
under the sleepers is then transmitted on its own to the ballast layer with a slope 4 : 1
according to Eurocode 1 [59], so that the loaded surface amounts to 0.55 m × 2.1 m. The
maximum compressive load value that the train can generate on the sleepers is accordingly
pmax = F

(0.55·2.1) m2 ; the moving load system is finally given as P (t, γ, x) =
∑
ξ p

ξ(t, γ, x),

with ξ = 1, . . . , 25, and [59]

pξ(t, γ, x) =
∑
α

pmax ·Aξ(x) ·Aξα(t, γ) α = 1, . . . , 8.

where Aξ(x) is the space activation function, and Aξα(t, γ) is the time modulation function
related to the α-th axle.

The space activation function Aξ(x) accounts for the load in correspondence of the ξ-th
sleeper, and is given by

Aξ(x) = H

(
x−

(
xξ −

0.55 m

2

))
−H

(
x−

(
xξ +

0.55 m

2

))
, ξ = 1, . . . , 25 ,

where xξ is the abscissa of the center of gravity of the ξ-th sleeper, and H(·) is the Heavyside
function.

The time modulating function Aξα(t, γ) allows instead to modulate the pressure value as
a function of time and axle speed according to

Aξα(t, γ) =

[
H

(
t− xξ−1 + x0α

γ

)
−H

(
t− xξ+1 + x0α

γ

)]
·

1−

∣∣∣t− xξ+x
0
α

γ

∣∣∣
0.65 m
γ

 , α = 1, . . . , 8,

(12)
where x0α is the position of the α-th axle at time t = 0. Fig. 21 shows that the maximum
value of the pressure on a sleeper is attained when the axle is crossing its axis, and it becomes
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null when the axle is crossing the axis of the previous or next sleeper, with a linear variation
in between. In Fig. 22, the time modulation function of the midspan sleeper for a train
speed γ = 160 km/h is reported, to show the characteristic history of the external loading
for this type of structural systems.

Figure 21: Railway bridge: time
modulation function. Example re-
lated to the 1st axle on the 1st and
2nd sleepers.

0 0.5 1 1.5
-0.5

0

0.5

1

1.5

Figure 22: Railway bridge: time mod-
ulation function. 8 axles passage on
the midspan sleeper, at the speed of
160 km/h.

4.2 Railway bridge - ROM

The simulations discussed in what follows have been run on a PC featuring an Intel (R)
Core™, i7-2600 CPU @ 3.4 GHz, with a 64 bit operating system and 16 GB RAM. The num-
ber of snapshots used to construct the ROM has been set to S = 35. One could argue that
collecting a larger number of snapshots would have further enhanced the representativeness
of the ROM, but we have judged the employed number of snapshots as a good trade-off
with the high computational cost of each FOM evaluation, as the snapshots collection must
be carried out for the entire monitoring time window in order to fully catch the effects of
moving loads. Each FOM simulation has required a computing time of about 7 hours, and
the ROM construction has required about 10 days.

To attain high approximation capacity, the error tolerance has been set to εtol = 5 ·10−3.
In Figs. 23 and 24, the normalized singular values σTs /σ

T
1 and σgηs /σgη1 are respectively

shown for the POD in time and over the parametric space. Confirming what previously
stated regarding the need to collect snapshots during the entire monitoring time window, in
Fig. 23 the singular values in time are shown to decay only in the final part of the graph,
so as the reconstruction error ε does.

The computational gain obtained with the use of the ROM is even more remarkable than
in the previous case study, due to the higher computational complexity of this structure: we
have moved from M = 15, 300 dofs of the FOM to only W = 69 POD bases. The first 4
POD bases of the bridge are reported in Fig. 25, to show how structural dynamics has been
accounted for in the POD-based classification task. These POD bases appear very different if
compared with the classical mode shapes; indeed, except for the first one, they do not present
symmetries and, due to the peculiarity of the applied load, they are mainly active close to
the sleepers area. The computational time required by each simulation has decreased from
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Figure 23: Railway bridge: POD in
time. Descent of the singular values σTs
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Figure 24: Railway bridge: POD over
parameters. Descent of the singular val-
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Figure 25: Railway bridge: POD bases.

the aforementioned 7 hours for a single FOM solution, to 60 seconds for a ROM solution,
with a speed-up of 420. In terms of results, in Fig. 26 the vertical displacement at midspan
is reported for g = 2, δ = 0.08, γ = 180 km/h and β = 17.325 ton, so as to assess the
ROM accuracy: a noteworthy good approximation capacity is indeed achieved by the ROM,
whose response is perfectly superposed to the FOM one. The enrichment in high frequency
components of the vertical displacement along the time axis is due to the sequential passage
of the axles over the sleepers, and to the absence of damping in the model.

4.3 Railway bridge - Classification outcomes

The classifier G has been trained and validated on Itr + Ival = 10, 000 instances, with
a ratio 75 : 25, for 1000 epochs. In Figs. 27 and 28 the evolutions of the loss and of the
accuracy functions during training are shown: a classification accuracy of 100% has been
attained on both the training and validation sets. All the damage scenarios have been there-
fore perfectly recognized and classified.
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Figure 26: Railway bridge: comparison of the vertical displacement
time histories at midspan obtained through the FOM and the ROM
(g = 2, δ = 0.08, γ = 180 km/h, β = 17.325 ton).

To show the paramount importance of an appropriate deployment of the sensors to
measure the structural response to the external loading, a further analysis has been run
by neglecting the horizontal recordings u5 and u6 in Fig. 20, hence with only information
relevant to the u1−u4 time series processed by the classifier. The relevant loss and accuracy
evolutions shown in Figs. 29 and 30 highlight that G is not able now to recognize all the
processed instances correctly. The presence of a systematic classification error is testified
also by the confusion matrix in Fig. 31, in which the generalization capabilities of G are
evaluated against a test set consisting of 42 pseudo-experimental instances simulated with
the FOM: a global accuracy of only 88.10% has been obtained. It has emerged that the
undamaged scenario is prone to be misclassified as a structural state featuring g = 6. Such
misclassification between scenarios g = 0 and g = 6 is thus due to the missed horizontal
dofs in the monitoring system. To further prove this claim, additional tests have been
performed on a reduced dataset, characterized by removing scenarios g = 5, 6; results in
Fig. 32 show how the performance of the classifier returns back to feature a 100% accuracy.
The reported overall performances attained by G are considered good, especially in view of
the high complexity of this example resembling a real monitoring problem.

5 Conclusion

In this work, we have proposed a neural network-based classifier, featuring a fully con-
volutional network architecture, to move towards online damage localization within a smart
structural health monitoring framework. The classifier processes the vibration measure-
ments, recorded by a sensor network deployed over the structure, to identify the current
structural state. To overcome the lack of experimental data for civil applications, we have
exploited physics-based numerical modeling in order to build offline a large training set of
structural responses, accounting for relevant damage scenarios and operational conditions.
A parametric model order reduction technique has been next adopted to replace high fi-
delity, time consuming finite element simulations and speedup the dataset generation. The
classifier leverages on the convolutional layers capabilities to automatically extract useful,
damage sensitive features from raw data and learn the functional link between such features
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Figure 27: Railway bridge: FCN
training. Loss function evolution on the
training and validation sets.
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Figure 28: Railway bridge: FCN
training. Global accuracy evolution on
the training and validation sets.
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Figure 29: Railway bridge, four sensor
monitoring system: FCN training. Loss
function evolution on the training and
validation sets.
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Figure 30: Railway bridge, four sen-
sor monitoring system: FCN training.
Global accuracy evolution on the train-
ing and validation sets.

and the corresponding structural states. The obtained results have confirmed the high po-
tential of the simulation based classification approach to structural health monitoring and
of the combined use of parametric model order reduction techniques and deep learning.

In both of the proposed case studies, the global accuracy of classification never falls below
85% , regardless of whether acceleration or displacement measurements are handled. Indeed,
the method has proven to be extremely robust in exploring a large parametric dependency
and even in recognizing damaged scenarios significantly different from those observed during
the training phase.
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Figure 31: Railway bridge, four sensor
monitoring system: FCN testing. Con-
fusion matrix.
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Figure 32: Railway bridge, four sensor
monitoring system: FCN testing. Con-
fusion matrix with damage scenarios in-
volving only the deck.

Tests have been carried out by adding to the response of the considered digital twins
a white noise corruption of varying amplitude, which has been assumed representative of
micro-electro mechanical system accelerometer self-noise, and by exploiting different reduced
order models of increasing fidelity to build the training datasets. The classification outcomes
have shown a slightly decreased global accuracy, featuring a minimum of 78% in the presence
of a highly noisy signal (SNR= 20), testifying that the procedure is also rather noise tolerant.
Results obtained by exploiting reduced order models generated with a varying value of the
error tolerance, have also provided a scheme to assess the effect of the reduced order modeling
technique on the classifier performances.

In future works, varying environmental conditions and different excitation sources, such
as wind action and low intensity seismicity will be allowed for, by further enlarging the
parametric space exploited in the dataset construction. To handle the resulting nonaffine
dependency of the numerical arrays on the parametric space, hyper-reduction techniques
are going to be exploited. To cope with the need of an optimal sensor placement, we aim
to introduce a sensor placement approach to maximize the information effectiveness for the
classification task. Further examples are currently under study, in order to validate the
offered methodology against suitable experimental settings.
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