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Abstract

In this paper, we consider Large Eddy Simulations (LES) for human stenotic
carotids in presence of atheromasic plaque. It is well known that in such
a pathological condition, transitional effects to turbulence may occur, with
relevant clinical implications such as plaque rupture. The first aim of this
work is to provide a way to define a Direct Numerical Simulation (DNS).
In our context turbulence is not statistically homogeneous isotropic and
stationary. We define mesh size and time step by considering the reduced
model of a 2D shear layer. Then, we compare the performance of LES σ
model (both static and dynamic) and of mixed LES models (where also a
similarity model is considered) with that of DNS in a realistic scenario of
a carotid. The results highlight the effectiveness of the LES σ models in
terms of accuracy, especially for the static model.

1 Introduction

The carotid bifurcation is a preferential site of atheromasic plaque formation,
which leads to vessel stenosis and, possibly, to the plaque breakage with em-
bolization of fragments into the brain tissue [47, 55]. The blood fluid-dynamics
has been recognized to play a crucial role in the plaque rupture, due to the high
wall shear stresses (WSS) and high pressure exerted at the stenosis [40, 20, 25].
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The percentage of stenosis could rise up to 75-80% of the lumen (or even
higher). Several laboratory experiments highlighted that the blood fluid-dynamics
in such conditions may undergo transition to turbulence [7, 11, 2, 22]. In par-
ticular, during the systolic and deceleration phases, a fluid jet with two long
shear layers at its sides is created. The shear layers could become unstable and
the jet consequently breaks down with formation of recirculation zones and vor-
tices. The presence of transitional effects seems to have a role in the plaque
rupture, because large spatial WSS, high temporal shear gradients, and pressure
fluctuations, which are known to weaken the plaque, increase with turbulence,
[13, 32, 29].

For all these reasons, computational models used to study the fluid-dynamics
in stenotic carotids should ideally be able to resolve the Kolmogorov scale (e.g.
the smallest dynamically important flow structure), according to the so-called
Direct Numerical Simulation (DNS), or provide a turbulence closure to model
unresolved eddies. In fact, this was the case of several studies in the recent years;
among those that considered real scenarios, we mention [43, 5, 44, 19] for RANS
models, and [23] for DNS simulations. Recently, Large Eddy Simulations (LES)
have also been considered in this context, see, e.g., [16, 45, 33, 30]. LES models
are based on introducing a filtering procedure that separates the resolved scales

from the subgrid scales, the latter being suitably modelled as a function of the
resolved quantities [41, 37, 9].

All the aforementioned works related to the use of LES models for stenotic
carotids considered idealized geometries. The results reported therein laid the
foundations for the use of LES models in geometries of clinical relevance. How-
ever, it is known that although the Reynolds number is not very large (1500-
2500), the shape of the stenotic carotid bifurcation together with the pulsatility
of the forcing term could promote the development of transition to turbulence
for Reynolds numbers less than 2000 (the critical value holding for a pipe) [42].
Thus, DNS could be prohibitive due to the requested computational effort and a
comprehensive study of the suitability of LES models in the context of stenotic
carotids should consider real scenarios, that is patient-specific geometries and
boundary data.

In the present work, we compared the results obtained by using different
LES models in a real context of a stenotic carotid. At the best of the authors’
knowledge, this is the first time that LES models have been applied to a patient-
specific carotid artery. To make the comparison complete, we also considered the
solution obtained by using a DNS. In all the cases, a SUPG technique has been
used to stabilize our numerical schemes due to the presence of high convective
terms (high Reynolds numbers).

The outline of the paper is as follows. In Section 2 we introduce the mathe-
matical setting, whereas in Section 3 we report the numerical discretization. In
Section 4, we first give a brief discussion on the choice of the time and space dis-
cretization parameters, and then we show several numerical results and related
comments. Finally, in Section 5 we draw some conclusions.
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2 Mathematical models

2.1 The fluid equations

Blood in medium and large vessels could be modelled as an incompressible
and homogeneous fluid [15]. Although some works highlighted that in ideal-
ized stenotic channels with squared cross-section the shear layer is more elon-
gated when non-Newtonian models are used [43, 30], we decided here to use a
Newtonian model, because no evidence of the influence of blood rheology were
observed so far for stenotic pipes and real geometries. Moreover, we remark that
the LES models we tested have been proposed in the framework of the Newto-
nian hypothesis. We therefore consider the following Navier-Stokes equations
(normalized over the fluid density):

Find the velocity u(t,x) and the pressure p(t,x) such that

∂u

∂t
− ν∇ · S(u) +∇ · (u⊗ u) +∇p = 0 t ∈ (0, T ], x ∈ Ω ⊂ R3,

∇ · u = 0 t ∈ (0, T ], x ∈ Ω,
u = g t ∈ (0, T ], x ∈ ΓD,
−pn+ νS(u)n = ψ t ∈ (0, T ], x ∈ ΓN ,

(1)

with a quiescent initial boundary condition, and where (u⊗ u)ij = uiuj , S(u) =

∇u + (∇u)T , ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, ν is the kinematic viscosity, and
g(t,x) and ψ(t,x) are given boundary data.

LES models are based on the decomposition of the fluid unknowns in resolved
and unresolved quantities, [u, p] and [u′, p′], respectively, so that u = u+u′ and
p = p+p′ [37]. The resolved quantities are often referred to as filtered, since the
following filtering operation is considered:

u(x) =

∫

Ω
u(x′)G(x,x′; ∆)dx′

where G is the filter function and ∆ is the filter width. The previous operation
is formal since u is not known. In order to derive a set of equations for u and p,
a filtering procedure is performed over the Navier-Stokes equations (1). Defining

τ = u⊗ u− u⊗ u, (2)

we obtain the following fluid momentum equation in the filtered unknowns

∂u

∂t
− ν∇ · S(u) +∇ · (u⊗ u) +∇p+∇ · τ = 0 t ∈ (0, T ], x ∈ Ω. (3)

The tensor τ is the so called subgrid-scale term, which models the effect of the
smallest (unresolved) scales on the resolved ones [41, 36]. Different choices for
the subgrid-scale tensor lead to different LES models. In any case, τ is built as a
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function of the filtered quantities u, hence equation (3) only depends on (u, p).
A general strategy consists in modeling the deviatoric part τ d = τ − 1

3

∑
k τkkI

of τ , and to define the (unknown) modified filtered pressure P = p+ 1
3

∑
k τkk.

Then, the filtered Navier-Stokes equations reads

Find the filtered velocity u and pressure P such that

∂u

∂t
− ν∇ · S(u) +∇ · (u⊗ u) +∇P +∇ · τ d(u) = 0 t ∈ (0, T ], x ∈ Ω,

∇ · u = 0 t ∈ (0, T ], x ∈ Ω,
u = g t ∈ (0, T ], x ∈ ΓD,

−Pn+ νS(u)n− τ d(u)n = ψ t ∈ (0, T ], x ∈ ΓN ,
(4)

with the same initial condition of the unfiltered problem (1). A special remark
should be highlighted for what concerns boundary conditions. Indeed, often
LES models are written for unbounded domains, thus, in practice, with periodic
boundary conditions. Here, we have assumed that the boundary conditions in
the filtered equations (4) are the same of the unfiltered problem (1), since both
problems want to describe the same physical phenomenon. In particular, we
have here proposed to use at the left hand side of the Neumann condition (4)4
the total stress tensor (thus including also the subgrid stress tensor τ d). This
is consistent with the observation that the Neumann condition is a “natural”
condition representing what remains from integration by parts when the weak
formulation is considered (see Section 3.2).

2.2 Eddy viscosity and hybrid models

Usually, the effect of the subgrid-scale motions on the resolved scales is mod-
eled in analogy with the kinetic theory of gases, by introducing a subgrid-scale
viscosity νsgs and by modeling the deviatoric part of τ as follows

τ d(u) = −2νsgs(u)S(u), (5)

where we have highlighted the general dependence of νsgs on the filtered velocity,
depending on the model considered. The models based on (5) produce the
mean (in the statistical sense) dissipation provided by the unresolved eddies. In
particular, in this work we considered two eddy viscosity models. The first one
is the classical Smagorinsky model [41] based on the following choice

νsgs = νSmag
sgs (x) = C∆

2
√
2
∑

i,j

Sij ,

where we have set S = S(u), ∆ is the characteristic length of the filter and C
a constant to be suitably chosen. The Smagorinky model has the nice feature
to vanish for pure rotations; however it does not vanish in near-wall regions and
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for pure shear [31]. Another limitation of this model is that it is too dissipative
in laminar regions [18]. It has been used in several works for the analysis of the
fluid-dynamics in stenotic (although ideal) vessels, see [16, 45, 33, 30].

The second eddy viscosity model considered in this work is the σ model,
introduced in [31]. This model is based on the introduction of the singular
values σ1(t,x) ≥ σ2(t,x) ≥ σ3(t,x) > 0 of ∇u, and on the following choice

νsgs = νσsgs(t,x) = C∆
2σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

, (6)

where again C is a constant to be suitably chosen. The σ model vanishes in
the cases of pure rotation (like the Smagorisnky model), pure shear, and when
the resolved scales are in axisymmetric or isotropic expansion. Moreover, the
turbulent stresses decay as the distance to the solid boundary to the third power.
In the context of hemodynamics, the σ model has been successfully applied to
describe the ventricular blood fluid-dynamics [10].

A new family of LES models has been introduced starting from the eddy
viscosity models. These are the so called mixed models, where it is assumed
to know the expression of a part of τ d, which does not need to be modeled.
The latter is obtained from the similarity model by Bardina [3, 28], which, in
constrast with the eddy viscosity models, is able to represent the backscatter of
energy from subgrid to resolved scales, and is given by the deviatoric part Ld of

L = u⊗ u− u⊗ u. (7)

The previous tensor is obtained by considering a filtering of the filtered quanti-
ties. Bardina proposed to use the previous quantity to model the whole subgrid-
scale tensor τ . In [56, 53, 38] a dissipation term is added as in the eddy viscosity
models. This leads to mixed models with

τ d(u) = L
d(u)− 2νsgs(u)S(u).

In the previous expression, one could consider either the Smagorinsky or the
σ model (or another eddy viscosity model), yielding to mixed-Smagorinsky or
mixed-σ models.

2.3 Dynamic procedures

All the four LES models described above (Smagorinsky, σ, mixed-Smagorinsky,
and mixed-σ) are characterized by the choice of a suitable constant C. In this
work, we used the dynamic procedure introduced in [17, 18, 27], based on a
second filter (known as test filter, indicated in what follows by )̃ to be applied
to the filtered equations (4). Thus, from the filtered momentum equation (4)1,
we obtain

∂ũ

∂t
−ν∇·S

(
ũ
)
+∇·

(
ũ⊗ ũ

)
+∇P̃+∇·τ̃ d+∇·Nd = 0 t ∈ (0, T ], x ∈ Ω, (8)
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where Nd is the deviatoric part of the resolved stress tensor N defined by

N = ũ⊗ u− ũ⊗ ũ. (9)

Alternatively, one could apply the test filter directly to the non-filtered mo-
mentum equation (1)1. Supposing that this operation is equivalent to apply
successively the grid filter and the test filter (this property is strictly true only
when a low-pass filter is employed), we obtain

∂ũ

∂t
− ν∇ · S

(
ũ
)
+∇ ·

(
ũ⊗ ũ

)
+∇P̃ 1 +∇ · T d = 0 t ∈ (0, T ], x ∈ Ω, (10)

where, in analogy with the definition of τ in (2), T d is the deviatoric part of the
subgrid-scale tensor T defined by

T = ũ⊗ u− ũ⊗ ũ. (11)

By a direct comparison of (8) and (10) (or equivalently by comparing (2),(9)
and (11)), we obtain the so called Germano identity, which is at the base of the
dynamic procedures:

T − τ̃ =N . (12)

Thanks to their definitions (2) and (11), both the subgrid-scale tensors τ and T

are not computable in principle, due the presence of the terms u⊗ u and ũ⊗ u
which involve the unfiltered velocity u. This is the reason why we needed to
model them. On the contrary, thanks to the Germano identity (12) and (9), the
difference N between the two subgrid stress tensors T and τ is known in terms
of u, hence it is in principle computable.

We can rewrite in compact form the modeled subgrid stress tensor (5) of the
four LES models introduced above as follows:

τ d (u) = αLd (u)− 2C∆
2
β (u)S (u) , (13)

where α = 1 for the mixed models, α = 0 otherwise, and where β =
√
2
∑

i,j SijSij

for the Smagorinsky models and β = σ3(σ1−σ2)(σ2−σ3)
σ2
2

for the σ models. Thus,

we can think to use the same model also for the subgrid tensor T , obtaining

T d
(
ũ
)
= αLd

(
ũ
)
− 2C∆̃2β

(
ũ
)
S
(
ũ
)
, (14)

where ∆̃ is the characteristic length of the test filter, Ld is the deviatoric part
of L, which, in analogy with the definition of L in (7), is defined by

L =
˜̃
u⊗ ũ−

˜̃
u⊗

˜̃
u,

1Notice that here and in the previous NS momentum equation, P has been modified in order

to include the terms 1

3

∑
k
Nkk and 1

3

∑
k
Tkk, respectively.
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and where we have assumed that the constant C is the same used for modeling
τ d (see, e.g., [18]). Now, by using the Germano identity (12) for the deviatoric
part of N in combination with (13) and (14), we obtain

Nd = α
(
Ld − L̃

d
)
+ CM , (15)

where we have setM = 2
(
∆β̃S (u)− ∆̃βS

(
ũ
))

. The tensors Nd,Ld, L̃
d
and

M are all computable, since they depend on u, so that (15) provides a way
to compute the constant C. Since the latter cannot be chosen to match the
five independent components of the tensors appearing in (15), a least-square
minimization has been proposed by [27], obtaining the following expression of
the constant to be used in our LES models:

C(t,x) =

∑
i,j Mij

(
Nd

ij − α
(
Ld
ij − L̃d

ij

))

∑
i,j MijMij

, (16)

where we have highlighted that C is a function of time and space.
Notice that neither problem (8) nor (10) are explicitly solved, so that most

of the computational effort of the dynamic procedure is taken by the solution of
the NS problem (4).

3 Numerical discretization

3.1 About the filtering procedures

In this paper, for the grid filter we considered an implicit procedure, given by
the solution of the fluid equations on a mesh (coarser than the DNS one), which
is not able to capture all the scales up to the Kolmogorov one [36]. In this case
∆ represents the size of the mesh. This empirical choice was first proposed by
Deardorff [12] and is the most widely used today. In our cases, the mesh is
given by a finite element triangulation made by tethrahedra and the size of the
mesh has been chosen so as to guarantee independence of the results of LES
up to a tolerance of 4% in the wall shear stresses, in accordance with the grid
convergence test proposed in [8].

The test filter used to obtain the expression of an effective constant C in a
dynamic procedure is described in [49]. In particular, this filter is based i) on
computing in each tetrahedra the average velocity w of the grid-filtered velocity
u, and ii) on assigning to each node xi the velocity field ũ obtained by averaging
the values w related to the tetrahedra that share xi. The characteristic length
∆̃ related to this geometric filter is equal to the sum of the volumes of the
tetrahedra sharing the node xi.
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3.2 Time and space discretization

As for the time discretization, we proposed to use a semi-implicit approach to
linearize the momentum equation (4)1, used in combination with a BDF2 scheme
[21]. In particular, the convective and the eddy-viscosity terms have been treated
semi-implicitly, whereas the Bardina term L and the constant C in the dynamic
cases have been treated explicitly. Instead, for the space discretization we used
Finite Elements with a SUPG stabilization term added to control numerical
instabilities due to the large convective term [46]. In particular, we used P2−P2
Finite Elements, that is piecewise quadratic polynomials for the approximation
of the pressure and each velocity component.

In summary, the discretized-in-time Galerkin problem at each time step
tn+1 = (n+ 1)∆t (∆t being the time discretization parameter) is given by:

Find the velocity un+1 and the pressure P
n+1

such that it holds true

(
3un+1 − 4un + un−1

2∆t
,v

)
+ ν

(
S(un+1),∇v

)
+
(
∇ ·
(
zn+1 ⊗ un+1

)
,v
)
−
(
P

n+1
,∇ · v

)
+

+
(
αLd(zn+1)− 2Cn∆

2
β
(
zn+1

)
S
(
un+1

)
,∇v

)
+M

(
un+1, P

n+1
,v
)
= F (v) ∀v ∈ V h,

(q,∇ · un+1) = 0 ∀q ∈ Qh,

where zn+1 = 2un − un−1, Cn(x) = C(tn,x),

M (w, q,v) = γ
∑

K∈TΩ

δSUPG

[
F (v)−

((
3w − 4un + un−1

2∆t
−∇ ·

(
zn+1 ⊗w

)
−∇q

)
,v

)

L2(K)

+

+
((

ν∇ · S(w)−∇ · τ d(w)
)
,∇v

)

L2(K)

]

accounts for the SUPG stabilization with δSUPG =

[(
2

∆t

)2

+

(
2 ‖ un ‖∞

h

)2

+

(
4ν

h2

)]−1/2

and γ a suitable scaling factor [46, 48], F for possible non homogeneous bound-
ary conditions, v are the test functions, V h and Qh are the velocity and pressure
Finite Element spaces, K is a generic tetrahedra belonging to the finite elements
partitioned domain TΩ, h is the maximum element diameter and (·, ·) denotes
the L2(Ω) inner product.

4 Numerical results and discussion

4.1 Details of the simulations and boundary conditions

All the numerical results have been obtained using the parallel Finite Element
library LIFEV developed at MOX - Politecnico di Milano, INRIA - Paris, CMCS -
EPF of Lausanne and Emory University - Atlanta. The partitioning of the mesh

8



relies on ParMETIS (http://glaros.dtc.umn.edu/gkhome/views/metis), whereas
the solution of the linear system on Trilinos (http://trilinos.sandia.gov). In
particular, the linear system arising at each time step has been solved with
GMRes, preconditioned with an Additive Schwarz preconditioner available in
the package Ifpack of Trilinos. LES simulations were run on a 5 nodes and 160
Intel E5-4610v2 cores cluster with 256GB memory per node, using from 96 to 128
cores. DNS simulations were run on a 503 nodes and 12049 Intel Westmere-EP
cores cluster with 36GB memory per node, using 480 cores.

We considered a real scenario of a human carotid geometry reconstructed by
MRI images, see Figure 1, left. At the Common Carotid Artery (CCA), ΓCCA,

Figure 1: Reconstructed geometry (left), mesh used for the LES computations
(center), and DNS refinement at ICA (right).

we imposed the following boundary measure of the flow rate QCCA(t) obtained
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with Echo-Color Doppler and reported in Figure 2
∫

ΓCCA

u · n dσ = QCCA.

This is a defective boundary condition, since at each time step we are prescribing
only a scalar quantity over ΓCCA rather than 3 conditions for each point of the
section. In order to fill this gap, we made the assumption of parabolic velocity
profile along the normal direction (suitable choice for carotids [6]), yielding the
following Dirichlet boundary condition

u = gCCA t ∈ (0, T ], x ∈ ΓCCA.

Here gCCA is the unique function characterized by a parabolic profile in the
normal direction and vanishing in the tangential ones, whose flow rate at each
time step equals QCCA(t).

In absence of patient-specific measures of the flow rate at the outlets, we
have assumed a flow division in the two branches. Indeed, they carry the blood
in different regions of the head, namely ICA supplies the brain, whereas ECA
the cheeks, and thus they encounter different downstream resistances. Since the
estimation of such resistances for the patient at hand would require measure-
ments that we do not have, we fix their values by imposing a fixed-in-time flow
division. Specifically, we have prescribed an amount of 65% of the CCA flow
rate at the Internal Carotid Artery (ICA) outlet, ΓICA, [24]

∫

ΓICA

u · n dσ = 0.65 ·QCCA.

In this case, the prescription of a selected velocity profile (flat or parabolic) lead
to unstable results, since the swirling blood flow generated after the stenosis
barely fitted the selected profile at the ICA. For this reason, we have prescribed
the flow rate by means of the augmented formulation, based on the introduction
of a Lagrange multiplier [14, 50]. In fact, this leads to the prescription of the
following Neumann condition

−Pn+ νS(u)n− τ d(u)n = λn t ∈ (0, T ], x ∈ ΓICA,

where λ(t) is the unknown Lagrange multiplier. This strategy has been shown
to be effective in real applications, see, e.g. [35] for the case of abdominal aortic
aneurysms and [52, 51] for the ascending aorta. Due to the rigid wall assumption
we have made in this work [34], at the External Carotid Artery (ECA), ΓECA, in
accordance with the incompressibility constraint, we prescribed the homogeneous
Neumann condition

−Pn+ νS(u)n− τ d(u)n = 0 t ∈ (0, T ], x ∈ ΓECA.

This guarantees that the physiological value of 35% of the CCA flow rate is
coming in the ECA. For each case we run the simulation over four cardiac cycles.
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Figure 2: Flow waveform used for inlet boundary condition (CCA) based on
Echo-Color Doppler in vivo measurements.

We neglected however the first one, so that all the reported results refer to three
cycles.

The mesh for LES computations was formed by 4.12 · 105 tetrahedra, see
Figure 1, center. For the DNS we used a mesh obtained by a refining strategy
in the regions where turbulence effect have been expected (that is at the bifur-
cation and ICA) composed by 106 tetrahedra (see Figure 1, right). We used
also the following data: physical viscosity ν = 0.033 dyne/cm2, fluid density
ρf = 1.06 g/cm3, time discretization parameter ∆t = 6.25 · 10−4 s, period of one
heart beat T = 0.6475s, scaling factor in the SUPG γ = 0.01.

To avoid numerical instabilities it is customary to limit the SGS stress tensor
contribution. We imposed that the total viscosity is positive and, to avoid too
large values, bounded, in particular we set −ν ≤ νsgs ≤ 10ν.

To quantify the variation of a physical quantity S(t,x) over the cardiac cycles
and thus to highlight the related turbulent effects, we compute the ensemble-

averages S(x) of S at the systolic and mid-deceleration points along the cardiac
cycles, as follows:

S(x) =
1

M

M∑

j=1

S(ti + (j − 1)T ), i = s,md,

where M = 3 is the number of cardiac cycles.
As for the choice of the mesh size and of the ∆t in the DNS simulation, we

refer the reader to the next subsection.

4.2 On the choice of the discretization parameters

In our case, due to the complex geometry and pulsatile forcing terms, transitional
effects downstream the stenosis are present, so that the classical Kolmogorov
theory that predicts the size of the smallest scales of statistically homogeneous
isotropic and stationary turbulence may be insufficient. Therefore, we used an
alternative approach to define our DNS mesh size and time step. As observed,

11



at the systole long shear layers are created and their instability can trigger the
transition to turbulence during the deceleration phase. Thus, we labelled the
mesh “fine” when it was able to correctly resolve the shear layers detaching from
the stenosis in the ICA, since this is the primary phenomenon characterizing the
blood flow in stenotic carotids [23]. The same holds for the choice of the time
discretization parameter ∆t.

To this aim, we considered the simplified problem of a viscous, incompress-
ible, and two-dimensional laminar shear layer [4], characterized by the following
velocity field

u(x, y) =

(
Ushear tanh(y/Lshear)

0

)
,

for a suitable constant Ushear and where Lshear is the shear layer width. Then,
we apply a perturbation of the form

uP (t, x, y) =

(
iαdv

dy

v(y)eiαx−iωt)

)
,

to the two-dimensional laminar shear layer, where, given α ∈ R, the eigenfunc-
tion v and the corresponding eigenvalue ω = ωr + iωi ∈ C are determined by
the Orr-Sommerfeld equation obtained by linearizing the Navier-Stokes equa-
tions [39]. In [4] it has been shown that the most unstable eigenvalues have
null real part (ωr ≃ 0), so that the associated modes are characterized by an
exponential growth in time. Given a Reynolds number, by plotting the largest
value of ωi = ωi(α) as a function of α we obtain a curve from which we derived
the maximum value of ωi, ωi,max, and the maximum value of α, αmax, such
that ωi(α) > 0 for each α ≤ αmax. In this work, we propose to choose the
discretization parameters h and ∆t so as to guarantee that hcrit = A/αmax and
∆critt = B/ωi,max, where A,B ≤ 1 are constants chosen to ensure accuracy.

In order to compute the Reynolds number of the shear layers in our carotid
simulation, we considered a simulation without any LES model with values of
the space and time discretization parameters hRe and ∆tRe which guaranteed
the independence of the wall shear stresses (up to a tolerance of 4%) obtaining

Reshear =
UshearLshear

ν
= 7.6.

In our case Lshear = 0.01 cm is the shear layer thickness at the stenosis and
Ushear = 25 cm/s is the velocity in the shear layer center. We found (see figure
3) the following values of the discretization parameters which allow to resolve
the most unstable wave associated with the Kelvin-Helmhotz instability:

hcrit = 0.028 cm, ∆tcrit = 6.25 · 10−4 s,

where we have used A = 0.2 and B = 0.1. We observe that the values of hRe and
∆tRe used to estimate the Reynolds numbers are coherent with the estimates
hcrit and ∆tcrit.
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Figure 3: Growth rate for the shear layer instabilities at Reynolds number
Reshear = 7.6 as a function of the normalized spatial frequency αLshear [4].
The two dashed lines mark the maximum normalized spatial frequency char-
acterized by positive values of ωi (corresponding to an unstable shear layer,
αmaxLshear ≃ 0.594) and the maximum growth rate (ωiLshear/Ushear ≃ 0.0924).

4.3 Results and discussion

4.3.1 Description of the DNS solution

Our first analysis concerns the description of the shear layers dynamics found
by our DNS simulation. We considered three time instants in the cardiac cycle,
namely the systolic peak ts, a mid-deceleration point tmd, and a diastolic point,
see Figure 2. We observe that all the numerical results related to the diastolic
point featured a laminar behavior, so that we do not report them in what follows.
Rather, we will focus only on the ICA, since the flow remains laminar in the CCA
and in the ECA through the whole cardiac cycle and for this reason it is not
reported here.

First of all we studied the dependence of the DNS solution on the choice of
∆t. In Figure 4 we report the mean time energy spectra over three cardiac beats
at location (a) as a function of the Strouhal number St = ωD/Umean obtained
with the value of ∆t predicted by the 2D analysis of previous subsection and with
a value four times greater. In our case D = 0.2 cm is the stenosis diameter and
Umean = 80 cm/s is the average-in-time and in-space velocity. From these results
we observe the significant differences between the two spectra. In particular, the
largest value of ∆t is not able to identify the peak frequency characterizing the
shear layers dynamics and overestimates the energy at the medium and high
frequencies. We remark that the peak observed for St = 1.05 corresponds to
ω = (StUmean)/D ≃ 400Hz which is of the same order of magnitude of the
growth rate deduced from Figure 3 ωi,max ≃ 0.0924 · Ushear/Lshear = 250Hz.
This test on the sensitivity of the solution on ∆t highlights the importance of
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the choice of the time discretization parameter in performing a DNS. We did
not experience any significant difference among the numerical solutions when
∆t smaller than ∆tcrit were used. Thus, from now on, all the results that we
present are obtained by using ∆t = ∆tcrit = 6.25 · 10−4 s.
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Figure 4: Mean time energy spectra at location (a) for DNS with different values
of ∆t.

In Figure 5, top, we report the ensemble-averaged velocity field at six time
frames around the systole. We observe, as expected, the formation of two shear
layers at both sides of the jet. These shear layers, which are compact and intact
at the beginning of the sequence, start to oscillate just below the wall impinge-
ment region and, after about 0.05 s, the jet inside the shear layers breaks down
leading to chaotic and random swirling structures downstream. In particular, we
observe that transitional effects appear in the DNS after approximatively three
stenosis diameters from the bifurcation.

In Figure 6 we report the ensemble-averaged vorticity W at the systolic and
mid-decelaration points, at a longitudinal section of the ICA. From the DNS
results, we observe that the flow is transitional in the ICA at both the systolic
and the mid-deceleration phases. Indeed, the behavior of the vorticity W at the
systole highlights a non-compact impingement of the flow jet, which features a
waving motion before reaching the ICA wall and clearly shows the presence of
the two unstable shear layers. At the mid-deceleration point, the instabilities
are still well highlighted by the vorticity W.

4.3.2 Comparison between LES and DNS

The aim of this section is to provide a comparison among the solutions obtained
by DNS and the LES models described above (dynamic and dynamic mixed-
Smagorinsky, static and dynamic σ, dynamic mixed-σ).

We found numerical instabilities during the deceleration phase after systole
using the dynamic Smagorinsky and the dynamic mixed-Smagorinsky models,
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Figure 5: Ensemble-averaged velocity magnitude for DNS (top) and dynamic σ
model (bottom) at six temporal frames spaced out one from the other by 0.02 s.
The fourth frame corresponds to the systolic peak.

which lead to the interruption of these simulations. The instabilities are prob-
ably due to the fact that the function C in (16) is highly intermittent in space
and time. We could not average it, as is commonly done in situations with sta-
tistically spatial homogeneity directions or temporal stationarity [18, 54], due to
the very different physical regimes that are present in our system both in space
and time. Instead, the static σ, the dynamic σ and the dynamic mixed-σ models
turned out to be robust and were less affected by the intermittence of C, so that
in what follows we analyze only the results of these models. In the following
figures, we refer to them as “sigma”,“dyn-sigma” and “dyn-m-sigma”.

In Figure 7, top, we report the velocity magnitude for three cycles at six
different centerline locations along the ICA, for DNS and static σ model. These
results highlight that just after the stenosis (location (a)) the flow is still in a
laminar regime. Instead, downstream the stenosis (locations (b)-(f)) complex
velocity oscillations occur. We notice that oscillations featured by the static σ
model appear and disappear at the same time instants with respect to the DNS,
whereas for the dynamic models oscillations occur on a wider temporal range
(see zooms reported in Figure 7, bottom). We also observe that at location (b)

15



Figure 6: Ensemble-averaged vorticity at the systolic point ts (left) and at the
mid-deceleration point tmd (right). For each instant, DNS at the left and static
σ at the right.

the values of the velocity obtained by the static σ model are larger than the DNS
ones during the first part of the systolic phase. On the contrary, the dynamic
σ model overpredicts the velocity magnitude at the end of the systolic phase.
The dynamic mixed-σ model produces larger values during the whole systolic
phase. We finally notice that at location (b) both dynamic models feature higher
large frequency oscillations with respect to DNS and static model. Downstream
(locations (c)-(f)), the behavior of all the LES models is in excellent agreement
with DNS. Due to the comparable results among the three LES models at these
four locations, we reported in Figure 7, top, only the static case. The overpro-
duction of energy by the mixed model in the shear layers observed at location
(b) is counter-balanced by its overdissipation in the downstream locations. The
overdissipation of mixed models in developed turbulence is often reported, see
e.g. [54].

In Figure 8 we reported the time energy spectra of the velocity magnitude
as a function of the Strouhal number for DNS and static σ model at three of the
locations depicted in Figure 7. We observe from the energy spectra of location
(a) that the energy behavior obtained by the static model is almost coincident
with the DNS one. This is not surprising since at this location we are in laminar
regime. Also at the downstream locations (where the transitional effects are
relevant) we can observe an excellent agreement between the static model and
DNS.

This is not the case of the dynamic models. For example, in the same figure
at the bottom we reported the velocity magnitude at location (a) for the dynamic
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σ model and the corresponding energy spectrum (the latter also for the dynamic
mixed model). These results highlight small spurious high frequency oscillations
for the velocity magnitude which are clearly visible in the related spectrum. A
similar trend has been observed for the velocity obtained by the dynamic mixed
model, not reported here. In Figure 8 we also reported the energy spectra of
dynamic models at location (b). We notice that both models (especially the
mixed one) overestimate the energy both at low and high frequencies. This
confirms the previous observation about Figure 7, bottom, which highlighted
stronger large frequencies oscillations for the dynamic models. This increased
energy at medium and high frequencies at location (b) is probably a remnant
of the overestimated energy generated upstream which, due to the dissipation,
is less marked than at the previous location (a). At locations (c)-(f), where
disturbed and chaotic structures developed, the energy spectra of the dynamic
models fit well the DNS ones, confirming the accuracy of these models at the
downstream locations. In particular, there are no more differences among the
spectra at the medium and high frequencies. For this reason, we did not report
these spectra. The increased oscillations featured by the dynamic models at the
upstream locations, that is at the beginning of the transition, could be due to
the dynamic computation of the coefficient C which is very variable function
of space and time. This can destabilize the solution, as already seen for the
Smagorinky model where this effect was such evident to destroy the numerical
stability. To the aim of seeking a more stable and accurate numerical solution,
we investigated the results obtained by considering at each time step a global
value of C in the dynamic procedures obtained by averaging in space the local
constants. However, the results showed a very dissipative solution which was
not able at all to represent accurately the shear layers dynamics, so that we do
not report them.

To better describe the behaviour of the dynamic σ model, in Figure 5, bot-
tom, we reported the ensemble-averaged velocity field at the same six time frames
considered for DNS (see Figure 5, top). From these results, we observe that os-
cillations and breakage of the jet and shear layers start for the dynamic model
earlier than DNS. This is in agreement with the velocity oscillations observed in
Figure 7, bottom, which for the dynamic model start before the systolic peak,
unlike DNS.

The good behaviour of the results obtained by the static σ model is also
confirmed by looking at the ensemble-averaged vorticity W at a longitudinal
section of the ICA reported in Figure 6 at the systolic and mid-decelaration
instants. From these results, we observe that the static model is in excellent
agreement with DNS.

In Figure 9 we report the in-plane ensemble-averaged velocity fields at the
systole for several cross sections. In particular, the velocity pattern at the more
proximal location A-A is very similar for all the four cases considered, whereas
at location B-B and C-C the static model features a better agreement with the
DNS with respect to the dynamic models, confirming what found previously.
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However, for the distal locations D-D, E-E and F-F, the accuracy of the dynamic
models is very good (confirming again what found previously), even better than
the static one.

Finally, we observe that for stenotic carotids a major clinical role is played
by the Wall Shear Stresses (WSS). Indeed, high systolic WSS could promote
the plaque rupture [20] and a hammer effect at the ICA wall [26]. Thus, a
natural question arising from the clinical point of view is whether the accuracy
of LES models are able to predict correct values of WSS. To answer this question,
in Figure 10 we report the systolic WSS for DNS and the three σ models. We
observe again the excellent agreement of the results obtained by the static model
with DNS and the overall very good beahavior of the dynamic ones.

5 Conclusions

In this work we have considered for the first time Large Eddy Simulations (LES)
models to describe the transitional effects appearing in real vascular districts,
in particular in stenotic carotids. The main contributions and outcomes of the
present work are summarized in what follows:

1. We proposed a way based on a simplified 2D shear layer model to estimate
the grid size and time discretization parameter needed to capture all the
important features of the fluid flow in a stenotic carotid, in particular the
dynamics of the jet and of the shear layers. We referred to this simulation
as DNS;

2. The shear layers generated after the bifurcation are well captured by the
static σ model. The shear layers obtained by the dynamic and dynamic
mixed- models are less stable than the DNS ones and consequently they
break up earlier in space and time;

3. The velocity fluctuations and the time energy spectra are well described
by the static σ model at each locations along the ICA, and by the dynamic
models sufficiently far from the bifurcation (locations (c)-(f));

4. Among the dynamic models, dynamic σ is more accurate than mixed-σ in
terms of similarity of the velocity field with the DNS one;

5. All the σ models were able to capture the peak oscillation frequency of the
shear layers.

The next steps will be the applications to different arterial districts (such
as the aorta), the inclusion of fluid-structure interaction to account for the ves-
sel displacements, and the test of turbulence models that take into account
anisotropy effects [1].
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Figure 7: Top view: time traces of the velocity magnitude at six streamwise
centerline points for three cardiac cycles for DNS (in black) and static σ model
(in blue). An offset in velocity equal to 150 cm/s at each centerline point has
been used. Bottom view: particular of the third cycle at location (b) for the
static (left), dynamic (middle), and dynamic mixed- (right) σ models. The
vertical line represents the systolic peak.
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Figure 8: Time energy spectra of the velocity magnitude related to time traces
reported in Figure 7. Top, left: static model, location (a); Top, right: static
model, location (b); Midlle, left: static model, location (c); Middle, right: dy-
namic models, location (b); Bottom, right: dynamic models, location (a). At
the bottom, left, the velocity magnitude at location (a) for the dynamic model
is reported.
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Figure 9: Ensemble-averaged velocity magnitude at six cross-sections along the
ICA at the systole. From the left to the right: DNS, static σ, dynamic σ, and
dynamic mixed-σ.

Figure 10: Systolic Wall Shear Stresses for the four models considered.
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