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Abstract

The statistical analysis of data belonging to Riemannian manifolds is becom-

ing increasingly important in many applications, such as shape analysis, diffusion

tensor imaging and the analysis of covariance matrices. In many cases, data are

spatially distributed but it is not trivial to take into account spatial dependence

in the analysis because of the non linear geometry of the manifold. This work

proposes a solution to the problem of spatial prediction for manifold valued data,

with a particular focus on the case of positive definite symmetric matrices. Un-

der the hypothesis that the dispersion of the observations on the manifold is not

too large, data can be projected on a suitably chosen tangent space, where an ad-

ditive model can be used to describe the relationship between response variable

and covariates. Thus, we generalize classical kriging prediction, dealing with the

spatial dependence in this tangent space, where well established Euclidean meth-

ods can be used. The proposed kriging prediction is applied to the matrix field of

covariances between temperature and precipitation in Quebec, Canada.

Keywords: Non Euclidean data; Residual kriging; Positive definite symmetric matri-

ces.

Introduction

This work is part of a line of research which deals with the statistical analysis of data

belonging to Riemannian manifolds. Studies in this field have been motivated by many

applications: for example Shape Analysis (see, e.g, Jung et al., 2011), Diffusion Tensor

Imaging (see Dryden et al., 2009, and references therein) and estimation of covariance

structures (Pigoli et al., 2012). Using the terminology of Object Oriented Data Analysis

1



(Wang and Marron, 2007), in all these applications the atom of the statistical analysis

belongs to a Riemannian manifold and therefore its geometrical properties should be

taken into account in the statistical analysis.

We develop here a kriging procedure for Riemannian data. Spatial statistics for

complex data has recently received much attention within the field of functional data

analysis (see Delicado et al., 2012; Nerini et al., 2010; Gromenko et al., 2012; Menafoglio

et al., 2013) but the extension to non Euclidean data is even a greater challenge because

they do not belong to a vector space.

Many works have considered the problem of dealing with manifold-valued response

variables. Some of them propose non parametric (see Yuan et al., 2012, and referece

therein) or semi-parametric (see Shi et al., 2012) approaches but this implies a lack

of interpretability or the reduction of multivariate predictors to univariate features. In

particular, these approaches do not allow to introduce the spatial information in the

prediction procedure.

A different line of research is followed in the present work, along the lines of those

who try to extend to manifold-valued data parametric (generalized) linear models (see,

e.g. Fletcher, 2012). We propose a linear regression model for Riemannian data based

on a tangent space approximation. This model has been developed in view of kriging

prediction for manifold data. However, it could be useful in general to address para-

metric regression in the context of Riemannian data.

The proposed method is illustrated here for the special case of positive definite

symmetric matrices and in view of a meteorological application to covariance matrices.

More in general, this approach is valid every time a tangent space and correspondent

logarithmic and exponential map can be defined.

1 Statistical analysis of positive definite symmetric matrices

Positive definite symmetric matrices are an important instance of data belonging to a

Riemannian manifold. In this section, we introduce notation and a few metrics, together

with their properties, that we deem useful when dealing with data that are positive

definite symmetric matrices. A broad introduction to the statistical analysis of this kind

of data can be found, e.g., in Pennec et al. (2006) or Dryden et al. (2009).

Let PD(p) indicate the Riemannian manifold of positive definite symmetric matri-

ces of dimension p. It is a convex subset of Rp(p+1)/2 but it is not a linear space: in gen-

eral, a linear combination of elements of PD(p) does not belong to PD(p). Moreover,

the Euclidean distance in R
p(p+1)/2 is not suitable to compare positive definite sym-

metric matrices (see Moakher, 2005, for details). Thus, more appropriate metrics need

to be used for statistical analysis. A good choice could be the Riemannian distance:

the shortest path between two points on the manifold. A description of the properties of

Riemannian manifolds in general, and of PD(p) in particular, can be found in Moakher

and Zéraı̈ (2011) and references therein.

Let Sym(p) be the space of symmetric matrices of dimension p. The tangent space

TΣPD(p) to the manifold of positive definite symmetric matrices of dimension p in the
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point Σ ∈ PD(p) can be identified with the space Sym(p), which is linear and can be

equipped with an inner product. A metric in PD(p), called Riemannian metric, is then

induced by the inner product in Sym(p). Indeed, the choice of the inner product in the

tangent space determines the form of the geodesic (i.e. the shortest path between two

elements on the manifold) and thus the expression of the geodesic distance between

two positive definite symmetric matrices. A possible choice for the Riemannian metric

is generated by the scaled Frobenius inner product in Sym(p), which is defined as

〈A,B〉Σ = trace(Σ−
1
2ATΣ−1BΣ−

1
2 ), where A,B ∈ Sym(p). This choice is very

popular for covariance matrices, because it generates a distance which is invariant under

affine transformation of the random variables.

For every pair (Σ, A) ∈ PD(p) × Sym(p), there is a unique geodesic curve g(t)
such that

g(0) = Σ,
g′(0) = A.

When the Riemannin metric is generated by the scaled Frobenius inner product, the

expression of the geodesic becomes

g(t) = Σ
1
2 exp(tΣ−

1
2AΣ−

1
2 )Σ

1
2 ,

where exp(C) indicates the exponential matrix of C ∈ Sym(p). The exponential map

of PD(p) in Σ is defined as the point at t = 1 of this geodesic:

expΣ(A) = Σ
1
2 exp(Σ−

1
2AΣ−

1
2 )Σ

1
2 .

Thus, the exponential map takes the geodesic passing through Σ with “direction” A and

follows it until t = 1. The exponential map has an inverse, the logarithmic map, defined

as

logΣ(P ) = Σ
1
2 log(Σ−

1
2PΣ−

1
2 )Σ

1
2 ,

where log(D) is the logarithmic matrix of D ∈ PD(p). The logarithmic map returns

the tangent element A that allows the corresponding geodesic to reach P at t = 1.

The Riemannian distance between elements P1, P2 ∈ PD(p) is the length of the

geodesic connecting P1 and P2, i.e.

dR(P1, P2) = || log(P−1/2
1 P2P

−1/2
1 )||F =

√√√√
p∑

i=1

(log ri)2,

where the ri are the eigenvalues of the matrix P−1
1 P2 and ||.||F is the Froebenius norm

for matrices, defined as

||A||F =
√
trace(ATA).

This distance is called affine invariant Riemannian metric or trace metric, for instance

in Yuan et al. (2012).

Other distances have been proposed in the literature to compare two positive defi-

nite symmetric matrices, both for computational reasons (Pennec et al., 2006) and for
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convenience in specific problems (Dryden et al., 2009). For example, we may con-

sider the Cholesky decomposition of the positive definite symmetric matrix P , i.e. the

lower triangular matrix with positive entries L = chol(P ) such that P = LLT . Then,

Wang et al. (2004) defined a Cholesky distance between two positive definite symmetric

matrices as

dC(P1, P2) = ||chol(P1)− chol(P2)||F ,
while Pennec (2006) proposed the Log-Euclidean distance

dL(P1, P2) = || log(P1)− log(P2)||F ,

based on the matrix logarithm. Another possibility is to resort to the square root dis-

tance (Dryden et al., 2009):

dS(P1, P2) = ||P
1
2
1 − P

1
2
2 ||F ,

where P
1
2 is the matrix square root of P . It is worth to notice that the square root

distance is also defined for non negative definite matrices. Thus, it is to be preferred in

applications where matrix data may have zero eigenvalues, or very small eigenvalues

which lead to instability in the computation of the affine invariant Riemannian distance,

the Cholesky decomposition or the matrix logarithm.

Each definition of distance has a corresponding geodesic and thus exponential and

logarithmic map. For example, the geodesic curve associated with the square root met-

ric in Σ ∈ PD(p) with tangent vector A ∈ Sym(p) is

g(t) = (Σ
1
2 + tA)T (Σ

1
2 + tA), t ≥ 0,

and the corresponding exponential and logarithmic map are therefore

expΣ(A) = (Σ
1
2 +A)T (Σ

1
2 +A),

logΣ(P ) = P
1
2 − Σ

1
2 .

The expression of the logarithmic map for the Cholesky and logarithmic distance is

similar, the square root transformation being substituted by chol(Σ) and log(Σ) re-

spectively.

Once a metric d has been introduced in PD(p), we can address the problem of

estimating the mean given a sample of positive definite symmetric matrices. In recent

years, many authors (Fletcher et al., 2004; Pennec et al., 2006; Dryden et al., 2009)

proposed to use the Fréchet mean for a more coherent approach in dealing with data

belonging to a Riemannian manifold. The Fréchet mean of a random element S, with

probability distribution µ on a Riemannian manifold M, is defined as

M = arginf
P∈M

∫
d(S, P )2µ(dS)
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and it can be estimated with the sample Fréchet mean

S = arginf
P∈M

n∑

i=1

d(Si, P )2,

if (S1, ..., Sn) is a sample from µ. In case M = PD(p), both the Fréchet mean and the

sample Fréchet mean exist and are unique (see, e.g, Osborne et al., 2013, and reference

therein). By means of extensive comparisons, Dryden et al. (2009) show that using

estimators based on a Riemannian distance gives better results than the estimator based

on Euclidean metric.

Analogously, the variance of S can be defined as

σ2 = Var(S) = E[d(S,M)2]

and estimated with the sample variance

σ̂2 =
1

n

n∑

i=1

d(Si, S)
2.

In the following, we will need to endow the linear space Sym(p) of symmetric

matrices with a metric; we will consider the metric induced by the Frobenius inner

product 〈·, ·〉F . Based on this, we define the covariance between two random matrices

A,B ∈ Sym(p) as Cov(A,B) = E[〈A− E[A], B − E[B]〉F ].
Finally, we need some notation for dealing with array of matrices, being these our

data. Let T ∈ Sym(p)n a p×p×n array, where T..i ∈ Sym(p) for i = 1, . . . , n. Then,

we can define a norm for this array as ||T||2Sym(p)n =
∑n

i=1 ||T..i||2F and a scalar prod-

uct 〈T,U〉Sym(p)n =
∑n

i=1〈T..i, U..i〉F . Let us consider a matrix G ∈ Sym(n), the

product of this matrix for an array T ∈ Sym(p)n can be defined as GT ∈ Sym(p)n,

where (GT)..i =
∑

j GijT..j . A property we need in the following is that

〈GT,U〉Sym(p)n = 〈T, GU〉Sym(p)n ,

because of the symmetry of G. Finally, we define the covariance matrix for an array

T ∈ Sym(p)n as the matrix Cov(T) ∈ Sym(n) such that [Cov(T)]ij = Cov(T..i, T..j).

2 A tangent space model for Riemannian data

Under the hypothesis that the dispersion of the observations on the manifold is not

too large, a tangent space can be used to approximate data in a linear space, where

an additive model can be used to describe the relationship between response variable

and covariates. This allows to extend well established statistical methods for regression

models to the context of manifold valued response variable. Let us consider the model

S(x;β,Σ) = expΣ(A(x;β) + ∆) (1)
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where Σ ∈ PD(p) and A(x;β) ∈ Sym(p) depends on the parameters collected in the

array of matrices β = (β..0, ..., β..r) ∈ Sym(p)r+1, r is the number of predictors and

x ∈ R
r is the vector of covariates. ∆ ∈ Sym(p) is a random matrix such that its mean

is the null matrix and Var(∆) = σ2. Thus, this manifold valued random variable is

generated following the geodesic passing through Σ with tangent vector A(x;β) + ∆:

the geodesic to be followed to obtain the realization of the variable is controlled by the

covariate vector x but an additive error is also present. The model for the symmetric

matrix A has to be specified and in this work we deal with the linear model

A(x;β) =
r∑

k=0

βkZk, (2)

where the Zk’s are the components of the vector Z = (1 x
T )T ∈ R

r+1. This strategy,

involving a tangent space projection, can be followed also to generalize to manifold

valued response variables more complex models, such as non linear or generalized re-

gression models.

Let us consider a sample ((x1, S1), . . . , (xn, Sn)) from model (1) with uncorre-

lated errors. The goal is to fit a tangent plane approximation which best models the

relationship between x and S, i.e. to find

(Σ̂, β̂) = argmin
Σ∈PD(p),β∈Sym(p)r+1

n∑

i=1

||
r∑

k=0

β..kZik − logΣ(Si)||2F , (3)

where logΣ indicates the logarithmic map that projects each element of PD(p) on the

tangent space of PD(p) in Σ, Z = [Zik] is the n × (r + 1) design matrix and β ∈
Sym(p)r+1 is the array of matrix coefficients. Thus, our estimator looks for the linear

model in the tangent space which minimizes the error sum of squares.

For a given known Σ, minimization of (3) is an ordinary least square problem in the

tangent space, since

n∑

i=1

||
r∑

k=0

β..kZik − logΣ(Si)||2F =

n∑

i=1

p∑

l=1

p∑

q=1

(

r∑

k=0

βlqkZik − (logΣ(Si))lq)
2 =

=

p∑

l=1

p∑

q=1

||Zβlq. − Ylq(Σ)||2Rn ,

where Ylq(Σ) ∈ R
n is the the vector ((logΣ(S1))lq, . . . , (logΣ(Sn))lq)

T of elements in

position (l, q) of the projected observations. Thus, each term of the previous sum is

minimized with respect to β’s by the ordinary least square solution

β̂lq.(Σ) = (ZTZ)−1ZTYlq(Σ), (4)

and β̂..k(Σ) ∈ Sym(p) is the estimate for the k-th matrix parameter β..k. The global

solution should thus be in the form (Σ, β̂(Σ)) and the problem

min
Σ∈PD(p)

n∑

i=1

||
r∑

k=0

β̂..k(Σ)Zik − logΣ(Si)||2F (5)
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has to be numerically solved. Here we resort to Nelder-Mead algorithm implemented

in the optim() function in the R software (R Development Core Team, 2009), with

constraints to ensure the matrix to be positive definite. This works well for two or

three dimensional matrices, while in case of higher dimensional matrices more efficient

optimization tools would be needed, for example gradient descend or Newton methods

on the manifold (see, e.g, Dedieu et al., 2003). In this way, we obtain an estimate for

the parameters:





Σ̂ = argmin
Σ∈PD(p)

∑n
i=1 ||

∑r
k=0 β̂..k(Σ)Zik − logΣ(Si)||2F ,

β̂lq. = (ZTZ)−1ZTYlq(Σ̂) for 1 ≤ l ≤ p, 1 ≤ q ≤ p

(6)

This method asks to specify the model (2) for the matrix A. Since this model

is defined on the tangent space, well established techniques can be used for model

selection, for example cross-validation.

3 Kriging prediction

In this section we apply the tangent space regression described above to non-stationary

manifold-valued random field. The main idea is to use a tangent space model to ap-

proximate the geometry of the manifold and to refer to the tangent space to deal with

spatial dependence. Thus, the proposed model is the following: for s ∈ D ⊂ R
d,

S(s;β,Σ) = expΣ(A(x(s);β) + ∆(s)), (7)

where ∆ is a zero-mean, globally second-order stationary and isotropic random field

taking values in Sym(p), the Euclidean space of symmetric matrices of order p. This

means that E[∆(s)] is the null matrix for all s in D and, for si, sj ∈ D, the co-

variance between ∆(si) and ∆(sj) depends only on the distance between si and sj ,

i.e., Cov(∆(si),∆(sj)) = C(||si − sj ||). This definition of the covariogram C fol-

lows the approach detailed in (Menafoglio et al., 2013) for data belonging to Hilbert

spaces. Equivalently, under the previous assumptions, for si, sj ∈ D, the spatial depen-

dence of the field can be represented by the semivariogram defined as γ(||si − sj ||) =
1
2 Var(∆(si) −∆(sj)) =

1
2E[||∆(si) −∆(sj)||2F ]. The assumption of isotropy can be

relaxed but it brings additional complication in the estimation of the spatial dependence

and this is outside of the scope of this work.

Let s1, ..., sn be distinct locations in the domain D and assume that, in each location

si, the covariate vector x(si) is observed together with a realization Si of the random

field (7). If the spatial dependence structure was known, the parameters of (7) could be

estimated following a generalized least square approach. Indeed, let Γ be the covariance

matrix of the random errors in the observed locations, i.e. Γij = C(||si − sj ||) and

R ∈ Sym(p)n the array of matrices such that R..i =
∑r

k=0 β..kZik − logΣ(Si). Thus,
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Γ−1/2
R ∈ Sym(p)n has zero mean and identity covariance matrix, since

[Cov(Γ−1/2
R)]ij = E[〈(Γ−1/2

R)..i, (Γ
−1/2

R)..j〉F ] = E[〈
∑

l

Γ
−1/2
il R..l,

∑

m

Γ
−1/2
jm R..m〉F ] =

= E[
∑

l

∑

m

Γ
−1/2
il Γ

−1/2
jm 〈R..l, R..m〉F ] =

∑

l

∑

m

Γ
−1/2
il Γ

−1/2
jm E[〈R..l, R..m〉F ] =

=
∑

l

∑

m

Γ
−1/2
il Γ

−1/2
jm Γlm = (Γ−1/2ΓΓ−1/2)ij =

{
0 i 6= j

1 i = j
,

where Γ−1/2 is the inverse of the matrix square root of Γ. Hence, the generalised least

square problem is

(Σ̂, β̂) = argmin
Σ∈PD(p),β∈Sym(p)r+1

n∑

i=1

||(Γ−1/2
R)..i||2F = (8)

= argmin
Σ∈PD(p),β∈Sym(p)r+1

∑

i

∑

j

(Γ−1)ij〈
r∑

k=0

β..k(Σ)Zik − logΣ(Si),

r∑

k=0

β..k(Σ)Zjk − logΣ(Sj)〉F .

Likewise in the case of uncorrelated errors, the minimizer with respect to β – given

Σ – is the generalized least square estimator in the tangent space,

β̂GLS
lq. (Σ) = argmin

βlq.∈R
r+1

(Zβlq. − Ylq(Σ))
TΓ−1(Zβlq. − Ylq(Σ)) =

= (ZTΓ−1Z)−1ZTΓ−1Ylq(Σ) (9)

where Ylq(Σ) is the the vector ((logΣ(S1))lq, . . . , (logΣ(Sn))lq)
T of elements in posi-

tion (l, q) of the projected observations. For finding Σ, one thus has to solve

Σ̂ = argmin
Σ∈PD(p)

n∑

i=1

n∑

j=1

(Γ−1)ij〈
r∑

k=0

β̂GLS
..k (Σ)Zik−logΣ(Si),

r∑

k=0

β̂GLS
..k (Σ)Zjk−logΣ(Sj)〉F .

(10)

If Σ and β were known, the spatial dependence of the random field ∆ on the

tangent space could be estimated in Sym(p) by considering the residuals ∆(si) =
A(x(si);β) − logΣ(Si) as an incomplete realization of the random field ∆. Indeed,

the empirical semivariogram in Sym(p) could thus be estimated with the method of

moments estimator proposed in Cressie (1993),

γ̂(h) =
1

2|N(h)|
∑

(si,sj)∈N(h)

||∆(si)−∆(sj)||2F ,

where N(h) = {(si, sj) ∈ D : h − ∆h < ||si − sj || < h + ∆h; i, j = 1, . . . , n},

∆h is a positive (small) quantity acting as a smoothing parameter, h > 0 and |N(h)|
is the number of couples (si, sj) belonging to N(h). A model semivariogram γ̂m(h)
can be fitted to the empirical semivariogram, via least squares. Cressie (1993) advo-

cates the use of the semivariogram to estimate the spatial dependence. However, an

8



estimate of the covariogram is also needed and this can be obtained as Ĉ(||si − sj ||) =
limh→∞ γ̂m(h)− γ̂m(||si− sj ||). In practice a good estimate of the spatial dependence

(including the choice of the model semivariogram) is crucial for the analysis. The space

of symmetric matrices being linear, all the existing methods of spatial statistics can be

used.

Since we aim to estimate both the spatial dependence and the linear model in the

tangent space, we resort to a nested iterative algorithm to solve problem (8). We initial-

ize the algorithm with the estimates of equation (6). Then, we apply the Nelder-Mead

algorithm to problem (10) where at each evaluation of the objective function the fol-

lowing iterative procedure is used to estimate both the spatial dependence structure and

the parameters β.

Evaluation of the objective function Let Σ̃ be the argument in which we want to

evaluate the objective function to be minimized in problem (8). Let β̂(0) be the estimate

obtained via ordinary least squares as in equation (4). For m ≥ 1

1. The tangent space residuals are computed ∆̂(m)(si) = A(x(si); β̂
(m−1))−log

Σ̃
(Si),

i = 1, . . . , n.

2. The empirical variogram γ̂(m)(h) is estimated from ∆̂(m)(s1), . . . , ∆̂
(m)(sn), the

model semivariogram γ̂
(m)
m (h) is fitted via least squares. The corresponding co-

variogram Ĉ(m) and the covariance matrix Γ̂
(m)
ij = Ĉ(m)(||si − sj ||) are com-

puted.

3. A new estimate for β̂(m) is obtained with a plug-in estimator
[
β̂(m)(Σ̃)

]
Γ=Γ̂(m)

using equation (9).

4. Steps 1-3 are iterated until convergence.

This is repeated at each evaluation of Σ in the Nelder-Mead algorithm.

Once (Σ,β) and γ have been estimated, a kriging interpolation of the residuals

provides an estimate for the field S in the unobserved location s0. Indeed, the problem

of kriging is well defined when working in the tangent space T
Σ̂
PD(p), because this

is a Hilbert space with respect to the Frobenius inner product and the covariogram

C has been coherently defined. Therefore, by applying the kriging theory in Hilbert

spaces (Menafoglio et al., 2013), the simple kriging predictor for ∆(s0) is derived as∑n
i=1 λ

0
i ∆̂(si), where the vector of weights λ = (λ0

1, . . . , λ
0
n)

T solves

λ0 = Γ̂−1
c

with c = (Ĉ(||s1 − s0||), . . . , Ĉ(||sn − s0||))T . Given the vector of covariates x(s0)
observed at location s0, the prediction of S0 – the unobserved value of the field S at s0
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– can be eventually obtained through the plug-in estimator:

Ŝ0 = Ŝ0(x(s0), (x(s1), S1), . . . , (x(sn), Sn)) =

= exp
Σ̂
(β̂GLS

..0 (Σ̂) +
r∑

k=1

β̂GLS
..k (Σ̂)xk(s0) +

n∑

i=1

λ0
i ∆̂(si)). (11)

It is worth to notice that this residual approach includes both the cases of stationary

and non stationary random field, differently from what happens with Euclidean data.

This depends on the need to estimate the parameter Σ and compute the tangent space

projections even if the random field is indeed stationary, while in linear spaces the same

problem can be addressed with a weighted average of the observed values, without the

need to estimate the common mean. In general, the proposed estimation procedure

asks for the knowledge of the model in the tangent space. As mentioned above, cross-

validation techniques can be used to choose the model among a starting set of candidate

models. However, it is also important to mention that the chosen model needs tangent

space residuals with a variogram compatible with stationarity. Therefore, a good strat-

egy could be starting from a simple (even constant) model and adding covariates until

the residuals variogram satisfies the stationarity hypothesis.

4 Prediction error

Correctly assessing the expected prediction error is an important property of the krig-

ing procedure for Euclidean data. In general, this is not an easy task in non Euclidean

spaces, given the non linearity of the space and of the operations involved in the predic-

tion. The quantity we would like to control is p(s0) = E[d(S0, Ŝ0)
2].

In this section we propose a semiparametric bootstrap to estimate p(s0). This means

that we build a bootstrap procedure using empirical residuals, as proposed initially in

Freedman and Peters (1984) for linear models. Moreover, we address the problem of the

spatial dependence of the residuals using the estimated covariogram, as common prac-

tice when applying bootstrap to spatial observations (see, e.g., Solow, 1985; Iranpanah

et al., 2011). Thus, we assume that the semivariogram γ, the related covariogram C, to-

gether with the parameters (Σ,β) have been estimated by γ̂, Ĉ and (Σ̂, β̂) respectively,

devised as in Section 3.

Let ∆̂(s1), . . . , ∆̂(sn) be the residuals of the estimated model in the known loca-

tions s1, . . . , sn. We do not want to bootstrap directly from these residuals because

of spatial dependence. Hence, we aim at representing uncorrelated errors through the

linear transformation E = Γ̂−1/2
R, where R ∈ Sym(p)n is the array of the residuals

such that R..i = ∆̂(si), for i = 1, . . . , n, and Γ̂−1/2 is the inverse of the square root

matrix of Γ̂, which estimates the covariance matrix of errors in the observed locations.

For b = 1, . . . , B, we sample with replacement n+1 elements from (E..1, . . . , E..n)
and obtain a bootstrap array E

(b) ∈ Sym(p)n+1. We then compute the bootstrap resid-

uals in the observed locations and in the unobserved location s0 as R
(b) = Γ̂

1/2
0 E

(b).

Here Γ̂
1/2
0 is the matrix square root of the estimate of the covariance matrix of errors in

10



the locations s0, s1, . . . , sn. Finally, we obtain the bootstrap realizations of the random

field in the locations s0, s1, . . . , sn,

S
(b)
i = exp

Σ̂
(A(x(si); β̂) +R

(b)
..i ), i = 0, . . . , n,

and the kriging prediction in s0,

Ŝ
(b)
0 = Ŝ

(b)
0 (x(s0), (x(s1), S

(b)
1 ), . . . , (x(sn), S

(b)
n ))

achieved by the estimator (11), given the bootstrap realizations S
(b)
1 , . . . , S

(b)
n . We can

now estimate the expected prediction error as

p̂(s0) =
1

B

B∑

b=1

d(S
(b)
0 , Ŝ

(b)
0 )2. (12)

5 Two simulation studies

In this section we illustrate two simulation studies performed to evaluate the estimators

proposed in the previous sections. Two main goals drive the section: (a) evaluate the

performance of the kriging predictor and the semiparametric bootstrap estimator of the

expected prediction error when data are generated according to model (7); (b) evaluate

the performance of the same estimators when applied to data which actually do not

follow model (7).

To reach the first goal, we independently simulate M = 100 realizations from a

2 × 2 positive definite matrix random field defined on a bidimensional spatial domain

D and consistent with model (7). The two diagonal elements and one of the off-diagonal

elements of the error matrix in the tangent space are independent realizations of a real

valued, zero-mean Gaussian field with Gaussian variogram of decay 0.1, sill 0.25 and

zero nugget. The remaining off-diagonal element is determined by symmetry. More-

over, we set

Σ =

(
2 1
1 1

)
,

while, for each s = (s1, s2)
T ∈ D, the tangent vector

A(x(s);β) = 0.2s1.

We generate the realizations of the random field on a 10 × 10 regular grid of loca-

tions and we observe the field in 15 randomly selected grid points s1, ..., s15; these 15
locations are kept fixed across the M simulations.

Fig. 1 shows the results obtained for the first simulation: the reference realization

is shown in panel (a), the predicted field in panel (b) and the expected prediction error

assessed through (12) in panel (c). In Fig. 1a and 1b, each 2× 2 positive definite matrix

S observed or predicted at a location s is represented as an ellipse that is centered in

s and has axis
√
σjej , where Sej = σjej , for j = 1, 2. Overall, the pattern of the

11



(a) Reference realization (b) Predicted field (c) Bootstrapped prediction er-

ror

Figure 1: Panels (a) and (b): Comparison between the reference realization of the matrix

field and the predicted field. Each positive definite matrix is represented by an ellipse

centered in the respective location. Observed data are represented in green. Panel (c):

Estimated expected prediction error.

reference realization appears to be fairly captured by the kriged field. Only the bottom

right corner of the spatial domain seems to be affected by a significant prediction error,

due to the absence of data near this boundary of the domain. This is reflected by the

estimated prediction error (Fig. 1c).

To evaluate the goodness of the estimator (12) for the expected prediction error,

we use the M = 100 independently simulated field realizations as follows. For every

simulation, in each of the 85 grid locations different from s1, ..., s15, we compute both

the kriging prediction secured by the estimator (11) and the estimate of the expected

prediction error achieved by (12), having set B = 100 to be the number bootstrap repli-

cates. Fig. 2 compares the maps of: (a) the average prediction error across the M = 100
simulations, i.e. the average of the square distance between the known field realization

and its kriging prediction, and (b) the average, across the same M = 100 simulations,

of the estimates of the expected prediction error supplied by the estimator (12). It can

be noticed that the semiparametric bootstrap estimator provides a good evaluation of

the prediction error, with only a slight overestimation near the observed locations.

In the remaining part of the section, we illustrate a second simulation study aiming

at evaluating the performance of the kriging predictor when data are generated from a

model different from (7). In particular, we follow Pigoli and Secchi (2012) to generate

a non stationary matrix field according to a probabilistic model with mean P (s) =
expΣ(A(x(s);β)), where Σ and A(x,β) are set to be the same as in the previous

simulation study. This random matrix field is obtained through the sample covariance

matrices generated by the realizations of a Gaussian random vector field v.

Let D ⊂ R2 indicate the common spatial domain of two independent gaussian

random fields w(s), y(s), s ∈ D. Both random fields w and y have zero mean and
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(a) Average prediction error across

100 simulations

(b) Average estimate of the ex-

pected prediction error across the

same 100 simulations

Figure 2: Comparison between the average prediction error, computed across 100 sim-

ulations, and the average estimate of the expected prediction error. Crosses indicate the

position of the observed locations.

spatial covariance defined by

Cov(w(si), w(sj)) = Cov(y(si), y(sj)) =

{
exp(−φ‖si − sj‖2) ‖si − sj‖2 > 0;

1 ‖si − sj‖2 = 0,

for si, sj ∈ D, where φ = 0.1. For s ∈ D, the covariance matrix (between components)

of the random vector field v(s) = (P (s))
1
2 (w(s), y(s))T is equal to P (s). We generate

N independent realizations of the random vector field v and, for s ∈ D, we compute

the sample covariance matrix

S(s) =
1

N − 1

N∑

k=1

(vk(s)−v̄(s))(vk(s)−v̄(s))T ∼ Wishart2

(
1

N − 1
P (s), N − 1

)
,

(13)

v̄(s) being the sample mean in s ∈ D.

For N = 4, 5, 6, we replicate the simulation M = 25 times on the same 10 × 10
regular grid of the first simulation study described in this section. For each simulation,

we observe the realizations of the field S in the same 15 locations s1, ..., s15 selected

in the first simulation study and we then predict the field realizations in the remaining

85 locations through the kriging estimator (11). Note that the parameter N controls the

marginal variability of the matrix random field S.

We evaluate the performance of the kriging procedure when applied to these simu-

lated fields by comparison with the case when data are generated by model (7). Thus,

we generate a second set of M = 25 simulations using model (7) and setting the value

of Var(∆) = σ2 = 0.35, 1, 1.9. This provides field marginal variabilities comparable

to those of the random fields generated by model (13) when N = 6, 5, 4, respectively.

Indeed, it is fair to compare prediction performances when the marginal variabilities
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of the random fields generating data are close. However, it is not trivial to obtain an

explicit relationship between the parameters controlling the field marginal variability in

the two models, i.e., N and σ2.

Thus, for both models we measure the empirical mean square error with respect to

the mean of model (13), expressed by ς = 1
100

∑100
i=1 d(S(si), P (si))

2, and the average

prediction error expressed by p̄ = 1
85

∑85
i=1 d(S(si), Ŝ(si))

2. Each point in Fig. 3a

represents the joint values of ς and p̄ relative to one of the 150 simulations considered

in this study: red points are relative to the 75 simulations - 25 simulations for each

of the three values chosen for the parameter N - when data are generated by model

(13), while black points are relative to the 75 simulations - 25 simulations for each

of the three values chosen for the parameter σ2 - when data are generated by model

(7). Polynomial smoothing lines are added to help visual comparison. Inspection of

Fig. 3a suggests that the performance of the kriging predictor (11) when model (7) is

violated is worse than its performance when model (7) is correct. Moreover, the higher

the value of ς the worse is the relative performance of the kriging predictor. This is

to be expected because a high dispersion on the manifold means that no tangent space

can accurately describe the data. However, for low values of ς the performance of the

kriging predictor in the two situations is comparable, supporting its robustness to the

violation of the model provided that the tangent space approximation is able to describe

in a fairly accurate way the observations.

Finally, by way of example, Fig. 3b and 3c represent two realizations of the matrix

field generated from (13) for high and low values of N , respectively, i.e. low or high

values of the field empirical marginal variability ς .

6 Kriging for Quebec meteorological data

In this section a kriging interpolation is proposed for the covariance matrix between

temperature and precipitation in Quebec. The co-variability of temperature and pre-

cipitation is of great interest for meteorological purposes, since a good understanding

of their relationship can improve weather forecasting methods. Moreover, relative be-

havior of temperature and precipitation affects agricultural production (see Lobell and

Burke, 2008). For a detailed description of the temperature - precipitation relationship

and its estimate see, e.g., Trenberth and Shea (2005) and references therein.

We focus on the Quebec province, Canada. Data from Canadian meteorological sta-

tions are made available by Environment Canada on the website http://climate.

weatheroffice.gc.ca. We restrict to the 7 meteorological stations where all

monthly temperature and precipitation data are available from 1983 to 1992. For each

station, we use the 10-year measures of temperature and precipitation to estimate a 2×2
sample covariance matrix for every month from January to December. This dataset has

been previously considered in Pigoli and Secchi (2012) with the aim to estimate a re-

gional covariance matrix starting from the observations coming from different meteo-

rological stations. Here, the aim of the analysis is different, since we want to predict

the covariance matrix in unobserved locations, starting from the incomplete realization
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(a) Prediction error and variability

(b) Field realization with ς = 2.9 (c) Field realization with ς = 6.7

Figure 3: Panel (a): Prediction error as a function of ς , with a local polynomial smooth-

ing added to help visual comparison, for data generated from the tangent space model

(7) (black points and solid black line) and from procedure (13) (red points and dashed

red line). Panel (b) and (c): Examples of simulated fields from model (13) for N = 6
(b) and N = 4 (c), with the respective values of ς .
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of the field.

For the analysis, we choose the affine invariant Riemannian metric as the distance

between covariance matrices because of its invariance property to changes in the mea-

surement units. At first, we make the hypothesis of stationarity for the random field

(i.e., that the matrix random field has a constant mean), thus including only a con-

stant term in the tangent space model. A Gaussian semivariogram model with nugget

seems appropriate to fit the empirical semivariogram in the tangent space and estimate

the structure of spatial dependence. However, since we are working on different tan-

gent spaces for the different months, a separate semivariogram needs to be estimated

for each month. Having estimated the semivariogram, the simple kriging interpolation

of the residuals is performed, eventually estimating the matrix field as in (11). Fig. 4

shows kriging results for the months of January and July, as well as the correspondent

semivariogram in the tangent space.

As suggested by the graphical inspection of Fig. 4, the hypothesis of stationarity is

unlikely to be adequate for all the months, meaning that the covariation between tem-

perature and precipitation is influenced by seasonal effects. In the following, we focus

on the results relative to January and July, which are representative of the two most dif-

ferent meteorological behaviors. From a geostatistical point of view this reflects on the

estimated semivariograms: while the July semivariogram does look stationary, the Jan-

uary semivariogram suggests to move toward a non-stationary model, by introducing a

space dependent drift term.

In order to choose an appropriate model for the drift in January, we investigated

linear and quadratic models with respect to longitude and latitude, including an interac-

tion term. We found that the choice which seems to balance the most the complexity of

the drift model with the residuals stationarity assumption is the following linear model

depending on longitude:

A(Longitudei,Latitudei) = β0 + βLongLongitudei. (14)

The dependence of the field on the longitude seems to be suggested also by the sta-

tionary kriging interpolation in Fig. 4a. A possible meteorological interpretation relies

in the exposition of the region toward the sea. Indeed, model (14) accounts for the

distance between the location of interest and the Atlantic Ocean, which is likely to in-

fluence temperatures, precipitations and their covariability. Such an influence has been

also observed by Menafoglio et al. (2013) when analyzing temperature curves recorded

in the Maritimes Provinces of Canada, located SE of Quebec.

Fig. 5 shows the kriging estimates of the matrix field, the estimated drift and the

semivariogram of the residuals for January. The semivariogram estimated from the

residuals (Fig. 5c) substantiates the residuals stationarity assumption. Moreover, the

residual spatial variability looks similar to the one characterizing July (ranges: 490

km and 625 km; sills: 36.83 and 25.41; nuggets: 0.01 and 0 for January and July

respectively). The comparison of the January semivariograms estimated from data (Fig.

4a) and from residuals (Fig. 5c) suggests that the spatial variability is mostly explained

by the drift term (i.e., by the distance from the Atlantic Ocean), with a low variability
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(a) January

(b) July

Figure 4: On the left: Ordinary kriging for the (temperature, precipitation) covariance

matrix field; green ellipses indicate original data. A covariance matrix S at location

s is represented as an ellipse centered in s and with axis
√
σjej , where Sej = σjej

for j = 1, 2. Horizontal and vertical axes of the ellipses represent temperature and

precipitation respectively. On the right: empirical semivariogram (simbols) and fitted

exponential model (solid line). Distances are measured in km.
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(a) Kriging prediction (b) Estimated drift (c) Residuals semivariogram

Figure 5: Kriging of the (temperature, precipitation) covariance matrix field during

January, with a drift term depending on longitude. A covariance matrix S at location

s is represented as an ellipse centered in s and with axis
√
σjej , where Sej = σjej

for j = 1, 2. Horizontal and vertical axes of the ellipses represent temperature and

precipitation respectively. In subfigure (a) and (b) green ellipses indicate the data, blue

ellipses the field and drift estimates respectively. In subfigure (c) the residual empirical

semivariogram (simbols) and the fitted exponential model (solid line) are reported. In

subfigure (c) distances are measured in km.

left to the stochastic component. This turns in a spatial prediction strongly driven by the

drift term, as noticed by the comparison of Fig. 5a and 5b. The very opposite happens

during July, when the spatial variability of the phenomenon seems to be mostly due

to a stochastic fluctuation. This is not completely unexpected, since Menafoglio et al.

(2013) report similar results when analyzing daily mean temperature curves observed

during 1980.

From a meteorological point of view, the kriged map in Fig. 5b shows that the tem-

perature - precipitation relationship appears to significantly vary when moving from the

Ocean toward the internal regions, precipitation being affected by a higher variability

along the coastline than in the western zone. Moreover, this prediction is overall char-

acterized by a positive correlation between temperature and precipitation, in accordance

with the results by Trenberth and Shea (2005).

Finally, Fig. 6 reports the estimated maps of prediction error, obtained via the esti-

mator (12) computed over a grid of new locations equally spaced. The two panels show

similar pattern of prediction error. As expected, the peripheral areas of the Eastern

Quebec are those associated with the higher uncertainty due to the absence of observa-

tions. However, the prediction appears generally very accurate, with a low estimated

prediction error.
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Figure 6: Estimated prediction error for January (left) and July (right) for the final

model chosen for each month. Crosses indicate the position of the meteorological sta-

tions.

7 Conclusions and further development

In this work we illustrate a possible way to deal with non stationary manifold-valued

random fields and we introduce a kriging predictor based on an additive model on the

tangent space. We focus here on the case of positive definite matrices, in view of the

prediction of the covariance matrix between temperature and precipitation in Quebec.

However, this general strategy can be applied to other examples of manifold-valued

data, such as shapes, M-reps or directional data.

The proposed method can be also generalized in many different directions. For

example, a more complex model can be used for the deterministic drift A(x(s);β).
This opens non trivial computational challenges in solving the least square problem.

Moreover, kriging prediction can be extended to data belonging to stratified space, such

as non negative definite matrices or infinite dimensional covariance operators. Here a

tangent space is not well defined in every point; however, it is still possible to define

transformations that map the observations in a Hilbert space where the additive model

can be used. A simple example in the case of non negative definite matrices is to use

the square root transformation.

Other approaches are also possible to model the non stationarity of the manifold-

valued random field. An example of this is the probabilistic model on the manifold

illustrated for comparison in the second simulation study. This is a special case of

a broad family of models whose full distribution is yet to be characterized. Further

investigation in this direction could open new perspectives for the statistical analysis

of spatially dependent manifold-valued data, for instance through maximum likelihood

methods.
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