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Abstract

The objective of this study is to better understand the influence of
fractures on the possibility of free convection in porous media. To this
aim, we introduce a mathematical model for density driven flow in the
presence of fractures, and the corresponding numerical approximation.
In addition to the direct numerical solution of the problem we propose
and implement a novel method for the assessment of convective stabil-
ity through the eigenvalue analysis of the linearized numerical problem.
The new method is shown to be in agreement with existing literature
cases both in simple and complex fracture configurations. With respect
to direct simulation in time, the results of the eigenvalue method lack
information about the strength of convection and the steady state solu-
tion, they however provide detailed (quantitative) information about the
behaviour of the solution near the initial equilibrium condition. Further-
more, not having to solve a time-dependent problem makes the method
computationally very efficient. Finally, the question of how the porous
matrix interacts with the fracture network to enable free convection is ex-
amined: the porous matrix is shown to be of key importance in enabling
convection for complex fracture networks, making stability criteria based
on the fracture network alone somewhat limited in applicability.

Keywords: free convection, variable density flow, fractured porous media,
linear stability analysis

1 Introduction
The study of flow in porous media finds application in many different areas
ranging from industrial, to biomedical and environmental applications. In the
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context of geological porous media many relevant problems such as geother-
mal engineering and contaminant transport are nowadays addressed with the
help of numerical simulations, due to the necessity of estimating flow rates and
pathways.

In many cases, due to either temperature or the presence of solutes, fluids
can present density variations in space and time. Temperature gradients are
particularly important in geothermal applications, while solute concentration
gradients are found for instance in the study of contaminant plume migration
or seawater intrusion phenomena.

In situations of inverse density gradients (denser fluid on top) the fluid may
spontaneously develop unstable convective plumes. It is particularly important
to predict the possible onset of such instabilities due to the strong rates at which
convection can transport solutes with respect to diffusion alone.

The first studies dealing with free convection in porous media [6, 4] exam-
ined simple scenarios of inverse density gradients. The possibility of convection
is linked to the Rayleigh number, which, accounting for both fluid and porous
medium parameters, quantifies the strength of convection against that of diffu-
sion. For large values of the Rayleigh number, there is the possibility of free
convection.

In recent years, different authors have tried to understand how the presence
of fractures influences the possibility and strength of free convection [10, 9, 17,
16, 11]. While high-density fracture networks can be mostly treated through av-
eraging/upscaling of porous media properties, low-density fracture networks can
manifest unexpectedly high convection strength due to the particular geometry
of the network. Even for simple geometries, e.g. for regular horizontal or ver-
tical fracture grids, the unstable nature of convective plumes makes prediction
very hard if not impossible [10].

The main focus of this study is the development of a new method based
on the eigenvalue analysis of equilibrium solutions for assessing the possibil-
ity of convection in fractured porous media. Leveraging this new method will
enable us to better understand the particular mechanisms by which fractures
enhance convection. This idea is at the core of the results provided by [6], where
the analysis is carried out analytically for homogenoues media, and in [8] for
layered porous media. Here, given the geometrical complexity of the domain,
eigenvalues will be computed by a suitable numerical algorithm starting from
the discretized problem.

We start in section 2 with a detailed description of the mathematical model
both in homogeneous and fractured media. As the focus of this study is the
effect of fracture geometry, simple constitutive models are preferred over more
elaborate (and more accurate) models. The Darcy law is used as constitutive
law for filtration, Fick’s law is used to model solute diffusion and density is
modeled as a linear function of solute concentration.

Particular care is given to the averaging procedure used for the dimensional
reduction of fractures, consistent with the mixed-dimensional approach pre-
sented in [7].

In section 3 we present the discretization of the continuous model using the
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finite volume method in space and the implicit Euler scheme in time. The
particular finite volume method used in the implementation is the Multipoint
Flux Approximation method [1] for both the fluid mass conservation and the
solute transport problems. The MPFA method is particularly appropriate due
to its mass conservation properties and consistency for general grids. Again,
density dependence must be treated with care for the numerical implementation
to be consistent [12].

Two methods will be described for assessing the possibility of convective cell
formation.

Section 3.1 describes what we call the direct method of assessing stabil-
ity: starting from a non-equilibrium initial condition and integrating the time-
dependent flow equations until steady state may result in either convective mo-
tion or a diffusive equilibrium solution. The two regimes are easily distinguished
by measuring the amount of solute transport through the domain.

Section 3.2 describes the eigenvalue method for assessing stability. By lin-
earizing the problem and numerically studying the eigenvalues of the resulting
discrete system, we can assess the stability of arbitrary perturbations to any
equilibrium solution without the need of solving the time-dependent problem.

Sections 4.1 and 4.2 test the two methods respectively with the Elder and
HRL problems relying on the results of [17] and [2]: both are well known bench-
mark cases for density driven flow. Section 4.4 validates and examines a three-
dimensional generalization of the HRL problem, based on the studies in [11, 16].
In the HRL scenarios, the complementarity of the two approaches described
above will enable us to better understand and examine the peculiarities of free
convection in the presence of fractures.

The variety of scenarios is also useful for understanding the advantages and
limitations of the eigenvalue method with respect to the direct method. A
comparison of their computational cost is presented in section 4.5.

Finally, section 5 will conclude this study with a critical evaluation of what
it has accomplished and suggest different options for further developments.

2 Mathematical model
The problem of our interest stems from the coupling between solute transport
and density driven flow in a porous medium. The mathematical model is based
on the one described in the review paper by Diersch and Kolditz [2], which will
be here extended to account for the presence of fractures in the domain, since
our main goal is to understand the impact of fracture networks on the onset of
free convection.

Let us begin by considering a generic advection-diffusion equation expressing
solute mass conservation in a porous medium:

∂t(ρϕω) +∇ · (ρϕωu) +∇ · (ρϕi) = 0, (1)

where ρ [M/L3
v] is the density of the fluid in which the solute is dissolved,

ω [Ms/M] is the concentration of the solute, u [L/T] is the flow velocity,
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ρϕi [ Ms

L2T ] is the solute mass flux due to diffusion and ϕ [L3
v/L

3] is the porosity of
the medium. The subscript v in the length dimension L is used to differentiate
void volumes from total volumes, while s is used to differentiate solute mass
from fluid mass.

For the diffusive flux a Fick-type law is used: i = −D∇ω. The diffusion
tensor D [L2/T] is usually modeled as the sum of two components: a part related
to molecular diffusion and a part related to mechanical dispersion (function of
the fluid velocity): D = Dd(u) + DmI. In this study only the part related to
molecular diffusion has been considered, thus

i = −Dm∇ω. (2)

In the following, it will be useful to indicate the combined advective and diffusive
solute flux as q [ Ms

L2T ]:

q = ωu+ i. (3)

The boundary conditions for equation (1) can be of Dirichlet type where we set
the value of the solute concentration ω = ωD, or of Neumann type where the
total mass flux in the normal direction is specified q · n = qN , where n is the
unit normal (by convention pointing outwards from the domain).

To close the system we still need an expression for the fluid velocity and a
constitutive equation for density as a function of primary variables. The first
can be determined as the solution of the Darcy problem, which is the model used
to describe filtration in porous media. In particular we have a mass conservation
law for the fluid:

∂t(ρϕ) +∇ · (ρϕu) = 0, (4)

and a constitutive law classically used in the context of porous media, the Darcy
law:

u =
k

ϕµ
(−∇p+ ρg). (5)

where g = −gez is the gravity acceleration vector, k is the permeability
tensor of the porous medium k [L2

v], and µ [M/LvT] is the viscosity of the fluid.
The boundary condition for (4) can be of Dirichlet type where the pressure

is specified: p = pD or of Neumann type where the normal flow velocity is
prescribed, u · n = uN .

For the density constitutive law, we will assume a linear dependence on the
concentration ω

ρ = ρ(p, ω) = ρ0(1 + αω), (6)

where ρ0 is a reference value and α a dilation coefficient.
A large part of the following discussion applies unchanged to flows driven by

temperature gradients instead of solute concentration gradients. Indeed, apart
from a reinterpretation of some of the quantities introduced above e.g. thermal
conductivity instead of diffusivity, the same model can be applied.
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2.1 Oberbeck-Boussinesq approximation
The analysis and the solution of system (1) -(6) can be substantially simplified
by assuming the solution satisfies what is known as the Oberbeck-Boussinesq
(OB) approximation.

The OB approximation consists in neglecting all but the most important
among the different density related nonlinearities in the system. In particular
we will take ρ = ρ0(1 + αω) ≈ ρ0 everywhere except in the gravity term.

Using this approximation, and after some algebraic simplifications the sys-
tem reduces to 

∇ · u = 0 in Ω,

∂tω +∇ · q = 0 in Ω,

u =
k

ϕµ
(−∇pe + ρ0αωg) in Ω,

q = −D∇ω + ωu in Ω,

(7)

with boundary conditions{
u · n = uN on ∂Ωp

N ,

p = pD on ∂Ωp
D,

{
q · n = qN on ∂Ωω

N ,

ω = ωD on ∂Ωω
D,

where ∂Ω = ∂Ωp
N ∪ ∂Ωp

D, ∂Ω = ∂Ωω
N ∪ ∂Ωω

D.
Among the simplifications to reach the reduced system, we have replaced the

unknown p with the excess pressure pe by removing the hydrostatic component
ph = ρ0g(y0 − y) (defined for the reference density, in the absence of solute):

p = pe + ph = pe + ρ0g(y0 − y),

−∇p+ ρg = −∇pe −��ρ0g +��ρ0g + ρ0αωg

For readability, in what follows we will drop the subscript e and use the
variable p to indicate the excess pressure pe.

2.2 Horton-Rogers-Lapwood (HRL) problem
The HRL problem is a simple scenario aiming to study the possible onset and
strength of natural convection. The idea is to impose, through the boundary
conditions, a layer of heavier fluid overlaid on lighter fluid in a two-dimensional
vertical cross section of a homogeneous porous medium. The density gradient
can be caused by temperature difference (as in the original description [6]), or
by solute concentration difference. In a situation of inverse mass gradient, the
fluid will form convective cells only if diffusivity is small enough to allow it.
The contrast between convection and diffusion speed, respectively vg and vd, is
described by the Rayleigh number

Ra =
vg
vd

=

k
ϕµρ0αωmaxg

D
H

, (8)
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Figure 1: Convective motion. On the left, concentration profile. At center, pertur-
bation of concentration and flow velocity. On the right, the diffusive flow trying to
restore the concentration imbalance.

where H is the height of the domain, and other quantities have been intro-
duced in the previous section. In the original presentation of this problem [6],
the possibility of convective motion is linked to the value of Ra: Rac = 4π2

is the critical number i.e. a threshold such that, for Ra > Rac convection
occurs. Why is free convection only possible for such values of the Rayleigh
number? For high enough diffusion, convective cells cannot sustain the concen-
tration/temperature difference and thus they simply decay. Figure 1 illustrates
how the diffusive flow tries to restore concentration imbalances caused by the
convective motion.

Note that convective motion in general enhances solute transport. For this
reason, an indicator of the presence of convection is the Sherwood number Sh,
defined as

Sh =

∫
A
i · n∫

A
i0 · n

=

∫
A
i · n

D
HA

, (9)

where A is the diffusive inflow surface (top boundary) and i0 is the diffusive
flow in the absence of convection. When convection is not present inside the
domain, i = i0 and thus Sh = 1. Note that the boundary conditions for the
HRL problem being of zero fluid mass flow all around, the solute transport on
the inflow surface A is entirely due to diffusion, regardless of whether convection
is present inside the domain. However, when convection is present, the (overall)
larger concentration gradient at A makes i > i0 and Sh > 1.

2.3 Dimensional reduction
Porous media often present heterogeneities in their material properties. A par-
ticularly strong kind of heterogeneity are fractures: regions of different material
properties, with negligible aperture (thickness) with respect to both their length
and the characteristic lengths of the medium. Very different material properties
in fractures, such as permeability, can compensate for their small dimensions
so that, overall, fractures can strongly influence the behaviour of flow in the
medium. Let us define

k = k(x) =

{
kb x ∈ Ωb,

kf x ∈ Ωf ,
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Ω

Ωf

Figure 2: Domain Ω containing a single planar fracture Ωf .

b

Γ+

Γ− Γ0

γ

n

Figure 3: Ωf is a rectangular fracture of height b. Γ+ and Γ− are both subsets of its
boundary: Γ± ⊂ ∂Ωf .

where Ωf denotes the fracture, Ωb the bulk medium and Ω = Ωb ∪ Ωf .
The approach known as discrete fracture modeling aims to solve this prob-

lem by treating fractures as separate domains, often of reduced dimensionality,
coupled to the bulk medium by coupling conditions at their interface.

We will now rewrite the fluid mass conservation equation and associated
Darcy law as a mixed-dimensional equation. To keep our derivation simple,
we will treat a single two-dimensional fracture as illustrated in figure 2. The
domain Ω is split between bulk medium and fracture Ω = Ωb ∪ Ωf ∪ Γ, where
Γ = Ωb ∩ Ωf denotes the interface between subdomains. We assume that Ωf

can be expressed as

Ωf = {x ∈ Ω : x = γ + αn, γ ∈ Γ0, α ∈ (−b/2, b/2)},
Γ0 = {x ∈ Ω : x = x0 + s1(x1 − x0) + s2(x2 − x0), si ∈ (0, 1)},

where we have assumed a planar midsurface Γ0 as shown in figure 3. The lateral
boundary of Ωf will be treated differently from the top and bottom boundaries.
We define

Γ± = {x ∈ ∂Ωf : x = γ ± b

2
n, γ ∈ Γ0},

Σ = {x ∈ ∂Ωf : x = σ + αn, σ ∈ ∂Γ0, α ∈ (−b/2, b/2)},

such that Γ = Γ±∪Σ. Superscripts + and - will also be used to denote quantities
evaluated on Γ±.

Starting from the continuity equation and the associated Darcy law in the
two domains, we enforce pressure continuity and conservation of mass across
the interface Γ:
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∇ · ub = 0 in Ωb,

ub = kb/(ϕµ) (−∇pb + ρ0αωbg) in Ωb,

∇ · uf = 0 in Ωf ,

uf = kf/(ϕµ) (−∇pf + ρ0αωfg) in Ωf ,

tr pb = tr pf on Γ,

trub · nb = truf · nb on Γ,

(10)

where nb is the normal vector defined on Γ, exiting from Ωb. At the end of
dimensional reduction, the equations solved on the three-dimensional domain Ωf

will be replaced by the solution of (different) equations on the two-dimensional
domain Γ0. For the sake of simplicity, we will suppose that fractures differ from
the bulk only in their permeability: all the other material parameters will be
common to both.

We proceed by integrating the mass conservation equation in the fracture
across the aperture.

0 =

∫ b/2

−b/2

∇ · uf =

∫ b/2

−b/2

∇ · (Tuf +Nuf ) = ∇τ · uγ − (ub ·nb)
+ − (ub ·nb)

−,

where we have denoted by T, N the projection operators specific to the fracture:
Nv = (v ·n)n and Tv = (I−N)v, where n is the normal vector to the fracture
plane (as indicated in figure 3), and I is the identity operator. We also denoted
the in-plane gradient operator by ∇τ = T∇, and by uγ the integral of the
tangential flow field:

uγ =

∫ b/2

−b/2

Tuf , [L2/T].

Indeed, given these definitions,∫ b/2

−b/2

∇ · (Tuf ) =

∫ b/2

−b/2

∇τ · (Tuf ) = ∇τ ·
∫ b/2

−b/2

Tuf = ∇τ · uγ .

To obtain a law for uγ , we integrate the in-plane component of the Darcy
law:

uγ =

∫ b/2

−b/2

Tuf =
kf
ϕµ

∫ b/2

−b/2

T(−∇pf + ρ0αωfg) =
bkf
ϕµ

(−∇τpγ + ρ0αωγgτ ),

where pγ = 1
b

∫ b/2

−b/2
pf , ωγ = 1

b

∫ b/2

−b/2
ωf and gτ = Tg. Differently from uγ ,

scalar quantities in the fracture are averaged across the fractures thus main-
taining the same dimensions as the corresponding bulk quantities. Coupling
conditions at the interface must also be expressed in terms of the averaged
variables:

(trub · nb)
± ≈ bkf

ϕµ
(
p±b − pγ
b/2

+ ρ0αω
±
b gn).
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We conclude by replacing Ωf with its center plane Γ0 and extending Ωb:
Ω = Ωb ∪ Ωf ∪ Γ ≈ (Ω \ Γ0) ∪ Γ0 ∪ Γ±. Even though the fracture domain Ωf

and the interface Γ have collapsed on one another geometrically, the two play
distinct roles and must be kept conceptually separate.

Collecting the last steps, we can write the Darcy part of the mixed-dimensional
system: 

∇ · ub = 0 in Ωb,

ub = kb/(ϕµ) (−∇pb + ρ0αωbg) in Ωb,

∇τ · uγ = [λ] in Γ0,

uγ = bkf/(ϕµ) (−∇τpγ + ρ0αωγgτ ) in Γ0,

trub · nb = λ on Γ±,

λ = kf/(ϕµ) (−
pγ − tr pb

b/2
+ ρ0α trωbgn) on Γ±.

(11)

In writing (11), we have introduced the new variable λ [L/T] and the jump
operator [v] = v+ + v−. For v defined on Γ±, we will consider [v] to be defined
on Γ0. Note that Σ collapsed onto a lower-dimensional object (the boundary of
the center plane ∂Γ0) onto which we will have to impose boundary conditions.
We will ignore its contribution to the mass exchange between fracture and bulk
by setting zero normal flux (note that this flux scales linearly with the fracture
aperture b) on immersed fracture boundaries (or tips) whereas fractures will
inherit boundary conditions from the bulk if they touch the boundary.

Note that two sources of modeling error associated with dimensional reduc-
tion: (i) by collapsing the thin dimension of the fracture we have reassigned part
of the domain which previously belonged to the fracture to the bulk medium
and (ii) the flux λ exchanged between the bulk medium and the fracture is a
first order approximation to the true flux due to the presence of the normal
gradient of the pressure ∇p.

2.4 Mixed-dimensional transport
We can now re-apply the reduction procedure to the transport problem. We
start by splitting the equation in the two domains and prescribing compatibility
conditions at the interface

∂tωb +∇ · qb = 0 in Ωb,

qb = −D∇ωb + ωbub in Ωb,

∂tωf +∇ · qf = 0 in Ωf ,

qf = −D∇ωf + ωfuf in Ωf ,

trωb = trωf on Γ,

tr qb · nb = tr qf · nb on Γ.

(12)
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We integrate the conservation equation over the fracture, splitting the fluxes
into their normal and tangential parts:

0 =

∫ b/2

−b/2

∂tωf +∇ · qf = b∂tωγ +∇τ · qγ − (qb · nb)
+ − (qb · nb)

− = 0.

As we did for the fluid mass conservation equation, we introduced fracture
quantities ωγ = 1

b

∫ b/2

−b/2
ωf and the integrated tangential solute mass flux qγ =∫ b/2

−b/2
Tqf . As done before, scalar quantities are averaged while vector quantities

are integrated.
Unlike the continuity equation, a new approximation is needed in the aver-

aging step to deal with the nonlinearity of the advective term: let us consider a
splitting of ωf into ωγ + ω̃f , where ωγ is constant across the fracture and ω̃f is
a null average fluctuation, and similarly for uf . We will neglect the product of
fluctuations assuming that they are small, i.e.∫ b/2

−b/2

∇ · (ωfuf ) ≈ ωγuγ .

For fractures of non-negligible aperture however, internal motions (see e.g.
intrafractrure mode 2A in figure 23) could make this approximation inappropri-
ate.

Just as for Darcy’s law, Fick’s law will look identical when projected in the
fracture plane, while for the normal projection, we will have to resort to a first
order approximation

(tr qb · nb)
± = D(

ω±
b − ωγ

b/2
) + ω±

b λ
±

Finally, we obtain a mixed-dimensional system for the transport of a solute
in a fractured porous medium,

∂tωb +∇ · qb = 0 in Ωb,

qb = −D∇ωb + ωbub in Ωb,

b ∂tωγ +∇τ · qγ = [θ] in Γ0,

qγ = −bD∇τωγ + ωγuγ in Γ0,

tr qb · nb = θ on Γ±,

θ = D(
trωb − ωγ

b/2
) + trωbλ on Γ±,

(13)

to be complemented with boundary and initial conditions. It is important
to notice that the equations in the bulk and the equations in the fracture, both
in (11) and (13), are entirely decoupled apart from their interaction through
the interface variables λ and θ. The way these variables appear in the equa-
tions reveals how the domains are coupled across different dimensions: in the
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Figure 4: Multidimensional coupling for a sample fracture network embedded in a
three-dimensional domain.

higher-dimensional domain interface variables appear as Neumann boundary
conditions, while in the lower-dimensional fracture they appear as sources in-
side the domain. Although the averaging procedure has been carried out for
a three-dimensional domain with a single fracture, the exact same procedure
works for a generic n-dimensional domain (n = 1, 2, 3) with multiple, possi-
bly intersecting fractures. In this case, the procedure is conceptually carried
out hierarchically: n-dimensional quantities are coupled to (n− 1)-dimensional
quantities through (n− 1)-dimensional interface fluxes (figure 4).

In view of dealing with the general case of multiple fractures of different
dimensions, we want to write equations which hold for each dimension. Apart
from making the system of equations more compact, it will also make the mech-
anism by which different domains interact more clear.

We collect all domains of equal dimension d ∈ {0, 1, 2, 3} in a single domain
Ωd, and denote by Γd the interface between domains Ωd and Ωd+1. We also
introduce mixed-dimensional variables ωd, pd, fluxes ud, id and in-plane gradient
operator ∇d defined on Ωd, interface fluxes λd, θd defined on Γd.
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With these quantities at hand, we can generalize systems (11, 13) to

∇d · ud = [λd] in Ωd,

b3−d∂tωd +∇d · qd = [θd] in Ωd,

ud = b3−dkd/ϕµ (−∇pd + ρ0αωdg
τ
d ) in Ωd,

qd = −b3−dD∇ωd + ωdud in Ωd,

trud · nd = λd−1 on Γd−1,

tr qb · nb = θd−1 on Γd−1,

λd = b2−dkd/ϕµ

(
tr pd+1 − pd

b/2
+ ρ0αωdg

n
d

)
on Γd,

θd = b2−dD
trωd+1 − ωd

b/2
+ ωdλd on Γd.

(14)

with suitable boundary conditions.

2.5 The impact of fractures on convection onset
The original discussion of the HRL problem addressed the question of the possi-
ble onset of convection. This was expressed as a critical Rayleigh number Rac,
such that convective motion is possible for Ra ≥ Rac.

In recent years, different studies have tried to understand in what way frac-
tures influence the possibility of convection. It is clear that highly permeable
fractures constitute preferential paths for flow, thus enabling convection or en-
hancing its strength. As shown in [17], for large fracture density, calculating
an average Rayleigh number based on the average (upscaled) permeability (ne-
glecting the specific fracture configuration) can be effective at predicting the
onset and strength of convection.

For lower fracture densities however, this approach is not adequate. As
shown in figure 5, a continuous fracture loop barely modifying the permeabil-
ity, such that the average Rayleigh number is well below the critical Rayleigh
number for homogeneous media, still exhibits convective motion. In [17], the
key factor for enabling convection in the case of low-density fracture configura-
tions is shown to be the presence of continuous fracture circuits, around which
convection cells can form. Simple scenarios (also used as validation cases in this
work) tried to relate the location, aspect ratio and size of fracture circuits to
the possibility and strength of convection.

A more systematic study remains to be done, with the aim of uncovering
better quantitative relations that can be extended to more complex fracture
configurations. Moreover, we have to consider that in applicative scenarios the
particular geometry of the underground fracture network is mostly unknown,
or in the best cases described by statistical parameters such as fracture density,
mean lengths and orientations. In these cases, being able to relate statistical pa-
rameters such as the ones mentioned to a quantitative estimate on the strength
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Figure 5: In this configuration the
Rayleigh number computed based
on the upscaled permeability is
well below the critical Rayleigh
number. The presence of the frac-
ture circuit however enables con-
vection regardless.

of convection and its uncertainty would be both useful from an applicative
standpoint and interesting in its own right.

Remark 1. Let us consider the diffusion of a solute in a domain cut by a
horizontal fracture. The continuous equidimensional problem (12) admits the
linear concentration profile solution for the boundary conditions prescribed by
the HRL problem.

ωj = ωmax
y

H
, ij = −D∇ωj = −D

ωmax

H
ey

for j ∈ {B, f}.
With dimensional reduction, the system of equations to be solved is replaced

by (13), which yields a piecewise linear concentration profile:

ωb =

{
(ωmax − δω) y/H y < H/2,

(ωmax − δω) y/H + δω y > H/2,

ωf = ωmax/2

δω =
ωmax

1 +H/b
,

b being the fracture aperture. Fractures which qualify as thin enough to be treated
as lower-dimensional regions will always satisfy b ≪ H, thus making the error in
the concentration profile small: δω ≪ ωmax. This small model reduction error
however can manifest itself in the form of (small) artificial fluxes around fracture
tips: the concentration gradient that arises from matching the two solutions
creates a circulating diffusive flux, as illustrated in figure 6 on the left. The exact
same reasoning can then be applied for the fluid mass conservation equation:
small artificial fluid mass fluxes may appear around fracture tips due to the
discontinuity of pressure across the fracture (see figure 6 on the right).

3 Numerical discretization
This section is dedicated to the discretization of system (14). The method chosen
for the spatial discretization of the system is the finite volume method. In the
fractured problem, we have a sequence of domains Ωd, d ∈ {0, 1, 2, 3}. We start
by defining a mesh on each of them. While the different meshes in principle
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Figure 6: Artificial circulating fluxes arising from reducing the fracture to lower-
dimensional domains. Diffusive fluxes on the left are due to concentration discon-
tinuities. Fluid flow on the right is due to pressure discontinuity.

T2 T1 G1

Figure 7: Meshes used for correctly formulating the discrete problem. Note how the
higher-dimensional mesh conforms to the fracture geometry.

can be completely independent, the mathematical formulation is more easily
expressed using conforming meshes: lower dimensional meshes are implicitly
defined by their higher dimensional neighbour.

The sequence of meshes for each of the domains Ωd will be denoted by Td, the
set of edges of Td by Ed. Even though the interfaces Γd are co-located with the
lower dimensional domains Ωd, we keep the two separate by defining interface
meshes Gd. In what follows, K will denote a generic element of mesh Td, γ a
generic element of the interface mesh Gd and σ a generic face of Ed. We will also
indicate the normal pointing inside the fracture at element γ as nγ .

The set Ed, or equivalently the faces of any element K, can be partitioned into
three sets: (i) internal or belonging to the Dirichlet boundary, (ii) belonging to
the Neumann boundary, (iii) adjacent to a lower-dimensional domain. Notice
that we get two different partitions based on which boundary conditions we
use to split the boundary (boundary conditions related to the flow problem or
to the transport problem): ∂K = ∂Kp

i ∪ ∂Kp
N ∪ ∂Kf = ∂Kω

i ∪ ∂Kω
N ∪ ∂Kf .

Also, thanks to the conforming mesh hypothesis, faces in ∂Kf can be identified
with elements of the interface mesh Gd, thus enabling us to legitimately write
integrals such as

∫
γ
λd where γ ∈ ∂Kf .

With the notation in place, we can start integrating the conservation equa-
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σf ∈ ∂Kf

σl ∈ ∂Lf

K

K+

σi ∈ ∂Li

K−

L

Figure 8: Illustration of notation introduced to discretize the mixed-dimensional prob-
lem.

tions in system (14) over a generic element K ∈ Td:∫
K

∇d · ud dx
d =

∫
K

[λ] dxd,∫
K

b3−d ∂ωd

∂t
dxd +

∫
K

∇d · qd dxd =

∫
K

[θ] dxd.

Working on the integrals one by one we have∫
K

∇d · ud dx
d =

∫
∂K

ud · n dxd−1 =
∑
∂Ki

∫
σ

ud · n dxd−1 +
∑
∂Kf

∫
σ

λd−1 dx
d−1 +

∑
∂Kp

N

∫
σ

uN dxd−1,

∫
K

[λd] dx
d =

∫
K±

λd dx
d,∫

K

b3−d ∂tωd dx
d = b3−d d

dt

∫
K

ωd dx
d,∫

K

∇d · qd dxd =

∫
∂K

qd · n dxd−1 =
∑
∂Ki

∫
σ

qd · n dxd−1 +
∑
∂Kf

∫
σ

θd−1 dx
d−1 +

∑
∂Kω

N

∫
σ

qN dxd−1,

∫
K

[θd] dx
d =

∫
K±

θd dx
d.

Now introducing the discrete variables and fluxes

PK =
1

|K|

∫
K

pd dx
d, UKσ ≈

∫
σ

ud · nK dxd−1, ΛK± =

∫
K±

λd dx
d,

WK =
1

|K|

∫
K

ωd dx
d, QKσ ≈

∫
σ

qd · nK dxd−1, ΘK± =

∫
K±

θd dx
d.

(15)
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we can write the discrete version of the conservation equations in (14):∑
∂Ki

UKσ +
∑
∂Kf

Λγ +
∑
∂Kp

N

UN,σ = ΛK± ,

b3−d|K| d
dt

WK +
∑
∂Ki

QKσ +
∑
∂Kf

Θγ +
∑
∂Kω

N

QN,σ = ΘK± .
(16)

The last step is the discretization of the constitutive laws for the fluxes. Inte-
grating the constitutive laws gives∫

σ

ud · n dxd−1 = b3−dkd/(ϕµ)

(∫
σ

−∂pd
∂n

dxd−1 + ρ0α g · nσ

∫
σ

ωd dx
d−1

)
,∫

γ

λd dxd = b2−dkd/(ϕµ)

∫
γ

(
tr pd+1 − pd

b/2
+ ρ0α trωd+1 g · nγ

)
dxd,∫

σ

qd · n dxd−1 = b3−d

(
D

∫
σ

−∂ωd

∂n
dxd−1 +

∫
σ

ωdud · n dxd−1

)
,∫

γ

θd dx
d =

∫
γ

(
b2−dD

trωd+1 − ωd

b/2
+ ωdλd

)
dxd.

We rewrite each of these laws in terms of the discrete variables defined in (15):

UKσ = b3−d|σ|kd/(ϕµ) (∇Pσ + ρ0α g · nσWσ) ,

ΛK± = b2−d|K|kd/(ϕµ)
(
PK± − PK

b/2
+ ρ0α g · nK±WK±

)
,

QKσ = b3−d|σ|D∇Wσ +WσUKσ,

ΘK± = b2−d|K|DWK± −WK

b/2
+WK±ΛK± ,

(17)

where the quantities ∇ϕσ and ϕσ, i.e. gradients and face values, depend
on the particular finite volume scheme. We choose the Multipoint Flux Ap-
proximation scheme described in [1], which computes the gradient on a face by
considering values of all cells sharing a node with the face. As for all finite
volume schemes, fluid mass and solute mass conservation is guaranteed. In con-
trast to a two-point scheme (TPFA) however, the MPFA scheme is consistent
on general grids.

Note that we make use of a centered scheme for the advective term in the con-
centration equation. This choice, unlike upwind, is known to produce numerical
oscillations for convection dominated flows. In all our numerical experiments
however, convection is mild enough for our centered scheme to be numerically
stable. We can easily relate the already introduced Rayleigh number to the
Peclet number:

Pe =
uh

D
=

uH

D

h

H
= Ra

h

H
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where h is a characteristic cell diameter, H is a characteristic length of the
domain.

In all the the following numerical experiments, sufficiently fine grids will
be computationally feasible for Pe to be O(1). The Pe number is nonetheless
numerically monitored in all the following simulations.

3.1 Time discretization and direct solution method
We denote as "direct solution method" the integration of the model equations
forward in time starting from a zero-solute or equilibrium initial condition, to
assess the possible onset of convection. Once a steady state has been reached,
we must verify whether convective motion is present. We will use the implicit
Euler method for advancing in time for its unconditional stability. An adaptive
time-stepping is also used to reduce the amount of computation necessary to
reach steady state, see section 4.2 for details.

To discretize in time, define a set of timesteps {tn}n=0...N and write our
discretized system as:∑

∂Ki

Un+1
Kσ +

∑
∂Kf

Λn+1
γ +

∑
∂Kp

N

Un+1
N,σ = Λn+1

K± ,

b3−d|K|W
n+1
K −Wn

K

∆tn
+

∑
∂Ki

Qn+1
Kσ +

∑
∂Kf

Θn+1
γ +

∑
∂Kω

N

Qn+1
N,σ = Θn+1

K± ,

(18)

where K ∈ Td, d ∈ {0, 1, 2, 3}, ∆tn = tn+1 − tn, n ∈ {0, . . . , N − 1}.
If the timestep is long enough and the solution stops changing (according to

the norm of the difference between two timesteps of the solution), we declare the
system to have reached steady state. Note that since the system of equations is
nonlinear, each timestep requires the solution of a nonlinear problem. In our case
we use Newton iterations by leveraging the automatic differentiation capabilities
of the implementation. In the test cases, the tolerance for the Newton procedure
is set to 1× 10−8 for the concentration increment.

3.2 Eigenvalue analysis
The previously outlined method for assessing stability, while effective at predict-
ing stability, has some shortcomings. Among the disadvantages are its reliance
on the choice of perturbation for the hydrostatic solution (if not starting from
zero solute everywhere) and having to reach and assess the steadiness of the
solution. The computational cost of reaching the steady state may become an
issue: advancing a nonlinear equation in time with an implicit scheme requires
the solution of multiple linear systems for each timestep advancement.

An alternative method, presented in detail below, relies on inspecting the
nonlinear system of equations linearized around the equilibrium solution. The
nonlinear discrete system (16) and (17) can be written abstractly as
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M
dW

dt
+ F (W,Y ) = 0,

G(W,Y ) = 0,
(19)

where W ∈ Rn collects the degrees of freedom relative to the discrete variable W ,
and Y ∈ RN−n collects the degrees of freedom relative to the discrete variables
P , Λ and Θ. F : Rn × RN−n → Rn and G : Rn × RN−n → RN−n collect
the linear and nonlinear discrete operators in (16). Any discrete equilibrium
solution (Ws, Ys) will satisfy the system

F (Ws, Ys) = 0,

G(Ws, Ys) = 0.

To assess whether the equilibrium solution is also asymptotically stable we per-
turb the time-dependent system:

M(
dWs

dt
+

dδW

dt
)+F (Ws + δW, Ys + δY ) = 0,

G(Ws + δW, Ys + δY ) = 0,

and linearize, taking advantage of the fact that δW, δY are small perturbations:

M
dWs

dt
+M

dδW

dt
+�����:0
F (Ws, Ys) +

∂F

∂W

∣∣∣
Ws,Ys

δW +
∂F

∂Y

∣∣∣
Ws,Ys

δY = 0,

�����:0
G(Ws, Ys) +

∂G

∂W

∣∣∣
Ws,Ys

δW +
∂G

∂Y

∣∣∣
Ws,Ys

δY = 0.

Renaming the partial derivatives to ease the notation

Aww =
∂F

∂W

∣∣∣
Ws,Ys

, Awy =
∂F

∂Y

∣∣∣
Ws,Ys

,

Ayw =
∂G

∂W

∣∣∣
Ws,Ys

, Ayy =
∂G

∂Y

∣∣∣
Ws,Ys

,

the system becomes

M
∂δW

∂t
+AwwδW +AwyδY = 0,

AywδW +AyyδY = 0.

Now, relying on the invertibility of Ayy , we can eliminate δY to obtain a single
evolution equation for the perturbation δW :

M
∂δW

∂t
= (AwyA

−1
yy Ayw −Aww)δW.

Substituting an exponential in time trial solution δW (t) = w eλt in the evolution
equation yields an eigenvalue problem:

λMw = (AwyA
−1
yy Ayw −Aww)w,

18



or, by defining the matrix S = M−1(AwyA
−1
yy Ayw −Aww),

Sw = λw. (20)

Note that λ describes the evolution of the perturbation in time, while vector w
its shape in space because each component represent the value in a grid cell. The
equilibrium solution Ws is then linearly stable if and only if all the eigenvalues
associated to system (20) have negative real part. Conversely, if we can find one
or more eigenvalues with positive real part the perturbation w will grow and be
sustained in time.

Three computational considerations: (i) to assess stability there is no need
to compute the entire spectrum, it is enough to compute the eigenvalue of
largest real part (ii) automatic differentiation of the discrete system (19) can
yield the numerical value of the matrices Aww, Awy, Ayw, Ayy without having
to write explicit expressions for them (iii) iterative methods for computation
of eigenvalue spectra are available e.g. power iterations which do not require
explicit expression for the matrix under study, only the ability of computing
matrix-vector products. In our case, this removes the need of explicitly inverting
the matrix Ayy. Furthermore, since the matrix only depends on the equilibrium
solution, we can factorize the matrix only once using e.g. LU decomposition for
fast matrix-vector products during the computation of the spectrum.

3.3 Implementation details
The implementation of the numerical methods outlined above is based on the
PorePy library [5], which provides the necessary tools for meshing fractured
domains and assembling the discrete mixed-dimensional operators. The frame-
work also implements forward automatic differentiation, providing the numerical
Jacobians used for performing Newton iterations.

For the eigenvalue analysis (3.2), the automatic differentiation part provides
the Jacobian matrix. Once the different matrix blocks are identified, we can
easily define the matrix-vector product procedure yielding Sv. For the compu-
tation of few leading eigenpairs, the Krylov-Schur algorithm (outlined in [14])
has been combined with the dynamic restarting scheme described in [13]. Using
the inner product defined by the mass matrix for the orthogonalization part of
the algorithm has been particularly beneficial in accelerating convergence. The
use of a custom procedure for computing eigenvalues has been preferred to a
default implementation such as ARPACK mostly due to the possibility of moni-
toring convergence and as a possible starting point for devising more efficient
algorithms.

4 Results
The model and its numerical approximation have been validated against three
reference papers: [2] which treats the Elder problem, [17] and [16] that treat the
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ω = 1

q · n = 0

ω = 0

300m

150m

600m

Figure 9: Concentration boundary conditions for the Elder problem. Pressure bound-
ary condition are of no flow all around: u · n = 0

HRL scenario respectively in two and three dimensions. Both problems have
been extensively used in the literature as benchmarks in the context of density
driven flows.

4.1 Elder problem
The Elder problem was originally proposed in a paper by Elder [3], studying
thermal convection in a Hele-Shaw cell. It was later reformulated into a solute
convection problem by Voss and Souza [15], where the system of equations is
similar to the homogeneous problem (7).

What this benchmark case aims to highlight and validate is the possibility of
flow driven purely by density differences: no pressure gradient is being enforced
by the boundary conditions.

The problem we want to solve is (7), the domain being Ω = [0, 600]× [0, 150].
Boundary conditions are

u · n = 0 on ∂Ω,

ω = ωmax on ∂Ωi,

ω = 0 on ∂Ωo,

q · n = 0 on ∂Ω \ (∂Ωi ∪ ∂Ωo),

where ∂Ωi = (150, 450) × 150 and ∂Ωo = (0, 600) × 0. Since the boundary
conditions for the Darcy problem are of Neumann type over the whole boundary
we have an ill-posed problem; we can however restore the well-posedness by
adding an additional constraint, such as imposing zero mean pressure over the
whole domain:

∫
Ω
p = 0.

Initial conditions prescribe ω(x, 0) = 0, x ∈ Ω. Equations are integrated in
time until T = 20 yr.

All the other parameters of the problem are reported in table 1.
In the absence of gravity, and for small enough Ra, the solute will diffuse

from the inlet ∂Ωi until the solution reaches the diffusive steady state. The
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Permeability k 4.845× 10−13 m2

Porosity ϕ 0.1 1
Viscosity µ 1× 10−3 kgm−1 s−1

Freshwater density ρ0 1000 kg/m3

Solute expansion coefficient α 0.2 1
Maximum concentration ωmax 1 1
Gravitational acceleration g 9.81 m/s2

Diffusivity D 3.565× 10−6 m2/s

Table 1: Parameters of the Elder problem.

characteristic time of the evolution is Tdiff = H2/D, which, for the parameters
listed above is T = (150m)2/3.565× 10−6 m2/s ≈ 200 yr.

The corresponding characteristic time associated to convection induced by
density differences is much smaller:

Tadv =
Hϕµ

kρ0αωmaxg
≈ 0.5 yr.

Note that the Rayleigh number presented above as a ratio of velocities 8 can be
equivalently interpreted as a ratio of these timescales:

Ra =
Tdiff

Tadv
≈ 400.

As noted in [2], the solutions of the Elder problem present grid dependence
even for moderately fine meshes, also due to the possible non-uniqueness of the
solution. For this reason, instead of trying to achieve grid independence, we
directly validate the implementation by comparing the solutions with [2] for
corresponding levels of grid refinement.

We use quadrilateral grids identical to the ones reported in the reference
paper: number of cells n = 22l+1, l ∈ {4, 5, 6} and fixed timestep ∆t = 1/12 yr.
The qualitative comparison using the contours of the concentration profiles is
reported in figure 10.

While the differences in the continuous model (which is not explicitly detailed
in [2]) and discretization method ([2] uses adaptive time stepping and Galerkin-
FEM) cause different solutions for low levels of grid refinement, for higher levels
of grid refinement the solutions are in good agreement.

4.2 HRL problem
The HRL problem, already introduced in sections 2.2 and 2.5, is the test case
analyzed in [17], which we will use as reference solutions for validating both the
direct method and the eigenvalue method. The geometry of the domain and the
parameters common to the different simulations are reported in figure 11 and
table 2.

21



Figure 10: Concentration profile for varying grid refinement at different times. Color
plot is the result of our implementation. Black contour lines are from [2]. White
spots indicate negative concentrations (numerical artifact). Timestep is fixed at ∆t =
1/12 yr, number of (quadrilateral) elements NoE = 22l+1.

ω = 0

ω = 1

20m

10m

Figure 11: Concentration boundary conditions for the HRL problem. Pressure bound-
ary condition are of no flow all around: u · n = 0.

Permeability k 1× 10−16 m2

Porosity ϕ 0.1 1
Viscosity µ 1.1× 10−3 kgm−1 s−1

Freshwater density ρ0 1000 kg/m3

Solute expansion coefficient α 0.7 1
Maximum concentration ωmax 0.1 1
Gravitational acceleration g 9.81 m/s2

Diffusivity D 1× 10−9 m2/s

Table 2: Parameters for the HRL problem. Taken from [17].
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Figure 12: Concentration profiles for a few selected test cases from [17].

The system of equations solved is system (14), with boundary conditions
given by 

u · n = 0 on ∂Ω,

ω = ωmax on ∂Ωi,

ω = 0 on ∂Ωo,

q · n = 0 on ∂Ω \ (∂Ωi ∪ ∂Ωo),

where ∂Ωi = (0, 20) × 10 and ∂Ωo = (0, 20) × 0. As for the Elder problem,
the model is supplemented by the additional constraint

∫
Ω
p = 0 to obtain a

well-posed problem. The solution strategy is inspired by the one outlined in the
reference paper: the initial diffusive steady state concentration is perturbed and
the solution is advanced in time, gradually increasing the timestep ∆t. Criteria
for adapting the timestep ∆t include both the number of Newton iterations
required for convergence and the norm of the concentration difference ∥ωn+1 −
ωn∥. If ∆t is large enough with respect to characteristic time scales, and the
concentration difference between timesteps is small enough, we consider the
solution to have reached steady state.

A quantitative comparison between our results and the one presented in the
reference paper is presented in table 3. Concentration profiles for a few selected
cases are also presented in figure 12. In all the test cases, there is agreement
between our results and [17] on whether convective motion is present at steady
state. In the majority of cases, there is both qualitative agreement in the con-
centration profiles and quantitative agreement on the strength of convection, as
measured by the Sherwood number, even in test cases with complex fracture
configurations such as E9a and E9b. As for the significant differences in cases
such as B3,C2,C3 they might be due to important differences in the model
solved in this study and the one in the reference paper: we use the Boussi-
nesq approximation, neglect dispersivity, and use a different numerical method.
These differences however seem to have a modest overall impact.

The analysis of the different scenarios presented above can be complemented
with the stability analysis based on eigenvalues outlined in section 3.2. We begin
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Scenario Shvg Sh ϵS

A1 1.00 1.00 0.00
A2 1.36 1.38 0.01
A3 1.56 1.77 0.14
A4 1.75 1.79 0.02
B1 1.00 1.00 0.00
B2 1.13 1.18 0.04
B3 1.49 1.19 -0.20
B4 1.32 1.29 -0.03
C1 1.00 1.00 0.00
C2 1.17 1.02 -0.13
C3 1.21 1.06 -0.13
C4 1.21 1.13 -0.06
E9a 1.06 1.08 0.02

Scenario Shvg Sh ϵS

D1 1.08 1.08 0.00
D2 1.00 1.00 0.00
D3 1.00 1.00 0.00
D4 1.01 1.02 0.01
D5 1.07 1.06 -0.01
D6 1.08 1.09 0.01
D7 1.28 1.27 -0.01
D8 1.15 1.16 0.01
D9 1.15 1.16 0.01
D10 1.45 1.45 0.00
D11 1.37 1.37 0.00
D12 1.39 1.39 0.00
E9b 2.69 2.92 0.09

Table 3: Quantitative comparison of strength of convection at steady state as measured
by the Sherwood number (defined in (9)). ϵS =

Sh−Shvg
Shvg

indicates the relative error.
Fracture configurations of the different scenarios are taken from [17].

Figure 13: The results of the eigenvalue method applied to scenario D11. The eigenvec-
tors represent perturbations from the equilibrium solution, they thus have no intrinsic
scale. Note thatthe first one corresponds to an unstable convection mode.

with a detailed analysis of scenario D11. The method can provide the eigenpairs
corresponding to k eigenvalues with largest real part, for reasonably small k.
Figure 13 shows some of the computed eigenpairs, and, as we can see, one of
them is positive, indicating the presence of natural convection.

The computed eigenvalues are consistent with the direct simulation: indeed,
the instability of the diffusive steady state is confirmed by the presence of one
eigenvalue of positive real part. The numerical error due to the iterative nature
of the eigenvalue computation is estimated by the formula ϵ = ∥Sx−λx∥

λx , where
S is introduced in (20). Grid independence instead is assessed by computing the
eigenvalues on a coarser grid and again computing a relative error: ϵg =

|λ−λg|
λ ,

where λg are the eigenvalues computed on a coarser grid. The corresponding
errors for this scenario are reported in table 4. The errors ϵ, ϵg are overall
showing good accuracy for almost every scenario.

Apart from predicting the possibility of convection, the eigenfunctions and
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λ ϵ ϵg

61.75 0.0000 0.0014
-9.86 0.0001 0.0004

-15.43 0.0001 0.0007
-18.83 0.0001 0.0007
-37.26 0.0001 0.0014
-39.40 0.0004 0.0015
-41.48 0.0003 0.0016
-47.97 0.0008 0.0020

Table 4: Numerical errors for computed
eigenvalues in scenario D11. Degrees of
freedom ratio for computing grid indepen-
dence is NoE/NoEg = 1.77, where NoE
refers to number of mesh elements in the
domain (counting both porous medium and
fractures). This number is also equal to the
size of the eigenvalue problem.

eigenvalues can give insight into the evolution dynamics in the vicinity of the
diffusive initial condition. We start by noticing that not only all of the computed
eigenvalues have imaginary part equal to zero, but the related eigenfunctions
furthermore are all mutually approximately orthogonal. Let ⟨ei, ej⟩ denote the
scalar product between (normalized) eigenfunctions: we have that, if i ̸= j the
value is about three orders of magnitude smaller than 1 for test case D11. We
remark that the S matrix is not symmetric for reasons due to the implementation
of boundary conditions, so there is no obvious reason to expect these results.

The orthogonality in particular suggests the possibility of studying the time
evolution of the concentration in the space spanned by these eigenfunctions:
given the solution ω(t) and the eigenfunctions {e1, . . . , ek}, let us define the
scalar functions

αi(t) = ⟨ω(t)− ω0, ei⟩, i = 1, . . . , k, (21)

representing the projections of ω(t)−ω0 on the eigenfunction basis. At steady
state, different eigenfunctions give non-negligible contribution to the solution
ω(t): no obvious relationship exists between the eigenpairs and the steady state
solution. This should come as no surprise given that the eigenvalue analysis
is localized around the initial condition. In the early stages of the simulation
however, not only the eigenvalue analysis correctly predicts the shape of the
growing perturbation (identical to the only eigenfunction associated to a positive
eigenvalue), but the eigenvalue λ1 also provides a good estimate of its growth
rate.

Let us now consider other scenarios. Table 5 provides the five eigenvalues
with largest real part for each of the scenarios from [17] presented above. With
no exception, a Sherwood number greater than 1 is associated to an eigenvalue
with positive real part, thus correctly predicting the possibility or impossibility
of convection. Moreover, larger Sh are (weakly) associated to greater number
of eigenvalues or eigenvalues greater in magnitude.

As for the connection between the spectrum and the evolution dynamics at
early times, scenarios A2, B2 and E9b have been analyzed, after checking the
(approximate) orthogonality of the eigenfunctions. In figure 15, the comparison
between the actual time evolutions and the one predicted by the spectrum as∑N

i=0 exp(λit)ei are represented. Here, we have used N = 8 for cases A2, B2
and N = 12 for E9b.
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Figure 14: The norm of the perturbation ∥ω(t) − ω0∥ and the magnitude of the pro-
jections |αj(t)| are plotted against time. The overlap between ∥ω(t)− ω0∥ and |α1(t)|
at early times indicates that ω(t) − ω0 ∝ e1 approximately i.e. the perturbation is
growing with the shape of the first eigenfunction. The overlap between the exponen-
tial (dashed line) and the norm of the perturbation indicates that the eigenvalue λ1 is
providing a good estimate of the growth rate.

Scenario Sh λ1 λ2 λ3 λ4 λ5 ϵ ϵg NoE/NoEg

A1 1.00 -9.87 -10.88 -16.61 -25.55 -39.35 0.00919 0.00075 1.84
A2 1.36 51.92 30.36 2.30 -9.87 -39.43 0.01402 0.01351 1.86
A3 1.56 16.03 13.45 8.44 0.17 -6.44 0.03232 0.07508 1.93
A4 1.75 11.08 10.99 0.69 -0.17 -9.87 0.00652 0.03490 1.47
B1 1.00 -9.87 -10.76 -15.70 -24.87 -39.43 0.00500 0.00110 1.75
B2 1.13 31.29 26.31 0.96 -9.87 -18.21 0.00265 0.04576 1.73
B3 1.49 15.31 9.31 1.63 -4.05 -9.87 0.00658 0.04265 1.64
B4 1.32 11.62 4.39 -0.54 -3.63 -9.87 0.02193 0.05261 1.39
C1 1.00 -9.87 -10.59 -13.33 -26.06 -40.57 0.00827 0.02932 1.84
C2 1.17 1.90 0.91 -4.11 -9.87 -39.45 0.00155 0.32562 1.59
C3 1.21 1.02 -1.06 -8.18 -9.87 -23.91 0.01008 0.08807 1.53
C4 1.21 1.84 -1.02 -6.77 -9.87 -22.38 0.00230 0.03980 1.61
D1 1.08 41.75 -9.86 -14.06 -16.43 -39.39 0.00110 0.00526 1.71
D2 1.00 -8.52 -9.86 -16.43 -20.71 -39.40 0.00012 0.00967 1.71
D3 1.00 -1.99 -9.86 -16.44 -16.68 -39.39 0.00093 0.02219 1.71
D4 1.02 17.12 -9.86 -13.38 -16.40 -39.39 0.00015 0.02364 1.68
D5 1.06 35.55 -9.86 -13.60 -16.43 -38.18 0.00003 0.00642 1.69
D6 1.09 48.39 -9.86 -13.02 -15.31 -39.40 0.00097 0.01294 1.71
D7 1.27 305.11 -9.86 -11.95 -15.69 -37.38 0.00089 0.02138 1.74
D8 1.16 47.51 47.21 -9.86 -11.93 -27.74 0.00002 0.00433 1.68
D9 1.16 84.85 7.23 -9.86 -26.09 -26.26 0.00418 0.01027 1.68
D10 1.45 160.60 -9.86 -13.42 -16.15 -17.35 0.00001 0.01819 1.70
D11 1.37 61.75 -9.86 -15.43 -18.83 -37.26 0.00014 0.00139 1.77
D12 1.39 73.01 22.01 -9.86 -12.47 -20.32 0.00009 0.01913 1.74
E9a 1.06 239.23 67.69 32.76 -9.87 -10.11 0.00707 0.05096 1.60
E9b 2.92 495.15 290.82 238.04 178.01 86.36 0.00016 0.01846 1.53

Table 5: Results of the eigenvalue method for different scenarios from [17]. Maximum

errors ϵ = maxi
∥Sxi−λixi∥

λixi
and ϵg = maxi

|λi−λg,i|
λi

are overall smaller than 0.1 (with
the exception of scenario C2).
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Figure 15: The norm of the perturbation ∥ω(t) − ω0∥ and the magnitude of the pro-
jections |αj(t)| are plotted against time. In scenario E9b the eigenvalue estimate of
the growth rate is off by about 30% from the actual growth rate.

The presence of multiple positive eigenvalues precludes the possibility of pin-
ning down uniquely the shape and rate of growth of the instability. In all cases
however, the growing perturbation has the form of one particular eigenfunction
and its rate of growth is given by the associated eigenvalue, see figure 16. The
eigenvalue with largest real part thus also provides a numerical upper bound on
the rate of growth.

4.3 The role of fracture circuits
In [17] the onset and strength of convection is linked to the existence of contin-
uous fracture circuits, and different numerical experiments confirm its impor-
tance. In this section we argue that quasi-continuous fracture circuits can also
enable convective motions, for a surrounding porous matrix of sufficiently high
permeability.

Cases D1 and D2 in [17] are compared to show the necessity of circuit conti-
nuity for convection to occur. However, slightly changing the fracture geometry
(parameters remain unchanged), as in scenario D2∗ (see figure 17), we see that,
although the strength of convection is significantly reduced, it is still possi-
ble. The permeability of the surrounding medium is indeed large enough for
the medium to be part of the convective circuit, though not large enough for
convection to occur without the presence of fractures.

Scenario D2∗ is purposefully built to highlight this phenomenon, we can how-
ever find similar configurations in more complex scenarios already introduced
in [17]. Let us consider for instance network E9b, shown in figure 18: veloc-
ity vectors plotted over the concentration profile clearly indicate, unlike what
is claimed in [17], one large convective cell instead of two, separate ones. As
in scenario D2∗, the convective loop is not limited to the fracture network but
crosses the porous matrix as well.
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Figure 16: At time ϵ (near zero), the growing perturbation has the form of one par-
ticular eigenfunction: δωϵ ≈ proj⟨e2⟩ δωϵ = α2e2. The eigenvalue method however
cannot predict the steady state profile, which is mostly associated to modes 2,3 and
5: δω∞ ≈ proj⟨e1,e3,e5⟩ δω∞.

Figure 17: Cases D1 and D2 are compared in [17] to show the necessity of fracture
circuit continuity. Modifying the gap geometry as in D2∗ restores the convective
motion.

Figure 18: Velocity u and concentration ω at steady state (scenario E9b). The velocity
vectors clearly indicate that the convective cell is not limited to the fracture network.
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Figure 19: The first 8 modes and the corresponding projections αi as defined by (21).
Some modes describe convection around fracture circuites, such as e1, e2, e4, e7. At
steady state however, dominant modes e6 and e8 both involve convective motion across
the gaps.

A

ϵ ∆x

Figure 20: Discontinuous loop geometry

As further confirmation, we can decompose the solution of E9b using the
approximate eigenvector basis (following the apprach outlined in section 4.2).
In figure 19 we see how the dominant modes e6, e8, i.e. the modes corresponding
to the largest magnitudes of αi, both involve fluid motion across the gap in the
fracture network, through the porous matrix, while modes looping around large
continuous fracture circuits e1, e2, e4, e7 contribute only marginally to the steady
state solution.

Let us parametrize the geometry of a fracture circuit with a gap as in figure
20, to relate it to the possibility of convection with the analysis of eigenvalues
sign. Results are reported in figure 21. As expected, for very small matrix
permeability gaps stop flow, thus inhibiting convection. On the other hand,
for larger matrix permeability km = 3 × 10−16, the corresponding Rayleigh
number is Ra ≈ 20, very near the critical Rac = 4π2 for which the matrix can
exhibit convection even without the aid of fractures; convection is thus possible
across very large gaps. For matrix permeability between these two extremes,
the geometry of the gap determines whether convection across is possible or not.

This behavior can be explained, at least qualitatively, focusing on the top
(broken) edge of the fracture circuit composed by the two fracture segments
of length ∆x (segments A and C), and the gap of width ϵ (denoted by B).
Assuming that across the gap flow occurs only across an area A, and that
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Figure 21: Possibility of convection (positive largest eigenvalue) for varying ϵ, A, km
is indicated by a red dot. Meaning of geometric parameters ϵ, A is indicated in figure
20.

Figure 22: Each dot corresponds to a particular combination of km, ϵ, A. As in figure
21, red and blue dots correspond respectively to a positive and negative largest eigen-
value.

exchange with the porous matrix elsewhere re negligible, to ensure convection
in the circuit we have to guarantee that the conductivity GB ≥ GA = GC ,
which translates into

Akm
ϵ

≥ kfb

∆x
,

or, equivalently,

kmA

kfb

∆x

ϵ
≥ 1.

This relation correctly predicts the qualitative behaviour of the numerical
simulations reported in figure 21: small gaps with large surface areas favour
convection across the gap. The results of a more quantitative evaluation, check-
ing the sign of eigenvalues for different combinations of the parameters, are
illustrated in figure 22. Although the threshold does not appear to be so sharp,
and its numerical value is closer to 10−1 than to 1, the horizontal separation
of positive leading eigenvalues from negative ones indicates that the model is
capturing part of the physics of the phenomenon.

4.4 Three-dimensional HRL problem
Both the direct method (exposed in section 3.1) and the eigenvalue method
(section 3.2) make no assumptions on the dimensionality of the ambient space.
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Mode 1

Interfracture □ Intrafracture ⟳ Intrafracture ⟳

Mode 2A Mode 2B

Figure 23: Classification of convective modes presented in [11]. Two-dimensional sim-
ulations can only capture the interfracture mode 1. Three-dimensional simulations
can also capture intrafracture modes 2A and 2B, unless fractures are treated as lower-
dimensional subdomains: in this case mode 2A is impossible to capture.

In this section, we are going to apply the latter to simple three-dimensional
scenarios.

In [11], a classification of possible modes of convection in fractured porous
media is proposed. The paper further explains how the assumption of a two-
dimensional domain severely limits the applicability to experimental cases. This
is due to the three-dimensional character of the dominant mode of convection –
mode 2B in figure 23 – which cannot be captured by a two-dimensional analysis.

In [16], different three-dimensional scenarios are analyzed and numerically
simulated. The numerical results from the regular three-dimensional fracture
circuit (here denoted as scenario 6), show that when convection is available (for
large enough fracture aperture), the dominant mode is the interfracture mode
1.

The geometry simulated in [16] being practically identical to the geometry
studied in [11], the two results stand in contradiction. Indeed, [16] acknowledges
the contradiction, attributing it to both the matrix-fracture coupling conditions
and to the Rayleigh averaging strategy used in the analysis of [11]. In particular,
the use of a Rayleigh number based on an averaged permeability was shown to
be ineffective in the case of low density fracture networks in [17] (as briefly
discussed in section 2.5).

We analyze the 3D problem with the eigenvalue method for different sce-
narios presented in [16], and collect the results in table 6, where we report for
different geometries and different fracture apertures the unstable modes, and
compare them with the convection modes predicted by [16].

As in the two-dimensional case, the instability thresholds are identical to the
ones obtained in [16], apart from a slight misprediction for scenario 9a.

In all scenarios furthermore, the eigenfunctions clearly follow the classifica-
tion proposed in [11], corresponding to either interfracture □ or intrafracture ⟳
modes.

In particular, for scenario 6 we observe that (i) the interfracture mode is first
unstable one appearing at b ≈ 1.4 × 10−5 m (ii) already at b ≈ 1.6 × 10−5 m,
different intrafracture modes are available and dominate over the interfracture
mode: λ⟳

1 = 21.0, λ⟳
2 = 20.1, λ□ = 17.6 (iii) intrafracture convection modes
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Case b× 10−5 m Mode [16] Eigenfunctions

5 1.8 (1− ϵ) — —
5 1.8 (1 + ϵ) ⟳ 2× ⟳⟳⟳
5 2.0 ⟳ 4× ⟳⟳⟳
6 1.4 (1− ϵ) — —
6 1.4 (1 + ϵ) □ 1×□□□ 1× ⟳
6 1.6 □ 1×□ 2× ⟳⟳⟳
6 1.8 □ 1×□ 4× ⟳⟳⟳
6 2.0 □ 1×□ 12× ⟳⟳⟳
9a 1.5 — —
9a 1.6 — —
9a 1.7 — 1× ⟳⟳⟳
9a 1.8 □ ⟳ 1×□ 2× ⟳⟳⟳
9a 1.9 □ ⟳ 1×□ 2× ⟳⟳⟳
9a 2.0 □ ⟳ 1×□ 5× ⟳⟳⟳
9b 1.5 — —
9b 1.6 — —
9b 1.7 □ 1×□ 1× ⟳⟳⟳
9b 1.8 □ 1×□ 2× ⟳⟳⟳
9b 1.9 □ 1×□ 2× ⟳⟳⟳
9b 2.0 □ 1×□ 6× ⟳⟳⟳

Table 6: ϵ = 0.05. In scenarios 5, 6 and 9b the predicted instability threshold agrees
with [16]. The threshold is slightly (λ = 1.15) mispredicted for scenario 9a. Between
interfracture □ and intrafracture ⟳ modes, the dominant one is printed in bold. □ ⟳
indicates a combination of interfracture and intrafracture modes.
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Figure 24: Results of the eigenanalysis applied to scenario 9a (b = 2.0). The eigen-
function corresponding to the largest eigenvalue (referred to as dominant mode) is an
intrafracture mode. Eigenfunction e5 is the only interfracture mode.

remain dominant for larger fracture apertures.
Thus, excluding apertures for which the setup is very near to the instabil-

ity threshold, intrafracture convection modes dominate over interfracture con-
vection modes when both modes are available. This conclusion also holds for
scenarios 9a and 9b.

Although our results seem to confirm the results of [11], where the intrafrac-
ture mode is also identified as dominant, they do not contradict the results
in [16]. Indeed the eigenvalue analysis is strictly localized around the diffu-
sive equilibrium solution. In particular, the eigenvalues give no indication on
which modes will be present at steady state. As seen in e.g. scenario A2 (figure
16), even modes with decaying behaviour near equilibrium may turn out to be
dominant at steady state.

4.5 Computational considerations
We want to discuss some of the computational aspects of the eigenvalue method,
comparing it in particular to the direct method of assessing stability in terms
of computational cost.

The computationally expensive steps of the eigenvalue method can be di-
vided in (a) grid construction, initial operator discretization and Newton it-
erations to reach steady state (needed as initial condition) (b) construction of
the S operator defined in (20) (including LU factorization of Ayy) (c) compu-
tation of k largest eigenvalues. Step (c) can itself be subdivided in the two
costly operations (i) matrix vector products Sv and (ii) orthogonalization. We
will initially compare the computational cost of assessing the possibility of con-
vection using the eigenvalue method against the direct method. Next, we will
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discuss how the cost changes with number of degrees of freedom and number of
sought eigenvalues.

In section 4.2, we saw how the direct method and the eigenvalue method can
be used in a complementary fashion, each of them giving answers inaccessible to
the other. We can however restrict the question to the possibility of convection
since both methods are a valid way of finding an answer (e.g. see table 5).
For a fairer comparison, the direct forward simulations will be as soon as the
Sherwood number exceeds 1, which would already indicate the possibility of
convection. Table 7 reports the timing comparison and the relative time spent
in each of the most costly operations for different test cases.

The cost of the direct method is dominated by the assembly of the problem
Jacobian in the two-dimensional cases and by the linear solves in the three-
dimensional cases (which possess a much larger number of degrees of freedom).
Both of these operations are performed for each Newton iteration. The number
of Newton iterations per timestep advancement mostly varies between 2 and
3 for all the simulations. Relaxing the convergence tolerance of the Newton
method is one of the options to speed up the method, at the cost of lower
accuracy of the solution. This might be a valid option considering that what we
are interested in is whether convection is possible, not in the detailed behaviour
of the solution.

The eigenvalue method is much more efficient with respect to the direct
method in low fracture density cases. For test cases with complex fracture
configurations such as E9a and E9b, the performance of the two methods (direct
and eigenvalue) approximately matches.

In the different test cases, the eigenvalue method dedicates approximately
equal times to orthogonalization and matrix-vector products. Their relative
weights can actually be adjusted by varying the size m of the Krylov basis in
the Krylov-Schur algorithm: for every iteration of the algorithm, the cost of
orthogonalization scales with m2 while the cost of the matrix-vector products
scales with m. Tuning m for the problem at hand may be a possible option for
improving the efficiency of the method.

In figure 25 we illustrate how the number of matrix-vector products Nmv

changes with the number of mesh elements NoE . The results show that Nmv

depends weakly (Nmv ∼ NoE 0.5) on the size of the problem (although a lot of
variability remains). Note that however the cost of each matrix-vector product
Sv scales as Cmv ∼ NoE 2: the cost of each matrix-vector product Sv scales
as Cmv ∼ N2

mv: the presence of A−1
yy in (20) makes the S matrix dense. The

scaling estimate for the total cost of the matrix-vector products TCmv is thus

TCmv = NmvCmv ∼ NoE 0.5NoE 2 = NoE 2.5.

The estimate is consistent with the data reported in table 7, for which a least-
squares estimate gives TCmv ∼ NoE 2.2±0.4.

Finally, the convergence of the Krylov-Schur algorithms is represented for
four different test cases during the earch for multiple eigenvalues. As shown
in figure 26 in all the test cases, once the algorithms pins down an eigenvalue,
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Scenario NoE direct (s) init assembly linsolve eig (s) init lu matvec ortho

A1 8192 127.1 0.03 0.70 0.15 22.5 0.17 0.02 0.13 0.23
A2 8192 186.7 0.02 0.74 0.16 23.0 0.24 0.03 0.11 0.18
B1 10016 249.4 0.03 0.73 0.17 37.0 0.17 0.02 0.29 0.28
B2 10422 260.0 0.03 0.72 0.20 53.0 0.17 0.02 0.33 0.34
D1 5000 125.0 0.01 0.77 0.13 20.0 0.22 0.03 0.05 0.08
D2 5000 87.9 0.03 0.75 0.12 13.9 0.21 0.02 0.09 0.15
E9a 11379 160.1 0.08 0.68 0.18 165.5 0.07 0.00 0.40 0.42
E9b 12073 137.3 0.11 0.59 0.15 107.5 0.21 0.02 0.36 0.28
6A 38400 1053.9 0.02 0.21 0.74 172.2 0.18 0.11 0.52 0.13
6C 38400 886.1 0.04 0.22 0.72 191.7 0.22 0.12 0.48 0.12

Table 7: Comparison of time to assess the possibility of convection through direct
method and eigenvalue method. The relative times of their more costly operations are
also reported.

Figure 25: On the left, number of matrix-vector products Nmv plotted against number
of elements NoE on the left. Each different color corresponds to a different test case
among {A2,B2,C2,D8,E9a,E9b, 6A, 6C}. On the right, we check that eigenvalues are
converging (or have converged) for increasing grid resolution.
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Figure 26: Each line corresponds to the relative error for an eigenvalue estimate plotted
against number of matrix-vector products Nmv.

the corresponding error starts decreasing at exponential rate. Depending on
the test case, we can have scenarios in which the eigenvalues all practically con-
verge together, as opposed to cases where computing each successive eigenvalue
requires considerably more computation.

5 Conclusion
The aim of this study was to better understand the influence of fractures on the
possibility of free convection in porous media. To this aim, we have described
a mathematical model for density driven flow in the presence of fractures, and
the corresponding numerical approximation. In addition to the direct ”forward”
numerical solution of the problem we have proposed and implemented a novel
method for the assessment of convective stability through the eigenvalue analysis
of the linearized numerical problem.

The new method is shown to be in agreement with existing literature cases
both in simple and complex fracture configurations. With respect to direct
simulation in time, its results provide further information on the possibility of
convection. In particular, as shown in section 4.2 the sign of the leading eigen-
value correctly predicts the onset of convection, and its magnitude provides
quantitative estimates of the rate of growth or decay of perturbations. Further-
more the computational cost of the method has proven to be in the worst cases
equal, and in the best cases up to an order of magnitude faster than the direct
solution method.

The fact that the eigenvalue method closely mimics the analytical method of
investigating stability clarifies what inferences can be made from the the results
of a linear stability analysis. In particular, analyzing stability through the study
of the system around equilibrium solutions (both numerically and analytically)
is restrictive in that it cannot predict whether, far from the equilibrium solu-
tion, transient convective motion is possible and which convective modes will

36



be dominant at steady state.
Moreover, an in depth study of the particular scenario E9b in [17] has further

complicated the question of analyzing free convection in the presence of frac-
tures: for realistic sets of problem parameters, the porous matrix is indeed able
to participate in the convective motion. Thus, stability criteria based on the
fracture network alone, e.g. the presence of large continuous fracture circuits as
a trigger for convection, are shown to be somewhat limited in applicability.

Given the results of this study, we could expand the work in different direc-
tions.

On the numeric side, the method used to compute the eigenvalues at the
moment does not take into account the structure of the particular problem.
However, the S matrix is built up from submatrices of the Jacobian associated
to the linearized problem. Therefore, a close study of the Jacobian may sug-
gest ways of speeding up the computation of the eigenvalues by exploiting the
structure of the S matrix.

Finally, though the eigenvalue method has proven to be faster than the direct
method of assessing convective stability, the method could be further sped up if
we are willing to sacrifice accuracy, since, for this purpose, we are only interested
in the sign of the most positive eigenvalue. If during the computation of the
eigenvalues we find one to be positive, with error reasonably smaller than its
magnitude, we can already predict the possibility of convective motion. In
cases where the method is applicable, such as the fractured HRL problem, the
additional speed may enable a more systematic (or even statistical) study of
how global properties of fracture networks such as fracture density, connectivity
and characteristic sizes are related to the possibility of convective motion.
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