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Abstract

This paper is concerned with a novel convergence analysis of the
optimized Schwarz waveform relaxation method (OSWRM) for the
solution of optimal control problems governed by periodic parabolic
partial differential equations (PDEs). The new analysis is based on
Fourier-type technique applied to a semidiscrete in time form of the
optimality condition. This leads to a precise characterization of the
convergence factor of the method at the semidiscrete level. Using
this characterization, the optimal transmission condition parameter
is obtained at the semidiscrete level and its asymptotic behavior
as the time discretization converges to zero is analyzed in detail.
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1 Introduction

The control of time-periodic PDEs plays an important role in several appli-
cations, like the control of eddy current electromagnetic problems [1-4] and
Stokes problems [5], energy-producing kites [6], cyclically steered bio-reactors
[7], design of reverse flow reactors [8], control of magnetohydrodynamic phe-
nomena [9, 10] and related multiharmonic models [11]. In this scenario,
time-periodic parabolic problems are considered in [5, 6, 8]. For this impor-
tant class of problems different solvers and preconditioners, like finite-element
solvers, multigrid methods, and algebraic preconditioners have been developed
and analyzed; see, e.g., [12-15] and references therein. Also domain decom-
position methods have been used for PDE-constrained optimization problems
[16]. For elliptic optimal control problems classical Schwarz methods were con-
sidered in [17] as preconditioners (see also [18]), while in [18-21], optimized
Schwarz methods have been introduced and analyzed. Neumann-Neumann
methods are studied in [22, 23]. Robin Schwarz waveform relaxation methods
were introduced in [24]. OSWRMs are Schwarz domain decomposition methods
characterized by Robin transmission conditions, where the choice of the Robin-
type parameter affects tremendously the convergence of the method; see, e.g.,
[25-28]. In the context of parabolic control problems, the only convergence
analysis proposed in the literature (and that can be adapted to time-periodic
problems) is the one presented in [24] and based on energy estimates. However,
this analysis does not lead to a concrete estimate of the convergence factor and
does not provide insights that can be used to choose the Robin parameter.

The goal of this paper is to present a novel Fourier-type convergence anal-
ysis of an OSWRM for the solution of optimal control problems governed by
time-periodic parabolic equations. In particular, we perform a semidiscrete in
time analysis that allows us to obtain precise estimates of the convergence
factor, which can be used to optimize the Robin parameter characterizing
the transmission conditions. Although we could perform a continuous Fourier
analysis, we carried out a semidiscrete one in time, since it gives a better char-
acterization of the numerical behavior of the OSWRM (see [29]). Moreover, our
analysis permits us to obtain a convergence result not only in the nonoverlap-
ping case (for which convergence can be proved by energy estimates [19]), but
also in the overlapping case. In particular, in the semidiscrete case convergence
of nonoverlapping methods is guaranteed by the compactness of the set of pos-
sible Fourier frequencies. Thus, one can prove that the contraction factor is
smaller than a constant lower than one. This is not possible in the continuous,
for which the set of Fourier frequencies is unbounded. In this case, Parseval’s
identity together with the dominated convergence (Lebesgue) theorem need to
be used. However, our optimization study concerns both cases.

The optimal Robin parameter for the semidiscrete case is obtained by solv-
ing an inf-sup problem. Similar problems have been treated in the literature,
see, e.g., [18, 26, 27, 30]. Although we will use few of the results contained
in these works, there are three main differences in our contribution: the inf-
sup problem is defined on the Cassini ovals (cf. Remark 2.3), the problem is
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not convex, and furthermore the Robin parameter is constrained to be real.
We point out that, even though the proposed analysis is carried out for a
one-dimensional space domain, its development is already very involved. The
two-dimensional case could be explored by using a similar technique, but it
will require further attention to details complicating the presentation of the
results.

The paper is organized as follows. The optimal control problem and the
OSWRM are introduced in Section 2. In Section 3, convergence of the OSWRM
is proved and its convergence factor is characterized in terms of the parame-
ters of the problem. The optimal parameter p is computed in Section 4 in the
case of non-overlapping and overlapping subdomains. In particular, while in
the nonoverlapping case we are able to obtain a precise formula for the opti-
mal parameter, this is not possible in the overlapping case, where asymptotic
expressions are instead derived. We will distinguish two cases depending on
the relation between the overlap L and the size of the time grid At. First, the
overlap L is chosen proportionally to Az. Second, L is chosen proportionally
to VAz. In Section 5, we demonstrate the validity our theoretical findings by
direct numerical experiments. Finally, we outline our conclusion in Section 6.

2 The optimal control problem and the OSWRM

Let Q = R denote the spatial domain and [0,7] the time domain, with the
final time T > 0. Consider the quadratic cost functional

1 2 T2
J(y’u) = 5”)} - yQ||L2((O,T)><Q) + §||u”L2((O,T)><Q)’ (1)

where o is a positive parameter which penalizes the size of the control u, and
Yo is a target state. The state y is subject to the linear parabolic constraint

Oy — A0xxy +dy = u, in (0,7) X Q,

B . (2)
y(0) =y(T), inQ,

with A, d > 0. The target state yg is in L2((0,T)xQ). For any u € L?((0,T)XQ),
Problem (2) has a unique solution y € L2(0,T; H'(Q)) N H'(0,T; L*(Q)), the
regularity theorems imply that y € C([0,7T] x ), which justifies the bound-
ary condition in time, see [31]. Furthermore, y is a linear function of u. The
o-convexity of the quadratic map u — J(y(u), u) implies existence and unique-
ness of the minimizer (y, u) € L2(0,T; H (Q)NH'(0,T; L?>(Q))xL?((0,T)xRQ),
see [32]. Moreover, the unique minimizer (y,u) is characterized by the first-
order optimality system consisting of (2), completed by the adjoint equation

[33, 34]
—0;q —A0xxq+dq=yo—y in (0,T)xQ,

o(T) = q(0), i Q, )

and the condition
cu—q=0 1in (0,7) x Q. (4)



Springer Nature 2021 IMTEX template

4 Convergence of the OSWRM for parabolic periodic control problems

For a given y, the backward parabolic problem with final time condition (3)
has similarly a unique solution g € L2(0,T; H'(Q)) N H'(0,T; L*(Q)).

Now, let us introduce the OSWRM |26, 35] for the solution of (2,3,4), writ-
ten in a substructured form on the interface. We consider the decomposition
Q= Ql U QQ with Ql = (—00,x1) and QQ = (X2,+00), with X1 —xg =L > 0.
For positive p, the iteration of the Schwarz waveform relaxation algorithm is
defined by the 7~ operator:

7(8,-8,)=1(8".8)):

For j =1,2, (5a)
Given 8j = (g, 8j),solve the forward-backward problem:
qj =ouj, (5b)
6,yj —/wxxyj +dyj =uj in (O,T) X Qj,
On;yj(xj) +pyj(-x;) =g; in (0,7), (5¢)

y;j(0) =y;(T) in Q,

—0,qj — A0xxqj +dq; = yo = y; in (0,T) X Q;,

On;q; (- x5) + pqj(-,x;) =g; in (0,7), (5d)
q;(T) = ¢;(0), in Q.

Compute for i # j

8 = On;yj(,xi) + pyj(-,x;) in (0,7),

g = On;qj (-, xi) + pq;j(-,x;) in (0,7), (5e)
8i = (87 8)-

Here, 0y, is the outward normal derivative at point x; for j = 1,2. The param-
eter p > 0 is used to define Robin transmission conditions and its choice
strongly influences the convergence of the method [26, 35, 36].

For a proper definition of the overlapping algorithm with the heat equation,
we need more regularity, and use the anisotropic Sobolev spaces [37]

H?""(Qx (0,T)) := L*(0,T; H*(Q)) N H" (0,T; L*(Q)).

We will mainly use H3. Any u in this space has traces at t =0 and t = T,
which belong to H?(Q), and traces on the boundary of Q, you € Hi (0,T),y1u =

g—ﬁ e Hi (0,T). For r > %, define the periodic space H;(O, T) to be the space
of functions in H"(0,T) (therefore continuous) which coincide at 0 and T. The

application

(S

5 3
ue (youyi) : Hy?((0.7) x Q) — HA(0.T) x HL(0,T)
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is linear continuous and surjective. This is an extension of results in [31,
Theorem 2.3, p21] and replaces the usual compatibility conditions between the
trace and the initial condition. Let S;(-; g) : L2((0,T) X Q;) — '7‘(12;((0 T) x
Q;) be the solution operator associated to the state equation (5c), that is
S(uj; g) = y;. Here, g represents a boundary data or a source term. We can now
prove the following result. In what follows, we denote by (-, -) the usual inner
product for L2((0,T) x Q) and by (-, )20,y the inner product for L2(0,7).

Lemma 1 In each subdomain, for a given 8= (gj.8)) € (L%(0,T))?, define the cost
function
1 2 o 2 ~
Ji(yj,uj) = §||)’j =vollZ>(o.r)xe;) +§||uj||Lz((0’T)XQJ,) =g,y x)ez0.1)> (6)
where for u; in L2((0, T)xQ;j), y; is the solution to (5c). Moreover, define the reduced
cost, functional fj(uj) = Jj(Sj(uy; §j’)’”j)' fj(uj) is o-convex on L2((0,T) x Qj),

and the equations (5b,5¢,5d) form the optimality system for the minimization of fj

Proof The proof is similar to those given in [20] and [38]. The cost functional J; is
differentiable and o-convex, it has one and only one minimum i}, characterized by
j;.(zij) =0 [34]. Compute now the derivative of f,

f}(uj) ~h=(S(uj; gj) 0,8 (uj; 0) - h) + o (uj, h) = A(&;,2(.xj))r2(0,1)

:(y] - YO Z) + O'(Mj, h) - /l(g/’ Z('vx‘]'))L?(O,T),

where z = S(h; 0). In order to identify the quantity above as a scalar product,
introduce ¢; solution of (5d). We have then, by integration by parts,

(yj = ¥0,2) = (=0iqj — A0xxq;j +dq;,2)
= (0rz — A0xxz+dz, q5) — [(q(t,-), z(2, ~))L2(Q,)]g
+A( = (9xqj(xj), 2(xj)r20,1) + (9 (X)), 0x2(xj))L2(0,1))-

Thanks to the periodicity conditions, the second term vanishes. Using the heat
equation on z, the first one is equal to (g, /). As for the boundary terms, use the
boundary conditions in the equations to get

—(0xqj(xj)s2(x;))L2(0,1) + (45 (xj), Ox2(x)) 20,1y = (&5, 20 Xj))L2(0,1)>
which cancels out with the boundary term in fj’.(uj) - h. There remains only
f]\]'-(uj) -h= (0'14]- +qj,h).

Hence, fj’.(uj) can be identified with ou;+q;. Thus, the last equation to identify the
optimality system is ou; +¢; = 0. O

Theorem 2 (Well-posedness of the OSWRM) For any target state yg in
Hl’%((O,T) x Q), the iteration map T defined by (5) maps (H2/:/4(0,T))4 mnto

3
(H;£/4(O,T))4. For any initialization go = (g(l),gg) € (H;((O, 7)), it defines a sequence
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3
= (g’ll,gg) € (H%((O, TN by the linear recursion 5" = 7’&”_14 Associated to g"

. . 3.3
are y/°'"" and g/" € H;Q ((0,T) xQj) for j =1,2, defined by (5b,5¢,5d).

Proof By Lemma 1, ff(u j) is a quadratic o-convex function, and therefore has a
unique minimum point for g; € L? (0 T), characterized by the optimality system,

which is precisely (5). Now, if g; € H1 i (() T), by the regularity results in [31, Theorem
2.1] cited above, y; and ¢; are in H -3 ((0,T) x Qj), and by the trace theorems at
point x;, g/ and g/ are in Hi (0,7). (]

The convergence of the algorithm can be obtained through a priori esti-
mates in the case of nonverlapping subdomains [19, 39]. In the nonoverlapping
case, the appropriate tool is Fourier series, using the periodicity of the prob-
lem. We do not carry out the computation, since it is very similar to the one
we perform in the next section on the semi-discrete case. Similarly, we do not
carry out the optimization of the Robin parameter, since it is reasonable to
expect, and it was proven in the elliptic case, that a semi-discrete optimization
is more relevant to the actual computations, see Section 5 for the comparison.

3 The semidiscrete algorithm

In this section, we carry out a convergence analysis for the semi-discrete in
time domain decomposition algorithm. The semidiscrete systems are obtained
using the implicit Euler scheme, as it is usual for for parabolic equations.
As in the continuous case [26, 35, 36, 40|, we identify the subproblems as
control problems for a modified cost function, which permits to prove the well-
posedness of the algorithm. The convergence is obtained through a discrete
Fourier transform. A discrete Fourier analysis for stationary problems can be
found in, e.g., [29, 41].

3.1 Definition and well-posedness

Introduce a uniform grid of size At = T/S, that discretizes the interval [0,T]
with gridpoints t; = sAf for s = 0,...,S. The functions y and g of t and x are
approximated by vectors ¥ and Q in RS*', functions of x, with components
indexed by s. Yp is the vector defined by (Yp)s = yo(ts). We discretize the
state equation (2) and the adjoint equation (3) in time by an implicit Euler
scheme and obtain

1
— (Yg = Ys—1) —A0xxYs +dYs = U in || 1, S| X Q,
At( S K 1) xts + K 1n[[ ]] (73)

Yo = YS in Q,
oU=Q in in[1,5] xQ, (7b)
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i (Qs - Qs+1) - /laxes + dQs = (YQ)S -Y,in [[O,S - 1]] X Q,
Os =Qp in €,

(7¢)

where for M and N two integers, [M, N] denotes the set of integers between
M and N (including M and N). We define Ry = {X € (L?(Q))5*!, X, = Xs}.

Theorem 3 For any r > 0 and U € (H"(Q))5*! n Ry, Problem (7a) has a unique
solution Y € (H"*? (Q))S+1OR#. Similarly, for anyY,Yg € (H" (Q))S+! NRy, Problem
(7¢) has a unique solution Q € (H"+2(Q))S*1 n R. Moreover, the system (Ta)-(7c)
has a unique solution (Y,U,Q) € (H" (Q))5*1 NRy x(H" (Q)S+x (H™2(Q))5*+1 NRy.

Proof We apply the discrete Fourier Transform (DI*lT) to (Yo,...,¥s-1). Given a
vector X = (Xp,...,Xg_1) € RS, the DFT is given by X = (Xo, . ~«’AX571) € RS, where
X, = Zf;ol X e™i27&5/S  The inverse DFT is then X = %ZE;& X, ei27%5/S and the
Parseval equality holds: ¥3°} [Xy|? = 2571 |Xy|2. Thus, (7a) becomes

ds(K)Yy = A0xx Y = Uy, k €[0,8 - 1], (8)

where dg(k) := (%(1 - e_QTMK) +d| € C. Since the real part of dg is bounded from

below by d, the problem above is strongly elliptic and has a unique solution with
Ye € H'¥2 (Q). Inverse DFT gives the result. The proof applies to (7¢) as well. Finally,
notice that (7a)-(7c) is the first-order optimality system of a linear-quadratic and
strictly convex optimal control problem (similar to Theorem 5) and hence uniquely
solvable. (]

We also discretize in time the iteration of the Schwarz algorithm (5):

Ta(G,.G,) = (G, Gy)

For j=1,2 (9a)
Given Qj = (Gj, Gi,-) € Ri,solve
Qj=0U; (9b)
Yi(s) = Y;(s - 1)

Ar —/laxij(S) +de(S) = U]'(S) in [[1,5]] XQ]',

On;Yj (-, xj) + pY;(-.x;) = G in [0,S].
Y]'(O, ) = Yj(S, ) in Qj,

Q,(s) _AQtf(S D 10,::0;(5) +dQ;(s) = Yo(s) - Y;(s) in [0,5 - 1] x ;.

On,; Q- x;) +pQ;(-,x;) =G, in [0,S],
Qj(O, ) = Qj(S, ) in Qj.

(9d)
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Compute for i # j, in [0, S],
Gl/ = (9,,in(',)€,‘) +pY]~(-,xi) in |IO, S]],

Gl =05, Q,(-x;) + pQ;(-,x;) in [0, 5], (9¢)
G =(G],G)) € R},.

Lemma 4 For any r > 0 and U; € (Hr(Qj))S+1 N Ry, for any G; € Ry,
Problem (9c) has a unique solution Y; € (H™2(Q))5* n Ry. Similarly, for any
Yj.Yolo, € (H(Q))*' n Ry, Gj € Ry, Problem (9d) has a unique solution
Qj e (Hr+2(Qj))S+1 n R#.

Proof The proof goes by DFT, similar to that of the previous lemma. |

The spaces RS*! and L?(Q) = L2(Q)5*! are equipped with the norms
s s
VI3 = At Y IGI% YD) = A D X7 -
s=1 s=1

Theorem 5 The system (9b)-(9d) is the optimality system for the minimization of

1 2 g 2 =
W) = S Yol ) + SN0 g ) — UG Yj(x))s. (10)
subject to (9c). Therefore (9) defines a continuous linear operator Ty from R:é into
Ry,

Proof Thanks to Lemma 4, the minimization problem is well-defined. It is a quadratic
o-convex problem, thus has a single solution, characterized by the optimality system.
The proof that the optimality system is (9b)-(9d) is parallel to the proof in the
continuous case in Lemma 1, replacing, for the time integration by parts, continuous
by discrete. See the Appendix. O

The semidiscrete algorithm is now defined by
G’ eRy, G"=TuG"'€Ry. (11)

3.2 Semidiscrete convergence analysis

To study convergence of the semidiscrete OSWRM, we apply the iteration to
the error Y; =Y -Y;, U; = U -U; and Q; = Q — Q;. Thus, denoting by
Qj the Robin traces quantities in error form, and by Qj the corresponding
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(discrete) Fourier transformed elements, we can introduce the discrete Fourier
transformed system as in (8), that is

T:(G,.G,) =(G..G,):

For j=1,2 (12a)
Given éj = (éj,éj),solve
0, =0l (12b)
- ~ 1 ~
dsyi— /laxxy];: ;'L[j in [0, S] x Qj, (120)
On; Y (xj) + pYj(xj) = G in [0, 5],
ds(0)Q; — 10:,Q; = -Y; in [0, 5] xQ;,
S J J J [o. 5] J (12d)

8,,j§j(xj) +p§j(xj) = éj in [0, S].
Compute for i # j, in [0, S],
G/ = 0n,Y;(x;) + pY;(x)),

—~

g = 00, Q; (x;) + pQ; (x7). (12e)

— — =/
Qi = (gl > g[) .
The recursion gives the sequence of vectors on the interfaces

~ —n—~0

gn _ ﬁéﬂ*l _ ﬂtng ‘

(13)

The following lemma summarizes the notations we use in what follows and
computes the iteration matrix ;.

Lemma 6 Define

N _2mi 1
ds() = 2 (1= ¢ F5) s d, (o) =

Re (ds) +i,/é + (Im(ds))2) ,

P (Im(dg) +,/(Im(ds))? + g) i(Im(dS) — ((m(dg))® + %) , (14)
1 1
s = Vps, ps(kp L)=—ZS(K)_pe_ZS(K)L Gs = (ps 0)-
' ’ o zs(k) +p ’ 0 ps
Then the iteration is explicitly given by
g, _ 0 P_lGSP) 51 — g §1
(é;) - (P—lGSP 0 QQ =: 7;1 §2 . (15)




Springer Nature 2021 IMTEX template

10 Convergence of the OSWRM for parabolic periodic control problems

Proof Defining the vectors X; = (?j,@j) for j = 1,2, we can rewrite (12b,12c,12d)
as a second-order differential system in the variable x. The variable x appears as a
parameter, and is omitted in most formulas.

1 |ds -1
OxxXj—MsX; =0, MS:E[I d—‘ST . (16)
The boundary conditions are
X' () +pX (1) =G, X2+ pXP(x2) =G, (17)

and the result of the iteration is

-~/

—~7
G, =X (x1) + pX2(x1), G, = —0xX1(x2) + pX>(x2). (18)
For any « € [0,S — 1], the matrix Mg(x) has two distinct eigenvalues, complex

conjugate, ug(x) and pg(x). It is thus diagonalizable with the eigenmatrix P into
Mg = PDP™L, with

us O
D= — .
[ 0 #S]
Define Xj = P~1X;. Then, the iteration (16), (17), and (18), diagonalizes into
5xij—DXj =0, (19a)
axX Xi(x1) =P7'G = H,,
< 1(;1) +p 1(;61) _QlL H,y. (19b)
—0.X(x3) + pX2(x) = PG, = Hy,
H) = PG = 9:X%(x1) + pX2(x1), (190
PS =7 Y
ﬁ; = PG, = —0xX1(x2) + pX?(x2).

Let zg(x) be the unique square root of ug(«) with positive real part, then
\/5: ZS(K) 0 eZS(K)x O
0 zs(x) 0 esx|’
It is first easy to solve (19a) into

X! = e‘/ﬁxal +e_‘/5xb1, X% = e_‘/Bxa2 +e\5xb2

and eVP* =

X! and X2 have to vanish for x — —co and x — +co respectively (in order to be a
temperate distribution), therefore b! = 52 = 0 and thus

X1 =eVDxgl x2 = o~VDxg2, (20)
Inserting these expressions in the boundary iteration (19b), (19c¢) yields

(‘/5+p1)e‘/5"1a1 =H (\/5+p])e_\/5x“’a2 =H

1’ YADY
H = (ND+pDVPa2, H = (VD +p) VP24,
Then, the relation (15) follows by recalling that QJ_ = Pﬂj, 0

We can now prove the main result of this section.

Theorem 7 (Semidiscrete L2-error bounds and convergence of the OSWRM) Let
A>0 and d > 0. There is a constant C > 0 such that, for any initial guess QO € Ri&,
and for any p > 0 and o > 0, the sequence G™ defined by (9,11) satisfies (in error
form)

Ig"<C  sup |ps(kp.L)I"IGO]I.
ke[0,5-1]

Furthermore, SUPycf0,5-1] lpos(k, p,L)| < 1, therefore the sequence is convergent.
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Proof The diagonal matrix (VD + pI) is invertible because Re (zg(x)) and p are
positive. Consider the matrix Gg = (\/5+p1)_1(—\/5+p1)e_\5L, given in (14). We

can rewrite (15) as
7, =(0 GS) H|
H, Gs 0 H,

The result of 2n iterations is (QQ", gg"), simply given by

~2 P
G, =PGPG,. j=1.2

Define a := +/(Im(ds))?+ % + Im(dg) and B:= 1/(Im(ds))2 + % —Im(dg). Since

Im(dg) > 0, these two functions of « are positive. Expanding the identity above gives

apg +Bps>" oy B=pg" +P5") 20

G2 = 0 :

J a+p J a+p 7
——2 .

=2n a(-pg" +p5™) 4 . aps>" + Bps>" éo

7 a+p Y a+p J:

From this it is easy to estimate

—~ =2n —~
G2 < lps| (1G7 1+ 21691, 16, | < lps| (21GV1+IG71).

By Parseval identity, we can conclude that

=0
Ig*" I <€ sup lps(x, p, L)I*" max(|GYIl. IG ;).
ke[0,5-1]
For odd iterations, the error in domain j must be estimated by the previous error in
domain i # j, and the result is similar.
The convergence factor |pg(«, p, L)| is strictly smaller than 1 and the sup is taken
on a compact set, therefore it is smaller than 1. O

Remark 1 The computation and the convergence proof presented in this section
2ik

extend to the continuous case, using Fourier series y(t) = Yrez Jje 7! The relevant

quantities in the notations are replaced by

2ikm

doo(k) =

2
uw<k)=%(Re(dw)n\/}(lm(dwf) = %(dﬂ' §+(2]‘7") ) (21)

Ze0(k) =P _, ()L
OO= [oeX) (o] k’ ’L =Y ZOO() .
Zoo = VU Peo(k, p, L) i p’

+d,

4 Optimization of the semi-discrete Robin
parameter p
The well-posedness and convergence analysis above concerns the overlapping

case, for which no other convergence proof is available. Only slight modifi-
cations would be needed to obtain an analysis in the nonoverlapping case,
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see [26]. In particular, in the semidiscrete case convergence of nonoverlapping
methods is guaranteed by the compactness of the set of possible Fourier fre-
quencies. Thus, one can prove that the contraction factor is smaller than a
constant lower than one. This is not possible in the continuous case, for which
the set of Fourier frequencies is unbounded. In this case, Parseval’s identity
together with the dominated convergence (Lebesgue) theorem need to be used.
However, the optimization study concerns both cases. By Theorem 7, the con-
vergence speed of the algorithm is measured by the maximum over all discrete
frequencies « of the convergence factor

Z(K) - p e—Lz(K),

R(Z(K)’p’L) = |PS(Z(K),P5L)|2s where PS(Z(K)sP’L) = Z(K) +p

(22)
with the definitions in Lemma 6. The value depends on the positive parameter
p. It is always smaller than 1, but the behavior of R as a function of «, and
hence its maximum, depends very heavily on p, see Figure 1, with coefficients
o, A and d equal to 1, T =1 and § = 20, in the nonoverlapping case L =0 on
the left, and in the overlapping case L = VAr on the right.

0.9 T T T T T T 0.8

—p=1 —p=1
o — =26 o7 —p=185

p=20 p=3
07 — 061
06 051

fi's i

05 04t
04 03t

0.3 0.2 \

e —————

0.2 0.1
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

K

Fig. 1: Plots of R as a function of « for three values of p. Left L = 0, right

L = VAr.

The optimal parameter p should minimize the maximum of R over all
discrete frequencies in the range, leading to the minmax problem of finding
(py.07) € Ry xR, such that

67 = sup R(z(x),pp,L)=inf sup R(z(x),p,L).
ke[[0,5-1] PER, k€[[0,5-1]

It is easier to extend the range in «x to the segment [0,S — 1], and it is the
problem we study in this section. We will prove well-posedness (existence and
uniqueness), give a precise characterization of pj, using the derivative of R
in the « variable, and provide useful asymptotic formulas as Az — 0. Before
stating our main results, we introduce some notations. Since dg(S—«) = dg (),
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the interval in the definition of the minmax problem can be reduced to the
interval [0, |S/2]]. Define also Q := {z € C,Re(z) > 0 and Im(z) > 0} and
C :=2z([0,1S/2]]) c Q. Then the minmax problem to study can be written in
the two equivalent forms (see (14))

67 = sup R(z(x),p},L) = inf sup  R(z(x),p,L),

ke[0,1S/2]] PER, k€[0,1S5/2]] (23)
67 =supR(z,pp,L) = inf supR(z, p,L).
zeC PER, zeC

The image of [0, S/2]] by the applications dg, u and z are plotted in Figure
2. C is in green.

Notation 1 (Main variables used in the proofs)
dm = ds(0) = d,
d+% if § is even,

s
d ::d - = in
m = ds(lg)) {d+ALI(1+es) if S is odd.

i :=u<o>=§(d+i),

o
; 24
%(d+%+#) if § is even, (24)
= - Vo
/JM —/J(LS/ZJ)— 1 1 Jis . 1 1 2 . .
2(d+5(1+cos§)+l o + 5z sin §) if § is odd,
Zm = VMm, IM = VHM
1(1 1 1 1
=—|—+d|, b==1/— +—.
“ /I(At ) aNaz ™ o
e Pl R NS ol R
//*;f *\\ 8 - *\
4 // “o 6 ,‘* *\
/ - 4 i \
T " / *
% » -
o * o
A
ol
4l
4l | ol
sl
6l

o 2 4 s 8 10 12 1 o 2 4 6 & 10 12 14 15 18 2
Fig. 2: Plots of ds (blue), u (magenta), and z (green) over [0, | S/2]] for S =6
(left) and S =9 (right). The arrow is the endpoint at L%J.
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Theorem 8 (Existence and formula for L =0) Let L =0. The inf-sup problem (23)
has a unique solution, the best parameter and the best value are given by

. _ [Re(m) lam|* ~Re (zp) lzml® . " .
B =R =R 1. 2
Po \/ Re (zp) — Re (zm) , 0p 0(zms Pg) o(zm, py) < (25)

For small At, their asymptotics are given by

[ 2 U / 1 f
i~ \/;Re(zm)At i, oh~1-4 \/;Re(zm) A, (26)

zm and zpr are defined in (24),

In the overlapping case, the size L of the overlap is in general a few grid
points. Furthermore, time and space meshes have to be chosen taking into
account stability and accuracy. For the implicit scheme in consideration here,
there is no stability condition, therefore the space and time mesh can be of
the same magnitude. However, for accuracy, one needs rather Az to be of the
magnitude of Ax%. Therefore, we will consider these two cases. The results will
be expressed asymptotically in L. We will use the shorthand a = b to say that
a and b are of same order as a parameter tends to 0, without specifying any
constant.

Theorem 9 (Existence and formula for L > 0) Let L > 0. The inf-sup problem (23)
has a unique solution (p},d7), and 67 < 1. There ewists Lo such that, for L < Lo,
the parameter p} and the convergence factor 67 have the following behavior.

1. If At =L,
. 2 L 4 1
P~ zRe(zm)At 1, 67 ~1-4 iRe(zm) At

and the convergence factor equioscillates at endpoints z,,, and zp; of C.
2. If At = L2,
2 1 1 1
pp ~ (Re(zm))3L73, 67 ~1-4(Re(zm))3L3

o . 20 in
and the convergence factor equioscillates at points zm and za ~ \/%e 1 of C.

Note that in the first case (i.e., Az = L), the parameter is asymptotically
equal to pj: an overlap proportional to Az does not affect the minimization
problem. Note also that the overlapping algorithm with At = Ax? improves the
convergence speed for small mesh, since 1-¢; behaves like A% instead of ArT.

Before turning to the proof of the theorems, some general remarks on the
geometric objects used here are in order.

According to (14), ds(x) — (i+d) = ée_%{. Therefore dg ([0, .S/2]]) is an
arc of the circle of center $+d and radius i. Furthermore, |/1(/<) - %(é + d)’ =

1, /A—iQ + L. Therefore, u([0, | S/2]]) is an arc of the circle of center & (& +d)
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and radius %, /A—; + %, joining the points u,, and uus. It can be described by
the angle 6:

: 1(1 1 1 1
u(@(k) =a+ be'?™) g = 3 (E +d) , b= Z\/F + = are given in (24).

(27)
Remark 2 (Geometric properties and Cassini ovals)

1. When « increases from 0 to |S/2], 6 decreases from 6, to 0y, |u| increases

from |um| to |, and |z| increases from |z,| = vlum| to |zas| = Vigm |-

2. For z € Q, and positive p, |z — p| < |z + p|. Therefore, the solution p* of the
inf-sup problem for p in R or in Ry are the same, and 67 < 1.

3. For a geometric interpretation of z, note that |4 — a| = b, can be rewritten as
|z2—al = b or equivalently |(z—+a)(z+Va)| = b. Defining the foci F; = —ya and
F2 = +/a, we see that the product of the distances of z to F1 and Fs is a constant
equal to b (whereas for an ellipse the sum of the distances is constant). The
curves defined by this property are called Cassini ovals (Giovanni Domenico
Cassini, 1680).1 Then C is the part of the Cassini oval in Q, between z,, = Vim
and zps = /fipr - The Cassini ovals are quartic, thus our inf-sup problem differs
from the ones in [18, 26, 27, 30|, and the arguments for the formulas are very
different.

Remark 3 The computations are much simpler in the continuous case. 7o belongs
to the hyperbola z% - z% = d, and the computations are done in [26, Theorems 5.14
and 5.18]. The asymptotics are the same, but the coefficients are slightly different. In
Figure 3 we compare the behavior of the convergence factor for the optimal discrete
parameter and the optimal continuous parameters. The parameters are the same as
in previous examples.

—— Optimal discrete p
06 Optimal continuous p|
04 //—
[

Fig. 3: Plots of the discrete convergence factor for the discrete optimized p
and the continuous optimized p. Left: nonoverlaping case. Center: overlapping

Case 1 (L = Ar). Right: overlapping Case 2 (L = VAt).

1See https://mathcurve.com/courbes2d/cassini/cassini.shtml.
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Outline of the proofs
1. Prove that there are two equioscillation points z;, that are such that
R(Zl,pz, L) = R(z2, Prs L)= 07 .

2. Identify the extremum points on C and characterize the solutions.
The first step is performed in Section 4.1. It is an easy extension of earlier
results, see [18, 30]. The second step requires new computations, due to the
quadratic form of the curve C. It is performed in Section 4.2 for L = 0 and in
Section 4.3 for L > 0.

4.1 Existence, uniqueness and equioscillation

Define the functions
hi(p) = max R(z,p,L), Z(p)=hr(p).

Since p is a continuous function on C xR, XR,; and the maximum is taken on a
compact set, iy is well defined and continuous on R,. For any p the maximum
is attained at some Z(p) € C.

Theorem 10 For any L > 0, the inf-sup problem (23) has a unique solution
(p7.07) € Re xRy, and p} € [lzml, lzpm|]. There are at least two equioscillation points
Zj, that is such that

R(z1,p}.L) = R(z2,p}. L) = 67

Furthermore, any strict local minimum of hy is a global minimum.

Proof
e Prove first that for any p < |zm|, hr.(p) = hr(|lzm|). For any z € C, p1 and pa
in Ry, compute

(p2 - p1)(z|? = p1p2)
lz+ p1l2|z + pal?

Ro(z,p1) — Ro(z, p2) = 4Re (2) (28)

Apply this identity to p2 = |zml, p1 < p2 and z = Z(p2). Then
Z(p2)* = p1p2 2 12(p2)I” = leml® 2 0.
which together with the fact that Re (Z(p2)) > 0, implies that
Ro(Z(p2), p1) = Ro(Z(p2), p2) 2 0. (29)
Use this for a lower bound on &y (p1) — hr(p2)
hi (p1)=hr(p2)=maxR(z.,p1.L)=R(Z(p2).p2.L)

2R(Z(p2).p1,L)-R(Z(p2).p2,L)

=(Ro(Z(p2).r1)—Ro(Z(p2).p2))e
>0 by (29).

—2LRe(Z(p2))
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Therefore, we have proved that for any p < |z, Ar(p) = hr (|zml)-

e A parallel computation shows that for p > |z|, hr.(p) = hr(|zZm]). This proves
by compactness that the continuous function Ay has a minimum on Ry, which is
attained in the interval [|zml, |zml].

e Equioscillation, uniqueness, and the fact that strict local minimizers are global
minimizers are proved exactly as in [18, 30]. O

4.2 Optimal solution in the nonoverlapping case L =0,
proof of Theorem 8

4.2.1 Identification of the extremum points on C

Compute the derivative of Ry in 6

Lemma 11 (Derivative of the convergence factor Ry) It holds that

GF(i?e(z) _ 1 (Iﬂl+a)1m(z)

‘ s

I
Ge =2p—ﬁ§'|z‘{;+“;ﬁi>, with ¢(lul) := b +a(p? - a) + (p* = a)ll.

Proof Recalling that z = 4/ and noticing that u’(8) = i(u — a), we get

dz _ 1 dz _i(p-a)z _i(lplz-az)

do  2udd 2|72 20712
which leads to the first formula. Compute now the derivative of pg in 6:

dpo 2p opo _dpodz . p (p-a)z

9z (z+p)2 90 9z d8 (z+p)? 2
( 3/0) 2R( -p_p (u-@7)_ Im((f1 - p?) (1 — a)Z)

IR0 _9Re -
06 90 Z+p (z+p)? |72 22|z + p|*

Consider now the numerator of this expression. From u = a + be'? we find
(u-a)(a-a)=b* = [(u-a)=b"+a(u-a).
Therefore, recalling that u = z2, we have

(A-p*)(u-a)i=(b*-ala-p*) +(a-p*Hzi=(b? —ala-p*)z+(a-p?Hlulz

and hence
Im((f = p?) (1 = )2) = (=(b = a(a = p*) + (a = p?)|ul) Tm(2),
which leads to the claimed derivative in 6. O

Since ¢ is an affine function, it changes sign at most once, and Ry has at
most one local extremum point. For positive p, Ry is smaller than 1 in Q.
Furthermore Ry (0) = 1. Therefore the extremum point is a minimum. Whether
it belongs to C or not, the maximum is attained at either endpoints of C,
namely z,, or z.
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4.2.2 Conclusion

By Theorem 10, the optimal solution p{; must produce equioscillation in at least
two points on C. These points have therefore to be z,, and zp;. By expanding
the equality Ro(zm,p) = Ro(zpm, p) we get

(Re (zm) = p)? +Im(zm)® _ (Re(zpm) — p)* +Im(zpm)?

(Re (zm) + p)2 +Im(zn)®  (Re(zar) + p)? +Im(zar)?’

Re(zm) |zm |2—Re(zm) |zm |2
Re(zm)-Re(zm) .

which leads to the unique positive value p = \/
Therefore p = py and the proof is complete.

4.2.3 Asymptotics in At

For small Ar and large S, with SAt =T, pt,, = O(1) and uy = 357 (1 + O(Ar)),

from which we deduce that z,, = O(1) and zp = %At(l +O(At) ~ V2a.
Replacing these in (25) gives

p Re (z) (2a) — V2alzp|? ~ V2aRe (zm), a= /11 (Ait + d) .

\/2_ - Re (Zm)

Now, a direct calculation shows that for z € C, the Taylor expansion of |(1 —
2)/(1+2)|? at z =0 at order 1 is

2
=1-4Re(z) +0(z). (31)

1-z2
1+z

Since py > 1, we can apply it to z = ;—'ZZ, and obtain the asymptotics for
0

6o = Ro(zm, py):

~1_4Re(Zm)~1_4 Re(Zm) ~1_4VRe(Zm)
* 4 9
Po V2aRe (z;n) V2a

which is precisely the asymptotic result in Theorem 8.

4.3 Optimal solution in the overlapping case L > 0, proof
of Theorem 9

Consider the inf-sup problem (23). Existence and uniqueness of the solution

is provided by Theorem 10. We use an asymptotic analysis for small At and L

to characterize the solution. The proof goes in four steps:

Step 1. We show that for (L, At, p) in some subset S of R3, the derivative of
R in z has three real roots and study their asymptotic behavior. This
is needed to characterize the extrema of R in Step 2.
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Step 2. We show that, for (L, At, p) in S there are at most two local maximum
points (including the endpoints) of z — R(z, p,L) in C.

Step 3. By Theorem 10, a necessary condition for p} to be a minimum point
for hy is equioscillation in at least two points. Hence, we perform
asymptotic expansions of R, and use them to find a parameter p with
(L, At, p) in S such that R equioscillates at the two local maximum
points obtained in Step 2. We compute the asymptotic expansions of
p and sup, R(z,p, L).

Step 4. Finally, we show that p is a local strict minimum point for Ay, and
conclude by Theorem 10 that pj = p is the unique minimum point for
h.

For fixed p, the identification of the extremum points on C starts with the

derivative of R in 6.

Lemma 12 (Derivative of the convergence factor R) Consider the polynomial
®(m) = Am® + Bm? + Cm + D,
A=L(1-L) B=aA, C=2p(p?-a)+Lp*(p? — =L2) D = aC +2pb?.
Then

ﬁR Im(z) —2LRe( )
— =0 — ¢ 2 32
55 = UKD (32)
Furthermore )
OR (Iul = p*)Re(z) _op
— =g eTARE, 33
ap |z + pl* (33)

Proof The derivative in 6 is based on Lemma 11.

OR _ ORg B d(Re (2)) —2LRe(z)
5 = = 2LRg 50 )e
2 2 _ 2 _ - p|?
_ 2p(b +a(p?-a)+(p a)|ﬂ|)+L(IuI+a) lz-pl Im(z)e 2ERe(@)  (34)

2121z + p|* 212 |z+pl?
Reduce the term in the parenthesis to the same denominator,

R 2p(b*+a(p* —a)+ (p> —a)|u|) + L(|u| + a)|z? - p?|?
— = S T Im(z)e
a6 |z[?]z + pl
— ®Im(z) 672LRe(Z)
|z|2lz2+p|4 2 ’ 2 2_ 22
@ =2p(b” +a(p” —a)+(p” —a)lul) + L(ul +a)lz” - p=|°.
The last term in @ is evaluated as |22 — p2|? = |u — p2|2 = |u|? + p* - 2p2Re ().
Recalling the definition of u, expands |y — a|? = b2 as

|l +a® = b% = 2aRe () = 0,

from which we extract Re (1) and insert into |u — p?|3:

—2LRe(z)

2 2 2,2 P2 2 4 P2 2 2
lu—al®=b" = |u-p7|"= (1= —)u"+p" = —=(a” = b%).
Collect now the powers of |u| to reduce @ to a function of |u| only:

2 2
O(lul) = 2p (6> +a(p® = @)+ (p* = @)lul) + L{1l + ) (1 = E) 4 p* - B (a? - %)),
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Order the powers of |u| to get the formula in Lemma 12.

Compute now the derivative in p: start with ap 0 = =22

T @p)®
R zZ- -2 p? - p?
IRy _ope ( %)_ZR ( P2 ) _4Re(z(z )):_4(|/J| p*)Re (2)
ap op Z+p (z+p)? |z+pl* |z+pl*
which gives the claimed formula for the derivative in p.
|

Remark 4 (Sign of derivatives of R) Since for z € C, Im(z) > 0, the derivative of R in
0 (Lemma 12) has the sign of ®(|u|), while the derivative of R in « has the sign of
—®(|ul). Therefore, the zeros of the derivatives of R are defined by the roots of the
polynomial @, which is a real polynomial in m with degree three. Hence, it has one
or three real roots, which Lemma 13 below makes more precise.

Lemma 13 (Roots of the polynomial ®) Define the coefficients

_1 B2 1 BC B3
C-— =—|D-—+2——=], 35
( 3A) Q A ( 3A * 27A2) (35)
where A, B, C, and D are defined in Lemma 12, and
A =—(4P +2702). (36)

If A > 0, then ® has the three real roots

_31 —A 2ikm
=13 Q+,/27, mk_2Re(es u) 3k 0,1,2. (37)

Here, u is any of the three third roots. If A < 0, then ® has one real root given by
mo = 2Re (u) - §.

Proof We use the Cardano formula. First, we write @ in canonical form:

D(m) :A((m+£)3+P(m+£)+Q)
3A 3A
where the coefficients P and Q are defined in (35). These can be rewritten, using
that B = aA and D = aC + 2pb?, as P = %—%2, 0 = 2§AC+2pb 2“ Hence,

®(m) = AD (m + 22 ) where ®(m) = m3 + Pm + Q. The discriminant of @ is exactly A

defined in (36). Hence, the result follows by the Cardano formula (see [42] and, e.g.,
[30]). O

We now treat separately the two cases At = L and At = L?.

4.3.1 Case I: L = At

We suppose for simplicity that for a fixed C> 0, and Ar = CL. Introduce two
effective parameters

y="— n=—. (38)
Define the family of sets

S(y0,1m0) ={(p,L) € (Ry)?y <y and i < o}
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Step 1: identification of the extremum points of z — R(z,p,L)

Lemma 14 (Roots of ® and their asymptotics) There exists (yg,n0) such that for
any (p,L) € S(yo,1n0), the third degree polynomial ® has 3 real roots,

[a a
my ~ — ﬁ<<m2~4p2 < mg ~ i (39)

Proof The computations are based on the following qualitative asymptotic study.
With the notations in (24),

y<landn<l = <1l = VaL<1 = L<1. (40a)
With this knowledge,

2
L~At~—, ~=. 40b
P 1 (40b)
Furthermore,
2
1 L
Lp2zp—=y<<1 and—~a—=77<<1. (40c¢)
a p p

To prove existence of three real roots we rely on Lemmas 12 and 13 above, and prove
that there exists (yg,no) such that for any (p,L) € S(yg,n0), A is strictly positive.
Using the Cardano formula, we first show that

2 -
L(1+d-p). Pemt 0=

2a2
; i (1
Start with P = % -

P=- +140). 0=y ()

33722, replace A, B, C from Lemma 12:
2

2_p32 _p2
po 2 -a) LPZ(pQ——“ab)_ 2 2ap £+p(p - a2b?)
L 3 1_P2 ’

a?
L(1-L2) L(1-L2) 3 2

a

By (40), the first term is equivalent to pL™2, the second to L™2 and the third to p*.
Thus, there exists yg and 5g such that pL™2 > L™2 » p? for all (p,L) € S(y0,70)-
Hence, we can factorize out the first term, which is the dominant term of P, and use
the parameter n to write

2_b2

. 5 Lp(PZ—a ) 2

+ 1) with P=-LE 2 o2

(1 6 b 2 {_p2
a

2ap
L

P=

The evaluation of Q, is a little longer. It starts similarly

Q_2a( 2ap+172(172—aza;b2))+ 2pb? +2a3
3 L 1_]72 L(l_%z) 27

Rewrite the third term as
2pb? 2pb2 2p3h? _ 2pa’ N 2p(b? - a?) N 2p3h?
2. 2
La-2y L La(l -y L L La(1- 1)

which yields

2_72
202P+E+ 2p3b2 +2_ap2(p2—%)+2p(b2—a2)
3L 27 La(l—%z) 3 1_17_2 L

a

Q =

(42)
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Now by (40), we can estimate all terms of the sum

2 2
0= 2a%p N 2a3 . 2p3h? . 2a p2(p? - %) N 2p(b? - a?)
- 3L 217 p? 3 p? L ’
—— —— La(l - 7) 1- a —— ———
~pL~3(1+0(L ~L3(1+0(L ~pL~2
pL™3(1+0(L)) (1+0(L)) e pL-2(1+0(L)) AL (1+O(L)) P
and hence write, for Q1 = p3L™2 (and recalling that aL = 1), that
2a%p 24 24> p n 3L ~ 3L p?
= + -+ = 1+—=+ = ~ — =
3L 27 Qr=0= 9 Q1 2a2%p 0= 2a%p  a?L 4
(41) is now proved.

Thus, the discriminant A can be written as

3 2 \2
- 3 2y _ 4 [2aP n_ 53 _o(2a7p n.5)°
A=—(4P +27Q)—4( L) (1+6—P) -3( - ) (1+—+Q) .

Factorize out the first coefficient, using that n =

alL

b yields
2ap\’* n_ 5\ _3n n . 5)\°
A= 4( . ) ((1+6—P) —§(1+§+Q) .
Expanding in 5 at first order gives

s=a(B2) (e 2ed). F-oom -

This proves that there exists (yg,n0) such that A > 0 for any (p,L) € S(yo,10)
Hence, Lemma 13 guarantees that ® has three real roots

Now, we estimate the asymptotic behavior of the three roots. First compute by
(43)

3
-A [2ap\?
E =2 (3) (1+E+0(77))
from which we get from (41)
1 -A 2ap V3
5(_Q+\'2_7) (3L) ( \/>+0(\/_))
Then, by the definition of u in (37) we obtain (Vi = ¢!%)

sl 1

u= 5(—Q+\/;7¢)—e'g(23‘1—14[))5(1+2+/§\/g+0(\/’_7))~

This allows us to get the asymptotics for g

= 2Re (1) = (ZL) (1——\/7+0(\/_))

Then, from elementary calculus, QT” + ¢ =n— %, therefore

we find the asymptotics for 727:

iy = 2Re (ju) :—(ZZ)E (1+%\/g+0(\/ﬁ)).
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1 1
=i - B = -2 Si = (42)z a_ 2(4p)z |1
Now, mj = mj — 5z = mj— 4. Since a = (5%)? /i, and hence § = £ (57)% /5, we

(5 -5
mi ( )1(1 (c+3 )\/7+0(\/_)) (—i)%(l+g\/g+o(\/ﬁ)).

For mg, we use the product of the roots, momimz = =% . The same calculation as for

3
Q shows that % ~ Qan. This implies the asymptotic equahty

2ap ap
— ~ —— - ~ 4
L or™? 2~ %P

The assumption on p proves that m; < ma. This concludes the proof of the lemma.
O

Step 2: the local extrema of R.

Lemma 15 (Local extrema of R) There exists (yo,170) such that for any (p,L) €

S(v0,10),

sup R(z, p, L) = max (R(zm, p. L), R(zpr, p. L)) - (44)
zeC

a a

Proof For y = i small, A = L (1 - p—z) is positive. Therefore, by Lemma 12 and

Remark 4, the derivative of R in 6 is positive for |u| large. Thus, by Remark 2, the

derivative of R with respect to k is negative for |u| large. Hence, since the three

roots are m1 < mg < mg (by Lemma 14), m; and mg are maximum points, while

my is the only minimum point. From the definitions (27) and (24), mu, = |um| and
= |upm| ~ 2a. Then

2 2 L
U el N B L N
ma  \p2y mo P

and hence m1 < my, < mg < mp; < mq. Therefore, there is no local maximum point
inside the interval [m,;,, mps], and the maximum points are either of the endpoints of
the interval. Thus, the maximum points of R are attained at the extrema of C. O

Remark 5 Notice that the two extremum points z;; and zps obtained in Lemma 15
coincide with the ones of the non-overlapping case (see Section 4.2): the overlap does
not intervene in the regime L ~ At. The situation will be different for the case L = At®
studied in Section 4.3.2.

Step 3

By the general results, the best parameter must make the convergence factor to
equioscillate at z,, and zps. Therefore we now want to prove that the function
Y, (p) = R(zm,p,L) — R(zpm, p, L) vanishes in one point in the range defined
by Lemma 15.
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First compute the asymptotics of the convergence factor at at the endpoints
Zm and zp.
Start with z,,. Applying (31) to z = %’", with p sufficiently large for (p, L)

to be in S(yo,70), we obtain, since p~t = n,

Ro(zm,p)=1-4

Ream) L oim
) .

Thus, since e 2LRe(zm) ~ 1 — 2L Re(z,,) and L < p~', we get

Re (Zm)

R(zm,p,L)=1-4 +o(n). (45)

Consider now zps. Since zpr = V2a(1+o0(L)), p/zm ~ \/% ~ \/g < 1. Hence,
applying (31) to z = £, we get

Ro(ZM,p)—1—4Re( )+0(\/_)_1— \/24.0(\/7)_

As for the exponential term, since Lia = \/_ < 1, we have e 2LRe(zm) L

1-2LV2a. Comparing VY and L+/a, we get \/7 \/ ~ p > 1. Hence,

we obtain

p
Rz p.L) = (1 _4«/77) +o(V¥). (16)

Using the two expansions (45) and (46), we can evaluate ¥p. (yo,70) are
defined by Lemma 15.

V(p,L) € S(yo0,m0), ¥r(p)=4 (\/L2_a _ Re(zm)

For (p,L) € S(y0.m0), if p? > +a, then ¥ (p) > 0, and if p? < +/a then
¥, (p) < 0. Then, since S(yg,1n0) is convex, by the mean value theorem, there
exists (p, L) € S such that W (p) = 0. It is given asymptotically by

~yRe (zm) V2a, & ~1- 4%.
p

L

)+0(77)+0(\/7)-

Step 4
To finish the proof, we need to show that pj = p.

Lemma 16 There exists Lo such that for any L < Lo and At = L, p} = p.
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Proof Choose Lg and L < Lg such that (L, p) € S(yo,n0) for some (yg,1n0). Then

hi(p) = max(R(zm, p, L), R(zpm, P, L)).
By Theorem 10, we only need to show that p is a strict local minimum point for
hy . This equivalent to showing that there exists & > 0 such that for p = p + &£ with

€l <1,

sup R(z,p +&&,L) > supR(z,p,L) = R(zm,p,L) = R(zp, P, L).
zeC zeC

By continuity, for & small enough, Ay (p + &£) is still the maximum of the values at
zm and zps. It is then sufficient to prove that

maX(R(zm,ﬁ+s.§-‘, L),R(ZM,[?+8€", L)) > R(Zm’ﬁv L) = R(ZMsﬁv L) (47)

By the Taylor-Lagrange formula, there exists 0 < 6 < 1 such that for z = z,, or zps,
for any & € [-1,1]\ {0},
. R oR .
R(z,p+&&, L) =R(z,p, L)+ 855(2,[7 +6&&,L).
Use now the derivative of R in p computed in (33)

OR _ _(ul =pP)Re(@)  rRe(z)

ap |2+ pl*

Since Re (z) > 0, the sign of g—ls(z,p, L) is that of p2 — |z]2. Since |zps| < p and
lzpr| > p) in S(y0,10), g—?(z,p, L) is strictly positive for z = z;; and strictly negative
for z = zps, when p = p + 5&€ for € so small that the asymptotic behavior of p is
preserved. Therefore, for positive &, R(zm, p + &&,L) > R(zm, p, L), and for negative

& R(zpr,p+€€,L) > R(zpr, p, L). This proves (47) and terminates the proof of the
theorem in the first case. (]

4.3.2 Case II: L = At:

For simplicity, we suppose that there exists a C > 0 such that Ar = C. L?, which
implies that aL? = 1. In this case, the two effective parameters are

al?’~1 = (¢ ~pLandy~/?%

Steps 1 and 2
Let us define the family of sets

S(y0,%0) ={(p, L) € (Ry)%,y < yo and ¢ < {o}-

Lemma 17 There exists (o, {p) such that for any (p, L) € S(yo, {0), the third degree
polynomial @ has 3 real roots, with the asymptotic behavior

mg =—a(l+2¢0(0)) <mi=ay(l+o(1)) < ma=2al(1+0()). (48)

In particular, one has that

2
m0~—a<<mm<<m1~p2<<m2~7p<<mM~2a. (49)
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Therefore, the convergence factor has one maximum point at zg ~ 4 l%( 1+1), which

is the only point on C with |z2|? = ms, and

sup R(z, p, L) = max(R(zm, p, L), R(z2, p, L)). (50)
zeC

Proof Note that for small yg and g, since ¢ = pL and y = (pL)?, we have small
pL and y = 2. We proceed as in the previous case, starting with the asymptotic
behaviors of P and Q, we prove that

2 3
2
P=-S(1+6£-3y2+00%). Q=T-(1+90+21y+0(").  (51)
Recalling P from Lemma 13, we write
2_p2 2 2_p2
9 2 2(,2 _a*=b 9 2 2(P”~ _a*=b
PO e et . g D S S U e
L 3 1_P2 L 3 1- 22
a a

The first term is now of the magnitude of pL™3, the second of L™, the third of p*,
and the last of p2. Then, for small yg and (g, we have L™ > pL™3 » p* > p?
(recalling that p is large for L small). Therefore, we can factorize out a2 in P:

2 4
a 6p 3p 3
P=-"—|1+-—L -2 _ 2 p|,
3 al a2 a2t

2
and estimate the last term as a%Pl = Z—2 = 0(y?), which yields to

a? 2 2
P= —§(1+6§—37 +o(vy?)).

Consider now Q and recall its equivalent expression (42) obtained in the proof of

2a? 3 2p3b? 2(p2-ab?) .
Lemma 14: Q = ng+22L7+La(’;—”—2)+%ap pl_ﬁ . Write now
2 2_p2
2p3b2 2p3a 2p3 L _a=bt 2p3a _
=t a p;‘ == +p3L (1 +0(L)),
La(l - 7) 1- a
which allows us to obtain
P> _ a*-b? 20,2 _ a®-b>
0= 2a%p N E . 2p3a +E7—Q2T+2_ap (p —‘:T)
3L 27 L L 1- P 3 1-L2-
—— —— —— a a
=~pL~5(1+O(L =~L=6(1+0(L ~p3L-3(1+0(L
pL™5(1+0(L)) (1+0(L)) =p (1+0(L)) L1 (1+0(L)) —pAL-2(1+0(L))

Recalling that ¢ = pL, we keep the first three terms and group the others in Q1, to
obtain 5 ) 5 5
2a 2a“p 2p-a 2a ~

= — =—(1
(0] 27+ 3L + 7 +01 27( +9¢+ 27yl + Q)

with 0 = %Ql = 0(¢*). Therefore, recalling (36), we obtain

6
A:%((1+6§—3y2 +0('y2))3—(1+9§+27‘y{+0(§4))2)=4a6{2 (1+§(4g2 —y+0(0)].
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Since A > 0, ® has three real roots, that we can now compute asymptotically. For
this purpose, we first calculate

1 -A a’ 4 i 1,
5(—Q+ E) ~ o (1+9§+27y{+0({ ))+Ea {(1+Z(4§ —7)+o(§)).
We factorize out —g—;, to obtain
1 -0+ A} L@ 1497 +27yf —iN27¢ 1+1(4g2- )| +0(0)
2 97| T a7 Y S Y :
3
~ L (1 +3(3-iV3) - 3iV3(4L2 - y) + 0(42)) .

27
Thus, we obtain u as the cubic root of this expression, defined by

u= -%(1 +(3-iV3)Z +2(=3+iV3)2 +iV3y +0(¢?)),
and write for easiness
u= —gﬁ, Re (i) = 1+3¢ - 622, Tm(id) = V3(=¢ +222 +7).
From u we compute my, k,=0,1,2:

2
o = 2Re () = == (1+3¢ = 62> + 0(¢%).

- 2ix a . . a . . a 9

i1 = 2Re (e 5 u) = —2i(-1+iV8) = ~% (~Re () = V3Im(@) = £ (1+3y +0(£).
i = 2Re (e“s"” u) = —%ﬁ(—1—i\/§) = —%(—Re (i0)+V3Im(ii)) = %(1+6§—12{2+Sy+0({2)).
Now, mj = i j—% gives mg = —a(1+2{+0({)), m1 = ay(1+o(1)), and ma = 2a{ (1+0({)).
The assumption on p proves that m; < mgy. This concludes the proof of (48). In
contrast to the previous case, both m; (local minimum) and m2 (local maximum)
belong to the interval [mpy, mar]. zo is now the only point on C such that |z2|? = ma.
We recover it by

|u|? - 2aRe (p) = b2 — a2, u belongs to the circle

|zl = /lul. 2Re(2)? = |ul+Re (p) z= .
Extract Re(u) from the first line and replace it into the second to obtain the
asymptotics,

. T 2
2Re (z2)? = ma(1+ £ +0(8)) 22 ~ | o (L+i) = yimze T, mz ~ 2E,

which concludes our proof. O

Step 3

Compute now the convergence factors at the points z5 and z,,. First, we have

Re (zm
R(zm,p,L)=1- 4% +o(p™h.
ici r p_,-i% P p__ NLp _
Next, noticing that =~ vt i7 =— Re (5) ~ == VZ <1
(and recalling ﬁf =1-4Re(2) + 0(z) for |z] < 1) we obtain

Ro(z2,p) =1-4Re (Zﬂ) +0(fy) =1-24Lp +o(+/y).
2
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Now, using that

LRe (z2) ~ L,/% =\Lp = e R 1 _9\Lp+ o(\y).
we can evaluate R at point zs:

R(z2,p, L) = Ro(z2, p)e 2B = 1 —4\[Lp + 0(2).

Introduce the function ¥z (p) = R(zm, p, L)—R(z2, p, L). For (L, p) € S(vyo, {o),

¥.(p) = yIp - (Z”‘) +o0(0) +0(Do(p™). (52)

Define p** = Re (zm)% L3 by annihilation of the first term in the expansion.
Now, we notice that

e For any (L, p) € S(vyp,{y) with p > p4%, it holds that ¥ (p) > 0.

® For any (L, p) € S(yp, o) with p < p¢®, it holds that ¥ (p) < 0.
Then, by the mean value theorem, there ex1sts p such that (L, p) € S(vo, o)
such that Wz (p) = 0. Recalling (52), one has that it is given asymptotically by

ﬁwﬁas

Step 4
To finish the proof, we need to show that pj = p.

Lemma 18 There exists Lo such that for any L < Lo and At = L, p} = p.

Proof With the asymptotic behavior of p, we can choose Lg and L > Lg such that

(L,p) € S(y0.n0) for some (yo,n0). Then hr(p) = max(R(zm, p, L), R(z2(p), p, L)),
where we have stressed the fact that zo depends on p and is the largest root of ®. By
Theorem 10, we only need to show that p is a strict local minimum point for Ay . This
equivalent to showing that there exists & > 0 such that for p = p + £ with |£] < 1,

sup R(z, p +&&,L) > supR(z,p,L) = R(zm, P, L) = R(z2(p), p, L).
zeC zeC

By continuity, for & small enough, Ay, is still the maximum of the values at z,;, and
z2. It is then sufficient to prove that

maX(R(ZWh ﬁ + 857 L)’ R(ZQ(ﬁ + 85)’ ﬁ + 85, L)) > R(Zm’ ﬁ’ L) = R(ZQ (ﬁ)’ ﬁ’ L) (53)

By the Taylor-Lagrange formula, there exists 0 < § < 1 such that for any ¢ €
[-1,1]\ {0},

. . OR R
R(vap +8‘§:’ L) = R(ZWHP’L) +8§%(Zm,p +68§’ L)
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10 1.5 15

B ; 2, 0 t
Fig. 4: Optimal control (left) and state (middle) for o = 107 and target
(right).

By Lemma 11, since Re(z) > 0, the sign of g—i(zm,p, L) is that of p2 — |zp7|2. By
the asymptotics above, it is strictly positive at p = p + d&¢ for & so small that the
asymptotic behavior of p is preserved. Now, we write

0
R(z2(p + &), p +€&,L) = R(z2(p), p. L) +8§£R(Z(p)’p’14)|p=ﬁ+5a.f,

and
0 OR 0z OR
- R(z2(p), p, L) = ——(z2(p), p, L) + ——(p) 7= (z2(p), p, L).
ap ap ap 0z

By definition of z2(p), §8 (z2(p). p. L) = 0. Hence, £ R(z2(p). p.L) = §R (z2(p). p. L)
The sign of g—ﬁ(zg(p),p, L) is that of p2 —|za(p)|?. By the asymptotics above, it is
equal to p2 —mgy < 0 for p = p+6e& for & so small that the asymptotic behavior of p
is preserved. Therefore, for positive &, R(zm, p+£&&,L) > R(zm, p, L), and for negative
&, R(za(p+€f),p+eé, L) > R(z2(p), p, L). This proves (47) and terminates the proof
of the theorem in the second case. |

5 Numerical experiments

In this section, we present results of numerical experiments enhancing our the-
oretical analysis. In particular, we consider in all our experiments a bounded
domain Q = (-4 + L,4), where L is the overlap. Moreover, homogeneous
Dirichlet conditions are imposed on the boundary of Q, and the target state is

vo(t,x) = [(1+1)sin(nt) (e‘g(x_l_L)2 4o 80)? _ p-8(1-5)7 _ e‘8(3+%)2)]+,

where [-]* = max{-, 0}. Moreover, weset T = 1.0,1=0.3,d = 0.5, and o = 1076.
If one solves this problem, then the results of Figure 4 are obtained. This figure
shows the optimal control function (left panel), optimal state (middle panel),
and the target state (right panel).

Now, we wish to study the convergence of the OSWRM. To do so, we first
run this method till the relative error in terms of Robin traces (measured at the
interfaces) becomes lower than the tolerance T = 1071%. We choose the spatial
discretization step Ax = 0.005 and the size of the overlap L = 2Ax. Hence, Q is
discretized with N = 7999 points, while the time interval [0,7] with § = 101
equidistant points. The initialization g%, §2, gg and §8 are chosen randomly,
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Fig. 5: Left: Error decay of the OSWRM. (7 = 1071Y) Right: Iterations of the
OSWRM and theoretical spectral radius as At converges to zero. The scaling
factor for ps is the maximum number of iterations (7 = 10710).

but satisfying the periodicity conditions, while the Robin parameter is set to
p = 1.0. The error decay is shown in Figure 5. In particular, the left panel shows
the decay of the L?-norm of the error in terms of Robin interface traces (for
both state and adjoint variables). The decay of the error is compared to the
theoretical slope of Theorem 7. As expected, the theoretical slope of the decay
of the error is asymptotically the same as the numerically measure errors. The
theoretical slope is obtained by plotting® 3(max, ps(k))™?. Notice that the
non-monotonicity of the numerical errors is due to the complex structure of
the spectrum of the iteration matrix of the OSWRM and still consistent with
the theoretical bound proved in Theorem 7.

Now, we are interested in studying the convergence behavior of the method
as At decreases. For this purpose, we set o = 1 and p = 1 and vary S, measuring
the number of iterations needed to reach the relative tolerance r = 1071, This
leads to the blue curve depicted in the right panel of Figure 5. This is compared
with red curve, which is the contraction factor max, ps(kx) as function of S
(rescaled by a factor to make comparable to the blue curve). Notice the good
agreement of the shapes of the two curves. Moreover, we also show that the
number of iterations is essentially constant for large enough S and the red
curves approaches asymptotically a constant value (black curve).

In the last numerical tests, we verify the asymptotic behavior of the optimal
parameter p according to the two different choice of the overlap L ~ Ar and
L ~ VAt and demonstrate the validity of the asymptotic formulas obtained in
Theorem 9. In these tests we set Ax = 0.0025.% For this purpose, in Figure 6 we
show the optimal parameter as a function of Ar (black lines) computed using

2Note that in Theorem 7 the bound is given for squared norm of the errors at step 2n, thus the
exponent n/2 has to be considered in this test. The scaling factor 3 is only for graphical purpose.

3We point out that, in this test, the spatial grid is chosen in a way that the discretization error
in space is smaller than the one in time.
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Fig. 6: Left: Asymptotic behavior of the optimal p for overlap L = At. (1
10713) Right: Asymptotic behavior of the optimal p for overlap L = A3,
(r=10713)

the discrete formulas of Theorem 9. These curves are compared with the value
of the optimal p obtained by numerically solving the inf-sup problem (23) (blue
line), and the optimal parameter obtained as the one computed by running
the OSWRM for different parameter p and finding the one that minimizes the
number of iterations needed to make the error smaller than 7 = 10713 (red
lines). Notice the great agreement with the three curves for the case L = A3,
However, in the case L =~ At there is a gap between the asymptotic optimal
parameter and the blue and red curves. This behavior is due to the fact that
our numerical simulations, even if run for very small At¢, they did not fully
reached the asymptotic regime, and a much smaller At would be necessary. To
rigorously prove this behavior, in Theorem 19 we compute again the optimal
parameter p, but this time consider one more term so that p has the form
p= AL™7 + B. This is exactly the black-dashed line of Fig. 6 (left), which is
now very close to the red and blue lines. This is due to the constant B. In fact,
as we are going to show in Theorem 19, the constant A is exactly equal to the
one of the optimal p obtained in Theorem 9, while the additional constant B
allows us to compensate the gap. Notice that the proof of Theorem 19 is given
in the Appendix.

Theorem 19 In the same settings of Theorem 9, it holds that

P~ AACT + B,

_ / 2 _ A2(23/2-4A%23/%)+8VARe(22,)
where A = \/;Re (Zm) and B = SﬁRe(zm)f/lAQQWQ :
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Fig. 7: Number or iterations needed to make the (relative) error smaller than
7=10"13 (red and blue lines) and values of the theoretical asymptotical opti-

mal parameter (vertical lines). Left: Case L = At. Right: Case L = At

To further demonstrate the validity of our results, we show in Figure 7 the
number of iterations required to reach the relative tolerance T = 1073 for vary-
ing values of the parameter p and compare these with the theoretical optimal
values (vertical lines) obtained by the formulas of Theorem 9. In particular,
in the left panel we consider two cases corresponding to L = At = 0.005 (blue
curve) and L = Ar = 0.0025 (red curve). In the right panel, we consider the
cases L = VAr/4 = 0.01 (blue curve) and L = VAr/4 = 0.005 (red curve). In all
cases, the theoretical predictions (vertical lines) are very close to the numerical
optimum.

6 Conclusion

A convergence analysis for the OSWRM applied to the optimality system of
a diffusion-reaction optimization problem with boundary conditions periodic
in time was performed. New convergence results were obtained by a semidis-
crete Fourier analysis, which allowed the computation of the optimal Robin
parameter in both non-overlapping and overlapping cases. Results of numerical
experiments confirmed the theoretical findings.
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Appendix

Proof of Theorem 5* Note that (9c) admits a unique weak solution {(¥Y(U))s }§=O for
any given sequence of controls U € L? fors=1,...,S. Let Sy, : L% — Hj1 be the linear
solution operator associated to (9c), where H% := H'(=c0, L) and H% == HY(0, +c0).
We can define the semidiscrete reduced cost functional

S

—~ 1 —

() =5 Y IShU)s = (Yo)sllfa + %nUsuiz — A(Zd,x,)s (ShU)s (L)
s=1 7

Since the cost function fh is Fréchet differentiable and strictly convex in U, the first-
order necessary and sufficient optimality condition is (J;l(l_]))x = 0; see, e.g., [34].
Observe that

S S
D AT, W)z = Y ((Shl)s = (Y)s. (S,U )52
s=1 ’ =

s=1
+0(Us, US) 2 = A )s (SRU)s (x)),
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for any sequences U, U® with Uy, US € L?. Note that S;lU‘s solves

1
2 (Vs = D=1, 9)p2 + H(¥)s, pxdpz + d{(V)s. @)z + p (Vs (L)g(L) = (U5, )12
(54)
for each ¢ € H}. ands=1,..., S and (S}, U®)o(x) = (S, U®)s(x). Now, let Q = {Qs}5
with Qg € Hjl. the (weak) solution of the equation
1
77 (s = (Qs41) = A(Quxx)s = d(Q)s + (Yg)s — (Vs
(aan)s(xj) +p(Q)s(xj) = (gd,/\’j)ss
(Q)s = (Q).
‘We have then that

é((Q)s ~ (@541 9)12 + H(Q)s- @x)p2 +d((Q)s @)2 + P(Q)s (L) p(L)
= ((YQ)s = (ShU)s> ¢)r2 +A(8a.x,)s 9 (x))
for each ¢ € Hjl., s=0,..., S -1 and (Q)s(x) = (Q)o(x). Now, we can choose ¢ =
(S,,U®)s to obtain
$<<Q>s = (Q)s+1, (S,U)sdp2 + A(Qu)s, (SRU))s)p2 +d{(Q)s, (S,U)s) 2
+P(Q)s () (S U)s (xj) = ((Y)s = (ShU)s, (S,U°)sdr2 +A(Bax,)s (S,U°)s (x)

which leads to
S-1

T W)U, = 3 24(@)ss1 = (s (5, U2 = (@), (SUD) )2

s=0

S
= d{(Q)s (S,U)s)p2 = P(Q)s () (SLU)s(x)) + 07 3 {(U)s, (U)s)y2
_ Z _

S

1

S
> A (S0 @z + Y= (S0 Qe = (SO (@

A(((SI 6))()3 (Qx)s)]}’ _[’(S,U )s(x])(Q)s(x])""T((U)s (U )s>L2

- S
=W—Z—« ASTT 1))

S
+ 2 (@) + o (U)s. (U)s) 2,
s=1

©
1]
o

where we used the periodic conditions and (54) tested for ¢ = (Q)s € HJ1 for s =

1,..., S. This shows that (VJ(U))s = (~(Q)s + o (U)s, (U®)s)y 2 for each {(U)}>_, and
J

thus 0 = (VJ(O))s = —(Q(U))s + o(U)s. This means that (U); = o~ 1(Q(U))s and

thus the first-order necessary and sufficient optimality system of the problem of

minimizing (10) subject to (9c) can be expressed as (9). O
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Proof of Theorem 19 The proof is exactly the one of Section 4.3.1. Only Step 3 needs
1
to be recomputed. To obtain the coefficients A and B, we use the ansatz p = AL™1+B,

notice that
A P
Lo JCantt s \/jALl/Q +0(L5%),
M 2 2

and consider more terms in the expansion of Ilijllz :
1-zf 2 3 4
T =1—4Re(z)+8Re(z )—12Re (z )+0(z ). (55)
z
Since 2~ <« 1 for L < 1, we can use (55) for z = 22 and recall that e~2LRe(zm) o

M

1-2LV2a=1- 2\/%1/2 +0(L), to obtain

R(zp.p.L) = 1—4\/§L1/4—2(2\/gB—2/1A2+\/g)Ll/Q+8A(AB+1)L3/4+0(L). (56)

Proceeding in a similar way, we obtain
Re (zm) _  Re (zn)
+8
P2

Using (56) and (57), we can compute the expansion

M

- +0(%). (57)

R(zm,p,L)=1-4

<

R(zm,psL) = R(zp,p, L) = [Ci1LYA + oLt v o(L3Y)],  (58)

CBLV44+A

where
C1 = A%(4VARe (zp) — 2%/2A%2),
Cs = A(~8VARe (z?n) +8BVARe (zm) + 4A%23/2 — 271222 _ 93/242),

Now, the result follows by setting to zero the two higher order terms of (58), that is
setting C1 =0 and C2 = 0. O
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