
MOX-Report No. 62/2021

Fast and accurate predictions of total energy for solid
solution alloys with graph convolutional neural

networks

Lupo Pasini, M.; Burcul, M.; Reeve, S.; Eisenbach, M.; Perotto,

S.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it

Fast and accurate predictions of total energy

for solid solution alloys

with graph convolutional neural networks

Massimiliano Lupo Pasini1, Marko Burc̆ul2, Samuel Temple Reeve1,

Markus Eisenbach3, Simona Perotto4

October 13, 2021

1Oak Ridge National Laboratory, Computational Sciences and Engineering Division
Oak Ridge, TN 37831, USA

2 Department of Automation and Control Engineering, Politecnico di Milano
Piazza L. da Vinci 32, I-20133 Milano, Italy

3 Oak Ridge National Laboratory, National Center for Computational Sciences
Oak Ridge, TN, 37831, USA

4 MOX– Department of Mathematics, Politecnico di Milano

Piazza L. da Vinci 32, I-20133 Milano, Italy

Abstract

We use graph convolutional neural networks (GCNNs) to produce fast
and accurate predictions of the total energy of solid solution binary alloys.
GCNNs allow us to abstract the lattice structure of a solid material as a
graph, whereby atoms are modeled as nodes and metallic bonds as edges.
This representation naturally incorporates information about the structure
of the material, thereby eliminating the need for computationally expensive
data pre-processing which would be required with standard neural network
(NN) approaches. We train GCNNs on ab-initio density functional theory
(DFT) for copper-gold (CuAu) and iron-platinum (FePt) data that has
been generated by running the LSMS-3 code, which implements a locally
self-consistent multiple scattering method, on OLCF supercomputers Titan
and Summit. GCNN outperforms the ab-initio DFT simulation by orders
of magnitude in terms of computational time to produce the estimate of the
total energy for a given atomic configuration of the lattice structure. We
compare the predictive performance of GCNN models against a standard
NN such as dense feedforward multi-layer perceptron (MLP) by using the
root-mean-squared errors to quantify the predictive quality of the deep
learning (DL) models. We find that the attainable accuracy of GCNNs is
at least an order of magnitude better than that of the MLP.

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-

00OR22725 with the US Department of Energy (DOE). The US government retains and the

1

publisher, by accepting the article for publication, acknowledges that the US government retains

a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published

form of this manuscript, or allow others to do so, for US government purposes. DOE will

provide public access to these results of federally sponsored research in accordance with the

DOE Public Access Plan

(http://energy.gov/downloads/doe-public-access-plan).

1 Introduction

Understanding and predicting the properties of materials with different atomic
structures is critical for improved application performance and new technologies.
There are of course many features that control material properties beyond the
atomic level, from the mesoscale to macroscale. However, due to the combina-
torial complexity of elements, crystal structures, and atomic disorder [1, 2, 3],
there are still significant opportunities in materials discovery from information
at the atomic scale. While many computational approaches have been devel-
oped to accurately model and predict the behavior of materials at the atomic
scale from the electronic structure, including density functional theory (DFT)
[4, 5], quantum Monte Carlo (QMC) [6, 7], and ab-initio molecular dynamics
(MD) [8, 9], these techniques come with very high computational cost, even for
relatively small numbers of atoms and/or small timescales [10]. To alleviate this
cost, several techniques have been developed ranging from direct approximations
of electronic structures methods to empirical models, which trade predictive ac-
curacy for computational effort. For example, cluster expansion builds the total
energy as a linear combination of contributions from interactions of different
atom clusters, with input from smaller direct electronic structure calculations
[11, 12, 13]. Classical MD starts from a larger scale approximation which ignores
electrons entirely and fits an interatomic interaction model with DFT, or other
quantum simulation algorithms [14, 15]. These models use empirical functional
forms to represent bonding or approximate electronic effects. Quite importantly,
MD is orders of magnitude faster than DFT for most atomic systems; however,
MD models are difficult to develop even for a small number of elements and
generally are not transferable from the dataset on which they were trained.

In spite of these issues, MD interatomic models built from DFT are widely
used as surrogate models that do not require training from data. The one to
one mapping between the high and low fidelity systems is a strength of the
approach. Indeed, rather than a generic fitting procedure for the surrogate model
parameters matching various output quantities of interest, forces and energies
on each atom in each system can be used to train the MD model to match DFT.
This force matching approach represents a significant advance for the field [16]
and is now standard for training MD models, particularly as the increasing size
of the systems modeled leads to more complex, multi-dimensional optimizations.

As the power of data-driven and machine learning (ML) approaches in sci-

2

ence continues to grow, ML surrogate models can also provide significant bene-
fits. Neural networks (NN) are attractive as a general mathematical form which
include non-linear interactions and, once trained, can be orders of magnitude
faster than full physics simulations. There are many examples of NN surro-
gates for electronic structure calculations [17, 18, 19, 20, 21], as well as classical
MD models [22, 23, 24, 25]. This has advanced classical MD significantly be-
yond the original empirical models. Critical features of these approaches include
high accuracy (particularly when resolving atomic dynamics) and preservation
of translational and rotational invariances.

However, complex NNs require significant effort to translate the atomic struc-
ture dataset into a form understood by the DL model. This data pre-processing
inevitably leads to some loss of information originally contained in the raw DFT
simulations and also requires additional effort to be performed.

The DL community has recently developed graph convolutional neural net-
works (GCNNs) [26, 27] which directly map the atomic input to graph struc-
tures, with atoms as graph nodes and chemical bonds as edges. This direct
connection between the high-fidelity training data and the surrogate model is
compelling as a DL equivalent of classical MD models. GCNNs not only reduce
the cumbersome and expensive data pre-processing, but also, by abstracting the
representation of the lattice structure using adjacency matrices, GCNNs can nat-
urally be trained on lattices of different structures and sizes. Previous work with
GCNN models in materials science includes crystal graph convolutional neural
networks (CGCNN) [28] and material graph network (MEGNet) [29]. The focus
of these efforts was on using GCNNs for prediction of material properties across
broad classes of crystalline materials, sourced from the Materials Project and the
Open Quantum Materials Database (OQMD) [2, 3]. This work showed signifi-
cant flexibility of the DL model, simultaneously handling many materials across
different properties, with good accuracy relative to the original DFT results. In
this work, we focus on improving the predictive accuracy of DL models using
GCNNs for chemically disordered binary solid solution alloys. Although the
approach consists in training GCNN on DFT data, our goal is not to necessarily
use GCNN as a replacement for DFT. Instead, we aim to use GCNN models to
construct well educated initial guesses that could be used as starting point for
DFT simulations, enabling the numerical study of large scale atomic structures
that otherwise would not be computationally affordable.

In particular, we use open source DFT datasets, published on OLCF Data
Constellation, to predict the total energy of copper-gold (CuAu) and iron-
platinum (FePt) alloys with DL models. We train GCNNs on these datasets
and compare their predictive performance with respect to multi-layer percep-
tron (MLP) architectures previously used. We show that GCNNs attain higher
accuracy than MLPs and reduce the root mean squared error (RMSE) on valida-
tion data by an order of magnitude on both datasets. GCNNs also outperform
the base-line DFT simulation by orders of magnitude in terms of computational
time to produce the estimate of the total energy for a given atomic configuration

3

of the lattice structure.

2 Physical system - solid solution binary alloys

The material systems on which we focus in this work are solid solution binary
alloys, where two constituent elements are randomly placed on a fixed underlying
crystal lattice. We consider two binary alloy systems, each with 32 atoms and
with periodic boundary conditions considered within the DFT calculations. The
first system is the CuAu [30] alloy arranged in a 2× 2× 2 supercell and a face-
centered cubic (FCC) structure, while the second system is the FePt alloy [31]
arranged in a 2× 2× 4 supercell with a body-centered cubic (BCC) structure.

For both CuAu and FePt datasets, each data point in the dataset provides the
information about the atomic positions on a lattice. Denoting the total number
of atoms in a configuration Natoms, each input data point is represented as a
Natoms×4 matrix, where the first three columns provide the (x, y, z) coordinates
of an atom and the fourth column provides the proton number that uniquely
characterizes the atomic element located at a specific lattice point. The total
energy is a single scalar for every configuration.

Figure 1 shows the local numbering of atoms inside a FCC or a BCC unit
cell. For the atoms in CuAu arranged in 2 × 2 × 2 FCC unit cells, the atoms
are numbered starting from the (x = 0, y = 0, z = 0) unit cell. The counting
traverses through the unit cells in the x-direction first, then the y-direction, and
the z-direction last. For example, atoms 1 to 4 are from unit cell (0, 0, 0), atoms
5 to 8 are from unit cell (1, 0, 0), atoms 9 to 12 are from unit cell (0, 1, 0),
and so on. Within a unit cell, the order of counting follows the local numbering
of atoms. The numbering of atoms for FePt follows the same manner, with a
difference that the atoms are arranged in a supercell having 2× 2× 4 BCC unit
cells, each unit cell only has two atoms.

Figure 1: A face-centered cubic (FCC) unit cell for CuAu (left) and a body-
centered cubic (BCC) unit cell for FePt (right). The local numbering of atoms
in the unit cell for each structure is shown.

For each of these two alloys, 32,000 configurations with different chemical
compositions between the two atom species (Cu and Au for the first system,
and Fe and Pt for the second system) were chosen to construct the training
dataset. More details about the dataset construction are presented in Section 4.

4

3 Graph convolutional neural networks (GCNNs)

A graph G is usually represented in mathematical terms as

G = (V, E) (1)

where V represents the set of nodes and E represents the set of edges between
these nodes [32]. An edge is defined as a pair (u, v) ∈ E where u, v ∈ V ,
E ∈ V ×V , and the edge starts at node u and ends in node v. The topology of a
graph can be described through the adjacency matrix, a square matrix, A, with
as many rows and columns as the number of nodes in the graph, whose entries
are associated with edges of the graph according to the following rule:{

A[u, v] = 1 iff (u, v) ∈ E
A[u, v] = 0 otherwise.

(2)

The degree of a node u ∈ V is defined as:

du =
∑
v∈V

A[u, v] (3)

and it represents the number of edges incident to a node. The node degree is
used in the GCNN when aggregating the information from the neighborhood of
a node.

In order to take advantage of the topology of the graph with N nodes, the
DL model has to consider the following properties as input features:

• The number of neighbors (L < N) for each atom

• The distance between atoms (i.e., bond length).

If the input structure is defined with respect to N nodes in the graph, MLPs
cannot take advantage of the information about neighboring nodes, as the fully
connectivity of the MLP architectures forces all nodes to communicate with each
other. This approach is difficult to scale for graphs of increasing size because
the number of interactions increases combinatorially with N . One solution is to
change the representation of the input, so that the input is defined in terms of
edges instead of being defined in terms of nodes. However, this representation
increases the dimensionality in the input from N to L × N and this further
increases the computational cost to train the MLP model.

GCNNs embed the interaction between nodes without increasing the size of
the input by representing the local interaction zone as a hyperparameter that
cuts-off the interaction of a node with all the other nodes outside a prescribed
local neighborhood. The fact that GCNN can naturally distinguish between
short-range and long-range interactions without expanding the dimensionality
of the input results into a computational saving with respect to an MLP.

5

GCNNs [26, 27] are DL models based on a message-passing framework, a
procedure that combines the knowledge from neighboring nodes, which in our
applications maps directly to the interactions of a central atom with its neighbors
in the lattice structure. The typical GCNN architecture is characterized by
three different types of hidden layers: graph convolutional layers, graph pooling
layers, and fully connected layers. A schematic of a GCNN structure is provided
in Figure 6. The convolutional graph layers represent the central part of the
architecture and their functionality is to transfer feature information between
adjacent nodes (in this case atoms). Every node ui ∈ V is associated with
a p-dimensional vector hi ∈ Rp which contains the embedded nodal features
for node ui. Message passing is performed at each step of the training, and it
requires performing in sequential the following operations:

1. Aggregate information from neighbors

2. Update hidden state information.

Through aggregation, the node ui collects the hidden embedded features of its
neighbors as shown in Figure 2 as well as the information on the edges (if avail-
able). After the aggregation is completed, the node ui updates its hidden state

Figure 2: Message passing on a simple graph with three nodes.

hi at iteration (t+ 1) according to the following formula:

mt+1
i =

∑
j∈N(i)

mt
j(h

t
j , e

t
ij) (4)

where mt
j is a message obtained from neighboring node uj and the edge eij that

connects them. Following, the nodal features ht+1
i of the node uj are updated

at the (t+ 1)th step of the training as follows:

ht+1
i = UPDATE(hti,m

t+1
i) (5)

where UPDATE is a an arbitrarily differentiable function which combines ag-
gregated messages mt+1

i of node ui neighbors with its nodal features hti from the
previous step t.

Through consecutive steps of message passing, the graph nodes gather in-
formation from nodes that are further and further away. As shown in Figure 3

6

Figure 3: Example of 2-iteration message passing where the aggregation
function used is mean of neighbors hidden states. The update function is also

mean of the current node hidden state and aggregated message from node
neighbors.

where k=2, node u1 gets the information from neighbors of its neighbors. The
type of information passed through a graph structure can be either related to
the topology of the graph or features assigned to the nodes. An example of a
topological information is the node degree, whereas an example of nodal feature
in the context of this work is the proton number of the atom located at the node.
The aggregation function aims at collecting information from adjacent nodes in
a graph can be defined as:

AGGREGATE(ui) = W
(k)
neighborhood

∑
v∈N(ui)

hk−1v + bk−1 (6)

and the function that updates the nodal features is defined as:

UPDATE(ui) = σ(W
(k)
selfh

k−1
i +AGGREGATE(ui))

where
W

(k)
self ,W

(k)
neighborhood ∈ Rp×p (7)

are the weights of one layer of GCNN and σ is an activation function (e.g,
ReLU) that introduces nonlinearity to the model.

The most common types of graph convilutional layers are:

1. graph isomorphism network (GIN);

2. graph attention network (GAT); and

3. principal neighborhood aggregation (PNA).

7

Figure 4: Convolution performed on target node of a graph where the number
of neighbors varies in size and nodes are unordered.

Figure 5: Examples of different aggregation schemes failing to distinguish
between different graph pairs.

GIN [33] and GAT [34] use a single aggregating operation to perform message
passing among adjacent nodes of a graph. In particular, GIN aggregates infor-
mation using a sum, whereas GAT aggregates information using a weighted sum
where each nodes is weighted according to the number of its neighbors. How-
ever, using a single aggregating operation to perform message passing may cause
these aggregation schemes to confuse distinct graphs. Examples of aggregating
operations that can fail in distinguishing different graphs are given in Figure
5. In contrast, PNA [35] combines multiple aggregating techniques and uses
degree-based scalers that depend on a node degree and accordingly amplify or
attenuate incoming messages; this results in an increase of the discriminating
power of the model, as the model is less prone to classify two different graphs
as identical. More details about the PNA aggregation scheme can be found in
[36]. We compare the results of these different graph layers in Section 6.

The graph pooling layers are interlaced between successive graph convolu-
tional layers and reduce the dimensionality of the graph by aggregating the

8

information contained in adjacent nodes and edges of the graph (the atomic
neighborhood for each atom). Fully connected (FC) layers are positioned at the
end of the architecture to take the results of pooling and flatten them in order to
match the dimensionality of the output. Batch normalizations are performed be-

Figure 6: High level overview of the GCNN architecture used.

tween consecutive convolutional layers along with a rectified linear unit (ReLU)
activation function to avoid vanishing gradients.

The set of hyperparameters that fully characterize the architecture of the
DL model are the radius to define the local neighborhood of a graph node, the
maximum number of nodes allowed in a neighborhood, the number of neurons in
a hidden convolutional layer (also referred to as size of a layer), and the number
of hidden convolutional layers. Hyperparameter optimization is performed to
identify the architecture of the NN with best predictive performance.

Solid solution binary alloys consist of two types of atoms that randomly pop-
ulate a crystal lattice. Studying the behavior of these materials is challenging
due to the combinatoric complexity that quickly increases with the number of
types and with the size of the lattice. Therefore, developing an accurate GCNN
model that reliably estimates the material properties for each disordered config-
uration requires a large amount of data.

3.1 Software implementation

We use the Pytorch framework [37] to implement the GCNN in Python. Pytorch
is not only a robust NN toolkit, but also serves as a performance portability layer
for running on heterogeneous computing architectures, e.g., CPU and GPU. This
method enables running our GCNN on any local machine, as well as the Sum-
mit and coming Frontier supercomputers. In addition, there are many packages
which are extensions to Pytorch: Pytorch Geometric [38, 39] is particularly
relevant to this work for graph structures. The code used in this work is openly
available and developed on GitHub [40]. The hyperparameter configurations for
each neural network architecture have been identified by performing hyperpa-
rameter optimization using the Ray Tune library [41, 42].

9

4 Dataset description

The dataset for each alloy comprises 32,000 configurations out of the 232 avail-
able. The selection of the configurations is performed to ensure that every com-
position is adequately represented in the dataset. If the number of configurations
for a specific composition is less than 1,000, then all those configurations are in-
cluded in the dataset. For all other compositions, configurations are randomly
selected up to the total of 32,000 . Moreover, the splitting between the train-
ing, and validation sets is performed at the level of each composition, to ensure
that all the compositions are adequately represented in both the training and
validation portions of the dataset. For each selected configuration, we com-
puted the total energy of the system at each atomic position using the locally
self-consistent multiple scattering (LSMS) DFT approach, which exhibits linear
scaling with respect to the number of atoms [43, 44, 45]. We used the LSMS-3
code from Oak Ridge National Laboratory [46]. These data are openly available
through the OLCF Constellation [30, 31], and describe material properties for
atomic systems with chemical disorder. The chemical disorder makes the task of
describing the material properties combinatorially complex, and the combinato-
rial complexity addressed by these datasets represents the main difference from
other open source databases that only focus on ordered compounds [1, 2, 3].

Since different physical quantities have different units and different orders of
magnitude, the inputs and outputs are respectively standardized (normalized)
across all data points for each quantity, such that each quantity has a zero mean
and unit standard deviation.

Raw input data is imported in the format of csv files and transformed into a
Python Data object to handle the data through the Pytorch Geometric frame-
work. The data object contains the following information:

1. edge index ∈ R32×2 contains index pairs of neighboring nodes

2. pos ∈ R32×3 contains coordinates for each atom

Since PyTorch Geometric was built upon PyTorch, all of the primitive types
are converted to PyTorch tensors. After loading the data, the total energy value
for each configurations needs to be normalized using the min-max normalization
defined as

e′i =
ei − emin

emax − emin
(8)

where emin and emax minimum and maximum value of the total energy across all
the nodes with the same index in the dataset, and use these values to perform
the normalization. The range of values of the energy expressed in Rydberg is
[−1.22 · 106,−1.41 · 105] for CuAu and [−1.12 · 106,−1.16 · 105] for FePt.

After standardizing the data, we extract the graph topology from the lattice
structure. Since the connections between atoms in the lattice structure are not
directly provided by the datasets, we created a procedure described in Algorithm

10

1 to calculate an approximation of the adjacency matrix that only considers local
interactions between nodes of the graph with a maximum neighborhood radius
and a maximum number of neighbors. The approximate adjacency matrix is then
fed into the GCNN to characterize the structure of the graph convolutional layers
that will perform successive aggregations of nodal features on adjacent nodes of
the graph. The nodal feature for the first graph convolutional layer is the proton
number, whereas the nodal features for successive convolutional layers are the
result of convolutional operations that cannot be directly interpreted in terms
of physical properties. Once the GCNN produces the prediction of the target
quantity, a data post-processing is performed to remap the predicted quantities
back to the physical space to restore their actual values and units.

Larger sizes of the local neighborhood lead to a higher computational cost to
train the GCNN, as the number of regression coefficients to train at each hidden
convolutional layer increases quadratically with the size of the local neighbor-
hood. Moreover, a local interaction zone is also used in the LSMS-3 code to
generate the DFT training data; therefore, setting the size of the local neighbor-
hood to a large value causes the GCNN model to overfit as the model reconstructs
interatomic interactions that are not captured in the DFT data.

5 Use of federated instruments, compute, and stor-
age

The workflow pipeline described in this work benefits from the entire ORNL
computing and data storage infrastructure, and in turn benefits it by devel-
oping additional robust and accurate DL capabilities. We illustrate how the
research described in this work integrates in the entire OLCF infrastructure of
federated instruments, compute, and storage in Figure 7. This research, part of
the Artificial Intelligence for Scientific Discovery (AISD) Thrust of the Artificial
Intelligence (AI) Initiative at ORNL, aims at developing and deplying fast and
accurate surrogate models to accelerate the material design. As such, our GCNN
take advantage of the existing ORNL resources:

• OLCF supercomputers

• OLCF data management

• OLCF-CADES edge computing.

The OLCF supercomputer Summit is used to quickly generate training data
from large-scale ab-initio DFT simulations. The OLCF Constellation is used to
permanently store the full results of the DFT simulations, enabling public access
and citations through DOIs. The OLCF-CADES GPU-enabled edge computing
clusters allow us to quickly train the GCNN model on the data downloaded
from the OLCF Constellation, where eventually we can deploy the trained and
validated model for scientific discovery. The outcome of this research, which

11

Algorithm 1 Calculating graph adjacency matrix in 3D

input : nodes - list containing nodes of the graph with coordinate information
r - radius within to search for the neighbors of a node
mnnn - maximum number of node neighbors

output: adj - adjacency matrix
adj = [len(nodes), len(nodes)] initialize adjacency matrix with zeros

neighbors = {} dictionary of size n where key is index of a node and value is
empty list
distances = [len(nodes), len(nodes)] matrix of node distances
i = 0 initalize index to zero
for i < len(nodes) do

j ← i + 1
for j < len(nodes) do

distances [i][j] = calculate distance in 3D (nodes [i],nodes [j])
if distances [i][j] <= r then

neighbors [i].append(j)
end

end

end

// Order neighbors for each node by their distance.

ordered neighbors = order candidate neighbors by distance(neighbors, distances)
// For each node find neighbors.

for node, neighbors in ordered neighbors do
neighbors = resolve neighbor conflicts (node, neighbors, adj, mnnn)

adj [node, neighbors] = 1
adj [neighbors, node] = 1

end

strongly relies on the Oak Ridge Leadership Computing Facility, will provide
strategically relevant AI capabilities to the other ORNL user facilities such as
the Manufacturing Demonstration Facility (MDF) and the Spallation Neutron
Source (SNS).

6 Numerical results

We present numerical results to predict the total energy for the binary CuAu
and FePt alloys using DL models by comparing the predictive performance of
simple fully connected MLPs with GCNNs that use GIN, GAT, and PNA graph
convolutional layers. The output of DFT calculations is considered as the ex-
act reference that the DL model has to reconstruct. Therefore, the predictive
performance of a DL model is tested by measuring the departure of quantities

12

Figure 7: Illustration of the OLCF infrastructure.

predicted by the DL models from the results produced by DFT calculations.
We used the HyperOpt search algorithm based on the Tree-Structured Parzen

Estimator approach (TPE) inside the Ray Tune library to identify the NN archi-
tecture that minimizes the RMSE. Details about GCNN architectures resulting
from the hyperparameter optimization are presented in Table 1.

NN model
GCNN-GIN GCNN-GAT GCNN-PNA

Hyperparameter
Radius size 5 5 5

Maximum number of node neighbors 7 7 7
Hidden layer size 60 20 15

Number of convolutional layers 5 16 16

Table 1: Hyperparameter setting for GCNNs with GIN, GAT, and PNA graph
convolutional layers.

The DL models are trained using the Adam method [47] with an initial
learning rate equal to 0.0001, with a total number of 200 epochs performed.
The batch size for each step of an epoch is 64 data points. Early stopping is
performed to interrupt the training when the validation loss function does not
decrease for several consecutive epochs, as this is a symptom that further epochs
are very unlikely to reduce the value of the loss function. The training set for
each of the NN represents 80% of the total dataset; the validation set represents
the remaining 20%.

13

6.1 Comparison between computational times for first princi-
ples calculations and DL models

The DFT calculations to generate the dataset to train the NN models were
performed with the LSMS-3 code on the Titan supercomputer at Oak Ridge
National Laboratory (ORNL), each calculation used 8 Titan nodes (each Titan
node had 1 NVIDIA K20X GPU) for a hybrid MPI-CUDA parallelization. For
more details about the hardware specifics of Titan we refer to [48]. Because
ORNL’s Titan supercomputer has been decommissioned as of this writing, we
present here the computational time of the same calculations on ORNL’s current
supercomputer Summit [49]. Each calculation was performed on one Summit
node, utilizing all 6 NVIDIA V100 GPUs on the node.

Our DL approach demonstrates significant time reductions for both CuAu
and FePt cases when NN models are used in place of DFT calculations for
one configuration. The first-principles LSMS calculations take about 260 wall-
clock seconds for CuAu and 300 wall-clock second for FePt on average on a
Summit node, whereas the NN models predict the physical quantities in about
one wall-clock second. The training of the NN models takes about 4,000 wall-
clock seconds on an NVIDIA V100 GPU.

Computational approach Compute resources Wall-clock time(s)

1 DFT calculation 1 Summit node 263.7
MLP 1 NVIDIA-V100 GPU 0.9
GCNN 1 NVIDIA-V100 GPU 1.3

∼ 106 DFT calculations 1 Summit node 2.63 · 108
32,000 DFT calc. + train NN + 106 NN pred. 1 Summit node 9.71 · 106

Table 2: CuAu binary alloy - Average time in wall-clock seconds needed to
estimate macroscopic physical properties on a random lattice configuration with
first principles calculations, time for one single-tasking NN models evaluation,
time for one multitasking NN evaluation, total wall-clock time to perform 106

DFT calculations and total wall-clock time to perform 32,000 DFT calculations,
train the NN and evaluate the total energy for 106 configurations using the NN.

In Figures 8 and 9 we show the trend of the training MSE and validation
MSE with respect to different percentage of the entire CuAu and FePt datasets
to train the GCNN model with PNA aggregation. The results show that using
only 10% of the data for training increases the validation MSE of the GCNN
model by two orders of magnitude with respect to the use of 90% of the dataset
for training. Moreover, the fact that both training MSE and validation MSE
reach plateau means that the neural network has been trained long enough to
reach its expressive power on the dataset.

Tables 2 and 3 compare the computational time to compute the total energy
for 106 configurations using the LSMS code, with the time needed for the scenario
where the total energy is calculated just for 32, 000 configurations with LSMS to
generate the dataset, train the NN model on this dataset, then use the NN model

14

Figure 8: Training and validation MSE at different epochs for training a GCNN
model with PNA aggregation policy on the CuAu dataset using different per-
centages of the dataset for training.

to predict the total energy for 106 alloy configurations. This comparison is of
relevance for the possible use of surrogate DL models in Monte Carlo simulations
to predict the thermodynamic properties of a solid solution alloy, in which the
number of Monte Carlo samples required would at least be of the order of 106 for
sufficient sampling. In this case, it is clear that using DL surrogate models for
accurate predictions of total energy significantly reduces the computational time
needed to predict material properties that would be otherwise unattainable given
limited computational resources. Although the reduction of computational time
has been achieved by sacrificing accuracy with respect to the DFT itself, we point
out that our goal is not to use a GCNN surrogate model to compete against ab-
initio calculations, but rather facilitating the use of DFT in Monte Carlo (MC)
simulations to determine the thermodynamic properties of large scale lattices
for solid solution alloys.

6.2 Comparison between statistical models for predictive per-
formance

Numerical results obtained by training the NN models on CuAu and FePt
datasets are presented in Tables 4 and 5 respectively. The metric used to mea-

15

Figure 9: Training and validation MSE for training of a GCNN model with PNA
aggregation policy on the FePt dataset using different percentages of the dataset
for training.

sure the predictive performance of the models is the RMSE and it shows that
GCNNs attain a higher accuracy than MLPs for the prediction of total energy
for both CuAu and FePt. The GCNNs, and their natural mapping to the atomic
input data, is indeed better to predict system properties. Moreover, these re-
sults show that PNA outperforms the other aggregation techniques by an order
of magnitude. The results are in line with what expected by the DL theory, since
the PNA layer has more expressive power than GIN and GAT. We also notice
that MLP and GCNN-PNA attain lower accuracy on the FePt dataset than on
the CuAu dataset (while the other two aggregations result in similar accuracy
both datasets). This is partially due to the fact that the FePt binary alloy is
a hard ferromagnetic metal, making it more difficult for the DFT to converge
during self-consistent iterations. As the data for FePt is less accurate than the
data for CuAu, so also is the attainable accuracy of the models trained on it.

16

Computational approach Compute resources Wall-clock time(s)

1 DFT calculation 1 Summit node 303.2
MLP 1 NVIDIA-V100 GPU 0.9
GCNN 1 NVIDIA-V100 GPU 1.3

∼ 106 DFT calculations 1 Summit node 3.03 · 108
32,000 DFT calc. + train NN + 106 NN pred. 1 Summit node 1.10 · 107

Table 3: FePt binary alloy - Average time in wall-clock seconds needed to es-
timate macroscopic physical properties on a random lattice configuration with
first principles calculations, time for one single-tasking NN models evaluation,
time for one multitasking NN evaluation, total wall-clock time to perform 106

DFT calculations and total wall-clock time to perform 32,000 DFT calculations,
train the NN and evaluate the total energy for 106 configurations using the NN.

NN model RMSE - Total Energy

MLP 6.65× 10−3

GCNN - GIN 5.10× 10−3

GCNN - GAT 7.14× 10−3

GCNN - PNA 2.52× 10−4

Table 4: Validation root mean squared error (RMSE) for neural networks that
predict total energy for randomly sampled configurations of CuAu. The name
of each training method refers to whether it is a multi-layer perceptron (MLP)
or graph convolutional neural network (GCNN). Graph isomorphism network
(GIN), graph attention network (GAT), and principal neighborhood aggregation
(PNA) layers are used to perform the aggregation of neighboring nodes.

7 Conclusions

We trained GCNNs on ab-initio DFT data that produce fast and accurate pre-
dictions of the total energy for solid solution binary alloys CuAu and FePt.
GCNN architectures use graph representations to directly map to the topology
of the atomic structure, which enables GCNNs to attain higher accuracy than
dense MLPs. Numerical results show that DL models outperform ab-initio DFT
calculations in terms of computational time to provide estimates of the total
energy for specific lattice configurations by compromising the accuracy within a
tolerable margin of error. A comparison between MLPs and GCNNs in terms of
predictive performance shows that GCNNs outperform MLPs on both datasets
by reducing the RMSE by at least an order of magnitude. Our goal is not
to necessarily replace DFT with a GCNN surrogate model, but rather integrate
the two approaches to run large-scale Monte Carlo (MC) simulations for ther-
modynamic properties of solid solution alloys. Future work will combine two
MC procedures in sequence: the first MC procedure will use a GCNN model to
generate an educated initial guess, which can then be used as starting point for

17

NN model RMSE - Total Energy

MLP 1.22× 10−2

GCNN - GIN 5.97× 10−3

GCNN - GAT 6.73× 10−3

GCNN - PNA 8.01× 10−4

Table 5: Validation root mean squared error (RMSE) for neural networks that
predict total energy for randomly sampled configurations of FePt alloy. The
name of each training method refers to whether it is a multi-layer perceptron
(MLP) or graph convolutional neural network (GCNN). Graph isomorphism
network (GIN), graph attention network (GAT), and principal neighborhood
aggregation (PNA) layers are used to perform the aggregation of neighboring
nodes.

a new MC run where DFT is called directly. Combining the two MC runs is
expected to drastically reduce the total number of calls to the DFT code sub-
stantially reducing the computational time with respect to running DFT with
uninformed initial guesses.

Acknowledgements

Massimiliano Lupo Pasini thanks Dr. Vladimir Protopopescu for his valuable
feedback in the preparation of this manuscript.

This work was supported in part by the Office of Science of the Department
of Energy and by the Laboratory Directed Research and Development (LDRD)
Program of Oak Ridge National Laboratory. This work used resources of the Oak
Ridge Leadership Computing Facility, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

The last author acknowledges the research project GNCS-INdAM 2020 “Tec-
niche Numeriche Avanzate per Applicazioni Industriali”.

References

[1] S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii,
R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes,
D. O. Demchenko, and D. Morgan. AFLOW: An automatic framework
for high-throughput materials discovery. Comput. Mater. Sci., 58:218–226,
June 2012.

[2] A. Jain, S. Ping Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek,
S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson. Commen-

18

tary: The materials project: A materials genome approach to accelerating
materials innovation. APL Mater., 1(1):0–11, 2013.

[3] J. E Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton. Materials
design and discovery with high-throughput density functional theory: the
Open Quantum Materials Database (OQMD). JOM, 65(11):1501–1509,
November 2013.

[4] P. Hoenber and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,
136:B864B871, 1964.

[5] W. Kohn and L. J. Sham. Self-consistent equations including exchange and
correlation effects. Phys. Rev., 140:A1133–A1138, 1965.

[6] M. P. Nightingale and J. C. Umrigar. Self-Consistent Equations Including
Exchange and Correlation Effects. Springer, 1999.

[7] B. L. Hammond, W. A. Lester, and P. J. Reynolds. Monte Carlo Methods
in Ab Initio Quantum Chemistry. Singapore: World Scientific, 1994.

[8] R. Car and M. Parrinello. Unified approach for molecular dynamics and
density-functional theory. Phys. Rev. Lett., 55:2471–2474, 1985.

[9] D. Marx and J. Hutter. Ab Initio Molecular Dynamics, Basic Theory and
Advanced Methods. Cambridge University Press New York, New York, USA,
2012.

[10] J. Aarons, M. Sarwar, D. Thompsett, and C. K. Skylaris. Perspective:
Methods for large-scale density functional calculations on metallic systems.
J. Chem. Phys, 145(22):220901, 2016.

[11] J. M. Sanchez, F. Ducastelle, and D. Gratias. Generalized cluster descrip-
tion of multicomponent systems. Phys. A Stat. Mech. Appl., 128:334–350,
1984.

[12] D. De Fontaine. Cluster approach to order-disorder transformations in al-
loys. Phys. A Stat. Mech. Appl., 47:33–176, 1994.

[13] O. Levy, G. L. W. Hart, and S. Curtarolo. Uncovering compounds by
synergy of cluster expansion and high-throughput methods. J. Am. Chem.
Soc., 132(13):4830–4833, 2010.

[14] B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere
system. The Journal of Chemical Physics, 27(5):1208–1209, November 1957.
Number: 5.

[15] A. Rahman. Correlations in the motion of atoms in liquid argon. Phys.
Rev., 136(2A):A405–A411, October 1964. Number: 2A.

19

[16] F. Ercolessi and J. B Adams. Interatomic potentials from first-principles
calculations: The force-matching method. Europhys. Lett., 26(8):583–588,
June 1994. Number: 8.

[17] F. Brockherde, L. Vogt, M. E. Tuckerman, K. Burke, and K .R. Müller. By-
passing the Kohn-Sham equations with machine learning. Nat. Commun.,
8(872), 2017.

[18] C. Wang, A. Tharval, and J. R. Kitchin. A density functional theory pa-
rameterised neural network model of zirconia. Mol. Simul., 44(8):623–630,
2018.

[19] A. V. Sinitskiy and V. S. Pande. Deep neural network computes electron
densities and energies of a large set of organic molecules faster than density
functional theory (DFT). https://arxiv.org/abs/1809.02723.

[20] C. A. Custódio, É. R. Filletti, and V. V. França. Artificial neural net-
works for density-functional optimizations in fermionic systems. Sci. Rep.,
9(1886), 2019.

[21] K. Ryczko, D. Strubbe, and I. Tamblyn. Deep learning and density func-
tional theory. Phys. Rev. A, 100(022512), 2019.

[22] J. Behler and M. Parrinello. Generalized neural-network representation of
high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98(14):146401,
April 2007.

[23] K. Schütt, P.-J. Kindermans, Sauceda F., H. E. Sauceda Felix, S. Chmiela,
A. Tkatchenko, and K.-R. Mller. SchNet: A continuous-filter convolutional
neural network for modeling quantum interactions. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 30, pages
991–1001. Curran Associates, Inc., 2017.

[24] Justin S. Smith, Olexandr Isayev, and Adrian E. Roitberg. ANI-1: an
extensible neural network potential with DFT accuracy at force field com-
putational cost. Chemical science, 8(4):3192–3203, 2017.

[25] L. Zhang, J. Han, H. Wang, R. Car, and W. E. Deep potential molecular
Dynamics: A scalable model with the accuracy of quantum mechanics.
Phys. Rev. Lett., 120(14):143001, April 2018.

[26] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks,
20(1):61–80, 2009.

[27] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neu-
ral networks on graphs with fast localized spectral filtering. In D. Lee,

20

https://arxiv.org/abs/1809.02723

M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016.

[28] T. Xie and J. C. Grossman. Crystal graph convolutional neural networks
for an accurate and interpretable prediction of material properties. Phys.
Rev. Lett., 120(14):145301, April 2018.

[29] C. Chen, W. Ye, Y. Zuo, C. Zheng, and S. P. Ong. Graph networks as a
universal machine learning framework for molecules and crystals. Chem.
Mater., 31(9):3564–3572, May 2019.

[30] M. Lupo Pasini and M. Eisenbach. CuAu binary alloy with 32 atoms -
LSMS-3 data - DOI:10.13139/OLCF/1765349.

[31] M. Lupo Pasini and M. Eisenbach. FePt binary alloy with 32 atoms -
LSMS-3 data - DOI:10.13139/OLCF/1762742.

[32] U.S.R. Murty J.A. Bondy. Graphs and subgraphs. In Graph theory with
applications. North-Holland.

[33] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural
networks? arXiv:1810.00826 [cs, stat], February 2019. arXiv: 1810.00826.

[34] T. N. Kipf and M. Welling. Graph attention networks. arXiv:1609.02907
[cs, stat], February 2017. arXiv: 1710.10903.

[35] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Li, and
Petar Velikovi. Principal neighbourhood aggregation for graph nets.
arXiv:2004.05718 [cs, stat], December 2020. arXiv: 2004.05718.

[36] William L. Hamilton. Graph representation learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 14(3):1–159, September 2020.

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance deep learn-
ing library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[38] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

[39] PyTorch Geometric. https://pytorch-geometric.readthedocs.io/en/

latest/.

21

https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/

[40] M. Burčul and M. Lupo Pasini. GCNN. https://github.com/allaffa/
GCNN.

[41] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gon-
zalez, and Ion Stoica. Tune: A research platform for distributed model
selection and training. arXiv preprint arXiv:1807.05118, 2018.

[42] Ray Tune: Hyperparameter Optimization Framework. https://docs.ray.
io/en/latest/tune/index.html.

[43] M. Eisenbach, J. Larkin, J. Lutjens, S. Rennich, and J. H. Rogers. GPU
acceleration of the locally self-consistent multiple scattering code for first
principles calculation of the ground state and statistical physics of materials.
Comput. Phys. Commun., 211:2–7, 2017.

[44] Y. Wang, G. M. Stocks, W. A. Shelton, D. M. C. Nicholson, Z. Szotek, and
W. M. Temmerman. Order-N multiple scattering approach to electronic
structure calculations. Phys. Rev. Lett., 75:2867–2870, 1995.

[45] Y. Yang, C. C. Chen, M. C. Scott, C. Ophus, R. Xu, A. Pryor, L. Wu,
G. Sun, J. Zhou, M. Eisenbach, P. R. C. Kent, R. F. Sabiranov, H. Zeng,
and J. Miao. Quantitative evaluation of an epitaxial silicon-germanium
layer on silicon. Nature, 542(7639):75–79, 2017.

[46] M. Eisenbach, Y. W. Li, O. K. Odbadrakh, Z. Pei, G. M. Stocks, and J. Yin.
LSMS. https://github.com/mstsuite/lsms.

[47] Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic opti-
mization. arXiv:1412.6980 [cs], January 2017. arXiv: 1412.6980.

[48] OLCF Supercomputer Titan. https://www.olcf.ornl.gov/for-users/

system-user-guides/titan/.

[49] OLCF Supercomputer Summit. https://www.olcf.ornl.gov/

olcf-resources/compute-systems/summit/.

22

https://github.com/allaffa/GCNN
https://github.com/allaffa/GCNN
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
https://www.olcf.ornl.gov/for-users/system-user-guides/titan/
https://www.olcf.ornl.gov/for-users/system-user-guides/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

59/2021 Stella, S.; Regazzoni, F.; Vergara, C.; Dede', L.; Quarteroni, A.
A fast cardiac electromechanics model coupling the Eikonal and the
nonlinear mechanics equations

60/2021 Rosafalco, L.; Manzoni, A.; Mariani, S.; Corigliano, A.
Fully convolutional networks for structural health monitoring through
multivariate time series classification

61/2021 Buchwald, S.; Ciaramella, G.; Salomon, J.; Sugny, D.
A greedy reconstruction algorithm for the identification of spin distribution

58/2021 Tassi, T., Zingaro, A., Dede', L.
Enhancing numerical stabilization methods for advection dominated
differential problems by Machine Learning algorithms

56/2021 Zingaro, A.; Fumagalli, I.; Dede' L.; Fedele M.; Africa P.C.; Corno A.F.; Quarteroni A.
A multiscale CFD model of blood flow in the human left heart coupled with a
lumped parameter model of the cardiovascular system

57/2021 Roberto Piersanti, Francesco Regazzoni, Matteo Salvador, Antonio F. Corno, Luca Dede', Christian Vergara, Alfio Quarteroni
3D-0D closed-loop model for the simulation of cardiac biventricular
electromechanics

55/2021 Buchwald, S.; Ciaramella, G.; Salomon, J.
ANALYSIS OF A GREEDY RECONSTRUCTION ALGORITHM

54/2021 Ciaramella, G.; Gander, M.J.; Mamooler, P.
HOW TO BEST CHOOSE THE OUTER COARSE MESH IN THE DOMAIN
DECOMPOSITION METHOD OF BANK AND JIMACK

53/2021 Ciaramella, G.; Mechelli, L.
On the effect of boundary conditions on the scalability of Schwarz methods

52/2021 Ciaramella, G.; Mechelli, L.
An overlapping waveform-relaxation preconditioner for economic optimal
control problems with state constraints

	qmox62-copertina
	mox-20211013235356
	Introduction
	Physical system - solid solution binary alloys
	Graph convolutional neural networks (GCNNs)
	Software implementation

	Dataset description
	Use of federated instruments, compute, and storage
	Numerical results
	Comparison between computational times for first principles calculations and DL models
	Comparison between statistical models for predictive performance

	Conclusions

	qmox62-terza_di_copertina

