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Existence and stability of traveling pulse solutions
of the FitzHugh-Nagumo equation

Gianni Arioli 1 and Hans Koch 2

Abstract. The FitzHugh-Nagumo model is a reaction-diffusion equation describing the prop-
agation of electrical signals in nerve axons and other biological tissues. One of the model
parameters is the ratio ǫ of two time scales, which takes values between 0.001 and 0.1 in typical
simulations of nerve axons. Based on the existence of a (singular) limit at ǫ = 0, it has been
shown that the FitzHugh-Nagumo equation admits a stable traveling pulse solution for suffi-
ciently small ǫ > 0. In this paper we prove the existence of such a solution for ǫ = 0.01. We
consider both circular axons and axons of infinite length. Our method is non-perturbative and
should apply to a wide range of other parameter values.

1. Introduction and main results

The FitzHugh-Nagumo equation

∂tw1 = ∂2xw1 + f(w1)− w2 , ∂tw2 = ǫ(w1 − γw2) , (1.1)

models the propagation of electric signals in nerve axons [1,2,3]. Here w1(x, t) is the voltage
inside the axon at position x ∈ R and time t. The first equation in (1.1) is Kirchhoff’s
law, expressing that the change ∂2xw1 of the current ∂xw1 along the axon is compensated
by the currents passing through the cell membrane: a capacitance based current ∂tw1 and
a resistance based current w2 − f(w1). The function w2 describes a part of the trans-
membrane current that passes through slowly adapting ion channels. The remaining part
of the resistor is modeled by a simple cubic

f(r) = r(r − a)(1− r) , 0 < a < 1
2 . (1.2)

Simulations based on this model are abundant, both with analog and digital comput-
ers. The choice of parameters ǫ, γ, a > 0 depends on the type of system being considered.
For our investigation of FitzHugh-Nagumo equation we choose the values

ǫ = 1
100 , γ = 5 , a = 1

10 , (1.3)

which produce realistic looking traveling waves in numerical simulations.
A traveling wave is a solution of the form w1(x, t) = φ1(x−ct) and w2(x, t) = φ2(x−ct).

We are interested here only in traveling waves that can be identified as a single localized
pulse. There appear to be exactly two values of the velocity c for which such solutions
exist, one corresponding to a stable “fast” pulse and the other to an unstable “slow”
pulse. Both have (singular) limits as ǫ → 0 that can be computed explicitly. For ǫ > 0
sufficiently small, it is possible to use perturbative methods to prove the existence of the

1
Department of Mathematics and MOX, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano.

2
Department of Mathematics, University of Texas at Austin, Austin, TX 78712

1



2 GIANNI ARIOLI and HANS KOCH

fast pulse [8,9,10,15]. This pulse was shown to be stable in [12,13]. The existence and
instability of the slow pulse, for sufficiently small ǫ > 0, was proved in [14]. Double pulse
solutions, turning points, and bifurcations are described in [11,17,18]. Further information
and references can be found in [16].

The equation (1.1) is usually considered for axons of infinite length. In addition to this
case, we also consider a circular axon of length ℓ = 128. Our first result is the following.
Let Sℓ = R/(ℓZ).

Theorem 1.1. The equation (1.1) on S128 ×R with parameter values (1.3) has a traveling
pulse solution with velocity c = 0.470336308 . . . Furthermore, this solution is real analytic
and exponentially stable.

By stability we mean nonlinear stability, as defined below. A proof of this Theorem will
be given in Section 4, based in part on estimates that have been carried out by computer.
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Figure 1. Components φ1 (large) and φ2 (small) of the periodic pulse.

The equation for a traveling pulse solution with velocity c is

φ′′1 + cφ′1 = −f(φ1) + φ2 , cφ′2 = −ǫ(φ1 − γφ2) . (1.4)

In the case of a pulse on R, one also imposes the conditions φj(±∞) = 0. As usual, a
second order equation like (1.4) can be written as a system of first order equations: Using
the auxiliary function φ0 = φ′1, we have

φ′ = X(φ) , φ =



φ0
φ1
φ2


 , X(φ) =



−cφ0 − f(φ1) + φ2

φ0
−c−1ǫ(φ1 − γφ2)


 . (1.5)

This defines a dynamical system in R
3. For the value of c given in Theorem 1.1, this

dynamical system has a periodic orbit of length 128.
Notice that the origin is an equilibrium point, since X(0) = 0. It is not hard to

check that for every c > 0, the derivative DX(0) has one real negative eigenvalue, and
two complex conjugate eigenvalues with positive real parts. Thus, the origin has a stable
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manifold Ws
c of dimension 1 and an unstable manifold Wu

c of dimension 2. We will show
that there exists a value of c for which these two manifolds intersect at some point other
than the origin. (In fact Wu

c ⊂ Ws
c , since both manifolds are invariant under the flow.)

To be more precise, we prove the following

Theorem 1.2. The equation (1.1) on R × R with parameter values (1.3) has a traveling
pulse solution with velocity c = 0.470336270 . . . Furthermore, this solution is real analytic,
decreases exponentially at infinity, and is exponentially stable.

A proof of this Theorem will be given in Section 4, based in part on estimates that have
been carried out by computer. The stability proof involves estimates on the Evans function
[7]. For the existence proof we follow the approach used in [20]. The model considered in
[20] is a modification of the FitzHugh-Nagumo model, proposed and studied first in [19],
which takes into account electro-mechanical effects that are important in tissues such as
the heart muscle. Our choice of parameter values (1.3) is the same that was used in [19]
for numerical comparisons.

We use the standard notion of stability, described e.g. in [4]. It takes into account
that the equation (1.1) is invariant under translations, so that any translate of a solution is
also a solution. Let φ

¯
= [φ1 φ2]

⊤ be a traveling pulse solution of (1.1) with velocity c. To
be more precise, φ

¯
satisfies the equation (1.4), and the asymptotic condition φ

¯
(±∞) = 0

in the case of a pulse on R. For any bounded solution w
¯
= [w1 w2]

⊤ of (1.1) define

δ(w
¯
, t, s) = sup

j,x

∣∣wj(x, t)− φj(x− s− ct)
∣∣ . (1.6)

The sup in this equation is taken over all x ∈ R (or x ∈ Sℓ in the periodic case) and
j ∈ {1, 2}. The pulse φ

¯
is said to be exponentially stable if there exist constants α, b, C > 0

such that for 0 ≤ β ≤ b, and for any solution w that satisfies δ(w
¯
, 0, 0) ≤ β, there exists

s ∈ [−Cβ,Cβ] such that δ(w
¯
, t, s) ≤ Cβe−αt for all t > 0. Here, and in what follows, a

solution w of (1.1) is always assumed to be uniformly continuous and to have uniformly
continuous bounded derivatives ∂xw1, ∂

2
xw1 and ∂xw2.

The remaining part of the paper is organized as follows.
In Section 2 we consider the existence of the pulse solutions. For the periodic pulse,

the problem is reduced to solving an appropriate fixed point equation in a space of real
analytic periodic functions. The homoclinic pulse is obtained via Taylor expansions (after
a suitable change of variables) at y = ±∞ whose terms can be computed order by order.

In Sections 3 and 4 we consider the stability of the pulse solutions. As one would
expect, the stability problem can be reduced to proving that the generator Lφ of the
linearized flow has no eigenvalues in a half-plane. But more importantly, we can exclude
eigenvalues outside some small region R. In the periodic case, the problem is reduced via
perturbation theory to estimates on matrices. In the homoclinic case, we determine the
number of eigenvalues in R by estimating the Evans function along the boundary of R and
then applying the argument principle.

What remains to be proved at this point are four technical lemmas. In Section 5
we show how this problem is reduced further, to a point where the remaining steps can
be mechanized and carried out by a computer. This includes a description of how the
mechanical part is organized. The complete details can be found in [34].
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2. Existence of pulse solutions

2.1. Existence of a periodic pulse

Our goal here is to reduce the existence part of Theorem 1.1 to a suitable fixed point
problem. Let η = ℓ/(2π). Substituting φ1(y) = ϕ(y/η) and φ2(y) = ψ(y/η) into the
equation (1.4) we get

η−2ϕ′′ + cη−1ϕ′ = ψ − f(ϕ) , cη−1ψ′ = ǫ(γψ − ϕ) . (2.1)

We need to find two 2π-periodic functions ϕ and ψ that satisfy (2.1) for some positive
value of c. Notice that ψ − f(ϕ) and γψ − ϕ must have average zero. Thus,

〈γf(ϕ)− ϕ〉 = 0 , (2.2)

where 〈.〉 denotes averaging. As a first step we rewrite (2.1) as an equation for the function
ϕ alone. Let D−1 be the antiderivative operator on the space of 2π-periodic continuous
functions with average zero. Then ψ0 = ψ − 〈ψ〉 can be computed from ϕ as follows:

cψ0 = ǫηD−1(γψ − ϕ)

= ǫηD−1
(
γ[ψ − f(ϕ)] + [γf(ϕ)− ϕ]

)

= ǫγηD−1[ψ − f(ϕ)] + ǫηD−1[γf(ϕ)− ϕ]

= ǫγ[η−1ϕ′ + cϕ0] + ǫηD−1[γf(ϕ)− ϕ] ,

(2.3)

where ϕ0 = ϕ− 〈ϕ〉. Substituting this into the first identity in (2.1) we have

η−2ϕ′′ + cη−1ϕ′ = 〈ψ〉+ ψ0 − f(ϕ)

= 〈ψ〉+ c−1ǫγη−1ϕ′ +Nc(ϕ0) ,
(2.4)

where
N(ϕ0) = −f(ϕ) + ǫγϕ0 + ǫc−1ηD−1[γf(ϕ)− ϕ] . (2.5)

In writing N(ϕ0) instead of N(ϕ), we are assuming that the function ϕ is determined by
its zero-average part ϕ0 via the condition (2.2). This assumption will be verified later.
The equation (2.4) can also be written as

ϕ′′ + κϕ′ = η2I0N(ϕ0) , κ = η
(
c− c−1ǫγ

)
, (2.6)

where I0h = h − 〈h〉 denotes the zero-average part of a continuous 2π-periodic function.
Finally, applying (D2 + κD)−1 = (D2 − κ2I)−1(I − κD−1) to both sides of this equation,
we obtain the fixed point equation

ϕ0 = Nc(ϕ0) , Nc(ϕ0) = η2
(
D2 − κ2I)−1

(
I− κD−1

)
I0N(ϕ0) . (2.7)
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We consider this equation in a space F0 = I0F of real analytic functions. To be more
precise, given ρ > 0, let Sρ be the strip in C defined by |Im (x)| < ρ. Every 2π-periodic
analytic function on Sρ admits a Fourier series

h(x) =
∞∑

k=0

hk cos(kx) +
∞∑

k=1

h−k sin(kx) . (2.8)

Denote by F the space of all real analytic functions (2.8) that have continuous extensions
to the closure of Sρ and a finite norm

‖h‖ =
∞∑

k=−∞

|hk| cosh(ρk) . (2.9)

Remark 1. As defined above, F is a Banach space over R. When discussing eigenvectors
of linear operators on F , we will also need the corresponding space over C. Since it should
be clear from the context which number field is being used, we will denote both spaces by
F . Since we are only interested in in real solutions to (1.1), the default field is R. The
same applies to the spaces A, B, C, and V considered later.

Our goal is to solve the fixed point equationNc(ϕ0) = ϕ0 via a Newton-type procedure.
However, there is an obvious obstruction that needs to be taken care of first. Namely, Nc

commutes with translations Ts : h 7→ h(. − s). Thus, if ϕ0 is a fixed point of Nc then so
is any translate Tsϕ0. Differentiating the identity Nc(Tsϕ0) = Tsϕ0 with respect to s, we
see that DNc(ϕ0) must have an eigenvalue 1,

DNc(ϕ0)ϕ
′
0 = ϕ′

0 . (2.10)

We intend to eliminate this (simple) eigenvalue 1 by projecting onto the orthogonal com-
plement of a function close to ϕ′

0. The inner product used here is Q(g, h) =
∑

k gkhk.
Notice that Q is invariant under translations, and thus Q(g, g′) = 0 for all g ∈ F .

Assume that we have found numerically a Fourier polynomial p0 ∈ F0 that is an
approximate fixed point ofNc for some value cnum of c. Let p1 ∈ F0 be a Fourier polynomial
close to a constant multiple of p′0, normalized in such a way that Q(p1, p1) = 1. Now define

N ′
c(g) = PNc(g) , g ∈ F0 , (2.11)

where P is the projection operator on F defined by Pg = g −Q(g, p1)p1.
By assumption, p1 is approximately Q-orthogonal to p0. Thus p0 is an approximate

fixed point of N ′
c, for values of c close to cnum. Furthermore, we can expect DN ′

c(g) to
have no eigenvalue 1, for g near p0 and c near cnum. In particular, N ′

c can be expected to
have a fixed point near p0, for every value of c near cnum. The value of c for which a fixed
point gc of N ′

c is also a fixed point of Nc is determined by the condition

Q
(
N ′

c(gc), p1
)
= 0 . (2.12)
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In order to solve the fixed point equation N ′
c(g) = g we consider a quasi-Newton map

Mc(h) = h+N ′
c(p0 +Ah)− (p0 +Ah) , h ∈ F0 , (2.13)

with A an approximation to [I−DN ′
c(p0)]

−1.
Given r > 0 and h ∈ F0 we denote by Br(h) the open ball of radius r in F0, centered

at h. Let ρ = log
(
1 + 2−10

)
and δ = 2−60.

Lemma 2.1. There exist two Fourier polynomials p0, p1, an open interval J , and two
constants c0 = 0.4703363082 . . . and R > 0, such that the following holds. For every
function g ∈ BR(p0) there exists a unique real number ḡ ∈ J , such that ϕ = g+ ḡ satisfies
the condition (2.2). The resulting map (c, g) 7→ Nc(g) is differentiable on some open
neighborhood of I × BR(p0), where I = [c0 − δ, c0 + δ]. The function c 7→ Q(N ′

c(g), p1)
changes sign on I, for every function g ∈ Br(p0). Furthermore, there exists a continuous
linear operator A on F0, and positive constants K, r, ε satisfying ε+Kr < r and ‖A‖r ≤ R,
such that the map Mc defined by (2.13) satisfies

‖Mc(0)‖ < ε , ‖DMc(h)‖ < K , h ∈ Br(0) . (2.14)

This lemma, together the contraction mapping theorem, implies the claims in Theo-
rem 1.1 concerning the existence of the periodic pulse. A more detailed argument will be
given in Subsection 4.1. Our proof of Lemma 2.1 involves estimates that have been carried
out by computer. More details can be found in Section 5.

2.2. Existence of a homoclinic pulse

The equation (1.5) for a pulse solution on R can be written as

∂yφ = DX(0)φ+B(φ1) , (2.15)

where

DX(0) =



−c a 1
1 0 0
0 −c−1ǫ c−1ǫγ


 , B(φ1) =



−f(φ1)− aφ1

0
0


 . (2.16)

Here we have used that f ′(0) = −a. Notice that DB(0) = 0. We restrict the analysis to
real velocity parameters c in a ball |c−c0| ≤ ̺ of radius ̺ = 2−96. For these values of c, the
matrix DX(0) has a negative real eigenvalue µ0 and two complex conjugate eigenvalues ν0
and ν̄0 with positive real part. The numerical values are

c0 = 0.4703362702 . . . ,

µ0 = −0.6628889605 . . . ,

ν0 = 0.1494298049 . . .− i ∗ 0.1605660907 . . . .
(2.17)

Our first goal is to construct a solution φ = φs that satisfies φs(+∞) = 0. This solution
parametrizes the one-dimensional local stable manifoldWs of the origin. A similar problem
was solved in [20] via the ansatz

φs(y) = ℓs(r) + Zs(r) , r = eµ0y , (2.18)
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with ℓs(r) = rU0 and Zs(r) = O(r2). Here U0 is the eigenvector of DX(0) associated with
the eigenvalue µ0. The equation (2.15) for φ = φs can now be written as

Zs =
[
∂y −DX(0)

]−1
B(ℓs1 + Zs

1) , ∂y = µ0r∂r . (2.19)

Notice that the monomials r 7→ rk are eigenfunctions of ∂y. Furthermore, the second
component of U0 is nonzero and thus can be chosen to be 1, making ℓs1(r) = r. Thus, the
equation (2.19) can be solved order by order in powers of r, yielding a unique formal power
series solution Zs(r) =

∑
k≥2 Zkr

k. We will show that this solution is actually analytic in

a disk centered at the origin, which includes the point eµ0y0 with y0 = 5
2 . This holds for

all values of c in the interval mentioned above.
The stable manifold is now “prolonged” backwards in time, using a simple Taylor

integrator: For n = 0, 1, . . . , 26 we determine the Taylor expansion of φs(y) in powers of
y − yn and evaluate the result at yn+1. As described in Section 5, this is done order by
order up to a certain degree, and the reminder is estimated rigorously. The endpoint is
y27 = −43, and φs(−43) is again close to the origin.

The next goal is to compute the two-dimensional local unstable manifold. Following
again the procedure in [20], we make the ansatz

φu(y) = Φu
(
Reν0y, Reν̄0y

)
, (2.20)

with R > 0 fixed but arbitrary, and

Φu(s) = ℓu(s) + Zu(s) , s = (s1, s2) , (2.21)

where ℓu(s) = s1V0 + s2V̄0 and Zu(s) = O(|s|2). Here, V0 and V̄0 are eigenvectors of
DX(0) for the eigenvalues ν0 and ν̄0, respectively. The equation for Zu is analogous to
the equation (2.19) for Zs, namely

Zu =
[
∂y −DX(0)

]−1
B(ℓu1 + Zu

1 ) , ∂y = ν0s1∂s1 + ν̄0s2∂s2 . (2.22)

Notice that the monomials s 7→ sk1s
m
2 are eigenfunctions of ∂y. Furthermore, the second

component of V0 is nonzero and thus can be chosen to be 1, making ℓu1 (s) = s1+ s2. Thus,
the equation (2.22) can be solved order by order in powers of s1 and s2, yielding a unique
formal power series solution for Zu. That is, each component h = Zu

j of Zu has a unique
expansion

h(s) =
∑

k,m

hk,ms
k
1s

m
2 , (2.23)

with hk,m = 0 for k +m ≤ 1. Notice that (2.22) reduces by projection to an equation for
the component Zu

1 alone. We will prove that the solution Zu is real analytic in a polydisk
D2

ρ characterized by |s1|, |s2| < ρ. The analysis is carried out in the space A2
ρ of all real

analytic function h on D2
ρ that extend continuously to the closure of D2

ρ, and which have
a finite norm

‖h‖ρ =
∑

k,m

‖hk,m‖ρk+m . (2.24)



8 GIANNI ARIOLI and HANS KOCH

To be more precise, our functions h = Zu
j also depends on the velocity parameter c. The

function in A2
ρ take values in a space B of function that are real analytic in the disk

|c − c0| < ̺. The norm of a function g : c 7→ ∑
n gn(c − c0)

n in the space B is given by
‖g‖ =

∑
n |gn|̺n. This is the norm that appears in (2.24) for the coefficients hk,m.

To emphasize the dependence on the velocity parameter c, we will now include c as
an extra argument. So r 7→ φs(c, r) parametrizes the local stable manifold Ws

c of the
origin, and s1 7→ Φu(c, s1, s̄1) is a parametrization of the local stable manifold Ws

c . The
two manifolds intersect if the difference

Υ(c, σ, τ) = Φu(c, σ + iτ, σ − iτ)− φs(c,−43) (2.25)

vanishes for some real values of σ and τ . Let now ρ = 2−5, ̺ = 2−96, and R = 1.

Lemma 2.2. For c0 − ̺ < c < c0 + ̺ the eigenvalues of DX(0) satisfy the bounds (2.17).
The functions Zu

j that define the unstable manifold belong to A2
ρ. Similarly, y 7→ φs(., y)

is a real analytic function on (−45,+∞) taking values in B. So in particular, Υ is well
defined and differentiable on the domain |c−c0| < ̺ and |σ+ iτ | < ρ. In this domain there
exists a cube where Υ has a unique zero, and |c− c0| < 2−172 for all points in this cube.

Our proof of this lemma involves estimates that have been carried out by computer.
More details will be given in Section 5. Clearly Lemma 2.2 implies the claims in Theo-
rem 1.2 concerning the existence of the periodic pulse.
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Figure 2. The 1d stable manifold φs and 2d local unstable manifold Φu.

3. Stability of the pulse solution

Following a common strategy, we reduce the stability problem for the nonlinear equation
(1.1) to the problem of proving that the generator Lφ of the linearized flow has no spectrum
in a half-plane Re (z) > −α, except for a simple eigenvalue 0. The spectrum of Lφ will be
discussed in the next section.
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3.1. Reduction to linear stability

It is convenient to rewrite the FitzHugh-Nagumo equation in moving coordinates y = x−tc.
Substituting wj(x, t) = uj(x− ct, t) into (1.1) yields the equation

∂tu
¯
=

[
∂2yu1 + c∂yu1 + f(u1)− u2

c∂yu2 + ǫ[u1 − γu2]

]
, u

¯
=

[
u1
u2

]
. (3.1)

A stationary solution uj(y, t) = φj(y) of this equation corresponds to a moving pulse
solution for the original equation (1.1). The definition of (exponential) stability for (3.1) is
analogous to the definition for the original equation, and the two are manifestly equivalent.

The linearization of (3.1) about such a stationary solution is

∂tu
¯
= Lφu

¯
, (3.2)

where

Lφu
¯
=

[
∂2y + c∂y + f ′(φ1) −1

ǫ c∂y − ǫγ

]
u
¯
, u

¯
=

[
u1
u2

]
. (3.3)

The time-t map u
¯
(0) 7→ u

¯
(t) will be denoted by etLφ . Since the equation (3.1) is invariant

under translations, φ
¯

′ is a stationary solution of the equation (3.2). Notice that φ
¯

′ has the
same regularity property as φ

¯
, as can be seen e.g. from equation (1.5). Similarly for the

decay at infinity in the homoclinic case.
For a proper discussion of the equation (3.3) we need to introduce some functions

spaces. Let Cn be the space of all bounded and uniformly continuous functions h : S → R
n,

equipped with the sup-norm ‖v
¯
‖ = supj,y |vj(y)|. Notice that orbits s 7→ v

¯
(. − s) for the

translation group are continuous in this space. This implies in particular that the C∞

functions with bounded derivatives are dense in Cn.
In what follows, the space C2 will also be denoted by C. See Remark 1 concerning the

complexification of C. Let C′ to be the the set of all functions v
¯
∈ C with the property that

the derivatives v′1, v
′′
1 , and v

′
2 exist and belong to C1. We say that the stationary solution

φ
¯

′ of the linearized system (3.3) is exponentially stable if there exists a continuous linear

functional p : C → R, and two constants C,ω > 0, such that
∥∥etLφv

¯
− p(v

¯
)φ
¯

′
∥∥ ≤ Ce−tω‖v

¯
‖

for all v
¯
∈ C′ and all t ≥ 0.

Assume now exponential stability of φ
¯

′ for the linearized system. This stability con-

dition implies in particular that etLφ extend to a bounded linear operator on C. Assuming
also that t 7→ etLφ is a semigroup, one easily finds that p(φ

¯

′) = 1, and that p
(
etLφv

¯

)
= p(v

¯
)

for all v ∈ C and all t ≥ 0. Thus P‖v
¯
= p(v

¯
)φ
¯

′ defines a projection onto span(φ
¯

′) that is
invariant under the linearized flow.

The following lemma was proved in [4] for pulse solutions on the real line. Instead of
complementing this with a proof for the circle only, we will give a proof that covers both
cases.

Lemma 3.1. Let φ
¯
∈ C′ be a traveling pulse. That is, φ

¯
satisfies the equation (1.4) and

vanishes at ±∞. If φ
¯

′ is exponentially stable for the linear system (3.3) then the traveling
pulse φ

¯
is exponentially stable as well.
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Proof. A curve u
¯
= u

¯
(t) in C′ is a solution of (3.1) if and only if v

¯
= u

¯
− φ

¯
satisfies the

equation

∂tv
¯
= Lφv

¯
+Q(v1) , Q(v1) =

[
f(φ1 + v1)− f(φ1)− f ′(φ1)v1

0

]
. (3.4)

The corresponding integral equation with fixed initial condition at time τ ≥ 0 is

v
¯
(τ + t) = etLφv

¯
(τ) +

∫ t

0

e(t−s)LφQ(v1(τ + s)) ds , t ≥ 0. (3.5)

Here we have used that the orbits t 7→ etLφc
¯
are continuous for every c

¯
∈ C. This follows

from standard results on semigroups; see also the next subsection. Define

w
¯
= v

¯
+ σφ

¯

′ = u
¯
− φ

¯
+ σφ

¯

′ , σ = −p(v
¯
(τ)) . (3.6)

Here φ
¯
and φ

¯

′ stand for the constant curves t 7→ φ
¯
and t 7→ φ

¯

′, respectively. Then the
equation (3.5) can be written as

w
¯
(τ + t) = etLφP⊥w

¯
(τ) +

∫ t

0

e(t−s)LφQ
(
w1(τ + s)− σφ′1

)
ds , (3.7)

where P⊥ = I− P‖. This equation can be regarded as a fixed point problem w
¯
= N (w

¯
) on

the space of continuous C-valued functions on a given interval [τ, τ +T ], equipped with the
norm ‖w

¯
‖ = sup0≤t≤T ‖w

¯
(τ+t)‖. To be more precise, N acts on the affine subspace where

w
¯
(τ) is fixed. Let w

¯0(τ + t) = etLφP⊥w
¯
(τ). Notice that Q is a polynomial with a zero of

order 2 at the origin. Thus, it is clear that there exists C0 > 0 such that if ‖w
¯
(τ)‖ < δ and

|σ| < δ, with δ > 0 sufficiently small, then N is a contraction on the ball ‖w
¯
−w

¯0‖ ≤ C0δ.
Assume now that the solution φ

¯

′ of the linearized system (3.3) is exponentially stable with
exponent ω > 0. Then the integral in (3.7) grows at most linearly with t. Thus, the above
constant C0 can be chosen to be independent of T , provided that T ≤ δ−1/2.

Let 0 < ω′ < ω. Assume that

‖u
¯
(τ)− φ

¯
‖ ≤ ε . (3.8)

Then |σ| ≤ ‖p‖ε and ‖w
¯
(τ)‖ ≤ ‖P⊥‖ε. Thus, if ε > 0 is sufficiently small, then the solution

w
¯
of the equation (3.7) satisfies a bound

‖w
¯
(τ + t)‖ ≤ C1ε , 0 ≤ t ≤ C2ε

−1/2 . (3.9)

Here, and in what follows, C1, C2, . . . are universal positive constants that depend only on
the model parameters (1.3), the solution φ

¯
, the constant in the linear stability condition,

and on ω′. Using the bound (3.9) to estimate the right hand side of (3.7), we find that

‖w
¯
(τ + t)‖ ≤ C3e

−tωε+ C4tε
2 ≤ C5e

−tω′[
e−t(ω−ω′)+ tεetω

′]
ε ≤ e−tω′

ε , (3.10)
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for 0 < ε ≤ C6 and C7 ≤ t ≤ C8| log ε|. This can now be used to estimate the difference

u
¯
− Tσφ = w

¯
−
[
Tσφ

¯
− φ

¯
+ σφ

¯

′
]
, (3.11)

where Tσ denotes translation by σ. Since the term in square brackets is bounded in norm
by C9|σ|2, we obtain from (3.10) a bound

∥∥u
¯
(τ + t)− Tσφ

¯

∥∥ ≤ e−tω′

ε , (3.12)

for ε ≤ C10 and C11 ≤ t ≤ C12| log ε|.
This procedure can now be iterated: Choose k > C11. At step 0 consider the solution

u
¯
with initial condition u

¯
(0) satisfying ‖u

¯
(0)−φ

¯
‖ < exp(−2k/C12). At steps n = 0, 1, 2, . . .

we use τ = nk, denote u
¯
and ε by u

¯n
and εn, respectively, and define σn+1 = p(φ

¯
−un(nk)).

The initial condition at step n ≥ 1 is given by u
¯n

(nk) = Tσn
u
¯n−1(nk). By (3.12), and by

the translation invariance of the norm in C, we have

εn = ‖u
¯n

(nk)− φ
¯
‖ = ‖u

¯n−1(nk)− Tσn
φ
¯
‖ ≤ εn−1e

−kω′

. (3.13)

Thus the procedure can be iterated ad infinitum. The values εn and σn converge to 0 at
least geometrically with ratio e−kω′

. In particular, if s =
∑

j≥1 σj then

|s| ≤ C13ε0 , |sn − s| ≤ C14ε0e
−nkω′

, sn =
n∑

j=1

σj . (3.14)

By the translation invariance of the equation (3.1) we have T−σn
u
¯n

(nk+ t) = u
¯n−1(nk+ t)

for all n ≥ 1 and for 0 ≤ t ≤ k. Thus, each of the functions T−snu¯n
extends the original

solution u
¯
= u

¯0
, and

‖u
¯
(t)− Tsnφ

¯
‖ ≤ ε0e

−tω′

, nk ≤ t ≤ (n+ 1)k , (3.15)

for n ≥ 1. For n = 0 the same holds by (3.9) with an extra factor C15 ≥ 1. Combining
this inequality with (3.14) yields the bound

‖u
¯
(t)− Tsφ

¯
‖ ≤ C15‖u

¯
(0)− φ

¯
‖e−tω′

, t ≥ 0 .

This completes the proof of Lemma 3.1. QED

3.2. Reduction to a problem about eigenvalues

The problem considered here is a common one. The sequence of steps in this subsection
follows roughly those in [5,6]. But we need to cover both the periodic and the homoclinic
case, and our function spaces are not exactly the same as those used in [5,6].

Consider the linear operator Lφ : C′ → C defined by equation (3.3). It is convenient
to split

Lφ = L0 + F , (3.16)



12 GIANNI ARIOLI and HANS KOCH

where

L0 =

[
D2 + cD − θ −1

ǫ cD − ǫγ

]
, F =

[
f ′(φ1) + θ 0

0 0

]
, (3.17)

and where θ = −f ′(0) unless specified otherwise. Here we have replaced ∂y by D, since
we are now considering functions of one variable only. And f ′(φ1) + θ stands for the
multiplication operator v1 7→ [f ′(φ1) + θ]v1. Similarly for the other scalar entries in L0.
Clearly L0 : C′ → C is closed, so Lφ is closed as well, since F is bounded.

Proposition 3.2. The operator L0 generates a C0 (strongly continuous) semigroup on C
that satisfies

∥∥etL0

∥∥ ≤ Ce−tǫγ for some C > 0 and all t ≥ 0.

Proof. Consider the decomposition L0 = A2 +A1 +A0 +B, where

A2 =

[
D2 0
0 0

]
, A1 =

[
cD 0
0 cD

]
, A0 =

[
−θ 0
0 −ǫγ

]
, B =

[
0 −1
ǫ 0

]
. (3.18)

The operators A1 and A2 (with obvious domains) generate the translation group and the
heat flow (in the first component), respectively. Both are easily seen to be C0 contraction
semigroups on C. Given that these two semigroups commute, it follows that their product
defines a C0 contraction semigroup whose generator is H = A2+A1. The same holds if we

change the norm on C to the equivalent norm ‖v
¯
‖′ = supy

(
ǫ1/2|v1(y)|2 + ǫ−1/2|v2(y)|2

)1/2
.

For this new norm, B generates a uniformly continuous group of rotations that are isome-
tries. Since B is bounded, H + B generates a C0 semigroup as well [24]. In fact, this
is again a contraction semigroup, as one can see e.g. from the Trotter product formula
et(H+B) = limn

(
etH/netB/n

)n
, which holds in the strong sense [25,26]. Using that θ > ǫγ

for our choice of parameters (1.3), we have ‖etA0v
¯
‖′ ≤ e−tǫγ‖v

¯
‖′ for all v

¯
∈ C and all t ≥ 0.

The assertion now follows by applying Trotter’s formula to the sum L0 = (H + B) + A0.
QED

Proposition 3.3. F is compact relative to L0.

Proof. In the periodic case where S is compact, the assertion follows e.g. from the fact
that (D2 + cD − 2c2)−1 is a compact convolution operator on C0(S).

Consider now the case S = R. Given w ∈ C define W = diag(w, 0). Notice that
W : C → C is bounded in norm by supy |w(y)|. Thus, since f ′(φ1(y)) + θ → 0 as |y| → 0,
we can find w ∈ C′ with compact support, such that ‖W − F‖ < ε, for any given ε > 0.
Given that the compact operators on C constitute a closed subspace of B(C), it suffices to
prove that any such W is compact relative to L0. But this follows from the fact that the
composition of (D2 + cD− 2c2)−1 with h 7→ wh is compact as an operator on C0(S). QED

Proposition 3.4. Let t 7→ etA be a C0 semigroup on a Banach space X. Let B and F
be bounded linear operators on X. Then A + B generates a C0 semigroup. If FetA is
compact for all t > 0, then so are Fet(A+B) and et(A+F ) − etA.
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Proof. The fact that the perturbation of A by a bounded operator B generates a C0

semigroup is standard [24]. Similarly for the identity

Met(A+B) =MetA +

∫ t

0

Me(t−s)ABes(A+B) ds , t > 0 , (3.19)

where M can be any bounded linear operator on X. The integral in this identity is to
be understood in the sense of equation (3.20) below. The compactness properties claimed
above are a consequence of the following result [27, Theorem 1.3]: Let (Ω,Σ, µ) be a
complete positive finite measure space. Let U be a bounded function from Ω to B(X),
such that s 7→ U(s)x is measurable for every x ∈ X. If U(s) is compact for every s ∈ Ω
then so is

∫
Ω
U(s) dµ(s), where by definition,

[ ∫

S

U(s) dµ(s)

]
x =

∫

S

[
U(s)x

]
dµ(s) . (3.20)

Applying this theorem to the integral in (3.19), with M = F , yields the compactness of
Fet(A+B) for t > 0. Applying it with M = I, and with B replaced by F , yields the
compactness of et(A+F ) − etA for t ≥ 0. Here µ is Lebesgue measure on Ω = (0, t), and we
have used the fact that the semigroups involved are strongly continuous. QED

Given α > 0, denote by Hα the half-plane in C defined by Re (z) > −α.

Proposition 3.5. Let 0 < α ≤ ǫγ. Assume that Lφ has no spectrum in Hα except for a
simple eigenvalue 0. Denote by P⊥ the spectral projection associated with the spectrum
of Lφ in C \ {0}. Then for every ω < α there exists a constant Cω > 0 such that∥∥etLφP⊥

∥∥ ≤ Cωe
−tω for all t ≥ 0.

Proof. Consider the decomposition L0 = A + B and A = A2 + A1 + A0 as defined by
(3.18). Approximating F by localized operators as in the proof of Proposition 3.3, we see
that FetA is compact for all t > 0. Thus FetL0 is compact for all t > 0 by Proposition 3.4.
Applying Proposition 3.4 again, with L0 in place of A, shows that etLφ − etL0 is compact
for all t > 0. By Proposition 3.2 the operator etL0 has no spectrum outside the disk
|z| ≤ e−ǫγ . Thus, the spectrum of etLφ outside this disk consists of isolated eigenvalues
only [22].

Let eλ be an eigenvalue of etLφ with Re (λ) > −α. The goal is to show that λ = 0. Let
L = Lφ − λI. Then eL has an eigenvector v

¯
with eigenvalue 1. Since etLv

¯
= v

¯
whenever

t is a positive integer, the orbit of v
¯
under the flow for L is either a point or an invariant

circle. In either case, L has an eigenvalue on the imaginary axis. By our assumption on
the spectrum of Lφ, this implies that Re (λ) = 0. Thus the orbit of v

¯
under the flow for Lφ

is either a point or an invariant circle. The circle is excluded, since 0 is the only eigenvalue
of Lφ on the imaginary axis. Thus λ = 0.

Let P be the spectral projection for eLφ associated with the eigenvalue 1. Given that
the eigenvalue 0 of Lφ is simple, the Laplace transform of t 7→ etLφP has a pole of order 1
at the origin. Thus P has rank 1, implying that P = I− P⊥.
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Let 0 ≤ ω < α. Since the spectral radius of eLφP⊥ is bounded above by e−α, we have∥∥enLφP⊥

∥∥1/n ≤ e−ω for n ∈ N sufficiently large, and thus
∥∥etLφP⊥

∥∥ ≤ Cωe
−tω for some

Cω > 0 and all t ≥ 0. QED

4. Spectral properties

4.1. Bounds on the eigenvalues

In this subsection we consider eigenvalues of L0 and Lφ with eigenfunctions that are
square-integrable. Denote by H the Hilbert space of all C2-valued functions on S whose
components are square-integrable, equipped with the inner product and norm

〈u, v〉 =
2∑

j=1

∫
uj(y)vj(y) dy , ‖u‖ = 〈u, u〉1/2 . (4.1)

Let H′ be the subspace of all functions u ∈ H that have square-integrable derivatives u′1,
u′′1 , and u

′
2. Clearly H′ is dense in H. Moreover, L0 : H′ → H is closed and F = Lφ − L0

is bounded. Thus Lφ : H′ → H is closed as well.

Proposition 4.1. If λ is an eigenvalue of Lφ : H′ → H then

Re (λ) ≤ Λ , Λ = sup
r
f ′(r) = 91

300 . (4.2)

Proof. To simplify notation we consider a scaling S : [u1, u2]
⊤ 7→ [ǫ−1/4u1, ǫ

1/4u2]
⊤. Then

L = S−1LφS can be written as

L = Ls + La, Ls =

[
D2 + f ′(φ1) 0

0 −ǫγ

]
, La =

[
cD −√

ǫ√
ǫ cD

]
. (4.3)

Of course the spectra of Lφ and L are the same. Notice that Ls is symmetric, and Ls ≤ Λ
in the sense of quadratic forms. And the operator La is antisymmetric. Thus, if Lu = λu
with ‖u‖2 = 1, then

Re (λ) = 1
2 〈Lu, u〉+ 1

2 〈u, Lu〉 = 〈Lsu, u〉 ≤ 〈Λu, u〉 = Λ , (4.4)

as claimed. QED

Proposition 4.2. For every δ > 0 there exists ω > 0 such that the following holds. If λ
is any eigenvalue of Lφ : H′ → H, then either Re (λ) < −ω or else

∣∣Im (λ)
∣∣ ≤

√
c2 + γ−1 Λ1/2 + δ . (4.5)
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Proof. Consider the operator L defined in (4.4), which has the same eigenvalues as Lφ.
Let u be an eigenvector of L with eigenvalue λ. Writing just the first component of the
identity (L− λ)u = 0, we have

[
D2 + f ′(φ1) + cD − λ

]
u1 −

√
ǫu2 = 0 . (4.6)

We may assume that u1 is nonzero. Taking the inner product of each side with u1 in this
equation, we obtain

〈[
D2 + f ′(φ1) + cD − λI

]
u1, u1

〉
=

√
ǫ〈u2, u1〉 . (4.7)

Taking the imaginary part on both sides yields

c Im 〈Du1, u1〉 − Im (λ)‖u1‖2 =
√
ǫ Im 〈u2, u1〉 . (4.8)

Here we have used that 〈D2u1, u1〉 = −〈Du1, Du1〉 is real. Thus,
∣∣Im (λ)

∣∣‖u1‖2 ≤ c‖u1‖‖Du1‖+
√
ǫ‖u1‖‖u2‖ . (4.9)

In addition we have

Re (λ)‖u‖2 = 〈Lsu, u〉 =
∫

S

[
ū1D

2u1 + ū1f
′(φ1)u1 − ǫγū2u2

]

≤ −‖Du1‖2 + Λ‖u1‖2 − ǫγ‖u2‖2 .
(4.10)

Assume now that Re (λ) ≥ −ω with 0 ≤ ω < ǫγ. Then from (4.10) we obtain

‖Du1‖2 + ǫγ‖u2‖2 ≤ Λ‖u1‖2 + ω‖u‖2 . (4.11)

To simplify notation, let us normalize ‖u1‖ = 1. Then (4.11) becomes

‖Du1‖2 +
(√
ǫγ − ω ‖u2‖

)2 ≤ Λ + ω . (4.12)

And the inequality (4.9) can be written as

∣∣Im (λ)
∣∣ ≤ c‖Du1‖+

√
ǫ‖u2‖ =

[
c

(γ − ω/ǫ)−1/2

]⊤ [
‖Du1‖√
ǫγ − ω ‖u2‖

]
. (4.13)

Applying the Cauchy-Schwarz inequality in R
2 to the product on the right hand side, and

using (4.12), yields the bound

∣∣Im (λ)
∣∣ ≤

√
c2 + (γ − ω/ǫ)−1 (Λ + ω)1/2 . (4.14)

Given that the right hand side depends continuously on ω for 0 ≤ ω < ǫγ, the assertion
follows. QED
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Remark 2. The operator Q : u1 7→ f ′(φ1)u1 that appears in the definition of (3.3) of
Lφ is symmetric on L2 and bounded above by Λ. This is the only property of Q that was
used in the proof of Proposition 4.2. Thus, the bound (4.5) remains valid if we replace Q
by sQ + (1 − s)PQP , where P is any orthogonal projection on L2 and 0 ≤ s ≤ 1. This
fact will be used later.

Remark 3. Using the bounds on c given in Lemma 2.1 and Lemma 2.2, it is easy to
check that √

c2 + γ−1 Λ1/2 < Θ
def
= 0.35745 . (4.15)

Next consider the operator L0 defined in (3.17), with θ ≥ 0 to be specified later. Given
that the operator L0 commutes with translations, it can be diagonalized using the Fourier
transform F : H → H. For v

¯
∈ H′ we have (FL0v

¯
)(p) = L̃0(p)(Fv

¯
)(p), with

L̃0(p) =

[
−p2 − θ −1

ǫ −ǫγ

]
+ icp I , (4.16)

where p ∈ R in the homoclinic case S = R, and p ∈ 2π
ℓ Z in the periodic case S = Sℓ. The

eigenvalues of L̃0(p) are
λ−(p) = −p2 + icp− θ −R(p2) ,

λ+(p) = icp− ǫγ +R(p2) ,
(4.17)

where

R(p2) =
1

2

[√
(p2 + θ − ǫγ)2 − 4ǫ− (p2 + θ − ǫγ)

]
. (4.18)

Define
J(p2) = −p2 − θ − ǫγ −R(p2) . (4.19)

Assumption. Here we assume that θ ≥ 0 is chosen sufficiently large, such that the
argument of the square root in (4.18) is nonnegative, and such that J(p2)2 > ǫ.

Then the following two matrices are well defined and are inverses of each other:

M̃0(p)
±1 =

(
1− ǫJ(p2)−2

)−1/2
[

1 ±J(p2)−1

±ǫJ(p2)−1 1

]
. (4.20)

In fact, the column vectors of M̃0(p) are the eigenvectors of L̃0(p). Thus

M̃0(p)
−1L̃0(p)M̃0(p) =

[
λ−(p) 0

0 λ+(p)

]
. (4.21)

The corresponding diagonalization of L0 is

M−1
0 L0M0 =

[
D2 + cD − θ −R(−D2) 0

0 cD − ǫγ +R(−D2)

]
. (4.22)

Notice that R(−D2) is bounded, since R(p2) = O(p−2) for large |p|. In the periodic case
S = Sℓ, the above shows that L0 : H′ → H has only discrete spectrum, and that the
resolvents of L0 are compact.
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4.2. Eigenvalues for the periodic pulse

First we show that every eigenvalue of Lφ has an analytic eigenvector. For convenience we
perform the same scaling as in Subsection 2.1 to change the periodicity from ℓ to 2π, but the
various functions and operators will not be renamed to indicate the scaling. In particular,
C is now a space of 2π-periodic functions. And the rescaled operator Lφ = L0 +F is given
by

L0 =

[
c2D

2 + c1D − θ −1
ǫ c1D − ǫγ

]
, F =

[
f ′(φ1) + θ 0

0 0

]
, (4.23)

with c1 = cη−1 and c2 = η−2, where η = ℓ/(2π). Of course the spectrum of L0 and of
Lφ are not affected by this change of variables. Denote by V the space of all 2π-periodic
functions v

¯
: Sρ → R

2 whose components v1 and v2 belong to the space F defined after
(2.8). We equip V with the norm ‖v

¯
‖ = max{‖v1‖, ‖v2‖}. See Remark 1 concerning the

complexification of V.
Let V ′ be the set of functions v

¯
∈ V with the property that v′1, v

′′
1 , and v

′
2 belong to F .

Clearly the operator L0 : V ′ → V is closed. Furthermore, F is a bounded linear operator
on V, due to the fact that F is a Banach algebra containing φ1. Thus, Lφ : V ′ → V is
closed as well.

Proposition 4.3. Lφ : C′ → C and Lφ : V ′ → V have the same eigenvectors.

Proof. The following applies to both X = H or X = V. As the computations in the
preceding subsection show, L0 : X ′ → X has a set of analytic eigenfunctions whose span
is dense in X. The eigenvalues of L0 have finite multiplicities and accumulate only at
infinity. The same is true for the eigenvalues of Lφ : X ′ → X, since F is a bounded linear
operator on X.

Denote the operators Lφ : H′ → H and Lφ : V ′ → V by LH

φ and LV

φ, respectively. Then

the resolvents z 7→ (zI−LH

φ )
−1 and z 7→ (zI−LV

φ)
−1 are both analytic outside some discrete

set Z. Furthermore, the restriction of (zI − LH

φ )
−1 to V agrees with (zI − LV

φ)
−1, since

zI − LH

φ is one-to-one on H′ ⊃ V ′ for z ∈ Z. This carries over to the spectral projections
for points in Z by contour integration. Thus, since V is dense in H, the corresponding
spectral subspaces agree. The claim now follows from the fact that V ⊂ C ⊂ H. QED

Our goal is to prove that Lφ : V ′ → V has no nonzero eigenvalues in a half-plane
Re (λ) > −α, for some α > 0. By Proposition 4.2 and Remark 3, it suffices to prove that
every nonzero eigenvalue λ of Lφ : V ′ → V with |Im (λ)| ≤ Θ has a negative real part. We
approach this problem using perturbation theory.

The basic idea is to split F into a low-mode approximation and a high-mode remainder.
This is best described in terms of the Fourier series

v
¯
(x) =

∞∑

k=0

v
¯k

cos(kx) +

∞∑

k=1

v
¯−k sin(kx) , x ∈ Sρ , (4.24)

associated with every function v
¯
∈ V. An operator M on V that commutes with transla-

tions will be called a multiplier operator; it is defined by its symbol: a sequence of 2 × 2
matrices M̃(k), such that (Mv

¯
)k = M̃(k)v

¯k
for all v

¯
∈ V and k ∈ Z.
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Let κ be some positive integer, to be specified later. Then the projection onto the
“low modes” is the multiplier operator P with symbol P̃ (k) = χ(|k|≤κ)I, where χ(true) = 1
and χ(false) = 0. If κ is chosen sufficiently large, then the operator L0 + PFP should be
a good approximation of Lφ. At high modes it agrees with L0, and the low-mode part
is “just” a matrix. With the help of a computer, it is possible to diagonalize this matrix
approximately. For practical purposes, it is useful to diagonalize the high-mode part as
well. This is achieved by the multiplier operator M : V → V with symbol

M̃(k) = χ(|k|≤κ) I + χ(|k|>κ) M̃0(k/η) , (4.25)

where M̃0(p) is the 2 × 2 matrix given in (4.20). To be more precise: Here, and in what
follows, we choose θ = 0 in the definition (4.23) of the operator L0. Since the matrices

M̃0(p) are being used for p > κ/η only, the Assumption made after (4.19) is satisfied.
Clearly, the operator M is bounded and has a bounded inverse. Thus, M−1LφM has the
same spectrum as Lφ. As indicated above, we now split M−1LφM into a sum L0 + K,
where

L0 =M−1L0M + PFP ,

K = (I− P )M−1FM + PM−1FM(I− P ) .
(4.26)

We also define

L1 =M−1LφM , Ls = L0 + sK , 0 ≤ s ≤ 1 . (4.27)

The goal is to verify the hypothesis of Proposition 3.5. Let ϑ = 2−6. Let Γ be the
shortest path in C passing through the points iΘ, iϑ, −ϑ, −iϑ, and −iΘ, in this order.
Define Ω ⊂ C to be the open neighborhood of 0, bounded by Γ and by the set of points z on
the imaginary axis with |z| > Θ. As we will describe later, L0 has exactly one eigenvalue
in Ω, and this eigenvalue is simple. By Proposition 4.2 and Remark 3, it suffices to show
that L1 has the same property. By Remark 2, this could fail only if one of the operators
Ls had an eigenvalue on Γ. So the task left is to exclude this possibility as well.

For z ∈ Γ we have

zI− Ls =
[
I− sK(zI− L0)

−1
]
(zI− L0) . (4.28)

Thus, in order to show that z is not an eigenvalue of Ls, it suffices to show that the
operator in square brackets has a bounded inverse.

This task is more delicate than it may seem, for the following reason. Notice that
K couples high modes to low modes and vice versa. If zI − L0 were uniformly large at
high modes, this would be no problem. However, L has an infinite number of eigenvalues
λ+(p) = icp − ǫγ + O(p−1), and many of them are not far from Γ. Thus, it is crucial to
control the coupling terms of K efficiently.

To this end, we perform yet another conjugacy, by the multiplier operator U with
symbol

Ũ(k) = χ(|k|<κ′) I + χ(κ′≤|k|<κ)U
(
εer|k|−rκ

)
+ χ(κ≤|k|)U(ε) , (4.29)
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where U(t) =
[
t 0
0 1

]
. For the constants r and ε in this definition we use the values 1

20 and
3

200 , respectively. The constant κ′ is determined by the equation εerκ
′−rκ = 1.

In view of (4.28), we would like to show that the operator K(zI−L0)
−1 has a spectral

radius less than 1, for all z ∈ Γ. It suffices to prove this for the operator

U
[
K(zI− L0)

−1
]
U−1 =

(
UKU)

[
U−1(zI− L0)

−1U−1
]
. (4.30)

Lemma 4.4. The operator L0 : V ′ → V has no spectrum in Ω except for a simple
eigenvalue. Furthermore, there exists δ > 0 such that

‖UKU‖ < δ ,
∥∥U−1(zI− L0)

−1U−1
∥∥ < δ−1 , z ∈ Γ . (4.31)

Our proof of this lemma is computer-assisted; see Section 5 for more details. The
value of δ is approximately 1

2400 .
These estimates show that no eigenvalue of Ls crosses Γ as s is increased from 0 to 1.

The same “homotopy principle” was used also in [28,29], but the operators considered in
these papers had only finitely many eigenvalues within any fixed distance of the imaginary
axis. This made it possible in [28] to estimate the relevant resolvents along the entire
imaginary axis. The same methods would not work here, but what saves the situation are
the eigenvalue bounds in Proposition 4.1 and Proposition 4.2.

Using Lemma 4.4 and Lemma 2.1, we can now give a

Proof of Theorem 1.1. Existence of the pulse: The estimates (2.14) ensure that Mc

is a contraction on Br(0). Thus, Mc has a unique fixed point hc ∈ Br(0). This holds
for every c ∈ I. The differentiability of (c, g) 7→ Nc(g) ensures that the map c 7→ hc is
continuous on I. Define gc = p0+Ahc. Given that the function c 7→ Q(N ′

c(gc), p1) changes
sign on the interval I, it follows that (2.12) holds for some c ∈ I. For this value of c, the
function gc is a fixed point of Nc. The function ψ is reconstructed from ϕ = gc + ḡc as
described in Subsection 2.1. Thus, the existence part of Theorem 1.1 is proved.

Stability: The bound (4.31) implies that the operator K(zI−L0) has a spectral radius
less than 1. Thus, by (4.28), the operator Ls for 0 ≤ s ≤ 1 has no eigenvalue on Γ.
As explained after (4.27), this shows that Lφ : V ′ → V has no spectrum in a half-plane
Re (z) > −α with α > 0, except for a simple eigenvalue 0. The same holds for Lφ : C′ → C
by Proposition 4.3. By Proposition 3.5 this implies that the solution φ′ is exponentially
stable for the linear system (3.2). The exponential stability of the periodic pulse φ now
follows from Lemma 3.1. QED

4.3. Eigenvalues for the homoclinic pulse

Let 0 < ω < ǫγ, so that L0 has no spectrum in the half-plane Hω. The goal is to show
that Lφ has no nonzero eigenvalues in Hα for some positive α ≤ ω.

In [7] Evans introduces a function that is analytic on Hω (in our case) and whose
zeros are precisely the eigenvalues of Lφ in Hω. After describing the method and intro-
ducing some notation, we will prove exponential stability of the homoclinic pulse based on
estimates on the Evans function.
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The eigenvalue equation (Lφ − λI)u
¯
= 0, written in terms of the components u1 and

u1, is [
cD +D2 + f ′(φ1)− λ −1

ǫ cD − ǫγ − λ

] [
u1
u2

]
=

[
0
0

]
. (4.32)

Setting u0 = Du1, this equation can also be written as




−1 D 0
c+D f ′(φ1)− λ −1

0 ǫ cD − ǫγ − λ





u0
u1
u2


 =



0
0
0


 . (4.33)

Or equivalently,
u′ = Aφ1

(λ)u , (4.34)

where

Aϕ(z) =



−c −f ′(ϕ) + z 1
1 0 0
0 −c−1ǫ c−1(ǫγ + z)


 . (4.35)

Notice that Aφ1
(0) is the linearized vector field DX(φ).

The differential equation u′ = Aφ1
(z)u can be solved even if z is not an eigenvalue of

Lφ. But for z = λ to be an eigenvalue of Lφ, the solution of (4.34) has to be bounded. To
see what this entails, consider first the simpler equation u′ = A0(z)u, which is the analogue
of (4.34) for the rest solution φ = 0 of (1.5). If z belongs to the half-plane Hω, then we
know from Proposition 3.2 that this equation has no bounded solutions. Thus, the matrix
A0(z) is hyperbolic (has no purely imaginary eigenvalues) for all z ∈ Hω. The eigenvalues
for z = 0 are given by (2.17). Consequently, A0(z) has one eigenvalue µz with negative
real part, and two eigenvalues ν±

z with positive real part, for each z ∈ Hα. Denote by Uz
and W±

z the corresponding eigenvectors (or generalized eigenvectors if ν+

z = ν−
z ). Then the

dynamical system u′ = A0(z)u has a linear stable manifold Ûz = span(Uz) and a linear
unstable manifold Ŵz = span(W±

z ).
Given that the equation u′ = Aφ1

(z)u is linear, it is convenient to consider the as-
sociated equation for a function û that takes values in the projective plane CP2. Notice
that the coefficient function y 7→ Aφ1(y)(z) is bounded. Thus, a solution of (4.34) cannot
vanish at any point without being identically zero. In order to simplify the discussion, let
us identify û(y) with span(u(y)). Then our dynamical system becomes

φ′ = X(φ) , û′ = Aφ1
(z)û . (4.36)

We have included here the evolution equation (1.5) for the pulse φ, in order to make the
system autonomous. This system has a fixed point (0, Ûz) and an invariant projective line
{0} × Ŵz. The fixed point is hyperbolic, with a 1-dimensional local stable manifold that
is tangent at (0, Ûz) to the line Û0 × Ûz. Thus, the only way for a solution u of (4.34) to
stay bounded as y → +∞ is for û(y) to be on the local stable manifold, in which case
û(y) → Ûz and u(y) → 0.

The invariant line {0} × Ŵz is hyperbolic as well, with 3-dimensional local stable and
unstable manifolds that are tangent (at this line) to Ŵ0 × Ŵz and Û0 × CP2, respectively.
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So a solution u of u′ = Aφ1
(z)u stays bounded as y → −∞ only if u(y) lies on the local

unstable manifold, in which case û(y) approaches the projective line Ŵz as y → −∞, and
u(y) → 0. And by hyperbolicity, the only alternative is û(y) → Ûz, with u(y) growing
exponentially.

What will be needed from this discussion is summarized in the proposition below.
Notice that Ŵz is the set of all vectors w ∈ C

3 with the property that V⊤
zw = 0, where Vz

is the eigenvector of the transposed matrix A0(z)
⊤ for the eigenvalue µz.

Proposition 4.5. If z ∈ Hω then the equation u′ = Aφ1
(z)u has a solution u = uz

satisfying

lim
y→+∞

uz(y)e
−yµz = Uz . (4.37)

λ ∈ Hω is an eigenvalue of Lφ if and only if V⊤

λuλ(y) → 0 as y → −∞.

This was proved already in [7] for a more general class of equations, under the as-
sumption that the rest solution φ

¯
= 0 is exponentially stable. Notice that (φ, uz) is a

parametrization of the local stable manifold for the system φ′ = X(φ) and u′ = Aφ1
(z)u.

Proposition 4.5 by itself is of limited practical value, due to the asymptotic nature of
the condition on uλ. The idea is to “propagate” this condition from y = −∞ to finite y.
More specifically, consider the “adjoint” equation

v′ = −Aφ1
(z)⊤v . (4.38)

The limiting behavior of its solutions, as y → ±∞, is governed by the matrix −A0(z)
⊤.

This matrix has an eigenvalue −µz with positive real part, and two eigenvalues −ν±
z with

negative real part. The discussion preceding Proposition 4.5 shows that we can find a
solution v = vz that satisfies

lim
y→−∞

vz(y)e
yµz = Vz . (4.39)

The main reason for solving (4.38) is that

[v⊤

z uz]
′ =

[
v′z]

⊤uz + v⊤

z u
′
z = [−Aφ1

(z)⊤vz]
⊤ + v⊤

z Aφ1
(z)u′z = 0 . (4.40)

So the product v⊤
z uz is a constant function. In particular, if vz(y)

⊤uz(y) = 0 for some y
then v⊤

z uz = 0. This property remains the same if we replace vz(y) by vz(y)e
yµz , which

tends to Vz as y → ∞. This shows that z ∈ Hω is an eigenvalue of Lφ if and only if
v⊤
z uz = 0. A stronger and more general result was proved in [7]. The following theorem
only describes the parts that are relevant to our problem.

Theorem 4.6. [7] Given any y ∈ R, define the function ∆ : Hω → C by the equation
∆(z) = vz(y)

⊤uz(y). Then ∆ is analytic and independent of the choice of y. Furthermore,
λ ∈ Hω is an eigenvalue of Lφ with algebraic multiplicity m, if and only if λ is a zero of ∆
of order m.

Let r = 2485
8192 and ϑ = 5857

16384 . Denote by R the closed rectangle in C with corners at
±iϑ and r ± iϑ. Let D be the closed disk in C, centered at the origin, with radius 1

32 .
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Lemma 4.7. The function ∆ has a simple zero at 0 and no other zeros in D. Furthermore,
the restriction of ∆ to the boundary of R \D takes no real values in the interval [0,∞).

Our proof of this lemma is computer-assisted; see Section 5 for more details.
Using Lemma 4.7 and Lemma 2.2, we can now give a

Proof of Theorem 1.2. The existence and real analyticity of the homoclinic pulse
follows from Lemma 2.2.

Stability: Lemma 4.7 together with the argument principle imply that function ∆ has
no zeros in R ∪D besides the simple zero at 0. So by Theorem 4.6, the operator Lφ has
a simple eigenvalue 0 and no other eigenvalues in R ∪ D. Given that r < Λ and ϑ < Θ,
we conclude by Proposition 4.1 and Proposition 4.2 that Lφ has no nonzero eigenvalue in
Hα for some α > 0. By Proposition 3.5 this implies that the solution φ′ is exponentially
stable for the linear system (3.2). The exponential stability of the homoclinic pulse φ now
follows from Lemma 3.1. QED

5. Further reduction of the problem

5.1. The periodic pulse

What remains to be proved are Lemma 2.1 and Lemma 4.4.
Notice that f is a polynomial, so the map Nc defined in (2.7) involves little more than

products of functions in F and multiplier operators. These are rather easy to compute. By
“computing” an element x in some space X we mean finding a set x♭ ⊂ X, that contains
x. The types of enclosures x♭ that we use, and the procedures for finding them, will be
described in Subsection 5.3.

What can be surprisingly difficult in computer-assisted proofs are estimates on linear
operators. It is often necessary to “condition” an operator via conjugacies as in (4.27) or
(4.30). But once things boil down to computing operator norms, the norm (2.9) used in
the spaces F and V makes the task easy: Let {e0, e1, . . .} be an enumeration of the Fourier
modes ck cos(k.) and sk sin(k.), with ck and sk chosen in such a way that ‖ej‖ = 1 for all
j. Then the operator norm of a bounded linear operator U : F → F can be bounded by
using that

‖U‖ = sup
j

‖Uej‖ ≤ max
{
‖Ue0‖, ‖Ue1‖, . . . , ‖Uen−1‖, ‖UEn‖

}
, (5.1)

where En = {en, en+1, . . .}. As we will describe later, computing a set UEn is not more
involved than computing a function Uej . So it suffices to choose n sufficiently large, such
that the bound on ‖UEn‖ is smaller than the bound on ‖Uej‖ for some j < n.

This procedure is used to obtain the estimate (2.14) on the operator DMc(h). One
reason why this is possible is that DMc(h) is compact, due to a factor (D2 − κ2I)−1.
But this alone is not sufficient. What contributes is that the pulse φ

¯
has effectively a

much larger domain of analyticity than the strip |Im (x)| < log(1 + 2−10) considered here.
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Thus, multiplication operators like h 7→ ϕh, when viewed as a “matrix” for the Fourier
coefficients, are very small far away from the diagonal.

The same procedure is used to obtain the estimate (4.31) on the operator UKU . Here
we do not have compactness, but the two factors U compensate for this.

This leaves the operator L0 and its resolvents. L0 is a direct sum of a high-mode part
and a low-mode part. The high-mode part is trivial. Its eigenvalues are given by (4.17)
with p > κ/θ, and it is easy to check that all of them have a negative real part. But we use
the computer to do this, which also verifies that the high-mode part of U−1(zI−L0)

−1U−1

satisfies the bound (4.31) for all z ∈ Γ.
The low-mode part L = P (L0+F )P of L0 is in effect just a matrix. After performing

an approximate diagonalization D = A−1LA, we use the Gerschgorin disks to check that
exactly one (simple) eigenvalue of D lies in Ω and the others are a positive distance away
from Ω.

Denote the low-mode part of U by U . The task left is to show that the matrix
U−1(zI − L)−1U−1 satisfies the bound (4.31) for all z ∈ Γ. This is done by covering Γ
with a finite collection of disks |z − zj | < δj with centers zj ∈ Γ. The resolvent matrices
Rj = (zjI − L)−1 are computed explicitly (with error estimates, of course) and shown to
satisfy δj‖Rj‖ < 1. This bound implies that the matrix

zI− L =
[
I + (z − zj)Rj

]
(zjI− L) (5.2)

is invertible whenever |z − zj | < δj . Estimating its inverse is straightforward.

5.2. The homoclinic pulse

In Subsection 2.2 we described our construction of the traveling pulse φ solution of the
equation (1.5). It involves an expansion near y = +∞ for the parametrized local stable
manifold φs, an expansion near y = −∞ for the parametrized local unstable manifold Φu,
and a sequence of integration steps to prolong φs. All three problems were reduced to
equations that can be solved order by order. At the end of this subsection we give a result
that applies to such order by order computations. (As mentioned earlier, by “computation”
we mean a process that leads to a rigorous enclosure.)

The main ingredients needed to prove Theorem 4.6 are estimates on the functions uz
and vz that enter the definition ∆(z) = vz(y)

⊤uz(y) of the Evans function ∆. We will
show that, after suitable reformulation, the equations for uz and vz can again be solved
order by order. The eigenvector Uz of the matrix A0(z), used in (4.37), and the eigenvector
Vz of the transposed matrix A0(z)

⊤, used in (4.39), are given by

Uz =




µz

1
ǫ(ǫγ + z − cµz)

−1


 , Vz =




1
c+ µz

−c(ǫγ + z − cµz)
−1


 , (5.3)

where µz denotes the eigenvalue of A0(z) with negative real part. In what follows, we
always assume that z ∈ Hω with 0 < ω < ǫγ.

Given that φ is an analytic function of r = eµ0y near r = 0, and that e−µzyuz(y) → Uz
as y → +∞, we consider a re-normalized version of uz,

Uz(y) = e(µ0−µz)yuz(y) . (5.4)
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Since u′z = Aφ1
(z)uz, the function Uz has to satisfy the equation

U ′
z =Ms

φ1
(z)Uz , Ms

φ1
(z) = Aφ1

(z) + (µ0 − µz)I . (5.5)

Recall that A0(z)Uz = µzUz, and thus Ms
0 (z)Uz = µ0Uz. Having in mind an expansion in

powers of r = eµ0y, we decompose

Uz(y) = ℓs(r) + Z
s(r) , ℓs(r) = rUz , (5.6)

with Z
s(r) = O(r2). To simplify notation, we have suppressed here the dependence on z.

Using that µ0r∂rℓ
s = µ0ℓ

s =Ms
0 (z)ℓ

s, the equation (5.5) can be rewritten as

µ0s∂rZ
s = P0ℓ

s +Ms
φ1
(z)Zs , (5.7)

where

P0 = Aφ1
(z)−A0(z) =



0 −f ′(φ1)− a 0
0 0 0
0 0 0


 . (5.8)

Finally, we convert (5.7) to the integral equation

Z
s =

[
∂y −Ms

0 (z)
]−1

P0(ℓ
s + Z

s) , ∂y = µ0r∂r . (5.9)

This equation for Z
s = Uz − ℓs is the analogue of the equation (2.19) for Zs = φs − ℓs.

Notice that, due to the special form of P0, the equation (5.9) reduces by projection to
an equation for the component Z

s
1 of Z

s alone. Using that Re (µz) < 0, the operator
∂y −Ms

0 (z) is easily seen to be invertible on the space of analytic functions A1
ρ defined

below. Recall also that f ′(0) = −a. Thus P0(s) = O(s). This shows that (5.9) can be
solved order by order in powers of r.

We will prove that the solution Z
s is analytic in a disk Dρ characterized by |r| < ρ.

The analysis is carried out in the space A1
ρ of all analytic functions h on Dρ that extend

continuously to the boundary of Dρ and have finite norm

‖h‖ρ =
∞∑

k=0

‖hk‖ρk , h(r) =
∞∑

k=0

hkr
k . (5.10)

To be more precise, our functions h = Z
s
j also depends on the spectral parameter z. The

function in A1
ρ take values in a space B of function that are real analytic in the disk

|z − z0| < ̺. The norm of a function g : z 7→ ∑
n gn(z − z0)

n in the space B is given by
‖g‖ =

∑
n |gn|̺n. This is the norm that appears in (5.10) for the coefficients hk.

The procedure for computing the solution v = vz of the adjoint equation (4.38) satis-
fying (4.39) is similar. To match the asymptotic behavior of φ near y = −∞ we consider

Vz(y) = e(ν0+ν̄0+µz)yvz(y) , (5.11)
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where ν0 and ν̄0 are the eigenvalues of A0(0) with positive real part. The function Vz has
to satisfy the equation

V ′
z = −Mu

φ1
(z)⊤Vz , Mu

φ1
(z) = Aφ1

(z)− (ν0 + ν̄0 + µz)I . (5.12)

As in (2.20) we make the ansatz

Vz(y) = Vz

(
Reν0y, Reν̄0y

)
, (5.13)

and
Vz(s) = ℓu(s) + Z

u(s) , s = (s1, s2) . (5.14)

But here ℓu(s) = s1s2Vz and Z
u(s) = O(|s|3). Using that A0(z)

⊤Vz = µzVz, the equation
(5.12) can be rewritten as

(ν0s1∂s1 + ν̄0s2∂s2)Z
u = −P⊤

0 ℓ
u −Mu

φ1
(z)⊤Zu , (5.15)

or
Z
u = −

[
∂y +Mu

0 (z)
⊤
]−1

P⊤

0 (ℓu + Z
u) , ∂y = ν0s1∂s1 + ν̄0s2∂s2 . (5.16)

Again, due to the special form of P⊤
0 , the equation (5.16) reduces by projection to an

equation for the component Zu
0 of Zu alone. Using that Re (νz) > 0, the operator ∂y−Ms

0 (z)
is easily seen to be invertible. Recall also that P0(s) = O(s). So (5.16) can be solved order
by order in powers of s1 and s2. The function space considered here is the same space A2

ρ

that is used to solve the equation (2.22) for the unstable manifold. Again, each coefficient
hk,m in the expansion (2.23) is a function in the space B. But now the variable is the
spectral parameter z, and not the velocity c. At this point, the velocity c is fixed to the
value (interval) described in Lemma 2.2.

Recall that the local stable manifold φs obtained by solving (2.19) has to be “pro-
longed” in order to get it to meet the local unstable manifold Φu. Similarly, we have
to prolong the curve Vz in order to be able to compute the Evans function ∆(z) via the
product Vz(y)

⊤Uz(y). This is done for y = −43, which is the same value of y that is used
to verify the homoclinic intersection.

As mentioned in Subsection 2.2, the prolongation of φs is carried out via repeated
application of a Taylor integrator. The same is done for the prolongation of the curve Vz.
The details are different in the two cases, but the principle is the same: We integrate a
vector field V,

x′(t) = V(x(t)) , x(0) = x0 , (5.17)

where all functions involved are analytic near the origin. Decomposing

V(x) = ℓ+Q(x− x0) , ℓ = V(x0) , Q(0) = 0 , (5.18)

and substituting

x(t) = x0 + tℓ+ Z(t) , Z(t) =

∞∑

k=2

Zkt
k , (5.19)
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into the equation (5.17) yields the integral equation

Z(t) =

∫ t

0

Q
(
sℓ+ Z(s)

)
ds . (5.20)

Clearly this equation can be solved order by order, meaning that the coefficients Zk can
be determined inductively one after the other.

Unlike in the periodic case, we are not using the contraction mapping principle to
solve fixed point equations. In the homoclinic case, all of our equations can be solved
order by order. The details differ from one equation to the next, but the general principle
is the same and can be described as follows.

Let (Xk, ‖.‖k) be Banach spaces for k = 0, 1, 2, . . . and let (X, ‖.‖) be the Banach
space of all functions x : N → ⋃

kXk with x(k) ∈ Xk for all k and ‖x‖ =
∑

k ‖x(k)‖k
finite. Denote by Pn the projection on X defined by setting (Pnx)(k) = x(k) for k ≤ n
and (Pnx)(k) = 0 for k > n.

Lemma 5.1. Let Y0 be a closed bounded subset of X such that PnY0 ⊂ Y0 for all n,
and P0Y0 = {y0} for some y0 ∈ X. Let F : Y0 → Y0 be continuous, having the property
that Pn+1F = Pn+1FPn for all n. Then F has a unique fixed point y ∈ Y0, and Pny =
PnF

m(y0) whenever n ≤ m.

Notice that the set Y0 in this lemma need not be compact or convex. The norm on X
is of course very special. But this framework fits perfectly with the function spaces used
here and in other computer-assisted proofs.

Proof. Let y ∈ Y0. Then P0F
m(y) = y0 for all m. If 0 < n ≤ m then

PnF
m(y) = PnF (Pn−1F

m−1(y)) = . . .

= PnF (Pn−1F (. . . P1(F (P0F
m−n(y))) . . .))

= PnF (Pn−1F (. . . P1(F (y0)) . . .)) .

(5.21)

So PnF
m(y) is independent of y. For a fixed point y of F this yields Pny = PnF

m(y0)
whenever n ≤ m. In particular, there can be at most one fixed point.

In order to prove that a fixed point exists, define yn = PnF
n(y0) for each n. By (5.21)

we have yn = PnF
m(y0) and thus yn = Pnym for all m ≥ n. This shows that

‖ym‖ = ‖y0‖+
m∑

k=1

‖yk − yk−1‖ . (5.22)

The sum in this equation is bounded uniformly in m, since ym belongs to the bounded set
Y0. Thus, n 7→ yn is Cauchy sequence. It converges since X is complete, and y = lim yn
belongs to Y0 since Y0 is closed. Using again that the right hand side of (5.21) is independent
of m ≥ n, we have

PnF (ym) = PnF (PmF
m(y0)) = PnF (Pn−1F

m(y0))

= PnF (Pn−1F
n−1(y0)) = PnF

n(y0) = yn .
(5.23)
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Taking m → ∞ and using the continuity of F , we get PnF (y) = yn for all n, and thus
F (y) = y. QED

5.3. Estimates done by computer

In Sections 2-4 we have reduced the problem of proving the existence and stability of pulse
solution for the FitzHugh-Nagumo equation (1.1) and (1.3) to a proof of four lemmas:
Lemma 2.1, Lemma 4.4 in the periodic case, and Lemma 2.2, Lemma 4.7 in the homoclinic
case. In Subsections 5.1 and 5.2 we described how the claims made in these lemmas are
reduced to concrete computations. Our aim here is to explain how these computations are
carried out with the necessary error estimates. In essence, the problem is being reduced
further, to a point where each step is as trivial as verifying an inequality a ∗ b < c. These
steps are then carried out by a computer. The full description, with all the necessary
definitions (declarations) and propositions (procedures and functions), are written in the
programming language Ada [30] and can be found in [34]. Here we only give a sketch of
this reduction process and its organization.

At the highest level, our programs are essentially translations of expressions that
appear in our equations like (2.5) and (5.9). At the lowest level, numbers are being added,
multiplied, compared, etc., using interval arithmetic. The intermediate levels mostly reduce
the problem. They are kept as independent from each other as possible.

Each level builds upon a generic type Scalar for which various operations are defined.
These scalars are the “representable” subset of some algebra S. By algebra we mean a
commutative Banach algebra with unit. The collection of all scalars will be denoted by
R(S). Among the scalar operations is a function Sum : R(S) × R(S) → R(S) with the
property that S1 + S2 ∈ Sum(S1, S2) whenever S1, S2 ∈ R(S). Here S1 + S2 denotes the
collection of all sums s1 + s2 with s1 ∈ S1 and s2 ∈ S2. If there exists no scalar in R(S)
that includes S1 +S2, then Sum(S1, S2) returns a special element Undefined. (In practice,
the program simply stops with an error message.) The same scalar Undefined is returned
by other functions whenever some operation is undefined, either by necessity or choice.

It is not necessary to know the innards of a Scalar, except that it includes error
estimates in the form of balls {s ∈ Si : ‖s‖ ≤ r}, where Si can be any subspace of S. Let
F be an algebra of S-valued functions on some domain D, and assume that F contains all
constant functions. Then to every scalar S ⊂ S we associate an extended scalar F ⊂ F
by replacing a ball {s ∈ Si : ‖s‖ ≤ r} with the ball {f ∈ Fi : ‖f‖ ≤ r}, where Fi

denotes the subspace of all function in F that take values in Si. The collection of all such
extended scalars is denoted by R(S,F). We assume that the above-mentioned function
Sum extends to a function Sum : R(S,F) × R(S,F) → R(S,F) with the property that
F1 +F2 ∈ Sum(F1, F2) whenever F1 , F2 ∈ R(S,F). This is assumed to hold for any choice
of the algebra F .

Our scalars in R(R) are all of the form c + {s ∈ R : |s| ≤ r} where c and r are real
numbers that are representable in the given floating point environment. It is well-known
how to implement a function Sum with the above-mentioned properties. Similarly for other
elementary functions such as SetZero, Neg, Diff, Prod, Quot, Exp, . . .. The scalars in
R(C) are all sets of the form X + iY with X,Y ∈ R(R).
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Our type Taylor1 is now defined as follows. Consider a disk Dr = {z ∈ C : |z| < r},
with r > 0 representable. Let Tr be the space of all analytic functions f : Dr → S that
extend continuously to the boundary of Dr and have a finite norm

‖f‖ =

∞∑

n=0

‖cn‖rn , f(z) =

∞∑

n=0

cnz
n , c0, c1, . . . ∈ S . (5.24)

Clearly Tr is a Banach algebra under pointwise multiplication. Given a positive integer d,
a Taylor1 is any set of the form

F : z 7→
d∑

n=0

C(n)zn , C(0 . . k − 1) ∈ R(S) , C(k . . d) ∈ R(S, Tr) , (5.25)

for some nonnegative integer k ≤ d. The collection of all these sets is denoted by R(Tr).
Now a Taylor1 is simply another type of Scalar, based on Tr instead of S. An extended
Taylor1 is defined by replacing the algebra Tr in (5.25) by a function algebra F , as
described earlier. In our Ada implementation, Taylor1 is a triple F=(F.R,F.K,F.C),
where F.R is the radius r of the domain Dr, F.K is the integer k in (5.25), and F.C is an
array F.C(0 . . d) of (extended) scalars. The component T.R is used for inclusions Tr → Tr′
when r > r′ > 0.

Implementing Sum : R(Tr) × R(Tr) → R(Tr) is trivial: Given F1=(F1.R,F1.K,F1.C)

and F2=(F2.R,F2.K,F2.C) of type Taylor1, we set F3.R := Min(F1.R,F2.R), F3.K :=

Min(F1.K,F2.K), and F3.C(N) := Sum(F1.C(N),F2.C(N)) for N = 0, 1, . . . , d, and then
return F3. The function Prod is equally trivial: just multiply F1 and F2 as if they were
polynomials, except that terms of degree n > d are added to F3.C(d), after being enclosed in
zero-centered balls and multiplied by F3.Rn−d. For functions like Quot or Exp we compute
the first N terms of the power series, using Sum and Prod. For the remainder of the
Taylor series we use simple norm estimates, and the corresponding balls are added to the
component F.C(d) of the result. Functions like ArcCos are implemented by first computing
an approximation and then estimating the errors from the corresponding Newton map.

Our list of “standard” scalar operations also includes an upper bound on the norm,
comparisons (which may be Undefined for some scalars), inclusion relations, certain de-
compositions, input/output, etc. After implementing each of them for the type Taylor1,
this type can now be used as Scalar to construct new types. A type Taylor1 with coeffi-
cients of type Taylor1 is used e.g. to represent the functions φs whose Taylor coefficients
depend on the velocity parameter c ∈ R, or the functions uz that depend on the spectral
parameter z ∈ C.

To give a simple example of how the type (5.25) can be used, consider the fixed
point problem for the map M : T1 → T1 defined by (Mf)(z) = [z + f(z/2)]2 and f(z) =
O(z2). Here S = R. Starting with F=(1,D,0) and iterating M d− 2 times, the coefficients
F.C(0..D-1) stay the same under further iterations of M. Now enlarge F.C(D) to some
closed ball B and apply M again. If M(F).C(D) is included in B then M(F) contains the fixed
point of M , according to Lemma 5.1.

In addition to Taylors1, we also need a type Taylor2 to represent sets of analytic
functions on Dr ×Dr. For reasons of efficiency, we have implemented Taylor2 directly, as
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opposed to deriving it from Taylor1. It is represented again by a triple F=(F.R,F.K,F.C),
but F.C is now a two-dimensional array of scalar coefficients F.C(m,n) with m + n ≤ d.
The type Taylor2 could also be used as scalar, but this is not needed for the problem
at hand. A type Taylor2 with coefficients of type Taylor1 is used e.g. to represent the
functions Φu

j and vz whose Taylor coefficients depend on the spectral parameter z ∈ C.
Besides the standard scalar operations, there are also some Taylor1-specific and/or

Taylor2-specific operations such as as evaluation, derivatives (with result in Tr′ for some
r′ < r), antiderivatives, and integrals. A quick look at the Ada packages Taylors1 and
Taylors2 in [34] should make clear that all of this is rather straightforward. But as with
other proofs, some essence is in the details as well.

Next, consider the space F of 2π-periodic analytic functions defined after (2.8). The
representable sets in F are called Fourier1 and are of the form

F =
d∑

k=0

C(k) cos(k.) +
d∑

k=1

C(−k) sin(k.) +
2d∑

n=−2d

Bn(rn) , (5.26)

with C(−d . . d) ∈ R(S), and with Bn(rn) defined as follows. Given n ≥ 0, let Fn be
the subspace of all even functions (cosine series) in F with frequencies k ≥ n. For every
representable real number rn ≥ 0, we define Bn(rn) to be the closed ball of radius rn in
Fn. Similarly, the balls Bn(rn) for n < 0 contain all odd functions f ∈ F with frequencies
k ≥ |n| and norm ‖f‖ ≤ rn. Notice that Bn(1) ∪ B−n(1) is an enclosure for the set En

described after equation (5.1).
Each Fourier1 is represented by a triple F=(F.R,F.C,F.E), where F.R = eρ, and where

F.C and F.E are arrays containing the coefficients C(k) and the radii rn, respectively, that
appear in the definition (5.26). We have implemented all standard scalar operations for
the type Fourier1, plus a number other useful Fourier1-specific operations. For details
we refer to the package Fouriers1 in [34].

Basic linear algebra for matrices and vectors with scalar entries is covered in the
packages Matrices, Vectors, and ScalVectors. The procedure ScalVectors.FindZero3
is used e.g. to locate a zero of the function Υ defined in (2.25). Procedures that are specific
to vectors with Taylor components are defined in MultiTaylors1 and MultiTaylors2.

Some of the problem-specific procedures can be found in the child packages Fouri-

ers1.Periodic, MultiTaylors1.Homoclinic, and MultiTaylors2.Homoclinic. Most
high-level procedures are defined in the two packages FHN Periodic and FHN Homoclinic.
They contain implementations of the procedures that have been discussed in earlier sec-
tions. (Our main programs merely call these procedures.) It is impossible to describe them
all in detail here. To find out e.g. how [∂y−Ms

0 (z)]
−1 is being estimated, there is no better

way than to read MultiTaylors1.Homoclinic.InvDyMinusM.
For the centers of the balls in R(R) we use a MPFR floating point type with up

to 256 mantissa bits, depending on the program. MPFR is an open source multiple-
precision floating-point library that supports controlled rounding [32]. Numeric types that
do not require high accuracy, such as the radii of the balls in R(R), we use a standard
80 bit extended precision format [33] provided by the Gnat compiler [31]. Further details,
including instructions on how to compile and run our source code, can be found in [34].
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