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Abstract

In many clinical applications to evaluate the effect of a treatment, randomized
control trials are difficult to carry out. On the other hand, clinical observational
registries are often available and they contain longitudinal data regarding clin-
ical parameters, drug therapies, and outcomes. In the past, much research has
addressed causal methods to estimate treatment effects from observational stud-
ies. In the context of time-varying treatments, marginal structural models are
often used. However, most analyses have focused on binary outcomes or time-to-
the-first event analyses. The novelty of our approach is to combine the marginal
structural methodology with the case where correlated recurrent events and sur-
vival are the outcomes of interest. Our work focuses on solving the nontrivial
problem of defining the measures of effect, specifying the model for the time-
dependent weights and the model to estimate the outcome, implementing them,
and finally estimating the final treatment effects in this life-history setting. Our
approach provides a strategy that allows obtaining treatment effect estimates
both on the recurrent events and the survival with a clear causal and clinical
interpretation. At the same time, the strategy we propose is based on flexible
modeling choices such as the use of joint models to capture the correlation
within events from the same subject and the specification of time-dependent
treatment effects. The clinical problem which motivated our work is the evalua-
tion of the treatment effect of beta-blockers in arrhythmogenic right ventricular
cardiomyopathy (ARVC/D), and the dataset comes from the Trieste Heart Muscle
Disease Registry.
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1 | INTRODUCTION

To estimate the causal effect of a time-dependent treatment from retrospective observational registries, causal inference
methods are required to control for confounders (Clare et al., 2019; Daniel et al., 2013). Cox marginal structural models are
often used with survival outcomes. Nowadays, event-history analyses are also very often of interest in randomized con-
trolled trials (RCT) as well as in observational studies. However, their application in the context of causal methods for the
estimation of the effect of treatment with assignment switching has been limited. In this paper, we present a methodology
to estimate the effect of a time-varying treatment on recurrent events and a terminal event from longitudinal data.

Marginal structural models (MSM) have been proposed by Hernan et al. (2000) and Robins et al. (2000), and they have
been discussed in the counting process and martingale framework by Reysland (2011). A marginal structural model for
recurrent events based on the Poisson process was proposed by Jensen et al. (2016). Joint frailty models for recurrent
events and a terminal event were proposed by Liu et al. (2004), and their estimation was discussed by Rondeau et al.
(2006). Mazroui et al. (2012) proposed a more general model allowing for two sources of heterogeneity.

The dataset that motivated this work is the Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC/D) Registry
of Trieste (Cappelletto et al., 2018; Pinamonti, 2014; Pinamonti et al., 2011). ARVC/D is a genetically determined heart
disease characterized by progressive loss of myocardium and fibro-fatty replacement (Thiene et al., 1988). Symptoms are
predominantly caused by major ventricular arrhythmias (MVA), which cause cardiac arrest. This is the reason why the
disease is a major cause of sudden cardiac death (SCD) among young individuals (Corrado et al., 2015). The aim of this
study is to evaluate the effect of the use of beta-blockers (the time-dependent treatment) in preventing MVA which can
recur over time. At the moment, no treatment has proven effective in stopping MVA from happening. In high-risk patients,
an implantable cardioverter defibrillator (ICD) is an effective strategy only in avoiding the worst outcome for patients
by stopping cardio-respiratory arrest (Corrado et al., 2015). There is no clear evidence of the effect of beta-blockers in
preventing recurrent ventricular arrhythmias since no clinical trial has been carried out. This is due to the fact that it is
a relatively rare disease; therefore, a trial would take a long time, and it would have a very high cost. The only scientific
literature on the subject consists of few observational studies, which have been analyzed with standard statistical methods
(i.e., time-dependent Cox regression; Marcus et al., 2009). However, it is well known that standard regression methods
cannot address the problem of confounders when the treatment under study has a time-varying nature. Confounders
represent a serious concern in this setting since cardiologists prescribe the drug on the basis of the current clinical status
of the patients. Moreover, the history of the recurrent events process as well as past treatments is additional time-varying
factors influencing the propensity of being treated over time.

Patients affected by ARVC can die as a consequence of a severe MVA or in time they can develop heart failure (HF)
due to the progressive deterioration of the heart muscle. HF is incurable and eventually leads to either heart transplant
or death. As a consequence, the process of the terminal event (i.e., death and heart transplant) and the process of the
recurrent events run in parallel, introducing a semicompeting risk. Finally, beta-blockers can also be used to treat HF so
the terminal event could also be of interest as a secondary endpoint.

Further details and the rationale of the motivating example used throughout the paper are given in Section 2. The
notation and the observation scheme are introduced in Sections 3.1 and 3.2, respectively. Our approach aims at estimating
the short-term average causal effect of beta-blockers comparing the expected counterfactual recurrent MVA outcomes
when beta-blockers are assigned versus not assigned in a visit (Section 3.3). Moreover, our proposed approach allows us
to contrast the counterfactual survival outcomes when patients are continuously assigned to beta-blockers versus never
assigned to beta-blockers (Section 3.4). The treatment effect definition is given in Section 3.5. The marginal structural
models on the two endpoints are discussed in Section 3.6, while in Section 3.7 it is explained how these models can be
estimated from observational data. Both the MSM models and the models for the weights are flexible in their specification.
The weights are estimated with a continuous-time model in order to take into account of the fact that information in
clinical observational registries are typically collected on irregular time intervals as opposed to fixed time intervals. Flexible
parametric survival models are used to estimate the joint frailty structural models. These models allow for both flexible
parametric baseline intensity functions as well as time-dependent coefficients.

Our work brings forward the research on marginal structural models for recurrent events proposed by Jensen et al.
(2016) in the context of vaccine regimes and hospitalizations due to infections in children. The novelty of this proposed
strategy consists of applying the recent work by Liu et al. (2004), Mazroui et al. (2012), and Rondeau et al. (2006) in the
marginal structural framework, extending the previous methodology to a more complex setting in which the outcome
of interest are correlated recurrent events and time to a terminal event. The method is motivated by an application on
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cardiomyopathies, but we believe it could be relevant to many different real-world applications. The implementation of
this marginal structural model for a bivariate event process is possible thanks to recent developments in statistical software
(Crowther et al., 2020). R and STATA were used for the implementation of this analysis.

2 | MOTIVATING EXAMPLE

We retrospectively analyzed 123 patients enrolled between 1990 and 2019 in the Trieste Heart Muscle Disease Registry
fulfilling the current diagnostic criteria for definite ARVC (Marcus et al., 2010). After baseline assessment, patients were
evaluated every 2 years or more frequently, as clinically indicated. Subjects were observed until 31st December 2019, death
or heart transplant. Moreover, 10 patients were lost at follow-up and therefore they were censored at their last visit/ hos-
pitalization. The study complies with the Declaration of Helsinki, and the ethics committee of our institution approved
the study. At baseline and every follow-up evaluation, patients underwent detailed clinical assessment, including 12-lead
electrocardiogram (ECG), signal-averaged electrocardiogram, 24-h electrocardiographic Holter monitoring, exercise-test,
and transthoracic echocardiogram. Moreover, subjects could be evaluated during hospitalization due to a cardiovascular
procedure (i.e. ICD implantation) or a sudden event (e.g. major arrhythmic event or syncope).

Over a median observation period of almost 11 (inter quartile range, IQR: 5-21) years, the median number of vis-
its/contacts with the hospital per subject was six (IQR: 3-11). Forty-three patients initiated treatment with beta-blockers
during the study period. Treatment switches were possible at each visit or during hospitalizations according to the cardi-
ologist’s decision. Their opinion could be influenced by fixed characteristics of the patients (e.g., family history of MVA)
but most importantly by clinical status, concomitant medications, and history of past MVA.

In total 38 patients experienced MVA, and the total number of MVA observed in the cohort was 83. MVA was reported
either because the patients were hospitalized or because they were recorded by the ICD. Patients who experienced an MVA
were more likely to have other sudden cardiac arrests in the future, thus events from the same subject are highly correlated.
Seven patients also died as a consequence of an MVA, and in addition 21 patients died and nine underwent heart transplant
during the follow-up. The semicompeting risk of the terminal event is, therefore, biologically linked to the process of the
recurrent MVA. Even though other causes of death cannot be excluded, death is either the immediate consequence of an
MVA or most likely caused by progressive heart muscle deterioration. Therefore, the model strategy needs to take into
account the presence of informative censoring due to the semicompeting risk and the possible correlation between the
MVA and the semicompeting risk.

Baseline characteristics of the study population are reported in Table 1.

Following the criteria suggested by Herndn and Robins (2006), we report the protocol of our target trial:

(i) Eligibility criteria: Patients are to be diagnosed with ARVC/D according to the current diagnostic criteria for definite
ARVC (2010)(Marcus et al., 2010) and not have used beta-blockers before the start of the study.

(ii) Treatment strategy: Randomization is performed at each visit/contact with the hospital, and patients are aware of the
treatment strategy allocation. At each visit, patients can be randomized to either beta-blockers or no beta-blockers.
(See the next section for details)

(iii) Follow-up:Itstarts at the first visit to the Hospital of Trieste (first randomization) and ends at death or heart transplant
or last contact or on December 31, 2019, whichever comes first.

(iv) Outcome: The primary outcome of interest is recurrent MVA and secondarily death/heart transplant.

(v) Causal contrast of interest: It is per-protocol effect.

(vi) Analysis plan: Tt includes the joint frailty model for recurrent events and a terminal event (see the next section for
details).

Finally, underlying the methodology presented in this work there are important assumptions that need to be remarked
upon. In the context of our motivating example, first of all, we are assuming subjects have a non-zero and a non-one
probability of receiving the prescription of beta-blockers over time (Al: Positivity). We are also assuming that cardiologist’s
decision to prescribe beta-blockers does not interfere with other subjects’ potential outcome (A2: No interference) and that
the observed outcome is the same as the potential outcome defined under the treatment regimen actually assigned (A3:
Consistency). Last, as in all propensity score methods, we are assuming that all important confounders are measured (A4:
No unmeasured confounders).
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TABLE 1 Summary statistics of baseline characteristics in the cohort. Categorical variables are summarized with n(%), whereas either
mean (SD) or median (Q1-Q3) are used for continuous variables as appropriate.

Overall population (N = 123)
Clinical data

Age (years) 39 (16)
Male (%) 86 (70)
Heart rate (bpm) 66 (12)
Systolic blood pressure (mmHg) 124 (16)
Year of enrolment: Before 2000 73(59.4)
Year of enrolment: 2000-2010 31(25.2)
Year of enrolment: >2010 19 (15.4)
MVA before the study period (%) 31(25)
New York Heart Association Class>1 (%) 22 (18)
Proband (%) 92 (75)
Family history SCD (%) 25(20)
Syncape (%) 19 (15)
ICD (%) 9(7)
ECG/ 24-h Holter

Epsilon waves (%) 18 (15)
Negative T waves (%) 30 (24)
Premature ventricular complexes (PVC) in 24 h 1005 (14-3780)
Premature ventricular complexes (PVC) >1000/24 h (%) 62 (50)
Positive late potentials (%) 31(25)
Non-sustained ventricular tachycardia (NSVT) (%) 58 (47)
Echocardiography

Left ventricular ejection fraction 55 (13)
Right ventricular fractional area change 30(12)
Biventricular dysfunction (%) 28 (23)
Tricuspid regurgitation (TR) >1 (%) 14 (12)

3 | METHODS
3.1 | Notation

Time is considered continuous, and it is measured in months. All subjects’ baseline corresponds to the first visit to the
hospital. Observation times in the study are made at irregular intervals of follow-up and differ across individuals. There-
fore, we use a common time grid for all subjects denoted with ¢y, {4, ..., [y, ..., t7, Which includes all time points in which
any contact with the hospital is observed in the cohort together with all the terminal events and censoring times. We use
the notation from Hernan and Robins (2020) and denote exposure (current treatment assighment to either beta-blockers
or no beta-blockers) at time ;. by By, confounders measured at time ;. by Ly, baseline covariates by Z, the occurrence
of a recurrent arrhythmic event at time ¢, by R, and the occurrence of the terminal event at time f;, by D,. Moreover,
By = (B, ..., By) corresponds to the treatment regimen history up to time f;;; L = (L, ..., L) corresponds to the history
of time-dependent confounders up to time t;, Ry = (Ry, ..., Ry) corresponds to the history of recurrent arrhythmic events
up to time f,.. We use capital letters to denote random variables and lowercase letters to denote their realizations.

3.2 | Observation scheme

Each subjecti is observed only in a subset of time points f1;, ... , fkjs ... , {1, With f; < f being her/his end time of observation.
We assume that B;;, remained constant and R;; = 0 between two observations. We can also assume that some L;;, remained
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constant between contacts with the hospital. For time-dependent confounders whose such assumption did not hold we
specified generalized mixed effects models to impute subject-specific values of the covariate at time points other than
measurement times. More details on the specification of the imputation models are given in Appendix A.2.

3.3 | Estimand of interest and measure of effect for recurrent events

With regard to the timescale, that is the metric on which the risk sets are constructed and times to event are measured
(Klein & Moeschberger, 2003), so far we have referred to time T as the time in months since the study entry.

In recurrent events settings, this is not the only timescale possible. We now define a different timescale, AT = Ty — Ty,
as the time in months since the last hospital contact. This corresponds to a “clock-reset” formulation in which every time
a patient has contact with the hospital the clock is reset to 0. We use this timescale for the recurrent events outcome. Since
we assume that after a major arrhythmia the subject has some sort of contact with the hospital, this timescale corresponds
to an extension of the “gap-time” formulation for recurrent events. Under this timescale, we are interested in comparing
the treatment strategy “treat with beta-blockers at visit k™ versus “do not treat with beta-blockers at visit k.” We denote
the first strategy by {b; = 1} and the second one {b; = 0}. The average treatment effects of B on the primary outcome
can be defined as the contrast between the counterfactual expected outcomes Rz’fl and Rg’fﬂ, that is, the counterfactual
time-varying indicator for the recurrent event under the two treatment strategies assigned at time f;.. The average causal
treatment effect we aim to estimate is a point treatment effect, but since there are multiple visits it corresponds to a
treatment effect averaged across visits. Therefore, we are not interested in distinguishing between visits since we assume
that the treatment effect on the recurrent events endpoint does not significantly differ between one visit and the other.
The above causal effect has been previously defined by Keogh et al. (2018), and it is also referred to as the“short-term
effect.” As a measure of effect for the primary endpoint, we consider the cumulative hazard, A(Af). The causal contrast
of interest is A(AHP=1  versus A(ADP=Y for Af=1,..,24 months. A(A)?=! and A(AL)P=0 are the cumulative
hazards specified in terms of the counterfactual outcomes:

s prRY, =R =0
A(ADDE = / lim rRspu = RS ) ds. €)
0 u—0 u
3.4 | Estimand of interest and measure of effect for the terminal event

For the terminal event, which is by definition a long-term outcome, we are interested in estimating the joint effect of
treating with beta-blockers at each visit over the follow-up versus never treating with beta-blockers. We denote the first
treatment strategy by b = (1,1,...,1) = 1 and the second one by b = (0,0, ...,0) = 0. The average treatment effects of B
on the secondary outcome can be defined as the contrast between the counterfactual expected survival outcomes under
the two treatment strategies.

‘We now define DE as the counterfactual time-varying indicator for the terminal event under treatment strategy b. In
this case, our causal estimand of interest is the survival probability at time fg, Sf;{ = Pr(Dg = 0) and our causal contrast of
interest is

Pr(Di = 0) versus Pr(DkE =0) for i}, = 1, ---,60 months. (2)

3.5 | Treatment effect definition

For both outcomes, as treatment effects, we consider the ratio and the difference of the measures of effect previously
defined in terms of counterfactual outcomes, AZ"[ and Sg{.
Specifically, these average treatment effects correspond to the following questions:

(i) What would be the average difference/ratio in the cumulative hazard of a new MVA up to 24 months from a previous
visit if everyone received the treatment at that visit compared with if everyone did not receive the treatment?
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(ii) What would be the difference/ratio in the survival up to 5 years from the start of follow-up if everyone continuously
received the treatment compared with if everyone never received the treatment?

3.6 | Marginal structural models for recurrent events and a terminal event

To estimate the causal effects of interest, we need to specify a joint structural model for the hazard of the counterfactual
recurrent events outcome and the hazard of the counterfactual death outcome for each subject i, according to the treatment
strategies by and b, respectively. Specifically, we assume a structural joint frailty model (Model 1) as follows (Liu et al.,
2004; Rondeau et al., 2006):

b
Aty = tilwg) = Ao(trgs — trexpiby, Bltier — ti) + i}
}’?(lkmi) = yolti)expiby, a(ty) + ru; (3)

where by, are the time-dependent covariates indicating the current treatment at time #;; f(f;41 — fy) and a(z) are the
possibly time-dependent regression coefficients for beta-blockers; the individual frailty terms, u;, are independently and
identically distributed random variables with u; ~ N'(0,5?), and A(t.; — ) and y,(t) are the baseline hazard functions
of the Royston-Parmar (Royston & Parmar, 2002) survival model.

All observations from the same subject share the frailty term u;, which can affect both the risk of recurrent events and
the risk of the terminal event. When r # 0, the model assumes the existence of a common source variation for both the
association between recurrent events and between recurrent events and the terminal event.

Alternatively, the general shared frailty model (Model 2) allows for two distinct origins of heterogeneity: one for the
recurrent events’ dependency and one for the association between the two intensity functions. The model is defined by
(Mazroui et al., 2012)

b
A (Geer = eluins win) = Ao(tiegr = t)expibig, Blier — i) + win + Uy}
72(thu) = yo(Dexpibya(t) + up}. @)

In this case, two mutually independent individual frailty terms are introduced in the model: u;; ~ N(0, crf), Ujy ~
N(0,02),Vi=1,..,123.

Of note, both models allow for time-dependent coefficients to relax the assumption of proportional hazards which
in practice is often violated. Specifically, time-dependent coefficients were obtained by adding an interaction term
between the treatment coefficient and time. For the latter, a restricted cubic spline transformation was used to allow
for nonlinearity. In Appendix A.2, we show how the marginal models are used to obtain the causal estimands of interest.

3.7 | Model for the weights

In Figure 1, a directed acyclic graph (DAG) is used to represent the causal problem under study. The fixed (green) and
time-dependent (blue) confounders specific to the example are also listed. An important aspect of the DAG represent-
ing our causal problem is that there is treatment-confounders feedback for the terminal event outcome as it can be
seen from the lines going from L to B; and from B; to L,. Moreover, it is important to note that we are assuming
that treatments only affect the outcomes at the subsequent time since there are no paths between arrhythmic events
and past treatments (e.g., between B and R,) and between the terminal events and past treatments (e.g., between B,
and D5). The rationale behind this assumption relies on the pharmacodynamics of beta-blockers which are known to
have no cumulative effect. In order to control for confounding, we need to construct the inverse probability of treatment
weights.

This methodology was previously described by Hernan et al. (2000) and Robins et al. (2000). The inverse probability
of treatment weight (IPTW) is based on the probability for subject i of being assigned to a specific treatment at time ¢,
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Negative T-waves atECG ¢+ Right ventricular
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FIGURE 1 Causal direct acyclic graph. Z represents fixed confounders, L represents time-dependent confounders, B is the treatment
indicator, R is the recurrent-event indicator, and D is the terminal event indicator. Subscripts represent the time points at which random
variables can be measured

conditionally to the subject’s previous history:
PS(ty) = P(B = by By = bjg_1). Ly =1y, Ry = T3, Z =12, Dy = 0). )

The probability defined in (5) is also known as the propensity score, and in observational studies it is an unknown
quantity which, therefore, needs to be estimated from the data. We now define the treatment weights, wl.(T) , which differ
between the two outcomes because of the differences between the treatment effect we aim to estimate. For the terminal
event, we want to estimate a joint effect; therefore, the weights need to take into account of time-dependent confounding:

k
1

j=0 PSl(tJ)

w " (t,) = (6)

To reduce the weights’ variability and hence to increase the precision of the estimates, a stabilized version of the weights
is used (Hernan et al., 2000; Robins et al., 2000):

. ) .

e =TT P(Bj = b;;[Bj_1 = bij_1))

! ; PSi(t))
Jj=0 J

(7

On the other hand, for the recurrent event outcome we are estimating the effect of beta-blockers proximal to a visit, that
is, a point treatment effect, so the treatment weights are simply defined as

(M y_ L
w00 = 555 ®)
To stabilize them, we use the marginal probability of getting the treatment he/she has received at time f:
Pr(Bj, = b;
w1 = (Bi = by) ©)

PS;(ty)
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TABLE 2 Summary statistics of stabilized treatment weights

Treatment weights Min 1%t quartile Median Mean SD 34 quartile Max
Recurrent events 0.18 0.78 0.86 0.93 0.48 1.02 3.18
Terminal event 0.60 1.00 1.00 1.01 0.10 1.00 1.52

In addition to treatment weights, also censoring weights (C) can be defined in the same way in order to adjust for
possible dependent censoring different from death/heart transplant (Hernén et al., 2000; Robins et al., 2000):

P(C; =1|Cj_; =0,B;_; =by;_1),D;_; = 0)
P(C; =1|C;_; =0,B;_; =by;_).L; =1, R; =F;.Z=2.D;_; =0)

k
(© _
sw; (60 = [

Jj=0

(10)

However, in our application the fraction of censoring due to possibly informative drop-out is small and therefore weights
in (10) were not estimated.

Typically, to estimate the probabilities required to obtain the weights logistic regression models are used. However,
most recently time-to-event models have been proposed when constructing weights in marginal structural models (Jensen
et al., 2016; van der Wal & Geskus, 2011). The main advantage of using survival models is that they do not require to
discretize time, and they are particularly useful in case data are not recorded at fixed intervals of time (e.g., yearly visits),
but information can be gained at irregular time intervals as it is our case.

Specifically, we used a modulated Cox Poisson model to estimate the instantaneous risk of starting/continuing using
beta-blockers at time ;. since the entry in the study is measured in months:

ri(telz,1,¥,b) = To(f)eXP{Z?}’l + 1?;(}’2 + f1(bye_1))"v3 + fo(E) 4} (D

The hazard model defined in (11) corresponds to the extension of the Cox model by Andersen and Gill (1982) for recur-
rent events in which recurrent events for subject i (i.e., use of beta-blockers at each time ¢ ) are considered independent
conditionally on fixed baseline covariates and time-varying covariates. In the models fixed, z;, and time-dependent covari-
ates, 1;;, are used to take into account the characteristics of the subjects at time f;. Moreover, we need to choose how to
simplify the history of the recurrent events and the treatment history in order to model them as a time-varying covari-
ate. As f1(by_;), the treatment regimen assigned at the previous contact with the hospital (Karim et al., 2014) was used,
whereas the number of past major arrhythmic events was used as f,(¥;). From the predicted values of the model, it is
straightforward to obtain the estimated probabilities needed to define the weights. The probability in (5) can be obtained
as

Ik _— .
PS,(10) = {1 expy{ [{rk—l rl(s|z,{,1:,b)}ds ?f by = 1‘ @)
expi{— ftk_l ri(s|z,1,£,b)}ds  ifby =0

A similar model can also be used to estimate the probabilities of the numerator in (7). Detailed R code on the weights
estimation and the structure of the dataset are available as Supporting Information on the journal’s web page.

4 | RESULTS
4.1 | Weights diagnostics

Weights were obtained using the procedure explained in Section 3.7 and the R software (see the Supplementary Infor-
mation). The distribution of the stabilized weights over 21 years of follow-up is reported in Figure 2 together with the
corresponding number of subjects under observation. Summary statistics are reported in Table 2. Overall, weights for the
terminal event have a small variability and they have a mean and median of around 1. Their behavior over time is also
satisfying. With regard to the recurrent events weights, they show higher variability compared to the terminal event ones
but their behavior is still acceptable.
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FIGURE 2 Distribution of the stabilized weights on the log scale over an observation period of 21 years. The number of subjects still
under observation is reported below

TABLE 3 Coefficients with relative standard errors, hazard ratios, and percentile bootstrap 95% CI from the structural marginal models
with fixed coefficients

Recurrent events

g se HR 95% CI
Model 1 —1.31 117 0.27 0.008-0.55
Model 2 —2.16 1.20 0.12 0.005-0.573

Terminal event

& se HR 95% CI
Model 1 —-0.06 0.70 0.94 0.116-1.799
Model 2 0.10 0.77 1.10 0.177-3.147

4.2 | Treatment effect estimates

Using the weighted dataset, the two different models described in Section 3.6 were fitted using the merlin package in
STATA (Crowther et al., 2020) (see the Supplementary Information). All standard errors and confidence intervals were
obtained through 150 nonparametric bootstrap replicates. By using bootstrap, we took into account for the fact that the
dataset was weighted and, therefore, observations could not be considered independent (Ali et al., 2014). Moreover, the
uncertainty of the weights estimation process was incorporated in the treatment effect estimates.

The degree of freedom of the baseline hazard functions was selected using the akaike information criterion (AIC). First,
the two models with fixed coefficients were obtained and the hazard ratios are reported in Table 3. Beta-blockers appear
to reduce the risk of arrhythmias. It can be observed that different specifications for the random effect structure of the
model influence the estimates for the recurrent events. Indeed, the protective effect of beta-blockers is greater in Model 2,
where two independent frailty terms are used to model the correlation between events of the same subjects. On the other
hand, there is not enough evidence in support of a reduction of the risk of the terminal event in patients continuously
treated with beta-blockers.

Both models were then extended to include time-varying coefficients. The hazard ratio (HR) in function of time is shown
in Figure 3.

From the time-dependent hazard ratios, it can be observed that the protective effect of beta-blockers with respect to the
recurrent events is significant after 6 months since contact with the hospital in both models (panels a and b) even though
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FIGURE 3 Solid lines represent time-dependent HR estimates for the primary endpoint (panels a and b) and the secondary endpoint
(panels c and d) obtained with Model 1 and Model 2, respectively. Shaded areas represent the 95% percentile bootstrap confidence interval. For
comparison, the corresponding fixed HR is indicated with a green dashed line. Black dashed lines represent HR = 1

TABLE 4 Frailty terms parameters estimated from the marginal structural models along with 95% percentile bootstrap confidence
intervals and AIC

Model 1 e} 2 AIC
Fixed coefficients 0.79 (0.46 to 1.62) 0.04 (—0.03 t0 0.9) 1467
Time-varying coefficients 0.79 (0.41 to 1.51) 0.06 (—0.02 to 1.35) 1466
Model 2 &1 &,

Fixed coefficients 0.83 (0.38 to 1.43) 0.29 (0.04 to 1.32) 1424
Time-varying coefficients 0.46 (0.4 to 1.5) 0.6 (0.39t01.32) 1415

the effect is weaker in Model 1. For the terminal event, the lack of effect is also confirmed when the effect is allowed to be
time varying (panels c and d).

All models confirm the positive correlation between the recurrent events. Model 1 exhibits a very small correlation
between the recurrent events process and the terminal event process. On the other hand, the correlation between the
recurrent events and the terminal event is better captured by Model 2, which shows that the two processes are positively
correlated (Table 4). This could be explained by the fact that the data-generating mechanism contains two distinct sources
of dependencies: the inter-recurrences one and the one between the terminal and recurrent events.

Moreover, as shown in Table 4, Model 2 seems to better describe the correlation structure of the problem under study
because it has a lower AIC compared to Model 1. Therefore, in Figure 4 we show the measures of effect and the treatment
effect estimates from Model 2 with time-varying coefficients, which display the lowest AIC.

In panel a of Figure 4, it can be noted that 24 months after contact with the hospital the cumulative hazard of an
arrhythmic event reaches 16% if patients were not assigned to beta-blockers on that occasion, whereas it is estimated to be
around 4% if, on the contrary, they were assigned to beta-blockers. As explained in the Methods section, these measures
of effect are marginal with respect to the individual frailty terms as opposed to the hazard ratio which is conditioned on
them. We can conclude that the difference in the cumulative hazard of an arrhythmic event significantly decreases when
subjects have been assigned to beta-blockers at the visit (panel b of Figure 4). Specifically, after 24 months the difference
in the cumulative hazard is —0.14,95% confidence interval, (CI) [—0.82, —0.03]. The treatment effect is highlighted using a
relative measure of effect such as the ratio (panel ¢ of Figure 4). In fact when beta-blockers are prescribed to a patient, on
average, 24 months from that visit, his/her cumulative hazard will be 82% smaller than with respect to the same patient
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FIGURE 4 Measures of effect and average treatment effects estimates for the primary endpoint (panels from a to ¢) and the secondary
endpoint (panels from d to f). Shaded areas represent the 95% percentile bootstrap confidence intervals

without the prescription. On the contrary, no significant difference (panel e of Figure 4) nor ratio (panel f of Figure 4)
between the survival probabilities can be seen.

5 | DISCUSSION

In this paper, we presented a marginal structural model for a recurrent events process and a terminal event. The method-
ology was motivated by the need of estimating the treatment effect of beta-blockers on recurrent MVA and survival with a
causal interpretation in a retrospective clinical registry. Together with the problem of controlling for both fixed and time-
dependent confounders, including the history of MVA, we faced the issue of modeling the correlation among events from
the same subject which are biologically related. To overcome the many disadvantages of the hazard as a measure of effect
discussed by Hernan (2010), we used the cumulative risk of recurrent major arrhythmic events and the survival probability.

To model the recurrent event process, many different approaches have been proposed for both counts and gap times
(Amorim & Cai, 2015). In contrast with marginal methods, shared frailty models add individual non-observable random
effects called frailfy into the model to take into account the unobserved heterogeneity. In addition, when a semicompeting
risk is present, shared frailty models can be extended to jointly model the recurrent event process and the terminal event
when the two are correlated. It should be pointed out that by modeling the process of the recurrent events jointly with the
process of the terminal event, our method allows estimating the direct effect on the recurrent events. Specifically, it can
be defined as the treatment effect on the recurrent events not mediated by the semicompeting event (Young et al., 2020).
Furthermore, the joint frailty model specified has the advantage of using a baseline intensity function based on regression
splines and time-dependent coefficients which greatly increase the flexibility of the proposed approach.

As in most observational studies, the observation times are informative since patients in worse conditions are more
likely to have contact with the hospital. In order to make our analysis less dependent on the subject-specific observation
times as possible, we have considered a common, irregular, time grid. In the weights estimation, using a time-dependent
model we were able to estimate [IPTW weights using such a time grid. We made this choice since using an artificial fixed-
length time grid is not appropriate for settings such as the one of the ARVC registry, which is characterized by a long
observation period and the granularity of the data. Furthermore, as a consequence of the irregular observation scheme of
our study, we had missing data in some of the time-dependent confounders at times different than the observed ones that
required the use of generalized mixed models for the imputation of the missing values.
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The “gap-time” formulation for recurrent events represents a meaningful way of measuring time with nonincidental
recurrent events (i.e. events that alter the event process itself) (Cook & Lawless, 2007). It is also rooted in the pharma-
codynamics knowledge about the short-term effect of beta-blockers on the arrhythmic episode. Therefore, it justifies the
choice of estimating an average point-treatment effect across visits. Moreover, it reflects the analysis we would have per-
formed in the corresponding target trial where subjects would have been assigned to the treatment at each visit/contact
with the hospital.

Nevertheless, it would be possible to define different timescales for the recurrent events and define different measures
of effects, such as the expected number of recurrent events per subject up to time ¢, similarly to Jensen et al. (2016). The
issue with an approach based on counts for the recurrent events is that it requires the use of a counting process format in
the part of the joint frailty model for the recurrent event as well. The counting process format was used for the terminal
event of the model. We found that adding the start-stop times format also for the recurrent events dramatically increased
the complexity of the estimating procedure (i.e., the quadrature of the integrals needed for the frailty terms) to the point
that it did not allow us to obtain valid estimates from the model. The complexity related to the use of the counting process
format in joint models has been previously discussed by Crowther et al. (2016).

Moreover, we were able to obtain standard errors and confidence intervals through bootstrap which has the advantage
of taking into account the uncertainty due to the whole estimation process and the use of a weighted dataset.

With regard to the assumptions underlying this work, we believe that they are met since all patients could potentially
receive a beta-blockers prescription since none of them was intolerant to the drug (Al); the fact that a patient received
beta-blockers would not impact another patient’s risk of having an MVA the next day (A2); the event MVA is not different
according to the treatment regimen assigned (A3). With regard to Al, it has to be noted that we cannot exclude positivity
violations due to chance in finite samples and this is the reason why we have implemented stabilized weights in our IPTW
estimator since they are known to weaken this assumption. Obviously, the last one is the most difficult to rule out (A4).
In our example, we used all the factors which to the best of our scientific knowledge of this disease could represent a
confounder in the treatment-outcome relationship. An important unmeasured factor is the genetic characterization of
subjects. However, its prognostic role has still to be completely understood (Corrado et al., 2020). Moreover, because too
little is known in this regard, gene mutations are not used for the assignment of patients to beta-blockers. Even though
genetics is an important yet partly unknown aspect of this disease and it will probably play an important role in the
treatment of patients affected by ARVC in the future, at the moment it cannot be considered a confounder.

As already mentioned, we did not have the data regarding the purchases of beta-blockers by the patients. Therefore,
even though our analysis is a per-protocol effect since it considers changes in the treatment made by the cardiologists
during the follow-up, the calculation of patients’ adherence between visits cannot be obtained. In future work, it could be
of interest to consider the adherence of patients and compare its effect to the one obtained here.

In conclusion, our approach based on marginal structural models for event-history data was able to produce a marginal
estimate of the treatment effect in analogy with the one that would have been estimated from a RCT. However, in many
real-world applications, as the one presented, RCT is highly unfeasible due to the rarity of the disease and the long obser-
vation period required to observe the clinically relevant outcomes. In conclusion, we believe that applying methods such
as the one proposed for this application could represent a valid alternative to RCT in many life-history settings.
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APPENDIX A

A.l | Mixed effect models for the imputation of time-dependent confounders

For the time-dependent confounders that could not be assumed to remain constant between observations (Negative T
waves at ECG, PVC>1000/24 h at Holter ECG, NYHA class, right ventricular dysfunction, left ventricular dysfunction),
the following generalized mixed effect model was fitted for each of them to impute values other than the measurement
times:

SIELi(ti))] = ag + aip + ) (a; + a;;)BB(1y), (A.D
=1

where BBj(), j = 1,...,4 s the B-basis for a natural cubic spline of follow-up time £ with three internal knots placed at
the 25th, 50th, and 75th percentiles of follow-up times. « is the vector of the fixed effect, and a; ~ N'(0, D) is the vec-
tor of the subject-specific random effects, with D unstructured variance covariance matrix. Since all time-dependent
confounders considered were dichotomous variables, the logif function was used as link function g(-).

A.2 | Treatment effect estimation from MSM
An estimate of the counterfactual measures of effect under the treatment strategies can then be obtained from Model 3 as

follows:
At
Ai’f(’: f { /0 /?o(S)eXp{u}ds}du.

At
Ai’iﬂ = f { /0 ia(ﬁ)eXp{B(sHu}ds}du.
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Similarly from Model 4:

ab—l

5 (] (e o
/{/{/Arﬁ,o(S) eXP{g(S)—i-ul+u2}ds}du1}du2,

§g =/exp{ —/ yo(s)exp{uz}ds}duz,
0

S‘f]_-k = /exp{ - / k ?O(S) eXp{a(s) + fuz}d.s}duz. (AS)
0

The estimates of the baseline intensity functions are easily obtained since Model 1 and Model 2 are both flexible para-
metric survival models. The frailty terms are integrated out using mean-variance adaptive Gauss-Hermite quadrature.
Therefore, these measures of effect are fully marginal, that is, at the average population level.
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