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UMR 6303 CNRS-Université Bourgogne-Franche Comté,
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We propose a greedy reconstruction algorithm to find the probability distribution of a parameter
characterizing an inhomogeneous spin ensemble in Nuclear Magnetic Resonace. The identification
is based on the application of a number of constant control processes during a given time for which
the final ensemble magnetization vector is measured. From these experimental data, we show that
the identifiability of a piecewise constant approximation of the probability distribution is related to
the invertibility of a matrix which depends on the different control protocols applied to the system.
The algorithm aims to design specific controls which ensure that this matrix is as far as possible
from a singular matrix. Numerical simulations reveal the efficiency of this algorithm on different
examples. A systematic comparison with respect to random constant pulses is done.

I. INTRODUCTION

The identification of parameters that characterize the
dynamics of a quantum system is a fundamental prereq-
uisite for controlling its evolution [1–8] and is of practical
interest for realizing specific tasks in quantum technolo-
gies [9]. This aspect is crucial in open-loop configurations
for which the control protocols are designed without any
experimental feedback from the system during the con-
trol process [1, 2, 5, 10, 11]. In the context of quantum
systems, the problem of identifying unknown parameters
(or functions) has been explored by a large number of
studies and for a variety of applications ranging from
molecular physics [12–14] and magnetic resonance [15–
18] to quantum information science [19–29] and open
quantum systems [30–33]. Some mathematical results
have also been established in this direction [34–42]. On
the basis of different measurement processes and specific
control protocols, the goal of these works is generally to
estimate the value of one or several parameters of the
system Hamiltonian. When controlling an ensemble of
identical quantum systems, such a parameter may vary
in a given range due to experimental limitations or un-
certainties. A key example comes from the spatial in-
homogeneities of the external control [2, 43–47]. In this
case, all the systems are not subjected exactly to the
same control. This aspect has to be taken into account
in the modeling of the dynamics and in the computa-
tion of the control procedure. Robust control protocols
against such inaccuracies have been developed recently
to solve this experimental issue [2, 45, 48–55]. However,
the variation range of the unknown parameter is not the
only crucial quantity, the probability distribution of this
parameter (i.e. the number of systems for each value of
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the parameter) may play also a major role. It is generally
assumed that this probability distribution is flat or has a
simple Gaussian or Lorentzian form. In these cases, the
probability distribution can be quite easily characterized.
However, the problem of identifying probability distribu-
tions becomes much more difficult if these have complex
structures, with e.g. several peaks, or if no information is
known about them. It is therefore essential to be able to
identify with a great precision these unknown probability
distributions.

This paper aims at taking a step toward the answer to
this open question by developing a numerical algorithm,
called a Greedy Reconstruction Algorithm (GRA). By
definition, an algorithm is said to be greedy if it takes
the best choice available at each iterative step. Greedy
algorithms find generally a sub-optimal solution, but in a
computational time which may be very small compared
to the one of a global optimization procedure. Such al-
gorithms have been recently applied to the identification
of quantum systems [56, 57] and we propose to adapt
them to the reconstruction of probability distribution.
For the sake of clarity, we focus in this study on a spe-
cific example, although our algorithm applies to a large
variety of systems. We consider the case of a spin en-
semble in Nuclear Magnetic Resonance (NMR) [44, 58–
61] subjected to an inhomogeneous radio-frequency mag-
netic field whose range of variation is known, but not its
probability distribution. The probability distribution is
approximated by a piecewise constant function taking at
most K values. The algorithm then designs a series of
K controls for GRA (or less for the optimized version)
which are, in a second step, applied to the spin ensem-
ble. The K measured ensemble magnetization vectors at
the final time are then used to identify the probability
distribution. More precisely, the identification process is
related to the invertibility of a matrix which depends on
the different controls. The aim of the algorithm is there-
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fore to design specific control protocols which ensure that
this matrix is as far as possible from being singular. The
precision of the identification process can be understood
from the eigenvalues and eigenvectors of the matrix. In
the examples analyzed in this study, constant controls
will be sufficient to find the probability distribution with
a very good accuracy, but time-dependent controls could
also be used. We show that the optimization procedure of
the algorithm has a unique solution and a good convexity
structure leading to fast convergence. We point out that
the controls only depend on the model system and not on
the spin distribution or on the available data. The nu-
merical efficiency of the algorithms is shown on different
illustrative examples, namely a double-peak distribution
and a step one. A systematic comparison with random
constant pulses is also done.

The paper is organized as follows. Section II describes
the model system. Section III is dedicated to the the-
oretical framework, while the algorithm is presented in
Sec. IV. The efficiency of GRA is numerically demon-
strated in Sec. V on two standard examples, a double-
peak and a step probability distributions. Conclusion
and prospective views are given in Sec. VI. A mathemat-
ical description of the method and the development of
an optimized greedy algorithm are reported respectively
in Appendices A and B. Additional numerical results are
presented in the supplemental material [62].

II. THE MODEL SYSTEM

To illustrate our study, we consider a basic control
problem in NMR, i.e. a spin ensemble subjected to an in-
homogeneous radio-frequency magnetic field [43–46, 61].
In a given rotating frame, we assume that all the spins
have the same resonance offset ω. Each isochromat is
characterized by a Bloch vector M(α) = [Mx,My,Mz]

ᵀ

whose dynamics are governed by the following equations
of motion:

Ṁx = −ωMy + (1 + α)ωyMz,

Ṁy = ωMx − (1 + α)ωxMz,

Ṁz = (1 + α)ωxMy − (1 + α)ωyMz,

where the coordinates of the Bloch vector satisfy M2
x +

M2
y +M2

z = M2
0 , with M0 the equilibrium magnetization.

ωx and ωy are time-dependent controls that correspond
to the components of the magnetic field along the x- and
the y- directions. In this study, we assume that these
controls are constant in time. We show in Sec. V that
this hypothesis is sufficient for the different examples to
identify the probability distributions. The parameter α is
used to model the control field inhomogeneities which are
of the order of few percents in standard experiments [60].

The controls
ωx
2π

and
ωy
2π

are expressed in Hz. We con-

sider a typical field amplitude ω0 that can be fixed, for
instance, to ω0 = 2π× 100 Hz. We introduce normalized

coordinates as follows:

ux = 2π
ωx
ω0

; uy = 2π
ωy
ω0

; t′ =
ω0

2π
t; ∆ = 2π

ω

ω0
;X =

M

M0
.

We omit the ′ in the time below to simplify the notations.
We deduce that the differential system can be expressed
in normalized units as:

ẋ = −∆y + (1 + α)uyz

ẏ = ∆x− (1 + α)uxz

ż = (1 + α)uxy − (1 + α)uyz

(1)

with x2+y2+z2 = 1. The initial state of the dynamics for
each spin is the thermal equilibrium point, i.e. the north
pole of the Bloch sphere, X0 = (0, 0, 1)ᵀ. We neglect the
relaxation effect and we consider a control time of the or-
der of 100 ms. This corresponds to a normalized time tf
of the order of 10. In the numerical simulations, we add
the constraints |ux| ≤ um and |uy| ≤ um where um is the
maximum amplitude of each component. In NMR, only
the first two coordinates of the magnetization vector can
be directly measured. We do not have accessed to the
z- component due to the strong magnetic field applied
along this direction. We denote by Y(t) = (x(t), y(t))ᵀ

the projection of the Bloch vector onto the first two co-
ordinates. We point out that this aspect is not a limiting
point for the application of the identification process.

III. IDENTIFICATION OF SPIN
DISTRIBUTION

We consider an ensemble of N spins whose dynam-
ics are governed by Eq. (1). We assume that the con-
trol amplitudes (ux, uy) belong to the admissible set

U = {(ux, uy) ∈ R2 | |ux| ≤ um, |uy| ≤ um}. The ob-
jective of the control procedure is to identify the prob-
ability distribution of the parameter α. To simplify the
recognition process, we assume that the ensemble of spins
can be decomposed into a set of K subgroups with the
same value of the parameter α`, 1 ≤ ` ≤ K. However,
the discrete probability distribution P? for α, namely the
probability of each possible outcome α`, or in other words
the number of elements N` of each subgroup, is unknown.

By definition, we have P?(`) =
N`
N

and

K∑
`=1

P?(`) = 1.

The projected solution onto the first two coordinates
at time tf of Eq. (1) is denoted by Yu,α(tf ) where the
dependance on u and α has been explicitly mentioned.
The corresponding experimental realization of this con-
trolled dynamic leads to Yexp

u (tf ) = (xexpu (tf ), yexpu (tf ))ᵀ,
where Yexp

u (tf ) can be viewed as the average at time tf
of the experimental measures of all the spins of the set
subjected to the control u. The coordinates xexpu and
yexpu are the ones of this measured magnetization vector.

The relation between the theoretical description of the
dynamical system to the experimental outcome can be
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expressed as:

Yexp
u (tf ) =

K∑
`=1

P?(`)Yu,α`
(tf ), (2)

in which the two sides of the equation crucially depend on
the control u. A specific control protocol is not sufficient
to identify the probability distribution P? which generally
requires the implementation of K control processes with
K different controls denoted uk, k = 1, · · · ,K. Note
that in the optimized version of the GRA presented in
Appendix B, the number of controls can be different from
K.

On the basis of the experimental outputs, a straight-
forward way to determine P? is to solve the following
minimization problem:

min
P∈P

K∑
k=1

‖Yexp
uk

(tf )−
K∑
`=1

P (`)Yuk,α`
(tf )‖2, (3)

where P is the set of all the possible probability distri-
butions P that satisfy P (`) ≥ 0 for 1 ≤ ` ≤ K and
K∑
`=1

P (`) = 1. Mathematically, we point out that P is

a convex and closed set. ‖ · ‖ denotes the standard Eu-
clidean vector norm. Note that Eq. (3) can be rewritten
as:

min
P∈P

K∑
k=1

‖
K∑
`=1

(P?(`)− P (`))Yuk,α`
(tf )‖2. (4)

At this point, it is clear that a key ingredient of the ac-
curacy of the identification process relies on the choice of
the controls uk.

To clarify this problem, we introduce a set {ϕj}Kj=1

of linearly independent functions ϕj : {1, · · · ,K} → R
such that P ⊂ span({ϕj}Kj=1), where span denotes the
vector space generated by the functions. Expressing

respectively P? and P as P?(`) =

K∑
j=1

β?,jϕj(`) and

P (`) =

K∑
j=1

βjϕj(`), the minimization problem (4) be-

comes:

min
β∈R̂K

K∑
k=1

‖
K∑

`,j=1

(β?,j − βj)ϕj(`)Yuk,α`
(tf )‖2, (5)

where the vector β = (βj)
K
j=1 is taken in R̂K , a subset

of RK , so that P =
∑
j

βjϕj is a probability distribu-

tion. Equation (5) can be rewritten in a compact form
as follows:

min
β∈R̂K

〈β? − β|W |β? − β〉, (6)

whereW is a symmetric and positive semi-definiteK×K-
matrix whose elements are defined as:

W`,j =
∑
k

〈γ`(uk)|γj(uk)〉 (7)

with

γj(uk) =
∑
`

ϕj(`)Yuk,α`
(tf ).

Since the set of vectors β is a convex subset of RK , we de-
duce that the problem is uniquely solvable if the matrix
W is positive definite, i.e. if W has a non-zero determi-
nant. In the case W has a non-trivial kernel, infinitely
many solutions may exist which lead to wrong probabil-
ity distributions different from the experimental one P?.
We stress that the non-triviality of the kernel depends
completely on the choice of the controls uk.

We show in this study that GRA allows us to design
a set of controls uk so that the matrix W is positive
definite with a trivial kernel. The algorithm is composed
of two steps, namely an offline and an online steps. In
the first stage, GRA computes the controls uk. In this
phase, only the theoretical model is needed without any
experimental input. The derived controls are used in a
second step in which the different magnetization vectors
are measured and the minimization problem (3) is solved.
Note that the controls are the same for any probability
distribution to identify and only depend on the model
system under study. Finally, we point out that, while
in a first algorithm we consider that all control pulses
have the same duration tf , in a second version described
in Sec. IV B, the duration of each pulse is considered as
a variable to be optimized together with its amplitude.
The generality of GRA allows one to tackle this situation
in a straightforward manner.

IV. A GREEDY RECONSTRUCTION
ALGORITHM

We present in this section the GRA in its classical form,
an optimized extension called optimized GRA (OGRA)
is described in Appendix B. For pedagogical purposes,
we have limited the mathematical derivation of the algo-
rithm to its strict minimum. The interested reader can
find mathematical details about the algorithms in [56]
and [57] for the standard and optimized GRA, respec-
tively.

A. Optimizing the control amplitudes for a fixed
control time

The GRA computes the controls uk by solving a se-
quence of fitting-step and discriminatory-step problems,
in which the goal of the first step is to identify a nontriv-
ial kernel of a sub-matrix of W , while the second phase
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designs a new control which is aimed to correct this dis-
crepancy and to eliminate the identified non-trivial ker-
nel. The explicit formulation of the algorithm is given in

terms of the function h(k) defined by:

h(k)(β,u) =

K∑
`=1

k∑
j=1

βjϕj(`)Yu,α`
(tf ), (8)

for any β in Rk. GRA is described below. Some
mathematical statements of the different steps of the
algorithm are described in Appendix A. Its numerical
implementation is presented and discussed in Sec. V.

Greedy Reconstruction Algorithm (GRA): Given
a set of K linearly independent functions (ϕ1, . . . , ϕK).
Solve the initialization problem

max
u∈U
‖h(1)(1,u)‖2, (9)

that gives the control u1, and set k = 1.
While k ≤ K − 1

1. Fitting step: Find (βkj )j=1,...,k that solves the prob-
lem

min
β∈Rk

k∑
m=1

‖h(K)(ek+1,um)− h(k)(β,um)‖2, (10)

where ek+1 is the (k+1)-th canonical vector in RK .

2. Discriminatory step: Find uk+1 that solves the
problem

max
u∈U
‖h(K)(ek+1,u)− h(k)(βk,u)‖2. (11)

3. Update k + 1→ k.

End while

The basic principles of GRA can be detailed by its
two first iterations for K = 2. Using

h(1)(1,u) =

K∑
`=1

ϕ1(`)Yu,α`
(tf ),

the initialization problem can be expressed as:

max
u∈U
‖W11(u)‖2.

We deduce that the goal of this step is to maximize the
modulus of this W - matrix element, so as to be as far as
possible from a zero of W . We then consider the first step
of the algorithm with k = 1. We omit below for clarity
the dependence on u of W . By definition, we have:

W11 = ‖
K∑
`=1

ϕ1(`)Yu,α`
(tf )‖2

W22 = ‖
K∑
`=1

ϕ2(`)Yu,α`
(tf )‖2

W12 = W21 =

K∑
`,`′=1

ϕ1(`)ϕ2(`′)〈Yu,α`
(tf )|Yu,α`′ (tf )〉

and we deduce that the quantity to minimize in the fitting
step can be written as:

‖h(2)(e2,u1)− h(1)(β,u1)‖2 = W11β
2 − 2W12β +W22,

where β is here a real number. The minimum is reached
for β1 = W−111 W12 where W is computed for the control
u1. This value can be associated to a vector (β1,−1)ᵀ of
the kernel of the following 2× 2- submatrix of W:(

W11 W12

W12 W22

)
(12)

The fitting step of GRA can thus be interpreted as a sys-
tematic way to find a basis of the kernel of larger and
larger sub-matrices of W . Setting β to β1, the discrimi-
natory step consists in adding a new control u2 to correct
this singularity, i.e. in selecting this control such that the
corresponding quantity is as far as possible from a zero.
Mathematically, it can be shown that this procedure has
always a solution and that the new matrix W (2) has a
non-trivial 2 × 2 sub-matrix (12) (see Appendix A for
details).

B. Optimizing amplitude controls and time horizon

Until now, we have considered a fixed control time tf .
However, it is also possible to consider controls with dif-
ferent control times, up to a fixed boundary tmax

f > 0. In
this case, we also maximize with respect to time, meaning
that the initialization and discriminatory step problems
at iteration k would change to

max
u∈U,

tf∈[0,tmax
f ]

‖h(1)(1,u; tf )‖2 (13)

and

max
u∈U,

tf∈[0,tmax
f ]

‖h(K)(eeek+1,u; tf )− h(k)(βk,u; tf )‖2, (14)

respectively. In Eq. (13) and (14), the function h(k) is
still defined as in (8), only with the control time as an
additional variable. Similarly, one can adapt the corre-
sponding problems in OGRA, the optimized version de-
scribed in Appendix B. We denote by GRAt and OGRAt
the two resulting algorithms.

V. NUMERICAL RESULTS

A. The case of a double peak distribution

As a first illustrative example, we investigate in this
paragraph the identification of a symmetric double peak
probability distribution, displayed in Fig. 1. Similar re-
sults have been achieved for other smooth distributions
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with one or several peaks. Numerical details are de-
scribed in the supplemental material [62].

In the numerical simulations, we consider a control
time tf = tmaxf = 16. The amplitude um is equal
to 10. The normalized offset resonance is set for all
the spins to

π

10
, i.e. to 30 Hz. We also assume that

α ∈ [−0.2, 0.2] and K = 30. The K discrete values α` of
α are regularly spaced in the interval of variation of α, i.e.

α` = −0.2 + 0.4
`− 1

K − 1
. Since the control protocols are

constant in time, Eq. (1) is solved numerically by directly
evaluating the exponential matrix corresponding to the
exact solution. All optimization problems are solved by
a BFGS descent-direction method. We also mention that
the exact number of uncoupled spins in the ensemble is
not relevant for all the computations, since we are only
interested in their probability distribution. However, we
use a total number of 105 spins in the numerical simula-
tions.

For GRA and GRAt, we consider a random and or-
thonormal basis {ϕk}30k=1. Note that any basis of this
space can be used in the respective algorithms. For
OGRA and OGRAt, we extend the basis from GRA by
30 randomly chosen probability distributions {ϕk}60k=31.
The tolerance used in the OGRA and OGRAt (see Ap-
pendix B) is set to be tol = 10−14. The controls gen-
erated by the algorithms and corresponding to the nu-
merical results discussed below are described in the sup-
plemental material [62]. To test whether it is even nec-
essary to run the algorithm or if the same results could
be achieved with other control protocols, we also con-
sider two sets of 30 random and constant controls. For
the first and second cases, we use respectively completely
random constant values in the set U , with a control time
tf or with different and random control times in the in-
terval [0, tf ]. We denote by RCC and RCCt the two sets
of controls.

The robustness of the different control functions is eval-
uated by considering a 30-dimensional hypercube cen-
tered in the global minimum P? of our identification
problem, with a radius of 100‖P?‖, and we repeat the
minimization process for 100 initialization vectors ran-
domly chosen in this hypercube. We then compute the

minimum norm difference
‖P? − Pf‖
‖P?‖

over all optimiza-

tion runs, where Pf denotes the solution given by the
optimization algorithm. We obtain the results reported
in Tab. I. As can be seen in Tab. I, the errors of OGRA

Control set GRA GRAt OGRA OGRAt RCC RCCt

Min. error 0.0045 0.0098 0.0005 0.0009 0.4685 0.0841

TABLE I. Minimum relative norm error for different control
sets.

and OGRAt are ten times smaller than the ones of GRA
and GRAt, which themselves are respectively 10 and 100
times smaller than the errors of both sets of random con-

trols. Similar results have been achieved for other smooth
distributions, which show the efficiency of the two pro-
posed algorithms. Figures 1 and 2 display respectively
the true distribution and the minimal solution for all con-
trol sets for fixed and variable control times. We observe

-0.2 -0.1 0 0.1 0.2
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2000

4000
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10000

FIG. 1. Plot as a function of α of the true distribution
(red crosses) and approximated solutions with minimum er-
ror, computed by the different optimization algorithms for the
identification problem using control sets with a fixed control
time. In particular, controls generated by OGRA (green, ver-
tical lines) and GRA (black, circles) and RCC (blue, squares)
are plotted. Dimensionless units are used.
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2000

4000

6000

8000

10000

FIG. 2. Same as Fig. 1, but for variable control times.

that the solutions computed with controls generated by
any algorithm match the true distribution. On the other
hand, RCC completely fails, showing a third peak in the
middle, while RCCt can at least identify the two peaks
of the distribution.
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B. The case of a step distribution.

As a second illustrative example, we consider a non-
continuous step distribution, displayed in Fig. 3, in which
only spins with a positive parameter α can be observed
in the sample. We repeat the numerical simulations of
Sec. V A and we obtain the results reported in Tab. II.
As can be seen in Tab. II, the difference in magnitude

Control set GRA GRAt OGRA OGRAt RCC RCCt

Min. error 0.0295 0.0181 0.0018 0.0021 0.4204 0.1943

TABLE II. Minimum relative norm error for different control
sets.

of errors is similar to the one for the double peak dis-
tribution. These results are displayed in Fig. 3 and 4.
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FIG. 3. Same as Fig. 1 but for a step distribution.
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10000

FIG. 4. Same as Fig. 3, but for variable control times.

We observe that OGRA and OGRAt are still able to
identify the true distribution, while GRA and GRAt al-
ready show small discrepancies. RCC completely fails

again, but also RCCt shows major visible differences in
the upper part of the step distribution. Arguments based
on the properties of the matrix W are given in Sec. V C
to explain such numerical observations.

C. Eigenvalues and eigenvectors of W

We explain qualitatively in this section the numerical
results observed in Sec. V A and V B through the prop-
erties of the matrix W , i.e. its eigenvalues and eigen-
vectors. We present the spectra of the matrix W for
different control sets in Fig. 5 and 6. A very large differ-
ence is observed between the eigenvalues associated with
the optimized controls and the random ones. Note that
this observation is the same if the control time is also
optimized. This difference is quantitatively measured by
the condition number of W , i.e. the ratio between the
largest and the smallest eigenvalues, which is given in
Tab III. As could be expected, these results show that,
using random controls, the matrix W can be close to be-
ing singular. In the example of Fig. 6, while most of the
eigenvalues are larger than 1, four of them are smaller
than 10−10. Hence, the matrix W has a very bad con-
dition number. We stress the very good result achieved
by OGRA for which all the eigenvalues have almost the
same value. This analysis may also explain the differ-
ence between a smooth and a non-continuous probability
distributions. As a matter of fact, numerical results re-
veal that random controls have more difficulty identify-
ing non-smooth probability distribution as illustrated in
Sec. V B. This aspect can be understood from the behav-
ior of the eigenvectors. Indeed, we observe numerically
that the modes with a large number of oscillations cor-
respond to the smallest eigvenvalues. Such modes have
to be used to reconstruct probability distributions with
rapid and abrupt variations. For random controls, these
eigenvectors lead to large errors and to wrong probability
distributions.

Control set GRA GRAt OGRA OGRAt RCC RCCt

cond(W ) 4.9·103 6.9·107 19.55 16.6178 4.3·109 1.42·1017

TABLE III. Condition number of the matrix W for different
control sets.

VI. CONCLUSIONS

We have introduced in this work a Greedy Reconstruc-
tion Algorithm with an application to spin dynamics.
The algorithm provides a systematic way to identify the
probability distribution of a parameter of the Hamilto-
nian system varying in a given range. The efficiency
of the identification process has been illustrated in the
case of a spin ensemble subjected to an inhomogeneous
radio-frequency magnetic field. After having described
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FIG. 5. Spectrum of the matrix W defined in (7) for controls
generated by OGRA (green, vertical lines), GRA (black, cir-
cles) and for RCC (blue, squares). Dimensionless units are
used.
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FIG. 6. Same as Fig. 5, but for variable control times.

some mathematical properties of the algorithm, numeri-
cal simulations have revealed the efficiency of GRA and
its quite large basin of convergence. We have shown that
GRA is able to identify non-trivial probability distribu-
tions with several peaks or with a step variation. An
optimized version of this algorithm can be derived to
further improve the identification process. We have lim-
ited the study to constant controls, but similar results
can be achieved with time-dependent pulses. A quan-
titative comparison with random constant controls have
highlighted the non-trivial recognition process realized by
the algorithms. The numerical observations can also be
partly explained by the computation of the eigenvalues
and eigenvectors of the matrix W .

This analysis paves the way for further investigations in
magnetic resonance. An interesting direction is the study
of the sensitivity of the algorithm to experimental imper-
fections or to the presence of noise. It could be also used
to identify probability distribution of other parameters,

such as the resonance offset. These greedy algorithms
could also be transferred to other domains such as quan-
tum optics and atomic and molecular physics. Finally,
we hope that our method will be used in relevant ex-
perimental applications in magnetic resonance in a near
future.
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Appendix A: Mathematical description of GRA

We give in this section some mathematical details
about GRA. Straightforward computations show that the
different steps of GRA can be expressed in matrix form
as follows:

• The initialization problem (9) is equivalent to:

max
u∈U

[W (u)]1,1

• The fitting-step problem (10) is equivalent to:

min
β∈Rk
〈β|W k

[1:k,1:k]|β〉 − 2〈W k
[1:k,k+1]|β〉

where W k =

k∑
m=1

W (um). W k
[1:k,1:k] and W k

[1:k,k+1]

denote respectively the k×k upper-left block of W k

and a column vector containing the first k compo-
nents of the k + 1-th column of W k.

• The discriminatory-step problem (11) is equivalent
to:

max
u∈U
〈v|[W (u)][1:k+1,1:k+1]|v〉

where v = (βᵀ
k ,−1)ᵀ.

The different iterations of GRA can then be described as
follows. At iteration k, we assume that the sub-matrix
W k

[1:k,1:k] is positive definite, but W k
[1:k+1,1:k+1] can have a

non-trivial kernel. The idea is first to identify the kernel
of W k

[1:k+1,1:k+1] by solving (10) and then to compute
a new control uk+1 such that the new updated matrix
W k+1 = W k+W (uk+1) has a positive definite upper-left

block W k+1
[1:k+1,1:k+1]. The convergence of the algorithm

follows from this iterative process.
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The following two technical lemmas describe the op-
timizations used in the two steps of the algorithm. In
particular, Lemma 1 shows that the fitting step identi-
fies the kernel of the matrix W k

[1:k+1,1:k+1].

Lemma 1. Assume that W k
[1:k,1:k] is positive definite and

W k
[1:k+1,1:k+1] has a non-trivial kernel. Then the vector

v = (βᵀ
k ,−1)ᵀ, where βk is the solution to (10), is in the

kernel of W k
[1:k+1,1:k+1].

The second lemma is the basis of the discriminatory-
step algorithm and shows that this step corrects the rank
deficiency of W k

[1:k+1,1:k+1].

Lemma 2. Let W k
[1:k,1:k] be a positive definite matrix

and βk a solution of the fitting-step problem (10). Any
solution uk+1 of (11) satisfies:

〈v|W[1:k+1,1:k+1]|v〉 > 0

for k = 0, 1, · · · ,K − 1, where v = (βᵀ
k ,−1)ᵀ.

The mathematical proofs of these results and a detailed
numerical analysis of the GRA is beyond the scope of this
work and will be presented elsewhere.

Appendix B: The optimized greedy algorithm

We discuss in this paragraph the optimized version of
GRA. It can been shown numerically that the behav-
ior and the efficiency of GRA is strongly affected by the
choice of the elements ϕk and their ordering. GRA is es-
sentially a sweep over the set (ϕk)Kk=1. However, a wrong
choice of the elements ϕk and their ordering can lead to
the stagnation of the algorithm and to the computation
of many useless control functions. Note that the stagna-
tion of the algorithm can be measured in terms of rank
corrections, i.e. if for consecutive iterations the rank of
W does not increases. These reasons are at the origin
of an optimized algorithm [57]. OGRA takes as input a
set Φ, possibly larger than (ϕk)Kk=1 with linearly depen-

dent elements, and returns as output not only a set of K̃
control functions, but also a set of linearly independent

functions (ϕ̂k)K̂k=1. The integers K̃ and K̂ are not nec-
essarily equal and may be smaller than K (in contrast
to GRA). The extension of the OGR method of [57] to
the distribution reconstruction problem is detailed below,

where we use the map hS defined as

hS(β,u) =

K∑
`=1

card[S]∑
j=1

βjϕj(`)Y(u, α`),

where S = (ϕ1, · · · , ϕk). Note that for the fitting-step
problem, we do not have any constraint for the choice of
coefficients β. This is due to the fact that, during the
algorithm, we are not trying to reconstruct a distribution
but to make the respective sub-matrix positive definite.

Optimized Greedy Reconstruction Algorithm
(OGRA): Given a set of K+ ≥ K linearly independent
functions (ϕ1, . . . , ϕK+

) and a tolerance tol > 0.
Solve the initialization problem

max
n∈{1,··· ,K+}

max
u∈U
‖h(1)

ϕn
(1,u)‖2, (B1)

which gives the control u1, and the control `1. Set k = 1

and S = {ϕ`1}, K̃ = K+, and update Φ = Φ \ {ϕ`1}.
The algorithm is stopped if ‖h(1)

S (1,u)‖2 < tol.
While k ≤ K − 1 do

1. Remove elements from Φ that are linearly depen-
dent on the ones in S. Shift the indices of the
remaining elements in Φ. Update card[Φ]→ K̃.

2. for ` = 1, · · · , K̃ do
Fitting step: Find (β`j)j=1,...,k that solve the prob-
lem

min
β∈Rk

k∑
m=1

‖hϕ`
(1,um)− hS(β,um)‖2, (B2)

end for

3. Discriminatory step: Find uk+1 and `k+1 that solve
the problem

max
`∈{1,··· ,K+}

max
u∈U
‖hϕ`

(1,u)− hS(β`,u)‖2. (B3)

If ‖hϕ`
(1,uk+1) − hS(β`k+1 ,uk+1)‖2 < tol then

stop and return S and the computed (u)km=1.

4. Orthogonalize the function ϕ`k+1
with respect to S

and update S ∪{ϕ`k+1
} → S, Φ \ {ϕ`k+1

} → Φ and
k + 1→ k.

End while
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