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Abstract

In this work we propose a mathematical and numerical model to describe
the early stages of atherosclerotic plaque formation, which is based on the
interaction of processes with different spatial and temporal scales. A fluid-
structure interaction problem, used to describe the cardiovascular mechan-
ics arising between blood and the artery wall, is coupled to a set of differen-
tial problems describing the evolution of solute concentrations. In order to
manage the multiscale-in-space nature of the involved processes, we propose
a suitable numerical strategy based on the splitting and sequential solution
of the coupled problem. We present some preliminary numerical results and
investigate the effects of geometry, model parameters and coupling strategy
on plaque growth.

1 Introduction

Atherosclerosis is a vascular disease affecting the artery wall, leading to the
chronic inflammation of its inner layers and to the development of an atheroscle-
rotic plaque or atheroma [39, 18, 30]. The growth of plaque induces a narrowing
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of the arterial lumen, causing its partial or total occlusion. Possible consequences
include the blockage of distal vessels caused by fragments generated by plaque
rupture or the formation and detachment of a thrombus. Both phenomena can
lead to a lack of blood flow to the distal tissues, and thus to severe cardiovascular
events such as myocardial or cerebral ischemia and stroke.

The mechanisms leading to plaque development and growth are not yet fully
understood and are still an active area of research. It is however well-accepted
that the role of the endothelium, the single layer of cells constituting the inter-
face between the lumen and the artery wall, is crucial to the onset of plaque.
Indeed, it acts as a transport barrier controlling the flow of molecular and cellu-
lar species, whose permeability depends on hemodynamic factors [46, 28, 33, 3].
In the case of atherosclerosis, a dysfunction of the endothelium caused by a
disturbed flow characterized by a low and oscillating wall shear stress (WSS),
increases the infiltration of species into the artery wall. For this reason, plaques
typically occur at curved or bifurcating segments, where WSS is low and os-
cillating. Predominant sites for plaque formation in humans include coronary
arteries and carotids.

The events that lead to early atherosclerotic plaque formation can be sum-
marized as follows [18]:

1. In regions of perturbed, recirculating flow and correspondingly low and
oscillating WSS, low-density lipoprotein (LDL) present in the bloodstream
crosses the endothelium and penetrates into the artery wall;

2. LDL, once in the artery wall, undergoes oxidative modification by endothe-
lial cells, macrophages and smooth muscle cells;

3. Modified LDL causes the onset of an inflammatory process, releasing mono-
cyte attracting factors;

4. Monocytes migrate from the bloodstream into the artery wall, where they
differentiate into macrophages;

5. Due to the ingestion of oxidized LDL, macrophages differentiate into foam
cells;

6. Accumulation of foam cells further stimulates the inflammation, and leads
to the growth of a subendothelial plaque.

A schematic representation of these processes is reported in Figure 1.
Given the severe cardiovascular consequences caused by atherosclerosis, the

study of the formation and evolution of plaques is of utmost importance. In this
framework, the use of computational modeling focusing on the mathematical
and numerical description of plaque progression is gaining relevance as a tool
to study its mechanobiological processes and identify possible prevention and
treatment strategies. Comprehensive overviews of existing models can be found
in [37, 2].
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Figure 1: Schematic view of plaque formation and progression. LDL penetrates
into the artery wall (1), where it oxydizes (2); Monocytes migrate from the
bloodstream (3) and ingest oxydized LDL (4); Macrophages differentiate into
foam cells (5) and accumulate 6) .

A mathematical model of plaque growth should account for both the multiscale-
in-space and in-time nature of the problem. Indeed, it involves both macroscopic
cardiovascular processes, such as blood dynamics at the bifurcation, with a char-
acteristic time of 1 second (the mean duration of the cardiac cycle), as well as
molecular and cellular events, which lead to plaque growth in a time horizon of
months to years.

In order to model molecular and cellular phenomena, a large number of stud-
ies considers a macroscopic description by means of suitable partial differential
equations (PDEs) [4, 16, 11, 23, 45, 6, 43, 40], whereas other works consider
different approaches, such as agent-based modeling [12] or fluid-solid-growth
modeling [20]. As for macroscopic events, among the existing models many con-
sider blood dynamics in rigid walls [4, 31, 16, 11, 12, 40], whereas others consider
compliant vessels in the framework of fluid-structure interaction (FSI) [45, 43].

Regarding the interaction of the different spatial scales, most studies intro-
duce a macro-to-micro scales feedback by adopting a relationship linking WSS
and the permeability of the endothelium [4, 16, 43, 12, 40] or linking WSS and
growth itself [31, 1]. On the other hand, the micro-to-macro scales feedback can
be expressed in terms of phenomenological growth laws [47, 4, 16, 11], relating
species concentrations to plaque thicknening, or by including a growth tensor in
the vessel wall dynamics to account for the plaque development [45, 43].

We point out that, concerning the interaction of different time scales, no
specific techniques related to modeling atherosclerosis development has been
considered so far. An approach has been to artificially increase model parameters
in order to accelerate plaque growth [43, 12]. A different method has been
proposed in [31, 1], in which several growth stages are simulated sequentially in
order to describe a longer time horizon. Here, we follow the strategy proposed
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in [38] that splits the long and short time scales problems at the numerical level.
Starting from the studies cited above, in this work we propose a mathematical

model for plaque initiation and progression in which we aim at providing:

i. A detailed description of hemodynamics, which plays a crucial role in
plaque onset and growth;

ii. A two-way coupling between micro and macro spatial scales;

iii. A coupling between different characteristic times (seconds for hemodynam-
ics, years for plaque progression).

Our mathematical model is based on the interaction between an FSI problem,
elliptic PDEs for the evolution of LDL and macrophages, and an ODE for foam
cells. We adopt a two-way feedback between micro and macro scales based on
WSS and a growth law. At the numerical level, we propose a strategy similar to
[31] to deal with the multiscale-in-time nature of the problem.

The structure of the work is as follows. In Sect. 2 we detail the mathematical
model for plaque development, whereas in Sect. 3 we discuss the numerical
strategy introduced for the approximation. Finally, in Sect. 4 we present several
numerical results.

2 Mathematical models

2.1 Overview of the method

The mathematical model we present here is built upon the coupling of two sets of
differential problems, modeling processes characterized by different time scales.
The short time scales model describing blood dynamics and its interaction with
the vessel wall is represented by the FSI problem, with (u, p, d) the unknown
fluid velocity, fluid pressure and vessel wall displacement. Instead, the long
time scales model describing the accumulation of species, inflammation, and
plaque growth is composed by 3 problems interacting with one another. In
particular, we consider two time dependent diffusion-reaction (DR) problems for
the concentrations cLDL and cM of LDL and macrophages, respectively [4, 43],
and one ordinary differential equation (ODE) for the concentration of foam cells
cFC [16].

The interaction between these two sets of problems determines the unknown
plaque growth function dG. In particular, the effect of short time scales on
the long ones is provided by function g1(u) defined as the time-averaged WSS
(TAWSS), which influences the permeabilities to LDL and macrophages [4, 43]
(macro-to-micro feedback). On the other side, the effect of long time scales on
the short ones is provided by the growth function dG through a suitable function
of the foam cells concentrations g2 = g2(cFC) (micro-to-macro feedback). In
Figure 2 we report a schematic representation of the mathematical model. We
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highlight the dependency of the fluid and structure domains Ωf and Ωs on the
plaque growth dG.

Figure 2: Schematic representation of the mathematical model of plaque pro-
gression.

Figure 3: Fluid and structure computational domains.

2.2 FSI problem

Referring to Figure 3, we consider the time-varying domains Ωt
f ⊂ R3 and Ωt

s ⊂
R3, representing the lumen of the artery and its wall, respectively. We neglect
the heterogeneous and multi-layered nature of the artery wall and describe it as
a single layer structure. Let Σt be the endothelium, that is the interface between
the fluid and structure domains, and Σt

ext be the outer surface of the artery wall.
The fluid problem is stated in an Arbitrary Lagrangian-Eulerian (ALE)

framework [25, 17]. The ALE map is defined by an appropriate lifting of the
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structure displacement d at the interface Σt, and defines the fluid domain dis-
placement df and velocity uf = ḋf . In this work we have chosen the standard
harmonic extension lifting. A Lagrangian approach is adopted for the structure
problem, whose quantities are denoted by ̂.

Accordingly, the coupled problem at each time t > 0 reads: find fluid velocity
u = u(t,x), fluid pressure p = p(t,x), structure displacement d = d(t,x) and
fluid domain displacement df = df (t,x) such that:

ρf (δtu+ (u− uf ) · ∇u)−∇ · Tf (u, p) = 0 in Ωt
f (d,dG), (1a)

∇ · u = 0 in Ωt
f (d,dG), (1b)

u = ∂td on Σt(d,dG), (1c)

Tf (u, p)n = Ts(d)n on Σt(d,dG), (1d)

ρs∂ttd̂−∇ · T̂ s(d̂) = 0 in Ω̂s(dG), (1e)

d̂f = d̂ on Σ̂, (1f)

−∆d̂f = 0 in Ωt
f (d,dG), (1g)

together with suitable initial and boundary conditions, and where ρf and ρs
are the fluid and structure densities, n is the outward unit normal vector, and
δt represent the ALE time derivative. The dependency of the domains on the
growth function dG will be specified below.

The ALE map introduces the geometric coupling condition (1f), while (1b)
- (1c) represent the kinematic and dynamic fluid-structure interface conditions,
respectively.

In Equation (1a), T f = µf (∇u + (∇u)T )n − pI is the fluid Cauchy stress

tensor, where µf is the fluid viscosity. In Equation (1e), T̂ s is the solid first
Piola-Kirkhhoff stress tensor. In this work, for the sake of simplicity in order
to focus on the coupling with the long time scales model, we consider a linear
elastic material:

T s(d) = λtr(ε)I + 2µsε,

where λ and µs are Lamé’s parameters and ε(d) = 1
2(∇d+ (∇d)T ) is the strain

tensor.

Boundary conditions We prescribe for the structure domain problem on
the inlet and outlet rings Σ̂s,in and Σ̂s,out a tangential homogeneous Neumann
boundary condition to allow movement of the inlet and outlet in the tangential
directions τ j , j = 1, 2, and a homogeneous Dirichlet boundary condition in the
normal direction:

(T̂ sn̂) · τ̂ j = 0, j = 1, 2 on Σ̂s,in ∪ Σ̂s,out, (2a)

d̂ · n̂ = 0 on Σ̂s,in ∪ Σ̂s,out. (2b)

6



Accordingly, for the fluid domain problem we prescribe on the inlet and outlet
artificial sections Σ̂f,in and Σ̂f,out a tangential homogeneous Neumann condition
and a normal homogeneous Dirichlet condition:

∇d̂f n̂ · τ̂ j = 0, j = 1, 2 on Σ̂f,in ∪ Σ̂f,out, (3a)

d̂f · n̂ = 0 on Σ̂f,in ∪ Σ̂f,out. (3b)

On the fluid inlet surface Σt
f,in we consider a flow rate condition:∫

Σt
f,in

u · n dσ = Qin(t).

To prescribe the previous condition, a parabolic velocity profile defined in the
largest circle immersed in Σt

f,in has been selected in order to deal with a Dirichlet
boundary condition:

u = gin on Σt
f,in, (4)

with
∫

Σt
f,in
gin · n dσ = Qin.

To avoid numerical reflections given by the truncation of the computational
domain, we prescribe on the fluid outlet Σt

f,out a resistance absorbing boundary
condition [36]

R

∫
Σt

f,out

u · n dσ +
1

A

∫
Σt

f,out

T fn · n dσ = Pext,

with A = |Σt
f,out| the lumen outlet area and Pext the external pressure, together

with homogeneous Neumann conditions for the tangential directions. The value
of resistance R is computed as [34]

R =

√
ρfβ

2

1

A3/4
,

where β = hsE
(1−ν2)

π
A , hs is a characteristic value for the structure thickness, and

E and ν are the Young modulus and the Poisson ratio of the vessel wall.
On the external surface Σ̂ext we prescribe a Robin boundary condition to

model the elastic support of the surrounding tissues:

αd̂+ T̂ s(d̂)n̂ = Pextn̂ on Σ̂ext.

2.3 Solute differential problems

The differential problems accounting for the interaction of molecules and cellular
species leading to the growth of plaque in the artery wall are solved in the
structure domain Ωt

s. As in the case of the FSI problem, the artery wall is
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described as a single layer structure. The endothelium Σt is treated as a semi-
permeable membrane, which allows the infiltration of solutes from blood into
the artery wall. All other surfaces are considered impermeable, thus inhibiting
the influx or efflux of solutes.

We consider three differential problems to compute the concentrations of
LDL, macrophages and foam cells, respectively. The subscript M refers to both
monocytes and macrophages, as in this model we assume that monocytes that
enter the artery wall from blood differentiate instantly into macrophages. We
highlight the dependency of some parameters on other unknowns. The precise
definitions of such dependencies will be detailed in the next subsection.

The evolution of LDL and macrophages in the artery wall is modeled as a
diffusion-reaction problem.

∂tcLDL −∇ · (DLDL∇cLDL) + roxcLDL = 0 in Ωt
s(dG), (5a)

∂tcM −∇ · (DM (cFC)∇cM ) + (roxcLDL) cM = 0 in Ωt
s(dG), (5b)

where DLDL and DM are the diffusion coefficients of LDL and macrophages,
respectively, and rox is the rate of oxidation of LDL. Both diffusion-reaction
problems are equipped with a Robin condition at the interface Σ

ζLDL(u)cLDL −DLDL∇cLDL · n = −ζLDL(u)cLDL,f on Σt(d,dG), (6a)

ζM (u)cM −DM∇cM · n = −ζM (u)cM,f on Σt(d,dG), (6b)

where ζLDL and ζM are the local permeabilities to LDL and monocytes, respec-
tively, through the endothelium. These conditions account for the equilibrium
with the fluid concentrations, which are here supposed to be known constants
(cLDL,f , cM,f ), and control the influx of LDL and monocytes from the blood to
the artery wall through the endothelium Σ.

Finally, the evolution of foam cells is modeled as an ordinary differential
equation:

∂tcFC = roxcLDLcM in Ωt
s(dG). (7)

The source term in (7) corresponds to the reaction term in (5b), and describes
the differentiation of macrophages into foam cells as they absorb oxidized LDL
[11]. Foam cells do not migrate into the artery wall from blood, as they are
created in the artery wall, so a no-flux condition is imposed on Σ.

∇cFC · n = 0 on Σt(d,dG).

Regarding the remaining boundaries, it is assumed that the external bound-
ary Σt

ext of the artery wall is impermeable, so a homogeneous Neumann condition
is prescribed for all species. The same condition is imposed on the inlet and out-
let surfaces Σt

s,in and Σt
s,out.
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2.4 Model parameters

Diffusivity We consider a constant diffusion coefficient DLDL for LDL, while
that for monocytes/macrophages DM is computed as a function of the concen-
tration of foam cells cFC [45]

DM = DM,h + (DM,d −DM,h) e−a1cFC , (9)

where DM,h is the diffusion coefficient in the healthy wall, with no foam cells
present, and DM,d in the diseased artery wall, occupied fully by plaque. Being
DM,d > DM,h we assume that the diffusivity of macrophages is increased as
plaque grows. a1 is a constant coefficient used to modulate the intensity of the
change of diffusivity.

Endothelial permeability Medical evidence shows that regions subject to
low and oscillating WSS are more likely to develop atheromatous plaques [42,
8, 29, 3]. On the contrary, high WSS regions appear to be protected from
atherosclerosis [5, 44, 29]. Accordingly, the endothelium has been shown to be-
have differently in response to altered flow patterns, by changing its permeability
to blood solutes. We incorporate this phenomenon in the model by considering
values of permeability that are WSS-dependent.

In previous works [4, 43], a WSS-permeability relationship was considered
for LDL. In addition to this choice, we consider a similar WSS-permeability
relationship to describe also the influx of monocytes. This choice is justified by
several in-vitro and in-vivo works showing an increased adhesion and infiltration
of monocytes in low and oscillating WSS regions [7, 26, 14, 10, 9].

We employ the same relationship proposed in [43] for the permeabilities to
LDL and monocytes. Introducing the time-averaged WSS (TAWSS) acting on
the endothelium Σ

TAWSS =
1

T

∫ T

0
µf

2∑
j=1

√((
∇u+ (∇u)T

)
n · τ j

)2
dt, (10)

where T is the cardiac cycle length and τ j are the tangential unit vectors, the
values of ζLDL = ζLDL(t,x) and ζM = ζM (t,x) in (6) are computed as functions
of TAWSS as follows:

ζ∗ =
1

ln(2)
ln

(
1 +

a∗,1
TAWSS + a∗,2

)
ζref∗ =

1

ln(2)
ln

(
1 +

a∗,1
g1(u) + a∗,2

)
ζref∗ ,

(11)

where ∗ = LDL, M . ζrefLDL and ζrefM are reference values of permeability to LDL
and monocytes, respectively. To highlight the dependency on the fluid velocity
u, we have set

g1(u) = TAWSS. (12)

The calibration of parameters aLDL,1, aLDL,2, aM,1 and aM,2 will be addressed in
Section 4. Relationship (11) is a monotonically decreasing function of TAWSS,
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so that a higher permeability is assigned to regions of the endothelium subject
to low TAWSS. Relationships accounting also for the oscillatory nature of WSS
are currently under study.

2.5 Growth function

We assume that the growth of plaque is due to the accumulation of foam cells in
the artery wall. The displacement of the interface Σt due to growth function dG
is computed with respect to the reference initial configuration Σ̂. In particular,
we propose the following incremental growth law

dG = g2(cFC) =

∫ t

0

1

|Γ(t,x)|

(∫
Γ(t,x)

κċFC(τ,x) dγ

)
n(τ,x)dτ , (13)

where n is the normal direction to the interface Σ and κ is a parameter regulating
the growth rate [47]. The previous relationship computes the mean line integral
of the time variation of the foam cells concentration ċFC across the vessel wall
thickness Γt (see Figure 4) and assumes that this produces an internal growth
towards the vessel lumen. This is a reasonable assumption for the first stages of
plaque formation. Since growth function g2(cFC) represents an accumulation,
the integral over time is also considered in its definition.

n

)FCc(2g

Figure 4: Schematic representation of the change in geometry of the fluid and
structure domains due to the growth of plaque.

The growth on the interface dG is extended to the fluid and structure domains
Ωf and Ωs by means of an harmonic extension

−∆dG,∗ = 0 in Ωt
∗(dG), (14a)

dG,∗ = dG on Σt(dG), (14b)

dG,∗ = 0 elsewhere, (14c)

where ∗ = f , s.
The resulting displacement fields dG,f and dG,s are applied to all points of

the fluid and structure domains, respectively, to update the geometries of the
lumen and the artery wall:

Ωt
∗ = Ω̂∗ + dG,∗
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2.6 Fixed point problem

By using the compact notation based on operators reported in Figure 2, we have
that the the fluid velocity could be formally obtained by u = FS(Ωf (dG),Ωs(dG)),
representing the FSI problem (1), whereas the three concentrations by cLDL =
DR(TAWSS; Ωs(dG)),
cM = DR(TAWSS, cLDL, cFC ; Ωs(dG)) and cFC = ODE(cLDL, cM ; Ωs(dG)),
representing (5a),(5b), and (7), respectively. Inserting (12), we have

cLDL = DR(g1(u); Ωs(dG)) = DR(g1(FS(Ωf (dG),Ωs(dG))); Ωs(dG)) = CLDL(dG),

where we have introduced operator CLDL to highlight the dependency on dG
solely. Analogously, we have

cM = DR(g1(u), cLDL, cFC ; Ωs(dG))

= DR(g1(FS(Ωf (dG),Ωs(dG))), CLDL(dG), cFC ; Ωs(dG)) = CM (dG, cFC),

and
cFC = ODE(CLDL(dG), CM (dG, cFC); Ωs(dG)) = CFC(dG). (15)

Starting from (13) and inserting (15), we can compactly write the growth
system of PDEs given by (1) - (5a) - (5b) - (7) - (12) - (13) as follows:

dG = g2(CFC(dG)), (16)

which represents a highly non-linear fixed point problem in the unknown growth
function dG, which is a function of space and time.

2.7 0D Model

Equation (16) governs the evolution in space and time of the plaque thickness.
An interesting question about this process is to determine if and in what con-
ditions the plaque growth admits an equilibrium state. To answer this question
we address here a simplified model derived from (1), (5a), (5b), (7), under the
following simplifying assumptions:

• all fields do not depend on space;

• the artery can be described as straight cylinder of infinite length; as a
result the inlet and outlet conditions are no longer relevant; we denote by
R the radius, by H the thickness of the wall and by L the length of the
considered portion of artery;

• the vessel walls are considered rigid;

• the plaque growth is uniform along the axis of the cylinder and axisym-
metric;
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• the outer radius of the artery is fixed, the growth takes place inward.

Under these assumptions the full model for the plaque formation reduces to
a system of algebraic/differential equations in time, namely a zero-dimensional
(0D) model that ultimately describes the dynamics of growth. Thanks to its
simplicity, such model will be applied to study the long term behavior of the
proposed plaque growth model.

The 0D model for plaque growth is composed by the following parts. The
FSI problem (1) is in fact a fluid mechanics problem due to the rigid wall as-
sumption. Then owing to the other hypotheses, we replace it with the Poiseuille
flow model (a fully developed flow with parabolic profile). For such model it is
straightforward to express the wall shear stress (denoted here as the Poiseuille
WSS, briefly PWSS) as a function of the flow rate Qin, the dynamic viscosity
of the fluid µf and the radius of the artery R. Precisely we have [32],

PWSS =
4µfQin
πR3

.

Then we modulate the wall permeability in (11) using PWSS instead of TAWSS.
Concerning the solute transport problems, we combine equations (5a), (5b),

(6a), (6b). Starting from the variational formulation of such problems (not
reported here but easily derived), testing with unit functions and reminding
that all fields are spatially uniform, we obtain the following ordinary differential
equations:

d(|Ωt
s|cLDL)

dt
+
(
ζLDL(|Σt|+ rox|Ωt

s|
)
cLDL = ζLDL|Σt|cLDL,f ,

d(|Ωt
s|cM )

dt
+
(
ζM (|Σt|+ rox|Ωt

s|cLDL
)
cM = ζM |Σt|cM,f ,

where |Σt| = 2πRL and |Ωt
s| = πL[(R + H)2 − R2]. The equation for the foam

cells remains unchanged:

d(|Ωt
s|cFC)

dt
= rox|Ωt

s|cLDLcM .

Finally, in the 0D setting, the growth of the plaque is governed by a scalar
function, representing its thickness and denoted as dG. Following (13) such
function becomes,

d

dt
dG = |Σt|κ d

dt
cFC ,

and it affects the inner radius of the artery as R(t) = R0 − dG(t), being R0 the
initial radius.

Putting together all these equations, we obtain an algebraic/differential sys-
tem that governs the plaque growth (expressed in terms of the variation of
the inner radius) in terms of the flow rate and the blood levels of LDL and
macrophages. The numerical integration of such system is simple enough to
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allow for the study of its long term behavior, and how it is affected by the input
parameters.

As a preliminary result of the 0D model we report in Figure 5 the evolution
of solute concentrations and corresponding inner radius of the artery R(t) ob-
tained by varying a selected model parameter (cLDL,f , that is the LDL blood
concentration). These results demonstrate that the dynamical system governing
the plaque growth is stable in time and allows to reach an equilibrium state. We
remark that the simulation in Figure 5 covers a time span of 15 years, which
would have been computationally very expensive to analyze with the complete
model. However, as the 0D model lacks a spatial description of the phenomena,
in Section 4 we will analyze the results of the complete 3D model, under the as-
sumption that it inherits the same equilibrium properties of its 0D counterpart.

Figure 5: Time evolution in the 0D model analysis of the solute concentrations
(cLDL, cM , cFC) and the inner radius of the artery (R) for different values of
the LDL blood concentration (cLDL,f ). The inner radius and corresponding
thickness of the plaque are highlighted on the right panel.

3 Numerical methods

In order to solve the coupled problem (1) - (5a) - (5b) - (7) - (12) - (13) - (14),
we propose a numerical procedure to treat the multiscale-in-time nature of the
system. We employ a strategy based on the splitting in subproblems, i.e. FSI and
solute problems, allowing the use of different temporal discretizations, adapted
to the specific timescale of the subproblem, and the use of separate/pre-existing
codes. This strategy is summarized in Figure 6.

Under the assumption that plaque growth is a slow process, much slower
than the characteristic times typical of blood flow, we eliminate the need to
solve the short time scales problem for the entire duration of the considered
time horizon Θ. Accordingly, we divide Θ into L blocks, each comprised of
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Figure 6: Schematic representation of the numerical treatment of the multiscale-
in-time coupled problem.

two sub-blocks (short and long time scales problems). For each block ` the
two sub-blocks are solved sequentially, each with its time discretization and
simulated time duration. The functions used to couple the problems g1 and g2 are
updated accordingly at the end of each sub-block. In doing so, the changes in the
computational domains due to the plaque growth are not updated continuously,
but only once they are supposed to be significant, i.e. at the end of each block.
Notice however that the movement of the fluid domain within each heartbeat due
to the pulsatility is updated as usual along all the FSI simulation in accordance
with the ALE configuration.

In more detail, the short time scales sub-block (yellow regions in Figure 6)
comprises subproblem (1) and is discretized in time with parameter ∆τ . It is
solved for J heartbeats at the current block ` in the fluid and structure domains
Ωf,`−1 and Ωs,`−1, obtained at the previous block ` − 1. After J heartbeats,
TAWSS is computed by means of Equation (10) by considering only the last
simulated heartbeat, and the values of permeability ζLDL,` and ζM,` are updated
accordingly owing to (11).

The long time scales sub-block (blue regions in Figure 6) comprises subprob-
lems (5a) - (5b) - (7), which are discretized in time with parameter ∆t >> ∆τ
and solved for K time instants in Ωf,`−1 and Ωs,`−1. At each block `, the initial
values of c0

LDL,`, c
0
M,` and c0

FC,` are set equal to the values reached at the end

of the previous block cKLDL,`−1, cKM,`−1 and cKFC,`−1. After K time instants, the
discretized-in-time version of the incremental growth law (13) is computed

dG,` =

∫
Γ(x)

κ
(
cKFC,` − cKFC,`−1

)
dγ n on Σ(dG), (18)

allowing the update of the fluid and structure domains after the solution of (14),
thus obtaining Ωf,` and Ωs,` at the current block `.
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After the update of the computational domains, the following block `+ 1 is
executed. The steps described here are detailed in Algorithm 1.

Algorithm 1 Numerical solution of the coupled problem for plaque growth
Let ` be the block index, j the heartbeat index, n the short scales time step index, k the long
scale time step index.

for ` = 1 : L do
for j = 1 : J do

for n = 1 : N do
Solve the discretized-in-time FSI problem at heartbeat j, time instant n:(

u j,n
` , p j,n

` ,d j,n
`

)
= FS

(
Ω j,n−1

f,`−1 , Ω̂s,`−1

)
.

end for
end for

Compute the TAWSS:
TAWSS` = g1 (u`) .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
for k = 1 : K do

Solve the discretized-in-time solute problems at block `, time instant k:

ckLDL,` = DRk(TAWSS`; Ωs,`−1),

ckM,` = DRk(TAWSS`, c
k
LDL,`, c

k−1
FC,`; Ωs,`−1),

ckFC,` = ODEk(ckLDL,`, c
k
M,`; Ωs,`−1).

end for

Update the fluid and structure domains:

dG,` = g2(cFC,`),

Ωf,` = Ωf,0 + dG,f,`,

Ωs,` = Ωs,0 + dG,s,`.

end for

We discuss in what follows the numerical strategies used for the solution of
the subproblems in Algorithm 1. All the strategies have been implemented in
the Finite Elements library LifeV (www.lifev.org).

For the FSI problem we consider a first order time discretization for fluid,
structure and kinematic interface condition (1b), with a semi-implicit treatment
of the fluid convective term. The fluid geometry problem is obtained by solving
an harmonic extension of the interface displacement, as common for ALE formu-
lations [25, 17], whereas the geometric coupling (1f) is treated explicitly (i.e. us-
ing the fluid geometry of previous short scale time step). See e.g. [41, 19, 34, 35]
for the accuracy and stability of this approach. The resulting linearized FSI
problem is solved in a monolithic way by using P2-P1 Finite Elements, with a
block approximation of the exact global Jacobian, which leads to the splitting of
fluid velocity, pressure and vessel wall solutions. This strategy has been shown
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to be scalable for hemodynamic problems [13, 15].
As for the three solute problems, we employ a BDF1 scheme for time dis-

cretization and P1 Finite Elements for space discretization. The linearization
of the subproblem for the evolution of macrophages is obtained by an explicit
treatment of cFC , whereas the other non-linearities are treated by sequentially
solving the 3 subproblems, see Algorithm 1.

4 Numerical results

We report in this section some 3D numerical results obtained in ideal geometries.
In all experiments we consider a linear elastic material for the vessel wall, with
Lamé parameters λ = 9.31 · 105Pa and µs = 1.03 · 105Pa, corresponding to a
Young modulus E = 3 · 105Pa and Poisson ratio ν = 0.45, typical of arterial tis-
sue. Moreover, we set ρf = 1.06 g/cm3, µf = 0.035 g/cm ·s and ρs = 1.20 g/cm3.
We point out that we consider for the grown plaque the same mechanical model
and parameters as for the healthy artery wall. This is a simplified choice that,
however, should not influence so much the results in a first approximation due
to the limited dimensions of the plaque at the early stage.

Parameters a∗,1 and a∗,2 (∗ = LDL, M) in the expressions of permeabilities
(11) are calibrated following the procedure proposed in [43] such that:

1. ζ∗ = ζref∗ if TAWSS = WSSref , where WSSref is a reference value of WSS
computed by considering a steady Poiseuille flow in a straight pipe with
radius R and mean flow rate Q [4]:

WSSref =
4µfQ

πR3
= 3.79Pa;

2. The sensitivity of the endothelium is such that the local permeability in
regions with low WSS is up to a factor 25 higher than in regions with high
WSS according to measurements by [24].

The resulting calibrated values and all other physical parameters for the long
time scales model are reported in Table 1. We point out that, in order to
facilitate a significant growth of plaque after only 36 months of simulated time,
we chose the highest values (within the ranges reported in literature) of rox and
cLDL,f .

We set the time discretization parameters as ∆t = 105 s (about 1 day) and
∆τ = 10−3 s, and choose a time horizon Θ = 9.6 · 107 s, corresponding to 36
months. Unless specified otherwise, we simulate L = 3 blocks, corresponding to
a simulated time for each long time scales problem of 3.2 · 107 s (12 months).

We tested our model in three different settings in order to investigate the
influence of the initial geometry of the domain, of a subset of parameter values
and of the chosen number of blocks L.
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Table 1: List of physical parameters for the long time scales model.
Param. Description Value Eq. Ref.

DLDL Diffusivity of LDL in the wall 3.34 · 10−4 cm2/s (5a) [23]

Dh
M Diffusivity of macrophages (M) in the

healthy wall
1.0 · 10−9 cm2/s (9) [45]

Dd
M Diffusivity of macrophages (M) in the dis-

eased wall
5.0 · 10−9 cm2/s (9) [45]

rox Oxidation rate of LDL in the wall 0.5 (5a) [4]

ζrefLDL Reference permeability to LDL across the
endothelium

1.07 · 10−11 cm/s (11) [4]

ζrefM Reference permeability to monocytes (M)
across the endothelium

1.07 · 10−12 cm/s (11) [40]

a∗,1 Parameter modulating ζ∗ (∗ = LDL, M) 3.92 Pa (11) -

a∗,2 Parameter modulating ζ∗ (∗ = LDL, M) 0.13 Pa (11) -

cLDL,f Concentration of LDL in blood 1.9 · 10−3 g/cm3 (6a) [22]

cM,f Concentration of monocytes (M) in blood 5.0 · 10−5 g/cm3 (6b) [23]

4.1 Influence of initial geometry

We consider as initial geometry an ideal vessel given by a cylinder of radius
0.5 cm and length 5.0 cm (typical values for carotids). We consider a stenotic
region, whose center is located 1.5 cm far from the inlet, with three different
morphologies (A, B, C), which induces the process of plaque growth in the
recirculation region downstream the stenosis:

A. 60% eccentric stenosis with length 1.8 cm;

B. 60% eccentric stenosis with length 1.3 cm;

C. 50% symmetric stenosis with length 1.3 cm.

We observe that the use of our model, describing the early stages of plaque
growth, is appropriate even in an already stenotic vessel, as plaque is initiated
in the downstream region with respect to the stenosis.

In Figure 7 we report the results in terms of peak velocity streamlines, maps
of TAWSS and growth function dG,s in the artery wall, i.e. the harmonic exten-
sion of the unknown dG in the structure domain given by Equation (14). Peak
velocity streamlines and TAWSS refer to the first simulated block (` = 1), so
they contain information regarding the inizialization of the plaque. As for the
maps of growth, starting from the initial configuration (top row), we report in
the following rows the growth reached at the end of each of the time blocks, that
is each 12 months.

As a first qualitative assessment, we notice different recirculating flow struc-
tures downstream the stenosis in the three configurations. In the case of the
eccentric elongated initial stenosis (configuration A), the recirculation region
leads to a distribution of TAWSS which induces the growth of plaque even far
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Figure 7: Top row: Peak blood velocity streamlines. Mid row: Blood TAWSS.
Bottom rows: Maps of growth in the vessel wall (dG,s) obtained with different
initial geometries.

from the stenosis. In configuration B, where the stenosis is more concentrated,
the onset of plaque is immediately downstream the stenosis at 12 months. At 24
and 36 months, given the change in geometry due to growth, the TAWSS dis-
tribution resembles more closely the one of configuration A, leading to a similar
final plaque morphology. As regards the symmetric stenosis (configuration C),
as expected the recirculating flow structures are much smaller, leading to a thin-
ner plaque which is distributed all along the circumference of the downstream
tract.

The differences in initial geometry determine different volumes and mean
thickness of the final grown plaque, reported in Table 2. Such values, far from
being validated, are however significant since they fall in physiological ranges of
plaque growth after 3 years [27].
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Table 2: Plaque volume (cm3) and mean thickness (cm) computed after 36
months for different initial geometries.

Configuration

A B C

Volume [ cm3 ] 0.56 0.59 0.54

Thickness [ cm ] 0.12 0.14 0.07

4.2 Influence of model parameters

We investigated the differences in plaque growth due to the use of different values
of a subset of parameters, such as the concentration of LDL in blood (cLDL,f ),
the oxidation rate of LDL (rox) and the parameters aM,1 and aM,2 regulating the
dependency of ζM on TAWSS. For all subsequent tests, we used the geometry
corresponding to configuration A.

Reference values of cLDL,f taken from [22] report the concentration of LDL
in blood to be near ideal when around 1.2 · 10−3 g/cm3, very high when above
1.9·10−3 g/cm3 and optimal for high risk individuals when below 0.7·10−3 g/cm3.
Accordingly, we simulated three scenarios: normolipidemia (cLDL,f = 1.2 ·
10−3 g/cm3), hyperlipidemia (cLDL,f = 1.9 · 10−3 g/cm3) and hypolipidemia
(cLDL,f = 0.6 · 10−3 g/cm3).

We also investigated the influence of the rate of oxidation of LDL (rox in
Equation (5a)), which also controls the differentiation of macrophages into foam
cells. As different pressure levels in the bloodstream influence the oxidative
stress inside the artery wall [21], varying rox corresponds to simulating the effect
of different blood pressures. We employed three values: rox = 0.5 [4] to simulate
the effect of hypertension, rox = 0.2 and rox = 0.05.

Finally, as the experimental study used for the calibration of a∗,1 and a∗,2
(∗ = LDL, M) was specific for LDL [24] and no clear reference studies were
found for monocytes, we analyzed different parameter values for aM,1 and aM,2.
We employed three sets of parameters representing three different levels of sen-
sitivity (from the lower to the highest) of the endothelium permeability ζM
(Equation (11)) to different values of TAWSS:

i. aM,1 = 4.43Pa and aM,2 = 0.63Pa;

ii. aM,1 = 4.07Pa and aM,2 = 0.27Pa;

iii. aM,1 = 3.92Pa and aM,2 = 0.13Pa (equal to aLDL,1 and aLDL,2).

Figure 8 shows the plaque profiles obtained at the end of the total simulated
time (Θ = 36 months) for the three sets of parameters. We also report the maps
of the permeability coefficient ζM obtained by differentiating aM,1 and aM,2,
which refer to the first simulated block (` = 1).

As expected, growth is larger in the case of hyperlipidemia (high cLDL,f ),
increased oxidative stress (high rox) and higher permeability to monocytes (set
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Figure 8: Final plaque profiles obtained in the case of hypolipidemia, normolipi-
demia and hyperlipidemia (different values of cLDL,f , top left); hypotension,
normotension and hypertension (different values of rox, top right); varying sen-
sitivity of the endothelium permeability to monocytes (different values of aM,1

and aM,2, bottom right). Bottom left: maps of permeability coefficient ζM due
to different values of aM,1 and aM,2.

iii for aM,1 and aM,2). This result is confirmed by the values reported in Ta-
ble 3 regarding the plaque volume computed after 12, 24 and 36 months. Plaque
growth is much more sensitive to the change of cLDL,f with respect to the other
two parameters. Indeed, plaque volume increases by 67% and 211% when in-
creasing the concentration of LDL in blood with respect to the hypolipidemia
case. As for the other two parameters, it increases by 6% and 65% in the case of
rox = 0.5 with respect to the smaller values considered, and by 2% and 5% in the
case of set iii for aM,1 and aM,2 with respect to ii and i. This last result demon-
strates the small sensitivity of the model to parameters aM,1 and aM,2. This is
motivated by the values of permeability ζM (also reported in Figure 8), which
differ by 7% and 16% at most if comparing set iii with ii and i, respectively.

4.3 Influence of number of blocks

Finally, we report the results obtained using different numbers of blocks to cover
the total time of 36 months, and subsequently different coupling times between
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Table 3: Plaque volumes (cm3) computed after 12, 24 and 36 months for different
parameter settings: hypolipidemia, normolipidemia and hyperlipidemia (differ-
ent values of cLDL,f ); hypotension, normotension and hypertension (different
values of rox); varying sensitivity of the endothelium permeability to monocytes
(different values of aM,1 and aM,2).

cLDL,f rox aM,1, aM,2

[ · 10−3 g/cm3] [− ] [− ]

0.6 1.2 1.9 0.05 0.2 0.5 i ii iii

12 months 0.04 0.09 0.17 0.11 0.10 0.17 0.12 0.13 0.17

24 months 0.11 0.18 0.36 0.21 0.24 0.36 0.27 0.29 0.36

36 months 0.18 0.30 0.56 0.34 0.36 0.56 0.53 0.54 0.56

the short and long time scales problems. We employed L = 2, L = 3 and L = 6
blocks, corresponding to a simulated time for each long time scales problem of
18 months, 12 months and 6 months, respectively. Figure 9 shows the results
in terms of growth function dG,s in the artery wall during the whole 36 months.
We also report the plaque profiles at the end of the total simulated time.

We notice that the different times of updating of the geometry, correspond-
ing to different choices of L, influences the resulting distributions of growth.
Using a longer coupling time between the short and long time scales problems
(18 months, L = 2) results in a plaque which is concentrated immediately down-
stream the initial stenosis, and which protrudes into the bloodstream more than
in the cases of shorter coupling times. This is due to the fact that, given the
longer simulated time of the long time scales problem, the resulting geometric
update is more accentuated. This in turn leads to a distribution of TAWSS, and
thus growth, similar to the one shown in Section 4.1 in the case of configuration
B. On the other hand, adopting a shorter coupling time (6 months, L = 6) leads
to a smaller and more distributed growth, given the less extreme changes in
blood recirculation patterns due to each geometric update.

To confirm this aspect, we report in Table 4 the values of plaque volume
computed after each block. The plaque developed in the case L = 6 is much
smaller, and with a smaller mean thickness (0.08 cm) with respect to the other
two cases. For L = 2 the total volume is smaller than for L = 3, but the mean
thickness is slightly higher (0.13 cm and 0.12 cm, respectively), which confirms
the growth of a thicker but more concentrated plaque.

5 Conclusions

In this work we presented a mathematical model of atherosclerotic plaque growth,
which involves both macroscopic cardiovascular processes and molecular and cel-
lular events. In order to treat the multiscale-in-space nature of the process of
plaque growth, a fluid-structure interaction problem, arising between blood and
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Figure 9: Top: Maps of growth (dG,s) obtained with different numbers of blocks
L. Left column: L = 6. Right column, top: L = 3. Right column, bottom:
L = 2. Bottom: plaque profiles after 36 months.

Table 4: Plaque volumes (cm3) computed for different numbers of blocks L.
L = 2 L = 3 L = 6

6 months - - 0.04

12 months - 0.17 0.10

18 months 0.24 - 0.16

24 months - 0.36 0.22

30 months - - 0.29

36 months 0.48 0.56 0.37
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the artery wall, was coupled to a set of PDEs and an ODE describing the evo-
lution of solute concentrations. The multiscale-in-time nature of the atheroscle-
rotic process was treated with a suitable splitting and sequential solution of the
two subproblems, which allowed to separate the short and long time scales. The
coupling between the subproblems was obtained through the use of a TAWSS-
dependent permeability of the endothelium to describe the inflow of solutes from
the bloodstream. This led to a local accumulation of the involved species (LDL,
macrophages and foam cells). A further coupling was introduced to update the
geometric domains due to the growth of plaque caused by foam cells.

We tested our model in an ideal geometry to assess its ability to produce
significant plaque growth. We investigated the effect of the initial geometry, of a
subset of model parameters and of different coupling timings. In particular, we
found that the frequency of geometric update due to growth influences the mor-
phology and volume of plaque as much as the choice of different parameters, thus
highlighting the importance of employing a suitable multiscale-in-time strategy.
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