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Abstract

Beads-on-string patterns have been experimentally observed in solid cylinders for a
wide range of material properties and structural lengths, from millimetric soft gels to
nanometric hard fibres. In this work, we combine theoretical analysis and numerical tools
to investigate the formation and the nonlinear dynamics of such beaded structures. We
show that this morphological transition is driven by elasto-capillarity, i.e. a complex
interplay between the effects of surface tension and bulk elasticity. Unlike buckling or
wrinkling, the presence of an axial elongation is found here to favour the onset of fibre
beading, in agreement with existing experimental results on electrospun fibres, hydrogels
and nerves. Our results also prove that the applied stretch can be used in fabrication
techniques to control the morphology of the emerging beads-on-string patterns. Such
quantitative predictions open the way to several applications, from tissue engineering to
the design of stretchable electronics and the micro-fabrication of functionalized surfaces.

Since the first experimental observation dating back to 1833 [1], it is well known that
the surface tension in a liquid filament can trigger the transition into a varicose shape, fol-
lowed by a sudden breakup into droplets. Linear stability studies [2, 3] have later proved
that this phenomenon, thereafter named Rayleigh-Plateau instability (RPI), is governed by a
competition between the surface tension, seeking to reduce the surface area at constant fluid
volume, and the fluid inertia, opposing to motions over long distances. More recent devel-
opments have focused on understanding the nonlinear dynamics of the droplet formation in
free-surface flows [4] and the formation of blistering patterns during the capillary thinning of
viscoelastic solutions [5]. Although also elastic solids possess a surface tension, the influence
of a capillary effect for their macroscopic shaping can be often neglected, since the formation
of surface patterns is contrasted by the high bulk energy required for an elastic deformation.
Nevertheless, capillary and elastic forces scale down very differently while decreasing the typi-
cal size Ls of the system [6], becoming comparable at low enough length-scales. In fact, if µ is
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the shear modulus of the material and γ is its surface tension, an elasto-capillary interaction
can be observed if the characteristic length Lec = γ/µ is of the same order of Ls. Since
Lec is in the sub-millimeter range [7], the ability of the surface tension to provoke a relevant
deformation of a solid structure has been very recently observed in a number of miniaturized
systems, such as the coalescence in wet hair clumps [8], the creation of complex microscopic
structures through the wrapping of a liquid drop [9] or their pattern selection through a drop
impact [10]. Moreover, an elasto-capillary effect at more macroscopic scales might also occur
for very soft solids, thus decreasing µ and increasing Lec, as recently observed by immerg-
ing centimeter-scale elastic rods, made of a gel just above the percolation threshold, into an
aqueous solution [11].

Similarly to the RPI, it is therefore expected that elasto-capillary effects can drive the
occurrence of a peristaltic pattern for elastic filaments with initial radius R0 somewhat com-
parable to its capillary length Lec. This morphological transition has been experimentally
observed in applications spanning a wide range of elastic properties and characteristic lengths,
from millimetric soft gel [12] to nanometric hard polymer fibres [13]. Although some theo-
retical analysis and empirical correlations have been recently proposed [14, 15], the effects
of elasto-capillarity on the resulting beaded morphology in solids are barely understood. In
particular, whilst it is well known that a compressive strain triggers many classical elastic
instabilities, such as wrinkling [16] or buckling [17, 18], it is yet unclear why the axial elon-
gation of a capillary elastic filament favors the onset of beading. This has been observed in
few experiments with soft cylinders having very different physical and structural characteris-
tics, including electrospun fibers [19], hydrogels [20] and nerve axons [21, 22], as depicted in
Fig. 1. In this perspective, this work aims at investigating how bulk elasticity and surface
tension concur for driving a beading instability in soft elastic fibres, evaluating the onset
conditions and its dynamics far from the bifurcation point. In particular, the main goal is to
prove insights on the effects of the elasto-capillarity on the onset and the nonlinear dynamics
of the beaded patterns, opening new possibilities for generating controllable beads-on-string
structures in a wide range of experimental applications. With this scope, both a theoretical
analysis and numerical tools are proposed in the following to provide a quantitative prediction
of the beaded morphology in the fully nonlinear regime.

Let us consider an elastic cylinder with radius R0 and axial length L0 subjected to an
axial strain λz, so that (r, z) and (R,Z) are the polar coordinates in the spatial and material
settings, respectively. Assuming that the filament is made of a neo-Hookean incompressible
material with density ρ, three energy contributions can be taken into account: (i) the kinetic

energy K = (1/2)
∫ L0

Z=0 dZ
∫ R0

R=0 dRρv
2 where v is the spatial velocity; (ii) the bulk elastic

energy Uel = (µ/2)
∫ L0

Z=0 dZ
∫ R0

R=0 dR (J1 − 3), where J1 =
[

2 +
∑

j u
2
i,j + 2ui,i + (1 + ur/r)

2
]

,

ui indicates the component of the displacement along the direction i, with (i, j) spanning over
(r, z), comma denotes partial derivative and the Einstein summation rule on dummy indices

is considered; (iii) the capillary energy on the free surface Usurf = γ
∫ λzL0

z=0 dzr
√

1 + r2,z. Using

a variational approach, the equilibrium of the elastic filament arises from the minimization of
the total energy by imposing a null variation of the Lagrangian functional L as

δL = δ(K − Uel − Usurf ) = 0 (1)
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Figure 1: Bead-on-string patterns in solid fibers with different underlying physical properties:
(I) The rat sciatic nerve can be considered as a cylinder with radius of few µm: applying an
axial stretch, the nerve first loses the typical banding observed at its rest condition (bands
of Fontana), later developing a beading instability after a threshold value of the elongation
ratio. A further increase of the stretch provokes an initial increase of the beads amplitudes,
which later saturate to a constant value, after which beading gradually disappears. The
scale bar is 50 µm (from [23]). (II) Nanofibres are cylindrical structures having radii of the
order of hundreds of nm and characterized by a small aspect ratio R0/L; if elongated, an
initially circular filaments can undergo a beading instability (from [13]). (III) Electrospinning
is a technique used for the production of polymeric fibres based on an extrusion process.
The morphology of the extruded fibres is affected by several experimental parameters. In
particular, it is shown that increasing the collecting distance from (a) to (h), i.e. increasing
the applied stretch, promotes the onset of beading. Each division in the scale bar corresponds
to 10 µm (from [25]). (IV) Soft cylindrical gels with radii of few mm have a very complex
morphological diagram. In particular, Matsuo and Tanaka [20] reported that the application
of a finite axial stretch can promote the occurrence of a bubble/beaded pattern (from [20]).

The incompressibility constraint can be exactly fulfilled using a stream function φ =
φ(R, z, t) in a mixed coordinate state [14], so that r2 = 2φ,z and Z = (1/R)φ,R. Accord-
ingly, the basic axis-symmetric solution after imposing the axial stretching λz is given by
φ0(R, z, t) = (1/(2λz))R

2 z. In order to perform a stability analysis of this static solution, let
us consider a perturbation of the stream function as:

φ(R, z, t) = φ0 +
∞
∑

n=1

ǫnRφn (R, z, t) (2)

where ǫ is a small order parameter to be defined. Assuming variable separation, we look
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for a linear order solution in the form of a travelling wave with axial velocity V , being
φ1 (R, z, t) = u(1)

(

R/
√
λz

)

eIk(z−V t) + c.c., where I is the imaginary unit, c.c. indicates the
complex conjugate, and k = (2πm)/L0 is the axial wavenumber of the perturbation, having
integer mode m. Using Eq. (2), the bulk equilibrium from Eq. (1) reads

L1 [Lq (u (r)))] = 0 (3)

where Lp = ∂2r + (1/r)∂r − (1/r2) − (k2p2) for p = (1, q), and q =

√

λz

(

λ2z − V 2

c2

)

with

c =
√

µ/ρ being the speed of sound in the material.
Imposing regularity for r = 0 and considering the boundary conditions r0 = R0/

√

(λz),
the solution of Eq. (3) can be written as

u(1) (r) =
I1 (krq)

I1 (kr0q)
−
(

λ3z + 1

2

)

I1 (kr)

I1 (kr0)
(4)

where In is the modified Bessel function of order n. Moreover, the dispersion relation for a
static critical wave with V = 0 reads

2
(λ3z − 1)

λ
3

2

z

+ k̄
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z

I0
(

k̄λz
)

I1
(

k̄λz
) −

(

λ3z + 1
)2

λ2z

I0

(

k̄√
λz

)

I1

(

k̄√
λz

)



+
Lec

Ro

(

λ3z − 1
)

(

1− k̄2

λz

)

= 0 (5)

where k̄ = kR0 is the dimensionless wavenumber. The marginal stability curves from Eq. (5)
are depicted as solid lines in Fig. 2, showing the critical axial stretch λthz as a function of the
elasto-capillary ratio Lec/R0 for varying k̄. In particular, it is found that the marginal stability
curves superimpose for k̄ < 0.01, thus predicting the onset of a long wavelength beading. In
absence of an axial strain, i.e. λz = 1, the instability threshold is given by Lec = 6R0 [24].
Instead, if the cylinder is elongated, i.e. λz > 1, the beading instability can occur at lower
elasto-capillary ratios Lec/R0 up to a minimum value given by (Lec/R0)min = 5.66. This novel
theoretical result confirms the elasto-capillary effect reported in the experimental observations
of Fig. 1, giving analytical predictions on the required axial stretching for driving the onset
of beading in an elastic filament with Lec/R0 > (Lec/R0)min. Experimental data on the
fabrication of nanofibres by electrospinning have evidenced this elasto-capillary effect [19, 25];
considering the typical surface tension in the range γ = 20 − 70mN/m and a characteristic
radius of R0 = 125nm, it has been shown that the formation of beads can be triggered by
increasing the surface tension (i.e. Lec) above a critical value of about γ = 59.3mN/m [19],
which from our theoretical prediction of Lec in the range [5.66 − 6]R0 correspond to a shear
modulus of about µ = 80 − 85kPa, in agreement with the experimental measures [15]. The
favouring effect of axial stretching on the formation of beading is also experimentally confirmed
varying the applied electric field at fixed collecting distance reporting beading for lower elasto-
capillary ratios, i.e. (Lec/R0)min < Lec/R0 < 6, together with a morphological change from
spindle- to sphere-like beads [26, 27]. In order to study the dynamics of pattern formation
of the beading instability, let us first perform a weakly non-linear analysis using the multiple-
scale method. Assuming a small increase of the axial stretch above the instability threshold,
such that ǫ =

√

(λz − λthz ) /λthz << 1, the linear stability analysis predicts that the velocity of
the near-critical wave is given by V =

√
3(cλthz )ǫ. If we define a characteristic time tc = R0/V ,
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the linear perturbation can be rewritten as φ1 (R, z, t) = A(τ)u(1)
(

R/
√
λz

)

eIkz + c.c., where
τ = ǫ (t/tc) is the slow time-scale describing the growth of the amplitude A(τ) of the near-
critical beads, that cannot be fixed by a linear analysis. In order to study the evolution of the
beading beyond the instability threshold, we can extend the series development in Eq. (2)
up to the third order in ǫ (n=3), taking into account the expression of the lower order terms
to generate the resonating terms at higher orders. A solvability condition for the amplitude
A(τ) can be obtained by considering that the total mechanical energy E of the system must
be conserved in absence of dissipative processes [28], so that

dE

dt
=

d

dt
[K + Uel + Usurf ] = 0 (6)

Imposing Eq. (6) at the forth order in ǫ allows deriving the evolution law (also known
as Ginzburg-Landau equation) driving the growth of the beading amplitude in the weakly
nonlinear regime, being

κ∂2τA (τ) + νA (τ)− ψ |A (τ)|2A (τ) = 0 (7)

where κ and ν only depend on the linear order solution, ψ is a complex function of the higher
order terms, and the conjugate equation also applies. The amplitude Eq. (7) proves that
the beading occurs after a pitchfork bifurcation: if ν/ψ > 0 , there exists a stable solution
Ast =

√

ν/ψ, so that the amplitude regularly grows as the square root of the distance from the
critical stretch threshold, i.e. as ǫBst with Bst = 2k

√
λzu(R0)A

st(supercritical bifurcation);
if ν/ψ < 0 , the pitchfork is unstable and one expects that the solution has a discontinuity,
jumping into a stable configuration which is driven by nonlinear effects of higher orders
(subcritical bifurcation). In particular, it is found that the bifurcation turns supercritical
when increasing both the critical wavenumber k̄th = 2πR0/L0 and the critical axial stretch
λthz at the onset of the instability. This means that the beading becomes continuous and
controllable when applying a finite axial stretch to a solid cylinder with an aspect ratio R0/L0

beyond a given (small) value. Conversely, the instability can be weakly nonlinear unstable for
very slender filaments: thus the analytical results predict a discontinuous beading formation
just above the linear stability threshold, later controlled by nonlinearities. Indeed, the nature
of bifurcation can be theoretically evaluated by studying the coefficients ν and ψ in Eq.
(7). These parameters depend on the functions φn (R, z, t) describing the perturbation of the
stream function in Eq. (2). In particular, their whole expressions are the following:

φ1 (R, z, t) =

Ru(1)
(

R/
√

λz

) [

A(τ)eIkz +A∗(τ)e−Ikz
] (8)

φ2 (R, z, t) = Ru(2)
(

R/
√

λz

)

[A(τ)A∗(τ)]

+Rw(2)
(

R/
√

λz

) [

A2(τ)Ie2Ikz −A∗2(τ)Ie−2Ikz
] (9)

φ3 (R, z, t) =

Ru(3)
(

R/
√

λz

) [

A2(τ)A∗(τ)eIkz +A(τ)A∗2(τ)e−Ikz
]

+Rw(3)
(

R/
√

λz

) [

A3(τ)e3Ikz +A∗3(τ)e−3Ikz
]

(10)
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where the superscript ∗ indicates the complex conjugate. The functions u(n) and w(n), with
n = 1, 2, 3, are obtained by solving the Euler Lagrange problem at order n in Eq. (1). Their
analytical expressions is very cumbersome and is not reported in here for sake of simplicity.
Numerical integrations allow to calculate the parameters ν and ψ, as reported in Table 1. The
numerical values of the weakly non-linear coefficients correspond to linear stability thresholds
depicted as squared markers in Fig. 2(a). It can be shown that the nature of the bifurcation
changes varying the geometry of the fibre and its constitutive properties: controllable patterns
can be obtained increasing the aspect ratios (R0/L0) and if the elasto-capillary length Lec is
farther from the stability limit without stretch.

Table 1: Numerical values of weakly non-linear coefficients ν and ψ in Eq. (7) and nature of
the bifurcation (sub: subcritical; super: supercritical) obtained for cases in which µ = 20kPa
and R0 = 0.2µm. The results correspond to linear stability thresholds depicted as squared
markers in Fig. 2(a).

Lec

R0
ν ψ nature of bifurcation

k̄ = 0.01 k̄ = 0.1 k̄ = 0.2 k̄ = 0.01 k̄ = 0.1 k̄ = 0.2 k̄ = 0.01 k̄ = 0.1 k̄ = 0.2

6.2 - - -0.232 - - 0.042 - - sub
6.1 - - -3.303 - - 0.798 - - sub
6.0 - -0.231 -9.493 - 0.025 -16.32 - sub super
5.9 -0.059 -1.704 -18.47 0.019 1.307 -811.8 sub sub super
5.8 -0.275 -5.106 0.461 6.669 sub sub
5.75 -0.464 -7.361 1.369 -18.16 sub super
5.7 -0.686 3.156 sub

We have investigated the fully non-linear dynamics of stretch-induced beading in solid
cylinders implementing the elasto-capillary problem on a finite element code. Numerical
simulations are carried out by using the open source software FEniCS for solving partial
differential equations [29]. To guarantee the incompressibility constraint, a mixed formulation
with triangular Taylor-Hood elements is implemented and the solution has been found through
an incremental iterative Newton-Raphson methods with direct solver. The results of the
numerical simulations are first validated versus the theoretical results of the linear stability
analysis, as depicted in Fig. 2, where the numerical thresholds are indicated by the square
markers.

A morphological phase diagram from the simulations on the stretched cylinder is reported
in Fig. 2(b), showing the nonlinear evolution of beading in different paths mimicking two
different experimental settings. The path (A-B-C-D) in Fig. 2(b) concerns the application
of an axial elongation at constant elasto-capillary ratio, and corresponds to the stretching
experiments shown in Fig. 1(I,II). The numerical results indicate a smooth growth of beads
beyond the critical stretch λthz , whose amplitudes later saturate to a constant value whilst their
spacing increases with an increasing axial strain. This morphological transition corresponds
to the experimental observations on nerve axons (see Fig. 1(I)), where the application of
an axial stretch of about 10% triggers the formation of beaded structures evolving at almost
fixed amplitude over a certain range of applied stress before disappearing. However, it must be
reminded that the use of a capillary energy is here a simplification of the elastic response of the
outer membrane. Indeed, although a skin effect arises since the membrane thickness is much
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Figure 2: (a) Dispersion curves (solid lines) showing the critical axial stretch λthz versus
the elasto-capillary ratio Lec/R0 at varying k̄. The squares indicate the thresholds computed
numerically. (b) Morphological phase diagrams from the numerical simulations of two different
paths, fixing Lec/R0 = 7.7 (A-B-C-D) and λz = 1.05 (A-E-F-G).

smaller than the radius of the nerve axon [21], a more accurate modelling of the membrane
structure should include an elastic contribution in the corresponding surface energy.
The same behaviour is observed by stretching polyacrylonitrile (PAN) nanofibres (see Fig.
1(II)), where ripples develop after a critical stretch of λthz = 1.15, which in our theoretical
prediction gives an elasto-capillary ratio of about Lec/R0 = 5.75. Since PAN fibres are
characterized by a surface tension γ = 0.025 − 0.1N/m and R0 = 300 − 600nm, such a
prediction corresponds to a shear modulus in the range µ = 6 − 60kPa, which is consistent
with the reported data [30]. Such experimental values of λthz and Lec/R0 have been used in
numerical simulations in order to perform a quantitative comparison of the pattern dynamics.
The resulting curves are depicted in Fig. 3, showing both the beading amplitude and their
relative width versus the imposed stretch. In particular, ripples with amplitude of the order
of magnitude of tents of nanometers are obtained, which correspond to the experimental
observations [13]. Moreover, it is also confirmed that the beads amplitude initially grows
as the square root of the distance from the critical thresholds, as predicted by our weakly
nonlinear analysis (solid lines in Fig. 3(b)). Interestingly, whilst the amplitude is almost
constant, the beading width decreases linearly with increasing axial stretch, as shown in Fig.
3(c). This is a very important finding, proving that the applied stretch can be used to control
the resulting morphology of elasto-capillary fibres in tensile experiments. Conversely, the
path (A-E-F-G) in Fig. 2(b) aims at mimicking the experiments of Matsuo and Tanaka [20],
where dried cylindrical gels, with an initial radius R0 in the range 0.35 − 0.5 mm, are first
stretched and then put in a water-acetone mixture, thus increasing the surface tension above
the critical value for the elasto-capillary ratio Lec/R0. A bubble pattern is there observed
for critical axial elongations λthz up to 20%, which in our theoretical analysis correspond to a
gel shear modulus of tens of Pa for a surface tension of γ = 25mN/m [31], consistent with
recent experimental measures [11]. However, it is important to underline that is would be
more accurate to use a diffuse interface energy (e.g. of the Ornstein-Zernicke type) to model
such experiments, although a capillary energy is an acceptable modelling simplification when
the correlation length is much smaller than the radius. The numerical results on the pattern
dynamics are also qualitatively consistent with these experiments, reporting a bead change
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Figure 3: (a) Beading amplitude a and axial width W . (b) Numerical simulation mimicking
the experiments on PAN nanofibres with R0 = 300nm [13] giving (c) the amplitude a and (d)
the dimensionless width W̄ =W/Lc for three different elasto-capillary ratios. Numerical data
(circles) in (c) fit very well the theoretical predictions (solid lines) given by ǫBst (solid lines)
with no adjustable parameters: green line, SSE = 1.59 · 10−5; black line, SSE = 3.47 · 10−3;
red line, SSE = 3.10 · 10−4 (SSE: summed square of residuals).

from spindle-like to sphere-like whilst increasing the surface tension at fixed applied stretch.
A continuous variation of the bead amplitude was also recently reported [12] in absence of an
axial strain, thus suggesting the occurrence of a supercritical bifurcation.
Nevertheless, the results of our weakly nonlinear analysis suggest that the beading instability
is strongly dependent on the elasto-capillary properties and on the geometry of the solid
cylinder. In particular, the fully nonlinear simulations confirmed that the bifurcation can
turn subcritical in very slender cylinders, as shown in Fig. 3. In this case, the beading
amplitude for short-wavelength perturbations is found undergoing a sharp variation after the
linear stability threshold, suddenly jumping into a finite value. Moreover, a hysteresis loop is
observed if the applied stretch is gradually removed (path A-B-C-D in Fig. 4, although the
instability is totally reversible. Both these features are indicative signs of a subcriticality of
the elasto-capillary instability, which is rather uncommon in elasticity [32].

Albeit our theoretical predictions indicate that the wavelength of beading scales in general
as the length L0 of the solid cylinder, they also predict that shorter undulations have very
close instability thresholds for very slender filaments. Accordingly, the wavelength selection
might be driven by the presence of surface defects in the real practice, as found for wrinkling
[33]. Thus, an imperfection-sensitivity analysis of beading should be performed in a future
study. Further developments will also focus on the effect of other interaction potentials (e.g.
electrostatic, magnetic or intermolecular forces) on beading at lower scales of investigation.

In summary, we have presented both a theoretical and a numerical investigation of the
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Figure 4: The beading amplitude a versus the applied axial stretch in a loading-unloading cycle
for different wavenumbers k̄ , setting R0 = 0.24µm, L0 = 80µm, µ = 20kPa, γ = 0.028N/m
(Lec/R0 = 5.7).

elasto-capillary effects driving beading instability in solid cylinders. Although our model does
not claim describing all the underlying physical characteristics of the mentioned experiments,
it proves that either the axial stretch λz or the elasto-capillary ratio Lec control the beaded
morphology over a large range of material properties and characteristic length-scales. Propos-
ing for the first time a weakly nonlinear analysis for a nonlinear elastic cylinder, quantitative
predictions are given on the effects of the geometrical and the elasto-capillary characteristics
on the beading dynamics far from the bifurcation point. Thus, the results of this work can
be used as guidelines for the fabrication of controllable patterns in a number of applications.
Possible outcomes in material science concern the production of functional micro-threads in
biomaterials, e.g. for mimicking the beads-on-string spider web [34], as well as the design of
nanowires with tunable properties for stretchable electronics [35] or for sensor devices in micro-
electro-mechanical systems [36]. Finally, the possibility to control the beading morphology
opens new perspectives in many biological applications, from regenerative tissue engineering
[37] to the fabrication of functionalized surfaces for cell culturing [38].
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