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Abstract

We present W-cycle multigrid algorithms for the solution of the linear system of

equations arising from a wide class of hp-version discontinuous Galerkin discretiza-

tions of elliptic problems. Starting from a classical framework in multigrid analysis,

we define a smoothing and an approximation property, which are used to prove

the uniform convergence of the W-cycle scheme with respect to the granularity of

the grid and the number of levels. The dependence of the convergence rate on the

polynomial approximation degree p is also tracked, showing that the contraction

factor of the scheme deteriorates with increasing p. A discussion on the effects of

employing inherited or non-inherited sublevel solvers is also presented. Numerical

experiments confirm the theoretical results.

1 Introduction

Discontinuous Galerkin (DG) methods have undergone a huge development in the last
three decades mainly because of their flexibility in dealing with a wide range of equa-
tions within the same unified framework, in handling non-conforming grids and variable
polynomial approximation orders, and in imposing weakly boundary conditions. There-
fore, the construction of effective solvers such as domain decomposition and multigrid
methods has become an active research field. Domain decomposition methods are based
on the definition of subproblems on single subdomains, followed by a coarse correction,
which ensures the scalability of the method. In the framework of domain decomposi-
tion algorithms for DG methods, in [33] a Schwarz preconditioner based on overlapping
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and non-overlapping partitions of the domain is analyzed. The case of non-overlapping
Schwarz methods with inexact local solvers is addressed in a unified framework in [2, 3].
This topic has been further analyzed in [43, 34, 26, 4, 25, 32, 12, 6]. For substructuring-
type preconditioners for DG methods, we mention [31, 30], where Neumann-Neumann
and Balancing Domain Decomposition with Constraints (BDDC) for Nitsche-type meth-
ods are studied. A unified approach for BDDC is recently proposed in [29], while in [20]
a preconditioner for an over-penalized DG method is studied. All these contributions
focus on the h-version of DG methods; only recently some attention has been devoted
to the development of efficient solvers for hp-DG methods. The first contribution in this
direction is in [8], where a non-overlapping Schwarz preconditioner for the hp-version
of DG methods is analyzed, cf. also [7] for the extension to domains with complicated
geometrical details. In [27, 24] BDDC and multilevel preconditioners for the hp-version
of a DG scheme are analyzed, in parallel with conforming methods. Substructuring-type
preconditioners for hp-Nitsche type methods have been studied recently in [5]. The issue
of preconditioning hybrid DG methods is investigated in [49]. Here we are interested in
multigrid algorithms for hp-version DG methods, that exploit the solution of suitable
subproblems defined on different levels of discretization. The levels can differ for the
mesh-size (h-multigrid), the polynomial approximation degree (p-multigrid) or both (hp-
multigrid). In the framework of h-multigrid algorithms for DG methods, in [37] a uniform
(with respect to the mesh size) multigrid preconditioner is studied. In [40, 41] a Fourier
analysis of a multigrid solver for a class of DG discretizations is performed, focusing
on the performance of several relaxation methods, while in [53] the analysis concerns
convection-diffusion equations in the convection-dominated regime. Other contributions
can be found for low-order DG approximations: in [22] it is shown that V-cycle, F-cycle
and W-cycle multigrid algorithms converge uniformly with respect to all grid levels, with
further extensions to an over-penalized method in [19] and graded meshes in [18, 17].
At the best of our knowledge, no theoretical results in the framework of p- and hp-DG
methods are available, even though p-multigrid solvers are widely used in practical ap-
plications, cf. [35, 44, 46, 45, 51, 13], for example.

In this paper, we present W-cycle hp-multigrid schemes for high-order DG discretizations
of a second order elliptic problem. We consider a wide class of symmetric DG schemes,
and, following the framework presented in [21, 22, 18], we prove that the W-cycle algo-
rithms converge uniformly with respect to the granularity of the underlying mesh and the
number of levels, but the contraction factor of the scheme deteriorates with increasing
p. The key point of our analysis is suitable smoothing and approximation properties
of the hp-multigrid method. The smoothing scheme is a Richardson iteration, and we
exploit the spectral properties of the stiffness operator to obtain the desired estimates.
The approximation property is based on the error estimates for hp-DG methods shown in
[47, 42, 52]. We also discuss in details the effects of employing inherited or non-inherited
sublevel solvers. More precisely, we show that the W-cycle algorithm converges uniformly
with respect to the number of levels if non-inherited sublevel solvers are employed (i.e.,
the coarse solvers are built rediscretizing our original problem on each level), whereas
convergence cannot be independent of the number of levels if inherited bilinear forms are
considered (i.e., the coarse solvers are the restriction of the stiffness matrix constructed
on the finest grid). Those findings are confirmed by numerical experiments.
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The rest of the paper is organized as follows. In Section 2 we introduce the model
problem and its DG discretization, and recall some results needed in the forthcoming
analysis. In Section 3 we introduce W-cycle schemes based on non-inherited bilinear
forms. The convergence analysis is performed in Section 4, and further extended to
a wider class of symmetric DG symmetric schemes in Section 5. Multigrid algorithms
based on employing inherited bilinear forms are discussed in Section 6. The theoretical
estimates are then verified through numerical experiments in Section 7. In Section 8 we
draw some conclusions. Finally, in Appendix A we report some technical results.

2 Model problem and DG discretization

In this section, we introduce the model problem and its discretization by hp-version DG
methods.

Throughout the paper we will use standard notation for Sobolev spaces [1]. We write
x . y in lieu of x ≤ Cy for a positive constant C independent of the discretization
parameters. When needed, the constants will be written explicitly.

Let Ω ∈ R
d, d = 2, 3, be a polygonal/polyhedral domain and f a given function in

Hs−1(Ω), s ≥ 1. We consider the weak formulation of the Poisson problem, with homo-
geneous Dirichlet boundary conditions: find u ∈ V = Hs+1(Ω) ∩H1

0 (Ω), such that
∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V, (1)

We will make the following elliptic regularity assumption on the solution to (1):

‖u‖Hs+1(Ω) . ‖f‖Hs−1(Ω) . (2)

Such a hypothesis can be relaxed, cf. [16, 18, 17] for multigrid methods that do not
assume regularity on the solution.

We introduce a quasi-uniform partition TK of Ω into shape-regular elements T of diameter
hT , and set hK = maxT∈TK

hT . We suppose that each element T ∈ TK is an affine image

of a reference element T̂ , i.e., T = FT (T̂ ), which is either the open unit simplex or the
unit hypercube in R

d, d = 2, 3. We denote by FI
K , resp. FB

K , the set of interior, resp.
boundary, faces (if d = 2 “face” means “edge”) of the partition TK and set FK = FI

K∪FB
K ,

with the convention that an interior face is the non-empty intersection of the closure of
two neighboring elements. Given s ≥ 1, the broken Sobolev space Hs(TK) is made of
the functions that are in Hs elementwise. The DG scheme provides a discontinuous
approximation of the solution of (1), which in general belongs to a finite dimensional
subspace of Hs(TK) defined as

VK = {v ∈ L2(Ω) : v ◦ FT ∈ M
pK (T̂ ) ∀T ∈ TK}, (3)

where M
pK (T̂ ) is either the space of polynomials of total degree less than or equal to

pK ≥ 1 on the simplex T̂ , or the space of all tensor-product polynomials on T̂ of degree
pK in each coordinate direction, if T̂ is the reference hypercube in R

d.
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For regular enough vector-valued and scalar functions τ and v, respectively, we define
the jumps and weighted averages (with δ ∈ [0, 1]) across the face F ∈ FK as follows

Jτ K = τ+ · nT+ + τ− · nT− , {{τ}}δ = δτ+ + (1− δ)τ , F ∈ FI
K ,

JvK = v+nT+ + v−nT− , {{v}}δ = δv|T+ + (1− δ)v|T− ,F ∈ FI
K ,

with nT± denoting the outward normal vector to ∂T±, and τ± and v± are the traces
of τ and v taken within the interior of T±, respectively. In the case δ = 1/2 (standard
average) we will simply write {{·}}. On a boundary face F ∈ FB

K , we set JvK = vnT ,
{{τ}}δ = τ |T . We observe that the following relations hold on each F ∈ FI

K

{{u}}δ = {{u}}+ δ · JuK, {{u}}1−δ = {{u}} − δ · JuK,

with δ = (δ − 1/2)nF , being nF the outward unit normal vector to the face F to which
δ is associated.

Next, we introduce the local lifting operators rF : [L1(F )]d → [VK ]d and lF : L1(F ) → [VK ]d

∫

Ω

rF (τ ) · η dx = −
∫

F

τ · {{η}} ds ∀η ∈ [VK ]d ∀F ∈ FI
K

∫

Ω

lF (v) · η dx = −
∫

F

vJηK ds ∀η ∈ [VK ]d ∀F ∈ FI
K ,

and set
RK(τ ) =

∑

F∈FK

rF (τ ), LK(v) =
∑

F∈FK

lF (v).

The DG finite element formulation reads as follows: find uK ∈ VK such that

AK(uK , vK) =

∫

Ω

fvK dx ∀vK ∈ VK , (4)

with AK(·, ·) : VK × VK → R defined as

AK(w, v) =
∑

T∈TK

∫

T

∇w · ∇v dx+
∑

T∈TK

∫

T

∇w · (RK(JvK) + LK(β · JvK)) dx

+
∑

T∈TK

∫

T

(RK(JwK) + LK(β · JwK)) · ∇v dx+ Sj
K(w, v) (5)

+ θ

∫

Ω

(RK(JwK) + LK(β · JwK)) · (RK(JvK) + LK(β · JvK)) dx,

where θ = 0 for the SIPG [9] and SIPG(δ) [39] methods and θ = 1 for the LDG method
[28]. For the LDG method, β ∈ R

d is a uniformly bounded (and possibly null) vector,
whereas for the SIPG(δ) and SIPG methods β = δ, and β = 0, respectively. The
stabilization term Sj

K(·, ·) is defined as

Sj
K(w, v) =

∑

F∈FK

∫

F

σKJwK · JvK ds ∀w, v ∈ VK (6)
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where the penalization term σK ∈ L∞(FK) is chosen such that

σK |F =
αKp

2
K

min(hT+ , hT−)
, F ∈ FI

K , σK |F =
αKp

2
K

hT
F ∈ FB

K , (7)

with αK ∈ R
+ and hT± diameters of the neighboring elements T± ∈ TK .

We endow the space VK with the DG norm ‖ · ‖DG,K defined as

‖v‖2DG,K =
∑

T∈TK

‖∇v‖2L2(T ) +
∑

F∈FK

‖σ1/2
K JvK‖2L2(F ). (8)

The following result ensures the well posedness of problem (4), cf. e.g., [42, 47, 8, 52].

Lemma 1. Let V (hK) = VK + V . It holds

AK(u, v) . ‖u‖DG,K‖v‖DG,K ∀u, v ∈ V (hK), (9)

AK(u, u) & ‖u‖2DG,K ∀u ∈ VK . (10)

For the SIPG and SIPG(δ) methods, coercivity holds provided the stabilization parameter
αK is chosen large enough.

Since the bilinear form (5) contains the lifting operators, continuity in V (hK) and coer-
civity in VK can be proved with respect to the same DG norm (8). This is different from
the approach proposed in [10], where continuity holds in V (hK) in an augmented norm.

We have the following error estimates, cf. [47, 42, 52].

Theorem 2. Let u be the exact solution of problem (1) such that u ∈ Hs+1(TK), s ≥ 1,
and let uK ∈ VK be the DG solution of problem (4). Then,

‖u− uK‖DG,K .
h
min(pK ,s)
K

p
s−1/2
K

‖u‖Hs+1(TK), (11)

‖u− uK‖L2(Ω) .
h
min(pK ,s)+1
K

psK
‖u‖Hs+1(TK). (12)

The proof of Theorem 2 follows the lines given in [47]; for the sake of completeness we
sketch it in Appendix A.

Remark 3. Optimal error estimates with respect to pK can be shown using the projec-
tor of [36] provided the solution belongs to a suitable augmented space, or whenever a
continuous interpolant can be built, cf. [52]. Therefore, in the following we will write

‖u− uK‖DG,K .
h
min(pK ,s)
K

p
s−µ/2
K

‖u‖Hs+1(TK),

‖u− uK‖L2(Ω) .
h
min(pK ,s)+1
K

ps+1−µ
K

‖u‖Hs+1(TK),

(13)

with µ = 0, 1 for optimal and suboptimal pK estimates, respectively.
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3 Multigrid W-cycle methods with non-inherited sub-

level solvers

Before introducing our W-cycle algorithms, we make some further assumptions and in-
troduce some notation. We suppose that the grid TK has been obtained by K − 1
successive uniform refinements using the red-green algorithm of an initial (coarse) quasi-
uniform partition T1. More precisely, for d = 2, given the initial mesh T1 of size h1, the
grid Tk, k = 2, . . . ,K, is built by splitting each triangle/parallelogram of Tk−1 into four
congruent triangles/parallelograms connecting the midpoints of opposite edges, thus ob-
taining a mesh with size hk = h12

1−k. If d = 3 each element is splitted into eight
tetrahedra/parallelepipeds. The associated discontinuous spaces V1 ⊆ V2 ⊆ · · · ⊆ VK are
defined according to (3)

Vk := {v ∈ L2(Ω) : v ◦ FT ∈ M
pk(T̂ ) ∀T ∈ Tk}, k = 1, . . . ,K.

Analogously V (hk) = Vk + V . We will assume that

pk−1 ≤ pk . pk−1 ∀k = 2, . . . ,K, (14)

that is when varying from one mesh level to another the polynomial approximation
degrees vary moderately. Let nk be the dimension of Vk, and let {φki }nk

i=1 be a set of basis
functions of Vk. Any v ∈ Vk can then be written as

v =

nk∑

i=1

viφ
k
i , vi ∈ R, i = 1, . . . , nk.

We will suppose that {φki }nk

i=1 is a set of basis functions which are orthonormal with re-

spect to the L2(T̂ )-inner product, being T̂ the reference element. A detailed construction
of such a basis can be found in [8]. On Vk we then introduce the mesh-dependent inner
product

(u, v)k = hdk

nk∑

i=1

uivi ∀u, v,∈ Vk, ui, vj ∈ R, i, j = 1, . . . , nk. (15)

The next result establishes the connection between (15) and the L2 norm.

Lemma 4. For any v ∈ Vk, k = 1, . . . ,K, it holds

(v, v)k . ‖v‖2L2(Ω) . (v, v)k. (16)

Proof. Let v ∈ Vk, we write v =
∑nk

i=1 viφ
k
i and

‖v‖2L2(T ) =

∫

T

(
nk∑

i=1

viφ
k
i

)


nk∑

j=1

vjφ
k
j


 dx =

nk∑

i,j=1

vivj

∫

T

φki φ
k
j dx =

nk∑

i=1

v2i ‖φki ‖2L2(T ),

where in the last step we have used a scaling argument and the fact that the basis func-
tions {φki }nk

i=1 are L
2-orthogonal on the reference element. Using that hdk . ‖φki ‖L2(T ) . hdk

(cf. [48, Proposition 3.4.1]) the thesis follows.
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Once the basis of VK is chosen, equation (4) can be written as the following linear system
of equations

AKuK = fK ,

where the operators AK : VK → V ′
K and fK ∈ V ′

K are defined as

(AKu, v)K = AK(u, v), (fK , v)K =

∫

Ω

fv dx ∀u, v ∈ VK ,

being V ′
k the dual of Vk. In order to define the subproblems on the coarse levels

k = 1, . . . ,K − 1, we consider the corresponding bilinear forms Ak(·, ·) : Vk × Vk → R,
cf. (5)

Ak(u, v) =
∑

T∈Tk

∫

T

∇u · ∇v dx+
∑

T∈Tk

∫

T

∇u · (Rk(JvK) + Lk(β · JvK)) dx

+
∑

T∈Tk

∫

T

(Rk(JuK) + Lk(β · JuK)) · ∇v dx+ Sj
k(u, v) (17)

+ θ
∑

T∈Tk

∫

T

(Rk(JuK) + Lk(β · JuK)) · (Rk(JvK) + Lk(β · JvK)) dx,

where

Sj
k(w, v) =

∑

F∈Fk

∫

F

σkJwK · JvK ds ∀w, v ∈ Vk,

cf. (6), and where σk ∈ L∞(Fk) is defined according to (7), but on the level k. We then
set

(Aku, v)k = Ak(u, v) ∀u, v ∈ Vk. (18)

Recalling Lemma 1, continuity and coercivity of the bilinear formsAk(·, ·), k = 1, . . . ,K−1,
with respect to the DG norms defined on the level k

‖v‖2DG,k =
∑

T∈Tk

‖∇v‖2L2(T ) +
∑

F∈Fk

‖σ1/2
k JvK‖2L2(F ),

easily follow, i.e.,

Ak(u, v) . ‖u‖DG,k‖v‖DG,k ∀u, v ∈ V (hk),

Ak(u, u) & ‖u‖2DG,k ∀u ∈ Vk. (19)

Moreover, since it holds that

hk ≤ hk−1 . hk ∀k = 2, . . . ,K, (20)

and thanks to hypothesis (14), it also follows that

‖vk−1‖DG,k−1 ≤ ‖vk−1‖DG,k .
pk
pk−1

‖vk−1‖DG,k−1 . ‖vk−1‖DG,k−1, (21)
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for any v ∈ Vk−1, k = 2, . . . ,K. The hidden constant in the above inequality depends on
the ratio pk/pk−1, which means that in absence of the assumption (14), such a depen-
dence should be taken into account.

To introduce our multigrid algorithm, we need two ingredients: intergrid transfer opera-
tors (restriction and prolongation) and a smoothing iteration. The prolongation operator
connecting the space Vk−1 to Vk is denoted by Rk

k−1 : Vk−1 → Vk, while the restriction
operator is the adjoint with respect to the discrete inner product (15) and is denoted by
Rk−1

k : Vk → Vk−1, i.e.,

(Rk
k−1v, w)k = (v,Rk−1

k w)k−1 ∀v ∈ Vk−1, w ∈ Vk.

We next define the operator P k−1
k : Vk → Vk−1 as

Ak−1(P
k−1
k v, w) = Ak(v,R

k
k−1w) ∀v ∈ Vk, w ∈ Vk−1. (22)

For the smoothing scheme, we choose a Richardson iteration, given by:

Bk = ΛkIk, (23)

where Ik is the identity operator and Λk ∈ R represents a bound for the spectral radius of
Ak. According to [8, Lemma 2.6] and using the equivalence (16), the following estimate
for the maximum eigenvalue of Ak can be shown

λmax(Ak) .
p4k
h2k
, (24)

hence,

Λk .
p4k
h2k
. (25)

Let us now consider the linear system of equations on level k

Akz = g,

with a given g ∈ V ′
k. We denote by MGW(k, g, z0,m1,m2) the approximate solution

obtained by applying the k-th level iteration to the above linear system, with initial
guess z0 and using m1, m2 number of pre- and post-smoothing steps, respectively. For
k = 1, (coarsest level) the solution is computed with a direct method, that is

MGW(1, g, z0,m1,m2) = A−1
1 g,

while for k > 1 we adopt the recursive procedure described in Algorithm 1.
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Algorithm 1 Multigrid W-cycle scheme

Pre-smoothing:
for i = 1, . . . ,m1 do

z(i) = z(i−1) +B−1
k (g −Akz

(i−1));
end for

Coarse grid correction:

rk−1 = Rk−1
k (g −Akz

(m1));
ek−1 = MGW(k − 1, rk−1, 0,m1,m2);
ek−1 = MGW(k − 1, rk−1, ek−1,m1,m2);
z(m1+1) = z(m1) +Rk

k−1ek−1;

Post-smoothing:
for i = m1 + 2, . . . ,m1 +m2 + 1 do

z(i) = z(i−1) +B−1
k (g −Akz

(i−1));
end for

MGW(k, g, z0,m1,m2) = z(m1+m2+1).

We now introduce the error propagation operator

Ek,m1,m2
(z − z0) = z −MGV(k, g, z0,m1,m2),

and recall that, according to [38, 15], the following relation holds

{
E1,m1,m2

v = 0

Ek,m1,m2
v = Gm2

k (Ik −Rk
k−1(Ik − E

2
k−1,m1,m2

)P k−1
k )Gm1

k v k > 1,
(26)

where Gk = Ik −B−1
k Ak satisfies

Ak(Gkv, w) = Ak(v,Gkw) ∀v, w ∈ Vk.

Indeed, using the definition of Gk and that Bk = ΛkIk, cf.(23),

Ak(Gkv, w) = Ak(v, w)−
1

Λk
(Akv,Akw)k = Ak(v, w)−Ak(v,

Ak

Λk
w) = Ak(v,Gkw).

4 Convergence analysis of the W-cycle multigrid method

To prove convergence, we need to obtain an estimate for Ek,m1,m2
in a proper norm. We

then define

|||v|||s,k =
√
(As

kv, v)k ∀s ∈ R, v ∈ Vk, k = 1, . . . ,K,

and observe that

|||v|||21,k =
√
(Akv, v)k = Ak(v, v) |||v|||20,k = (v, v)k ∀v ∈ Vk, (27)
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and, by virtue of (16), it holds that

|||v|||0,k . ‖v‖L2(Ω) . |||v|||0,k. (28)

In the following we will often make use of the eigenvalue problem associated to Ak

Akψ
k
i = λiψ

k
i , (29)

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λnk
represent the eigenvalues of Ak and {ψk

i }nk

i=1 are the
associated eigenvectors which form a basis for Vk. We can then write any v ∈ Vk as

v =

nk∑

i=1

viψ
k
i , vi ∈ R. (30)

Next, we introduce the following generalized Cauchy-Schwarz inequality.

Lemma 5. For any v, w ∈ Vk and s ∈ R, it holds

Ak(v, w) ≤ |||v|||1+s,k|||w|||1−s,k. (31)

Proof. Considering the eigenvalue problem (29) and the relation (30), it follows that

Akv =

nk∑

i=1

viAkψ
k
i =

nk∑

i=1

viλiψ
k
i ∀v ∈ Vk.

From the definition (17) of Ak and of the inner product (15), it follows

Ak(v, w) = (Akv, w)k = hdk

nk∑

i=1

viwiλi = hdk

nk∑

i=1

viλ
1+s
2

i wiλ
1−s
2

i .

The thesis follows applying the Cauchy-Schwarz inequality

(Akv, w)k = hdk

nk∑

i=1

viλ
1+s
2

i wiλ
1−s
2

i ≤

√√√√hdk

nk∑

i=1

v2i λ
1+s
i

√√√√hdk

nk∑

j=1

w2
jλ

1−s
j = |||v|||s+1,k|||w|||s−1,k.

To establish an estimate for the error propagation operator, we follow a standard ap-
proach by separating two contributions: the smoothing property and the approximation
property. The smoothing property pertains only the smoothing scheme chosen for the
multigrid algorithm.

Lemma 6 (Smoothing property). For any v ∈ Vk, it holds

|||Gm
k v|||s,k . p

2(s−t)
k ht−s

k (1 +m)(t−s)/2|||v|||t,k, 0 ≤ t ≤ s ≤ 2. (32)
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Proof. We refer again to the eigenvalue problem (29) and write v according to (30):

Gm
k v = (Ik − 1

Λk
Ak)

mv =

nk∑

i=1

(1− λi
Λk

)mviψ
k
i .

The thesis follows using the above identity and estimate (25)

|||Gm
k v|||2s,k = hdk

nk∑

i=1

(
1− λi

Λk

)2m

v2i λ
s
i = Λs−t

k

{
hdk

nk∑

i=1

(
1− λi

Λk

)2m
λs−t
i

Λs−t
k

v2i λ
t
i

}

≤ Λs−t
k max

x∈[0,1]
{xs−t(1− x)2m}|||v|||2t,k ≤ p

4(s−t)
k h

2(t−s)
k (1 +m)t−s|||v|||2t,k.

Following [22, Lemma 4.2], we now prove the approximation property.

Lemma 7 (Approximation property). Let µ be defined as in Remark 3. Then,

|||(Ik −Rk
k−1P

k−1
k )v|||0,k .

h2k−1

p2−µ
k−1

|||v|||2,k ∀v ∈ Vk. (33)

Proof. For any v ∈ Vk, applying (28) and the duality formula for the L2 norm, we obtain

|||(Ik −Rk
k−1P

k−1
k )v|||0,k . ‖(Ik −Rk

k−1P
k−1
k )v‖L2(Ω) = sup

φ∈L2(Ω)
φ 6=0

∫
Ω
φ(Ik −Rk

k−1P
k−1
k )v dx

‖φ‖L2(Ω)
.

(34)

Next, for φ ∈ L2(Ω), let η ∈ H2(Ω) ∩H1
0 (Ω) be the solution to

∫

Ω

∇η · ∇v dx =

∫

Ω

φv dx ∀v ∈ H1
0 (Ω),

and let ηk ∈ Vk and ηk−1 ∈ Vk−1 be its DG approximations in Vk and Vk−1

Ak(ηk, v) =

∫

Ω

φv dx ∀v ∈ Vk,

Ak−1(ηk−1, v) =

∫

Ω

φv dx ∀v ∈ Vk−1.

(35)

By (13), assumption (2), the hypotheses (20) and (14) we have

‖η − ηk‖L2(Ω) .
h2k−1

p2−µ
k−1

‖φ‖L2(Ω), ‖η − ηk−1‖L2(Ω) .
h2k−1

p2−µ
k−1

‖φ‖L2(Ω). (36)

Moreover, if we consider the definion (22) of P k−1
k and (35), it holds that

Ak−1(P
k−1
k ηk, w) = Ak(ηk, R

k
k−1w) = Ak(ηk, w) = φ(w) = Ak−1(ηk−1, w) ∀w ∈ Vk−1,
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which implies
ηk−1 = P k−1

k ηk. (37)

Now applying (35), the definition (22) of P k−1
k , (37), the Cauchy-Schwarz inequality (31),

the L2 norm equivalence (28) and the error estimates (36) we obtain

∫

Ω

φ(Ik −Rk
k−1P

k−1
k )v dx =Ak(ηk, v)−Ak(ηk, R

k
k−1P

k−1
k v)

=Ak(ηk, v)−Ak−1(P
k−1
k ηk, P

k−1
k v)

=Ak(ηk, v)−Ak−1(ηk−1, P
k−1
k v) = Ak(ηk −Rk

k−1ηk−1, v)

≤|||ηk − ηk−1|||0,k|||v|||2,k . ‖ηk − ηk−1‖L2(Ω)|||v|||2,k
≤(‖ηk − η‖L2(Ω) + ‖ηk−1 − η‖L2(Ω))|||v|||2,k

.
h2k−1

p2−µ
k−1

‖φ‖L2(Ω)|||v|||2,k.

The above estimate together with (34) gives the desired inequality.

Lemma 6 and Lemma 7 allow the convergence anaylsis of the two-level method, whose
error propagation operator is given by

E
2lvl
k,m1,m2

= Gm2

k (Ik −Rk
k−1P

k−1
k )Gm1

k .

Theorem 8. There exists a positive constant C2lvl independent of the mesh size, the
polynomial approximation degree and the level k, such that

|||E2lvl
k,m1,m2

v|||1,k ≤ C2lvlΣk|||v|||1,k

for any v ∈ Vk, with

Σk =
p2+µ
k

(1 +m1)1/2(1 +m2)1/2
,

and µ defined as in Remark 3. Therefore, the two-level method converges provided the
number of pre-smoothing and post-smoothing steps is chosen large enough.

Proof. Exploiting the smoothing property (32), approximation property (33) and as-
sumptions (20) and (14), we obtain

|||E2lvl
k,m1,m2

v|||1,k = |||Gm2

k (Ik −Rk
k−1P

k−1
k )Gm1

k v|||1,k
. h−1

k p2k(1 +m2)
−1/2|||(Ik −Rk

k−1P
k−1
k )Gm1

k v|||0,k
. hkp

2
kp

µ−2
k−1(1 +m2)

−1/2|||Gm1

k v|||2,k
. p2+µ

k (1 +m1)
−1/2(1 +m2)

−1/2|||v|||1,k,

and the proof is complete.
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Remark 9. From Theorem 8 we have that the number of smoothing steps needed for
convergence of the two level method increases with the polynomial approximation degree.
Indeed, let m̂2lvl ≤ m1 +m2 to be chosen, it follows

C2lvlp
2+µ
k (1 +m1)

−1/2(1 +m2)
−1/2 ≤ C2lvlp

2+µ
k m̂

−1/2
2lvl .

The value of m̂2lvl is then chosen in such a way that

C2lvlp
2+µ
k m̂

−1/2
2lvl < 1,

that is,

m̂
1/2
2lvl > C2lvlp

2+µ
k .

The next result regards the stability of the intergrid transfer operator Rk
k−1 and the

operator P k−1
k .

Lemma 10. There exists a positive constant Cstab independent of the mesh size, the
polynomial approximation degree and the level k, such that

|||Rk
k−1v|||1,k ≤ Cstab|||v|||1,k−1 ∀v ∈ Vk−1, (38)

|||P k−1
k v|||1,k−1 ≤ Cstab|||v|||1,k ∀v ∈ Vk. (39)

Proof. We apply (27), the continuity bound (9), the relation (21) between the DG norms
on different levels and the coercivity bound (19)

|||Rk
k−1v|||21,k = Ak(R

k
k−1v,R

k
k−1v) . ‖Rk

k−1v‖2DG,k . ‖v‖2DG,k−1

. Ak−1(v, v) = C2
stab|||v|||21,k−1.

Inequality (39) is obtained by the definition (22) of P k−1
k , (27) and (38)

|||P k−1
k v|||1,k−1 = max

u∈Vk−1\{0}

Ak−1(P
k−1
k v, u)

|||u|||1,k−1
= max

u∈Vk−1\{0}

Ak(v,R
k
k−1u)

|||u|||1,k−1

≤ Cstab
|||v|||1,k|||u|||1,k−1

|||u|||1,k−1
≤ Cstab|||v|||1,k.

We are now ready to prove the main result of the paper concerning the convergence of
the W-cycle multigrid method.

Theorem 11. Let Σk be defined as in Theorem 8. Then, there exist a constant Ĉ > C2lvl

and an integer m̂k independent of the mesh size, but dependent on the polynomial ap-
proximation degree, such that

|||Ek,m1,m2
v|||1,k ≤ ĈΣk|||v|||1,k ∀v ∈ Vk, (40)

provided m1 +m2 ≥ m̂k.
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Proof. We follow the guidelines given in [18, Theorem 4.6] and proceed by induction. For
k = 1, (40) is trivially true. For k > 1 we assume that (40) holds for k− 1. By definition
(26) we write Ek,m1,m2

v as

Ek,m1,m2
v = Gm2

k (Ik −Rk
k−1P

k−1
k )Gm1

k v +Gm2

k Rk
k−1E

2
k−1,m1,m2

P k−1
k Gm1

k v,

hence

|||Ek,m1,m2
v|||1,k ≤ |||E2lvl

k,m1,m2
v|||1,k + |||Gm2

k Rk
k−1E

2
k−1,m1,m2

P k−1
k Gm1

k v|||1,k.
The first term can be bounded by Theorem 8

|||E2lvl
k,m1,m2

v|||1,k ≤ C2lvlΣk|||v|||1,k,
while the second term is estimated by applying the smoothing property (32), the stability
estimates (38) and (39) and the induction hypothesis

|||Gm2

k Rk
k−1E

2
k−1,m1,m2

P k−1
k Gm1

k v|||1,k ≤|||Rk
k−1E

2
k−1,m1,m2

P k−1
k Gm1

k v|||1,k
≤Cstab|||E2

k−1,m1,m2
P k−1
k Gm1

k v|||1,k
≤CstabĈ

2Σ2
k−1|||P k−1

k Gm1

k v|||1,k
≤C2

stabĈ
2Σ2

k−1|||Gm1

k v|||1,k
≤C2

stabĈ
2Σ2

k−1|||v|||1,k.
We then obtain

|||Ek,m1,m2
v|||1,k ≤

(
C2lvlΣk + C2

stabĈ
2Σ2

k−1

)
|||v|||1,k.

By considering the definition of Σk given in Theorem 8 and (14), we obtain

Σ2
k−1 =

p4+2µ
k−1

(1 +m1)(1 +m2)
=

(
pk−1

pk

)2+µ p2+µ
k−1

(1 +m1)1/2(1 +m2)1/2
Σk

≤
p2+µ
k−1

(1 +m1)1/2(1 +m2)1/2
Σk.

Therefore,

C2lvlΣk + C2
stabĈ

2Σ2
k−1 ≤

(
C2lvl + C2

stabĈ
2

p2+µ
k−1

(1 +m1)1/2(1 +m2)1/2

)
Σk.

We now introduce m̂k ≤ m1 +m2, to be chosen later; then it holds

C2lvl + C2
stabĈ

2
p2+µ
k−1

(1 +m1)1/2(1 +m2)1/2
≤C2lvl + C2

stabĈ
2
p2+µ
k−1

m̂
1/2
k

.

Choosing

m̂
1/2
k ≥ p2+µ

k−1

C2
stabĈ

2

Ĉ− C2lvl

,

we obtain

C2lvlΣk + C2
stabĈ

2Σ2
k−1 ≤ ĈΣk,

and inequality (40) follows.
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5 Extension to other symmetric DG schemes

If we restrict to the case of meshes of d-parallelepipeds, our analysis can be extended to
the methods introduced by Bassi et al. [14] and Brezzi et al. [23] whose bilinear forms
can be written as

AK(w, v) =
∑

T∈TK

∫

T

∇w ·∇v dx+
∑

T∈TK

∫

T

∇w ·RK(JvK) dx+
∑

T∈TK

∫

T

RK(JwK)·∇v dx

+ θ

∫

Ω

RK(JwK) · RK(JvK)dx+
∑

T∈TK

αK

∫

T

rF (JwK)rF (JvK) dx,

where θ = 0, 1 for Bassi et al. [14] and Brezzi et al. methods [23], repectively. Indeed,
we can prove continuity and coercivity with respect to the DG norm (8) using standard
techniques and the following result, cf. [50] for the proof.

Lemma 12. For any v ∈ VK and for any F ∈ FK it holds

αK‖rF (JvK)‖2L2(Ω) . ‖√σKJvK‖2L2(F ) . αK‖rF (JvK)‖2L2(Ω).

6 W-cycle algorithms with inherited bilinear forms

In Section 4 we have followed the classical approach in the framework of multigrid algo-
rithms for DG methods [37, 22, 18, 17], where the bilinear forms are assembled on each
sublevel. We now consider inherited bilinear forms, that is, the sublevel solvers AR

k (·, ·)
are obtained as the restriction of the original bilinear form AK(·, ·):

AR
k (v, w) = AK(RK

k v,R
K
k w) ∀v, w ∈ Vk ∀k = 1, 2, . . . ,K − 1. (41)

For k = 1, . . . ,K−1, the prolongation operators are defined asRK
k = RK

K−1R
K−1
K−2 · · ·Rk+1

k ,

where Rk+1
k is defined as before. The associated operator AR

k , given by (18), can be com-
puted as

AR
k = Rk

KAKR
K
k .

Using the new definition of the sublevel solvers, it is easy to see that coercivity estimate
remains unchanged, i.e., AR

k (u, u) & ‖u‖2DG,k for all u ∈ Vk, whereas the continuity
bound (9) modifies as follows

AR
k (u, v) . ‖u‖DG,K‖v‖DG,K .

p2K
p2k

hk
hK

‖u‖DG,k‖v‖DG,k ∀u, v ∈ V (hk). (42)

The major effect of the above bound regards the estimate (24), which now becomes

λmax(A
R
k ) .

p2Kp
2
k

hKhk
. (43)
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Indeed, using the continuity bound (42) and estimating separately the contributions of
the DG norm ‖ · ‖DG,k we have

∑

T∈Tk

‖∇u‖2L2(T ) =
∑

T∈Tk

|u|2H1(T ) .
p4k
h2k

∑

T∈Tk

‖u‖2L2(T ) =
p4k
h2k

‖u‖2L2(Ω),

∑

F∈Fk

‖σ1/2
k JuK‖2L2(F ) .

p2k
hk

∑

F∈Fk

‖JuK‖2L2(F ) .
p4k
h2k

‖u‖2L2(Ω),

where we have also used an inverse inequality and a trace inequality. We then consider
the Richardson smoothing scheme with

BR
k = ΛR

k Ik,

where, by (43), ΛR
k ∈ R is such that

ΛR
k .

p2Kp
2
k

hKhk
.

We then follow the lines of Section 3 and Section 4 to define the W-cycle algorithm and
analyze its convergence, replacing Ak with AR

k . We will show that in this case convergence
cannot be uniform since it depends on the number of levels. The approximation property
of Lemma 7 remains trivially true whereas the smoothing operator Gk has to be defined
considering BR

k instead of Bk. As a consequence, the following new smoothing property
can be proved reasoning as in the proof of Lemma 6.

Lemma 13. For 0 ≤ t ≤ s ≤ 2, it holds

|||Gm
k v|||s,k . (pKpk)

(s−t)(hKhk)
(t−s)/2(1 +m)(t−s)/2|||v|||t,k ∀ v ∈ Vk. (44)

Regarding the convergence of the two-level method, estimate (44) introduces a depen-
dence on the number of levels, as shown in the next result.

Theorem 14. There exists a positive constant CR
2lvl independent of the mesh size, the

polynomial approximation degree and the level k, such that

|||E2lvl
k,m1,m2

v|||1,k ≤ CR
2lvlΣ

R
k |||v|||1,k

for any v ∈ Vk, with

ΣR
k = 2K−k p2Kp

µ
k

(1 +m1)1/2(1 +m2)1/2
, (45)

and µ defined as in Remark 3.

We observe that the term 2K−k in (45) is due to the refinement process described in
Section 3, which implies hk = 2K−khK . We finally observe that from the definition (41),
the stability estimates (38) and (39) reduce to

|||Rk
k−1v|||1,k = |||v|||1,k−1 ∀v ∈ Vk−1, |||P k−1

k v|||1,k−1 ≤ |||v|||1,k ∀v ∈ Vk,

thus resulting in the following convergence estimate for the W-cycle algorithm.
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Theorem 15. Let ΣR
k be defined as in Theorem 14. Then, there exist a constant

C
R > CR

2lvl and an integer m
R
k independent of the mesh size, but dependent on the poly-

nomial approximation degree and the level k, such that

|||Ek,m1,m2
v|||1,k ≤ C

RΣR
k |||v|||1,k ∀v ∈ Vk,

provided m1 +m2 ≥ m
R
k and

(mR
k )

1/2 ≥ 2K−k+2p2Kp
µ
k−1

(CR)2

CR − CR
2lvl

,

with µ defined as in Remark 3.

7 Numerical results

In this section we show some numerical results to highlight the practical performance of
our W-cycle algorithms. We first verify numerically the smoothing (Lemma 6) and ap-
proximation (Lemma 7) properties of h-multigrid for both the SIPG and LDG methods
with a fixed penalization parameter αk = α = 10, k = 1, . . . ,K. We consider a sequence
of Cartesian meshes on the unit square Ω = [0, 1]2. Since the dependence on the mesh-
size is well known, we restrict ourselves to test the dependence of the smoothing property
(with s = 2 and t = 0 in (32)) on the polynomial approximation degree, and the number of
smoothing steps. In the first set of experiments reported in Figure 1(a), we fix hK = 0.25
and m = 2 and let vary the polynomial approximation order pK = p = 1, 2, . . . , 10. Fig-
ure 1(b) shows the analogous results obtained by fixing hK = 0.0625 and p = 2 and
varying m. We have also estimated numerically the approximation property constant
(33) as a function of the polynomial approximation degree, see Figure 1(c). We observe
that our numerical tests confirm the theoretical estimates given in Section 3.
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Figure 1: Estimates of the smoothing property constant as a function of p (a) and m
(b) and of the approximation property constant as a function of p (c) for the SIPG and
LDG methods (α = 10). Cartesian grid with hK = 0.25.

Next, we analyze the convergence factor of the h-multigrid iteration of Algorithm 1,
computing the quantity

ρ = exp

(
1

N
ln

‖rN‖2
‖r0‖2

)
,

being N the iteration counts needed to achieve convergence up to a (relative) tolerance
of 10−8 and rN and r0 being the final and initial residuals, respectively. For all the
test cases, we fix the coarsest level (h1 = 0.25) and compute a sequence of nested grids
according to the refinement algorithm described in Section 3. Table 1 shows the computed
convergence factors obtained with the SIPG and LDG methods (α = 10, p = 1) as a
function of m and the number of levels, with Cartesian and triangular structured grids,
respectively. Here the symbol “-” means that the convergence has not been reached
within a maximum number of 10000 iterations. As predicted in Theorem 11, we observe
that the convergence factor is independent of the number of levels k. For the sake of
completeness, in Table 2 we also verify the estimate given in Theorem 15 obtained by
considering AR

k instead of Ak for the SIPG method on structured triangular grids. As
predicted theoretically, the convergence rate increases with the number of levels.
In Table 3, we show the iteration counts and convergence factor (between parenthesis)
of h-multigrid as a function of the polynomial approximation degree p and for different
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Table 1: Convergence factor ρ of h-multigrid as a function of m and the number of levels
(α = 10, p = 1).

SIPG. Cartesian grids. LDG. Triangular grids.
k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5

m = 1 0.8911 0.9014 0.8955 0.8980 - - - -
m = 2 0.7958 0.8098 0.8026 0.8050 - - - -
m = 3 0.7141 0.7311 0.7233 0.7238 - - - -
m = 4 0.6493 0.6662 0.6587 0.6589 - - - -
m = 5 0.6043 0.6195 0.6146 0.6129 0.9041 0.9102 0.9097 0.9103
m = 6 0.5713 0.5896 0.5873 0.5807 0.8869 0.8927 0.8933 0.8940
m = 8 0.5236 0.5442 0.5436 0.5341 0.8542 0.8609 0.8622 0.8628
m = 10 0.4847 0.4998 0.5009 0.4906 0.8236 0.8314 0.8330 0.8335
m = 12 0.4514 0.4575 0.4605 0.4537 0.7952 0.8042 0.8059 0.8063
m = 14 0.4206 0.4159 0.4238 0.4137 0.7689 0.7802 0.7812 0.7814
m = 16 0.3916 0.3849 0.3885 0.3790 0.7451 0.7607 0.7596 0.7595
m = 18 0.3667 0.3565 0.3560 0.3514 0.7250 0.7453 0.7422 0.7413
m = 20 0.3432 0.3348 0.3312 0.3267 0.7087 0.7328 0.7291 0.7266

Table 2: SIPG method. Convergence factor ρ of h-multigrid as a function of m and the
number of levels with AR

k (α = 10, p = 1). Triangular grids.
k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 1 0.8766 0.8978 0.9190 0.9299 0.9352 0.9387
m = 2 0.7820 0.8296 0.8586 0.8754 0.8840 0.8895
m = 3 0.7169 0.7793 0.8123 0.8314 0.8418 0.8486
m = 4 0.6734 0.7422 0.7754 0.7948 0.8060 0.8135
m = 5 0.6405 0.7132 0.7448 0.7633 0.7749 0.7827
m = 6 0.6128 0.6882 0.7184 0.7359 0.7473 0.7552
m = 8 0.5672 0.6437 0.6733 0.6894 0.7005 0.7089
m = 10 0.5277 0.6046 0.6337 0.6497 0.6611 0.6697
m = 12 0.4922 0.5687 0.5974 0.6139 0.6257 0.6347
m = 14 0.4604 0.5358 0.5645 0.5807 0.5930 0.6023
m = 16 0.4302 0.5046 0.5334 0.5497 0.5620 0.5717
m = 18 0.4034 0.4763 0.5040 0.5210 0.5333 0.5432
m = 20 0.3759 0.4508 0.4770 0.4938 0.5062 0.5160

levels k, for both SIPG and LDG methods. Here m = 6 so that convergence is guar-
anteed in all the cases. We also compare our results with the iteration counts of the
Conjugate Gradient (CG) algorithm. It is clear that the multigrid algorithm converges
much faster than CG and, as expected from estimate (40), the iteration counts needed to
get convergence increases with p. However, estimate (40) seems to be rather pessimistic
with respect to numerical simulations.
We next present some numerical results obtained with p-multigrid algorithm. We fix the
mesh size hk = 0.0625, for any k, while we set pk−1 = pk − 1, with the convention that
pK = p. In Table 4 we report the iteration counts and the convergence factor (between
parenthesis) as a function of the number of smoothing steps m and the number of levels
k for p = 5. Since, with pk−1 = pk − 1, the ratio pk/pk−1 is not constant among the
levels, the uniformity with respect to the number of levels is reached asymptotically and
is not fully appreciated in Table 4. As before we also report CG iteration counts: we
observe that, even with a relatively small number of pre- and post-smoothing steps, the
W-cycle algorithm outperforms CG method. In Table 5,we fix the number of levels and
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Table 3: Iteration counts and convergence factor (between parenthesis) of h-multigrid as
a function of p and the number of levels k (α = 10, m = 6).

SIPG. Cartesian grids. LDG. Triangular grids.
k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

p = 1 33 (0.57) 35 (0.59) 35 (0.59) 154 (0.89) 163 (0.89) 164 (0.89)
p = 2 125 (0.86) 123 (0.86) 120 (0.86) 286 (0.94) 311 (0.94) 304 (0.94)
p = 3 182 (0.90) 175 (0.90) 150 (0.88) 487 (0.96) 516 (0.96) 465 (0.96)
p = 4 296 (0.94) 246 (0.93) 243 (0.93) 761 (0.98) 682 (0.97) 555 (0.97)
p = 5 407 (0.96) 354 (0.95) 362 (0.95) 838 (0.98) 644 (0.97) 576 (0.97)
p = 6 553 (0.97) 483 (0.96) 489 (0.96) 856 (0.98) 659 (0.97) 741 (0.98)

CG iteration counts
p = 1 65 130 256 286 607 1218
p = 2 142 281 567 575 1150 2343
p = 3 244 499 1021 914 1640 3322
p = 4 400 828 1687 1197 2483 5053
p = 5 646 1342 2721 1686 3487 7090
p = 6 1130 2369 4818 2286 4746 9676

Table 4: Convergence factor ρ of p-multigrid as a function of m and the number of levels
(α = 10, p = 5).

SIPG. Cartesian grids. LDG. Triangular grids.
k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

m = 1 444 (0.96) 498 (0.96) 676 (0.97) - - -
m = 2 256 (0.93) 271 (0.93) 369 (0.95) 383 (0.95) 414 (0.96) 639 (0.97)
m = 4 140 (0.88) 147 (0.88) 217 (0.92) 219 (0.92) 223 (0.92) 355 (0.95)
m = 6 115 (0.85) 117 (0.85) 161 (0.89) 162 (0.89) 156 (0.89) 254 (0.93)
m = 8 104 (0.84) 103 (0.84) 128 (0.87) 136 (0.87) 131 (0.87) 200 (0.91)
m = 10 92 (0.82) 92 (0.82) 107 (0.84) 120 (0.86) 117 (0.85) 166 (0.89)
m = 12 82 (0.80) 82 (0.80) 92 (0.82) 108 (0.84) 106 (0.84) 142 (0.88)
m = 14 74 (0.78) 74 (0.78) 81 (0.80) 98 (0.83) 97 (0.83) 125 (0.86)
m = 16 68 (0.76) 68 (0.76) 72 (0.77) 91 (0.82) 90 (0.81) 112 (0.85)
m = 18 62 (0.74) 62 (0.74) 65 (0.75) 84 (0.80) 83 (0.80) 101 (0.83)
m = 20 58 (0.73) 58 (0.73) 60 (0.73) 79 (0.79) 78 (0.79) 92 (0.82)

CG iteration counts: 1347 CG iteration counts: 3495

vary the polynomial approximation degree p = 2, 3, . . . , 6, and report the p-multigrid
iteration counts and the convergence factor (between parenthesis). As before we address
the performance of both the SIPG and of the LDG methods on Cartesian and triangular
grids, respectively. Comparing the iteration counts with the analogous one computed
with CG algorithm (last column) we can conclude that even if the iteration counts grows
as p increases, the W-cycle algorithm always outperforms CG iterative scheme.

8 Conclusions

We have analyzed a W-cycle hp-multigrid scheme for high order DG discretizations of
elliptic problems. We have shown uniform convergence with respect to h, provided the
number of pre- and post-smoothing steps is sufficiently large, and we have tracked the
dependence of the convergence factor of the method on the polynomial approximation
degree p. Besides the traditional approach, where the coarse matrices are built on each
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Table 5: Iteration counts and convergence factor (between parenthesis) of p-multigrid as
a function of p and the number of levels (α = 10, m = 10).

SIPG. Cartesian grids. LDG. Triangular grids.
k = 2 k = 3 k = 4 CG k = 2 k = 3 k = 4 CG

p = 2 34 (0.58) - - 281 86 (0.81) - - 1157
p = 3 78 (0.79) 76 (0.78) - 499 104 (0.84) 107 (0.84) - 1639
p = 4 71 (0.77) 74 (0.78) 75 (0.78) 828 115 (0.85) 119 (0.86) 143 (0.88) 2491
p = 5 92 (0.82) 92 (0.82) 107 (0.84) 1347 120 (0.86) 117 (0.85) 166 (0.89) 3495
p = 6 113 (0.85) 113 (0.85) 109 (0.84) 2370 145 (0.88) 143 (0.88) 158 (0.89) 4737

level [37, 22, 18, 17], we have also considered the case of inherited bilinear forms, showing
that the rate of convergence cannot be uniform with respect to the number of levels. Fi-
nally, the theoretical results obtained in this paper pave the way for future developments
in obtaining uniform p-multigrid methods by introducing more sophisticated smoothing
schemes. Such an issue will be object of future research.

A Proof of Theorem 2

Before proving Theorem 2, we recall the following hp-approximation result and report
its proof for the sake of completeness.

Lemma 16. For any v ∈ Hs+1(TK), there exists ΠpK

hK
v ∈ VK , pK = 1, 2, . . . , such that

‖v −ΠpK

hK
v‖DG,K .

h
min (pK ,s)
K

p
s−1/2
K

‖v‖Hs+1(TK). (46)

Proof. For any v ∈ Hs+1(TK), let ΠpK

hK
v ∈ VK be defined as ΠpK

hK
v|T = πpK

hK
(v|T ), for any

T ∈ TK , πpK

hK
(·) being the Babuška-Suri interpolant [11]. From [11, Lemma 4.5] we have

that

‖u−ΠpK

hK
u‖Hq(T ) .

h
min(pT+1,s+1)−q
T

ps+1−q
T

‖u‖Hs+1(T ), 0 ≤ q ≤ t (47)

for any T ∈ TK . Moreover, as suggested in [42], by a multiplicative trace inequality and
(47), we also have

‖u−ΠpK

hK
u‖2L2(∂T ) . ‖u−ΠpK

hK
u‖L2(T )‖∇(u−ΠpK

hK
u)‖L2(T ) + h−1

T ‖u−ΠpK

hK
u‖2L2(T )

.
h
2min(pT ,s)+1
T

p2s+1
T

‖u‖2Hs+1(T ), (48)

for any T ∈ TK . The thesis follows applying (47) and (48) to the definition (8) of the
DG norm.

We are now ready to prove Theorem 2.

Proof. [Proof of Theorem 2.] The proof follows the lines given in [47]; for the sake of
completeness we sketch it. It can be shown that formulation (4) is not strongly consistent,
i.e.,

AK(u− uK , v) = R(u, v) ∀v ∈ V (hK), (49)
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where the residual R(·, ·) : V (hK)× V (hK) → R is defined as

R(u, v) =
∑

T∈TK

∫

T

∇u · [RK(JvK) + LK(β · JzK)] dx+
∑

F∈FK

∫

F

{{∇u}} · JvK ds.

As shown in [47], the residual R(·, ·) can be bounded by

|R(u, v)| . h
min(pK+1,s)
K

psK
‖∇u‖Hs(TK)‖v‖DG,K ∀v ∈ V (hK). (50)

From the continuity and coercivity bounds (9) and (10), and Strang’s lemma, we have

‖u− uK‖DG,K . inf
v∈VK

‖u− v‖DG,K + sup
w∈VK

|R(u,w)|
‖w‖DG,K

. (51)

Inequality (11) follows by choosing v = ΠpK

hK
u ∈ VK , and substituting (46) and the

residual estimate (50) in (51). With regards to estimate (12), we proceed by a standard
duality argument: let w ∈ H2(Ω) ∩H1

0 (Ω) be the solution of the problem
∫

Ω

∇w · ∇v dx =

∫

Ω

(u− uK)v dx ∀v ∈ H1
0 (Ω).

We recall that, thanks to the regularity assumption (2), it holds that

‖w‖H2(Ω) . ‖u− uK‖L2(Ω) .

According to (49), it is immediate to obtain

‖u− uK‖2L2(Ω) = AK(w, u− uK)−R(w, u− uK),

and
AK(wI , u− uK) = R(u,wI) = −R(u,w − wI),

with wI ∈ VK . Hence,

‖u− uK‖2L2(Ω) = AK(w − wI , u− uK)−R(w, u− uK)−R(u,w − wI).

Applying continuity (9) and the residual estimate (50), we obtain

‖u− uK‖2L2(Ω) . ‖w − wI‖DG,K‖u− uK‖DG,K +
hK
pK

‖∇w‖H1(Ω)‖u− uK‖DG,K

+
h
min(pK+1,s)
K

psK
‖∇u‖Hs(TK)‖w − wI‖DG,K .

If we choose wI = ΠpK

hK
w, it holds that

‖w − wI‖DG,K .
hK

p
1/2
K

‖w‖H2(Ω) .
hK

p
1/2
K

‖u− uK‖L2(Ω),

which together with (11) and ‖∇w‖H1(Ω) . ‖u− uK‖L2(Ω) gives the thesis.
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