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Abstract

Traditional methods, such as Reynolds-Averaged Navier-Stokes (RANS) equa-
tions and Large Eddy Simulations (LES), provide consolidated tools for the numer-
ical approximation of high Reynolds number flows in a wide range of applications -
from green energy to industrial design. In general, RANS modeling is practical when
the main interest is the time-averaged flow behavior. LES equations offer detailed
insights into flow dynamics and a more accurate solution, but the high computa-
tional demand necessitates innovative strategies to reduce costs while maintaining
precision. In this study, we enhance the Variational MultiScale (VMS)-Smagorinsky
LES model by relying on an adaptive discretization strategy in both space and time,
driven by a recovery-based a posteriori error analysis. We assess the effectiveness
of the approach in capturing flow characteristics across a wide range of Reynolds
numbers through benchmark tests.

1 Introduction

The numerical approximation of high Reynolds number flows is crucial in various ap-
plication fields, including green energy technologies and industrial design [1, 2]. These
flows, ranging from a laminar to a turbulent regime, are mathematically described by the
well-known Navier-Stokes equations [3], possibly supplemented by a turbulence model.
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Differently from laminar flows, a turbulent regime exhibits multiscale phenomena, where
meaningful dynamics occur across a wide range of scales. The coexistence of different
scales make high Reynolds flow simulations very demanding in terms of computational
resources, when resorting to a direct numerical simulation (DNS) approach. Indeed,
the accurate resolution of the involved scales requires a sufficiently fine spatial grid
spacing, strictly related to a certain power of the Reynolds number [4]. In addition,
turbulent flows lead to deal with time-dependent phenomena, which may exhibit strong
heterogeneities in the whole time window. Thus, the DNS modeling of turbulent flows,
in particular in a 3D setting and in long time-frame, unavoidably demands for a pro-
hibitive computational effort.
As a remedy to DNS, classical approaches are used in the literature, namely Reynolds-
Averaged Navier-Stokes (RANS) equations and Large Eddy Simulations (LES) [5, 6, 7].
RANS equations are generally used to describe the mean flow behaviour, since derived
by averaging the Navier-Stokes equations in time, making them well-suited to study
time-averaged effects like forces on structures. On the contrary, when the focus is on
detailed flow dynamics, it is customary to use LES since they resolve the large scales
of the model and models the effects of the smaller scales, through a filtering approach.
For instance, the Smagorinsky LES model takes into account the effect of the unresolved
scales by a turbulence viscosity correction [8].
As a result, RANS equations are characterized by an affordable computational cost but a
low accuracy. Conversely, LES equations entail higher computational costs and greater
precision. This issue has motivated research efforts in the literature to develop new
cutting-edge models and methods that balance computational efficiency with fidelity
(see, e.g., [9, 10, 11, 12]).

More recently, the Variational Multiscale (VMS) methodology offered a viable al-
ternative to traditional LES, by distinguishing the modeled scales into two or three
classes [13]. This approach proved to be effective, in particular when modelling high
Reynolds number flows [14, 11, 15]. In this paper, we focus on the VMS-Smagorinsky
model introduced in [16], where a three-scale VMS formulation is completed by the
Smagorinsky turbulence correction in order to localize the viscosity effect onto specific
subscales. To balance the computational effort due to the modeling of several scales, we
settle a procedure for an automatic choice of the discretization in order to match the flow
heterogeneities both in space and time. To this aim, we resort to an adaptive selection
of the spatial computational mesh as well as of the time-step, driven by a space-time
a posteriori recovery-based error analysis. The discretization of the spatial domain is
carried out in an anisotropic setting [17, 18] with the aim to sharply capture velocity
variation, for instance, near the domain boundaries or corners [19, 20, 21, 22]. The
time window is discretized with a dual purpose: to accurately track the fast dynamics
using a small time-step, while relaxing this constraint when the flow reaches a steady
regime [23, 24]. To the best of our knowledge, this study represents the first attempt
where an anisotropic spatial adaptive procedure is enhanced by an adaptive selection
of the time-step driven by a recovery-based error estimator, for the modeling of high
Reynolds number flows.
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The paper is organized as follows. In Sect. 2, we present the VMS-Smagorinsky model
for the Navier-Stokes equations. Section 3 settles the proposed adaptive methodology.
In particular, the space and time adaptations are first managed separately and, then,
combined to deliver the whole adaptive process. In Sect. 4 we assess different adaptive
procedures on benchmark case studies.We challenge the proposed approach across dif-
ferent Reynolds numbers, thus ranging from laminar to turbulent regimes, and we verify
the obtained outcomes with respect to reference results in the literature. In the last
section, some conclusions are drawn and future perspectives are provided.

2 The reference turbulence context

The resolution of all the scales involved in turbulence phenomena leads, in general,
to a computionally unaffordable modeling, as previously mentioned. For this reason,
Large Eddy Simulations (LES) equations resolve the fluid dynamics up to a predefined
length scale. In particular, LES equations model the effect of the so-called sub-scales by
adding a correction term to the classical Navier-Stokes (NS) equations. This additional
contribution, represented by an artificial viscosity, takes into account the dissipative
effect of the smallest scales. The most widely employed LES model is the Smagorinsky
turbulence correction firstly presented in [8].

Over the past 30 years, Variational Multiscale (VMS) methodology has emerged as a
viable alternative to the traditional LES approach, by introducing a further distinction
in the modeled scales into two or three classes, see [13], VMS proved to be particularly
effective when modeling high Reynolds number flows, namely when accuracy and detailed
resolution are needed.

In this work, we resort to the VMS-Smagorinsky model presented in [16], where the
Smagorinsky artificial viscosity correction is applied only to one of three scales high-
lighted by the VMS method. The VMS-Smagorinsky approach tends to dampen the
over diffusive effect characterizing the classical Smagorinsky model, also leading to com-
putational savings.

2.1 The Navier-Stokes equations

The NS equations, based on the principles of mass and momentum conservation, and of
energy balance, provide a comprehensive framework for modeling the fluid flow dynamics
under various physical conditions, see [3]. In the following, we consider an incompressible
flow in the space-time cylinder Q = Ω× I, with Ω ⊂ R2 the spatial domain of boundary
∂Ω, and I = (t0, tf ] the time window. In particular, we look for the fluid velocity
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u = [ux (x, t) , uy (x, t)]T , and the kinetic pressure, p = p(x, t), with x = (x, y), such that

∂u

∂t
(x, t) + (u(x, t) · ∇)u(x, t) − ν∆u(x, t) +

1

ρ
∇p(x, t) = f(x, t) in Q

∇ · u(x, t) = 0 in Q

u(x, t) = φ(x, t) on ΓD × I

ν
∂u

∂n
(x, t) − 1

ρ
p(x, t)In = ψ(x, t) on ΓN × I

u(x, t0) = u0(x) in Ω,

(1)

where ν and ρ are the kinematic viscosity and the fluid density, respectively, here assumed
to be constant and positive, f is the force per unit mass, φ and ψ impose the flow
behaviour at the boundaries ΓD and ΓN , respectively, with ΓD∪ΓN = ∂Ω, Γ̊D∩ Γ̊N = ∅,
I ∈ R2×2 is the identity matrix, n is the unit outward vector normal to the boundary,
and u0 is the velocity profile at t = t0. Throughout the paper, boundary data φ and ψ
are chosen constant in time. Moreover, we omit the dependence on x and t to simplify
the notation.

With a view to the approximation, we consider the weak formulation of problem (1)
that reads as follows: ∀t ∈ I, find u = u(t) ∈ Y = [H1 (Ω)]2 and p = p(t) ∈M = L2 (Ω)
such that, for any v ∈ Y and q ∈M ,∫

Ω

{
∂u

∂t
· v + [(u · ∇)u] · v + ν∇u : ∇v − 1

ρ
p∇ · v − q∇ · u

}
dΩ

=

∫
Ω

f · v dΩ +

∫
ΓN

ψ · v dΓ,

(2)

with u|ΓD
= φ, u(x, t0) = u0, and where we adopt standard notation for the function

spaces, see [25].
In order to approximate problem (2), we discretize the cylinder Q by introducing the

spatial triangular tessellation, Th = {K}, of the domain Ω of size h = maxK diam(K),
and the partition, {t0, t1, . . . , tf}, of the time window of length ∆t = maxk=0,...f−1(t

k+1−
tk), with Ik = [tk, tk+1] the generic subinterval for k = 0, ..., f − 1. In particular,
we adopt a finite element scheme for the spatial discretization, combined with a semi-
implicit time advancing method [25], so that we have: for n = 0, ..., f − 1, find un+1

h =
uh(tn+1) = [un+1

h,x , u
n+1
h,y ]T ∈ Yh ⊂ Y and pn+1

h = ph(tn+1) ∈ Mh ⊂ M , with dim(Yh),
dim(Mh) < +∞, such that, for any vh ∈ Yh and qh ∈Mh,∫

Ω

{un+1
h − un

h

∆t
· vh + [(un

h · ∇)un+1
h ] · vh + ν∇un+1

h : ∇vh

− 1

ρ
pn+1
h ∇ · vh − qh∇ · un+1

h

}
dΩ =

∫
Ω
fn+1 · vh dΩ +

∫
ΓN

ψh · vh dΓ,

(3)

with un+1
h |ΓD

= φh, u0
h = uh,0, and φh, ψh and uh,0 suitable approximations of φ, ψ

and u0 in Yh, respectively.
With a view to the VMS-Smagorinsky formulation, we rewrite (3) in a compact way as

4



At(u
n+1
h ,vh) + Ac(u

n+1
h ,vh;un

h) + Ad(un+1
h ,vh)

+ Ap(p
n+1
h ,vh) + Am(qh,u

n+1
h ) = F(fn+1,vh) + B(ψh,vh)

(4)

where

At(u
n+1
h ,vh) =

∫
Ω

un+1
h − un

h

∆t
· vh dΩ, Ac(u

n+1
h ,vh;un

h) =

∫
Ω

[(un
h · ∇)un+1

h ] · vh dΩ,

Ad(un+1
h ,vh) =

∫
Ω
ν∇un+1

h : ∇vh dΩ, Ap(p
n+1
h ,vh) = −

∫
Ω

1

ρ
pn+1
h ∇ · vh dΩ,

Am(qh,u
n+1
h ) = −

∫
Ω
qh∇ · un+1

h dΩ, F(fn+1,vh) =

∫
Ω
fn+1 · vh dΩ,

B(ψh,vh) =

∫
ΓN

ψh · vh dΓ.

Concerning the discrete spaces Yh and Mh, we select Yh = [X2
h]2 and Mh = X1

h, with

Xr
h =

{
wh ∈ C0(Ω̄) : wh|K ∈ Pr(K), ∀K ∈ Th

}
,

namely quadratic and affine finite elements to approximate the velocity and the pressure,
respectively, thus ensuring the inf-sup condition, see [26]. In addition, the space size h
and the time length ∆t have to be properly related in order to match the CFL condition,
see [27].

2.2 Smagorinsky turbulence model

The LES approach separates the flow into length scales above and below a certain thresh-
old δ. In particular, the former are explicitly solved, while the latter (known as subscales)
are modelled by adding a correction term to the NS equations.
From a physical viewpoint, the subscales are responsible for a dissipative effect onto
the larger scales so that it is customary to identify the LES correction with an additive
artificial viscosity νT . According to the definition of νT , we distinguish different LES
variants. In this work, we focus on the Smagorinsky model for an incompressible vis-
cous flow. In [8], based on a dimensional analysis, J. Smagorinsky defined the artificial
viscosity as

νT = (Csδ)
2 |∇u| , (5)

where Cs is the Smagorinsky coefficient – here set to 0.18 according to the literature,
see for instance [28] – and |∇u| is the strain rate tensor modulus.
In a computational perspective, the length scale δ is replaced by the mesh size h, iden-
tifying the minimum length scale that can be solved in practice, so that the subscales
are known as subgrid scales . Thus, the NS equations endowed with the Smagorinsky
turbulence model are provided by: for n = 0, ..., f − 1, find un+1

h ∈ Yh and pn+1
h ∈ Mh,

5



such that, for any vh ∈ Yh and qh ∈Mh,

At(u
n+1
h ,vh) + Ac(u

n+1
h ,vh;un

h) + Ad(un+1
h ,vh) + AS(un+1

h ,vh;un
h)

+ Ap(p
n+1
h ,vh) + Am(qh,u

n+1
h ) = F(fn+1,vh) + B(ψh,vh)

(6)

with un+1
h |ΓD

= φh, u0
h = uh,0, where

AS(un+1
h ,vh;un

h) =

∫
Ω

(Csh)2 |∇un
h| ∇un+1

h : ∇vh dΩ. (7)

The Smagorinsky correction is treated in a semi-implcit way, analogously to the convec-
tive contribution in the NS model.

2.3 VMS-Smagorinsky approach

The classical Smagorinsky model in (6) is known to exhibit an over-diffusive effect [5].
The issue is that the artificial viscosity νT is applied uniformly across the entire domain.
However, from a physical perspective, the dissipation introduced by the subgrid scales
(SGS) does not affect the largest scales but primarily impacts the medium-sized scales.
The VMS-Smagorinsky formulation addresses this over-diffusive effect by applying the
Smagorinsky artificial viscosity only to the medium-sized scales, after separating the flow
field uh into

• large resolved scales (ūh), whose size and shape are influenced by the geometry of
the problem, and that are unaffected by the dissipative effects of the SGS;

• small resolved scales (ûh), i.e. the medium-size scales, coinciding with the smallest
ones to be numerically solved and that are affected by the dissipative effects of the
SGS;

• small unresolved scales (coinciding with the SGS), i.e., the smallest scales that
are not numerically solved but whose presence is kept into account through the
Smagorinsky artificial viscosity νT ,

according to a three-scale VMS method [15, 11]. Here, we denote by ūh ∈ Ȳh ⊂ Yh the
large resolved velocity and by ûh ∈ Ŷh ⊂ Yh the corresponding medium-sized velocity
field, so that

uh = (ūh + ûh) ∈ Yh = Ȳh ⊕ Ŷh.

Thus, the classical Smagorinsky correction AS

(
un+1
h ,vh;un

h

)
in (7) is replaced by the

VMS-Smagorinsky eddy viscosity contribution, given by

AV S

(
un+1
h ,vh;un

h

)
=

∫
Ω

(Csh)2 |∇ûn
h| ∇ûn+1

h : ∇v̂h dΩ, (8)

after setting
ûγ
h = (I − Πh)uγ

h, v̂h = (I − Πh)vh, (9)
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with γ = n, n+ 1, and where I is the identity operator in Yh, while Πh : Yh → Ȳh is the
projection operator that extracts the large resolved scales. Relation (8) confirms that
VMS-Smagorinsky method indeed confines the diffusive action of SGS to the middle-
sized scales.

The VMS-Smagorinsky discrete problem involved in the numerical validation in Sec-
tion 4 can thus be stated: for n = 0, ..., f − 1, find un+1

h ∈ Yh and pn+1
h ∈Mh, such that,

for any vh ∈ Yh and qh ∈Mh,

At(u
n+1
h ,vh) + Ac(u

n+1
h ,vh;un

h) + Ad(un+1
h ,vh) + AV S(un+1

h ,vh;un
h)

+ Ap(p
n+1
h ,vh) + Am(qh,u

n+1
h ) = F(fn+1,vh) + B(ψh,vh)

(10)

with un+1
h |ΓD

= φh, u0
h = uh,0 (for the theoretical analysis of this model see [16]). In

particular, concerning the operator Πh in (9), we opt for Πh : Yh → Yh, with Πh =
Π1→2

h ◦ Π2→1
h , being Π1→2

h : [X1
h]2 → Yh and Π2→1

h : Yh → [X1
h]2 standard projection

operators between finite element spaces.

3 A recovered error-based space-time adaptive discretiza-
tion

Handling high Reynolds number flows requires a fine space and time discretization to
capture flow features accurately, leading to a high number of degrees of freedom and
making simulations computationally expensive. To address this numerical issue, we
resort to an adaptive space-time discretization, which guarantees an accurate modeling
at an affordable computational cost. This goal can be achieved by strategically balancing
the discretization error across the space-time domain, as already done in [29, 30, 31, 32,
33]. Typically, adaptive procedures rely on heuristic or mathematically rigorous error
quantifiers, i.e., the so-called error indicators or estimators [34, 35, 36].

In this work, we adopt a recovery-based error analysis to customize the space and
time discretization to the solution of problem (10). Recovery-based error estimators
provide an a posteriori (namely, a computable) quantification for the H1-seminorm of the
discretization error associated with the numerical solution to a generic PDE problem. In
more detail, we denote by z = z(x, t) ∈ Z such a solution and by zh = zh(x, t) ∈ Zh ⊂ Z
the corresponding approximation yielded by a certain numerical scheme (not necessarily,
a finite element function), with Z and Zh suitable continuous and discrete function
spaces. Following the seminal papers by O.C. Zienckiewicz and J.Z. Zhu [37, 38, 39], the
seminorm

|ez|2H1(D) =

∫
D
|Θz − Θzh|2 dD, (11)

of the discretization error ez = z − zh, is made computable by replacing Θz – with Θ a
first order partial derivative when D ⊂ R, Θ ≡ ∇ when D ⊂ R2 – with the recovered
quantity RΘ(zh), so that

|ez|2H1(D) ≃
∫
D
|RΘ(zh) − Θzh|2 dD = [ηzΘ,D]2. (12)
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In particular, RΘ(zh) denotes the recovered derivative of zh, which, in general, provides
a better approximation of Θz with respect to Θzh. Several recipes for RΘ(zh) are
available in the literature, customized to the specific setting at hand [40, 41, 42, 43]. The
estimators as in (12) are widely employed in practical engineering problems motivated
by the remarkable effectiveness, the independence of the specific problem and of the
adopted discretization, the handy implementation, and the computational cheapness.

Estimator ηzΘ,D will be employed in the following to carry out the adaptation of
the space and the time discretization of the domain Q in (1), by properly selecting the
driving quantity z, the differential operator Θ and the domain D. After managing the
two adaptation strategies, separately (see Sect. 3.1-3.2), we will set a unified environment
to grasp the benefits of the two procedures in a combined manner (see Sect. 3.3).

3.1 Adaptation in space: an anisotropic setting

To perform the adaptation of the spatial mesh, T n
h , at time tn, we exploit the estimator

in (12) for Θ = ∇, D = Ω, zh = Un
h a scalar function at tn, namely

[
ηU∇,Ω(tn)

]2
=

∫
Ω
|R∇(Un

h ) −∇Un
h |

2 dΩ

=
∑

K∈T n
h

∫
K
|R∇(Un

h ) −∇Un
h |

2 dK =
∑

K∈T n
h

[
ηU∇,Ω(tn)

]2
K
,

(13)

where
[
ηU∇,Ω(tn)

]
K

denotes the local (i.e., elementwise) error estimator, with R∇(Un
h ) =

|∆K |−1
∑

T∈∆K
|T | ∇Un

h |T the area-weighted average of the discrete gradient over the
patch ∆K = {T ∈ T n

h : T ∩K ̸= ∅} of the elements associated with K, see [40], and |ω|
the area of the open set ω ⊂ Ω. In particular, we resort to the anisotropic variant of the
estimator in (13), see [44], where[

η̃U∇,Ω(tn)
]2

=
∑

K∈T n
h

[
η̃U∇,Ω(tn)

]2
K

=
∑

K∈T n
h

1

λn1,Kλ
n
2,K

2∑
i=1

(λni,K)2
(
(rni,K)T GK(R∇(Un

h ) −∇Un
h ) rni,K

)
.

(14)
Following [17], the geometric quantities {λni,K}2i=1 and {rni,K}2i=1 characterize the anisotr-
opic features of the generic triangle, identifying the semi-lengths and the directions of
the axes of the ellipse circumscribed to K according to a standard finite element set-
ting [25]. Concerning GK , it is the symmetric semi-definite positive matrix with entries
[GK(w)]ij =

∫
∆K

wiwj d∆K for i, j = 1, 2 and w = [w1, w2]
T ∈ [L2(Ω)]2 a generic vector-

valued function, which is employed to project the information associated with ηU∇,Ω(tn)
along the anisotropic directions ri,K .
The main motivation behind the choice for an anisotropic mesh adaptation is the well-
recognized computational gain when compared to an adapted isotropic tessellation, see,
for instance, [45, 46]. Indeed, anisotropic meshes accurately track the solution features
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by tuning the element size, shape, and orientation, in contrast to an isotropic con-
text where only the triangle size can be adjusted. This justifies the large employment
of anisotropic adapted meshes in common computational tools, in particular for the
modeling of markedly directional phenomena. In particular, estimator (14) has been
successfully used in several application fields [23, 24, 47, 48, 49, 50].

The anisotropic error estimator (14) is exploited to a drive a mesh adaptation pro-
cedure. We resort to a metric-based approach [51]. In this context, estimator η̃U∇,Ω(tn)

is utilized to predict the spacing associated with the new adapted mesh T n,∗
h at time

tn. The new element distribution is provided through the piecewise constant symmetric
positive tensor field, Mn,∗ = Mn,∗({λn,∗i,K , r

n,∗
i,K}2i=1) ∈ R2×2, such that, for any K ∈ T n,∗

h ,

Mn,∗∣∣
K

= (Rn,∗
K )T (Λn,∗

K )−2Rn,∗
K with Rn,∗

K = [rn,∗1,K , r
n,∗
2,K ]T , Λn,∗

K = diag(λn,∗1,K , λ
n,∗
2,K),

(15)
where λn,∗i,K and rn,∗i,K preserve the same geometric meaning as quantities λni,K and rni,K in
(14).
Metric Mn,∗ is generated according to specific criteria, namely, in order to i) ensure a
certain accuracy, τs, on the error estimator; ii) minimize the mesh cardinality, #T n,∗

h ;

iii) equidistribute the error across the mesh elements, i.e.,
[
η̃U∇,Ω(tn)

]2
K

= τ2s /#T n
h .

These requests lead to solve elementwise the constrained minimization problem

[sn,∗K , rn,∗i,K ] = argmin
snK ,rn

i,K

J
(
snK , r

n
1,K , r

n
2,K

)
such that snK ≥ 1, rni,K · rnj,K = δi,j , i, j = 1, 2,

(16)
with δi,j the Kronecker symbol, snK = λn1,K/λ

n
2,K the aspect ratio of the element K ∈ T n

h ,

J
(
snK , r

n
1,K , r

n
2,K

)
= snK

(
(rn1,K)T Ĝ∆K

(R∇(Un
h ) −∇Un

h ) rn1,K

)
+ (snK)−1

(
(rn2,K)T Ĝ∆K

(R∇(Un
h ) −∇Un

h ) rn2,K

)
,

Ĝ∆K
(·) = G∆K

(·)/
∣∣∆K

∣∣, after rewriting the local error estimator (14) as[
η̃U∇,Ω(tn)

]2
K

= λn1,Kλ
n
2,KĈKJ

(
snK , r

n
1,K , r

n
2,K

)
, (17)

in order to single out the area information, being
∣∣∆K

∣∣ = λ1,Kλ2,KĈK , with ĈK an
explicitly computable constant, which depends on the finite element reference triangle
(see [25] for more details). Notice that the algebraic manipulation converting (14) into
(17) exploits the equivalence between the maximization of the element area and the
minimization of the mesh cardinality in ii).
The solution to the minimization problem (16) can be computed as

sn,∗K =
√
g1/g2, rn,∗1,K = g2, rn,∗2,K = g1, (18)

with {gi, gi}2i=1 the eigen-pairs associated with the matrix Ĝ∆K
(R∇(Un

h ) − ∇Un
h ). Fi-

nally, the optimal values λn,∗i,K are derived through criterion iii), yielding

λn,∗1,K = g
−1/2
2

(
τ2s

2 #T n
h ĈK

)1/2

, λn,∗2,K = g
−1/2
1

(
τ2s

2 #T n
h ĈK

)1/2

. (19)
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Quantities rn,∗i,K and λn,∗i,K in (18)-(19) identify the new metric Mn,∗ prompting the gen-

eration of T n,∗
h (see [52] for the details).

3.2 Adaptation in time

The adaptive procedure in time that we adopt is meant to predict, at a certain time
tn, the time-step ∆tn+1 = tn+1 − tn, namely the length of the subsequent time interval
In+1 = [tn, tn+1]. This means that we do not know a priori the number of time intervals
spanning the time window [t0, tf ]. We again exploit the estimator in (12) by selecting
Θ as a backward finite difference approximation, δ−, of the first order partial derivative
in time, D = In, and zh = UV

h , the same quantity as in Sect. 3.1 now evaluated at a
fixed vertex V ∈ T n

h . Thus, the recovery-based a posteriori temporal error estimator at
V reads as [

ηUδ−,In(V )
]2

=

∫
In

∣∣∣∣Rδ−(UV
h ) −

UV
h (tn) − UV

h (tn−1)

∆tn

∣∣∣∣2 dt, (20)

where

Rδ−(UV
h ) =

∂UV
h (t)

∂t
,

with UV
h (t) the quadratic polynomial interpolating the pairs of data (tn−2, UV

h (tn−2)),
(tn−1, UV

h (tn−1)), (tn, UV
h (tn)) (see, for instance, [23]). To remove the spatial information

from
[
ηUδ−,In

(V )
]
, we average the vertex information throughout the mesh elements, so

that the global error estimator associated with In becomes[
ηUδ−,In

]2
=

1

3

∑
K∈T n

h

∑
V ∈K

[
ηUδ−,In(V )

]2
. (21)

To make this quantity useful to predict the time-step ∆tn+1, we introduce a suitable
rescaling and adimensionalization, so that we define[

η̃Uδ−,In

]2
= T̃

[
∆tnρUδ−,In

]2
(22)

with T̃ a suitable time scale factor characteristic of the problem at hand (see [23] for
further details), and [

ρUδ−,In

]2
=

1

3 [∆tn]2

∑
K∈T n

h

∑
V ∈K

[
ηUδ−,In(V )

]2
.

Since the actual number of time subintervals is not known a priori, we set the same
tolerance, τt, for each subinterval In, i.e., we impose

T̃
[
∆tnρUδ−,In

]2
= τ2t , (23)

thus enforcing the error equidistribution throughout the time window. Finally, relation
(23) is exploited in a predictive manner (i.e., to compute ∆tn+1), yielding

∆tn+1 =

√
1

T̃

τt

ρUδ−,In

. (24)
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3.3 Space-time adaptation

To efficiently combine the adaption in space and time in Sects. 3.1-3.2, we adopt the
procedure sketched in Fig. 1. At time tn, we compute the solution to problem (10)
resorting to a space-time discretization characterized by mesh T n

h and time-step ∆tn.
Successively, we evaluate the space and time estimators in (14) and (22), from now on
denoted by ηs(t

n) and ηt(t
n) to simplify the notation. Now, a priori, it is possible to

resort to both spatial and temporal grid adaptation at each time instant. In practice,
since the problem solution can alternate abrupt changes and steady states, both in space
and time, we execute the adaptation module only when the variation of ηs and ηt within
two consecutive times exceeds a given threshold. In more detail, set the two tolerances
tols and tolt, we update the spatial and/or the temporal grid if

∆ηs = |ηs(tn) − ηs(t
n−1)| > tols and/or ∆ηt = |ηt(tn) − ηt(t

n−1)| > tolt. (25)

If the adaptation in space is invoked, until the first criterion in (25) is met, we go through
the procedure in Sect. 3.1 to assemble Mn,∗ and to generate the adapted mesh T n,∗

h . We
observe that a projection of the variables onto the current mesh is required during the
mesh adaption loop. The outcome of such iterations coincides with the adapted mesh,
identified with the grid T n+1

h , to be employed at the successive time instant.
Vice versa, if ∆ηs ≤ tols, we set T n+1

h = T n
h .

Simultaneously with the adaptation in space, the computation of the new time-step is
carried out in a separate loop following the strategy in Sect. 3.2. The first time step
that infringes the second condition in (25) provides the length ∆tn+1.

As a general remark, the space-time adaptation is constrained by setting maximum
and minimum values for the mesh size and the time-step. This expedient allows avoiding
over-coarsening/refinement in order to strike a balance between accuracy and efficiency.

4 Numerical assessment

To validate the approach proposed in Section 3, we exploit two well-known benchmark
configurations, namely the lid-driven cavity flow [53] and the backward-facing step [54],
by investigating several regimes characterized by different Reynolds numbers.

The discretization in (10) together with the space-time adaptation in Fig. 8 are
implemented using the software FreeFEM [55], which offers a reliable and efficient metric-
based mesh generator module.

Finally, concerning the driving quantities Un
h and UV

h in Sections 3.1-3.2, we opt
for velocity-related information, since the strong irregularities exhibited by the pressure
may jeopardize the adaptation procedure.

4.1 The lid-driven cavity flow

The lid-driven cavity flow problem has been extensively analyzed in both 2D and 3D
scenarios [56], since providing a physical configuration recurrent in several engineering
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Solution at tn

T n
h ,∆t

n

Compute estimators
ηs(t

n), ηt(t
n)

∆ηs > tols ∆ηt > tolt

Metric
Computation

Mesh Adaptation
T n,∗
h

Variables
Projection

Compute
estimator

ηs

Compute
estimator

ηt

Time Adaptation
∆tn+1Update T n+1

h Update ∆tn+1

Solution at tn+1

T n+1
h ,∆tn+1

yes

yesno no

Figure 1: Sketch of the solution-adaptation algorithm

applications, such as in the design of industrial mixing processes and for the study of
natural convection in enclosed spaces. Among the different settings available in the
literature, we refer to the one in [53] characterized by the following data: Ω = (0, 1)2;
ΓD = ∂Ω; ΓN = ∅; tf = 50; ν = Re−1; ρ = 1; f = 0; u0 = 0; ψ = 0 and

φ =

{
[1, 0]T y = 1

0 elsewhere.

For the first set of numerical experiments, we set the Reynolds number Re to 1000. In
this flow regime, the selected final time allows us to reach the stationary state.
Concerning the discretization setting, we pick a reference mesh T 0

h consisting of 23876
elements uniformly distributed across Ω and an initial time-step set to ∆t1 = 1e−2,
in order to match the CFL condition. The discrete solution associated with such a
discretization will provide the reference setting for the analysis below (see Fig. 2).

The framework described above is now employed to investigate the performance of the
adaptive procedures in Sections 3.1-3.3, in terms of solution accuracy and computational
efficiency.
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Figure 2: Lid-drive cavity flow - reference solution: streamline (left), velocity field (right).

4.1.1 Adaptation in space

As a first task, we investigate the effectiveness of the spatial adaptive procedure driven
by the error estimator in (14) for different choices of the driving quantity Un

h . The mesh
adaptation is initiated starting from grid T 0

h and by setting tolerance τs = 5e−3 and

ĈK = 1 in (19). Additionally, in order to avoid over-refinement near the top corners, we
enforce a minimum value for the mesh size hmin = 1e−5.
We check whether a single component of the velocity is sufficiently informative to accu-
rately solve the whole flow dynamics in the cavity, by choosing Un

h = unh,x and Un
h = unh,y.

Columns (a)-(b) in Fig. 3 show the adapted mesh associated with the two velocity com-
ponents (top) together with the associated flow streamlines (bottom) at the final time
tf . It is evident that each adapted grid captures the flow features along the tracked di-
rection only, thus approximating the flow dynamics with a low accuracy (compare with
Fig. 2, left, where the same colormap is employed).

To overcome the inaccurate detection of the flow characteristics, we combine the
information associated with the two velocity components according to a mono- and a
multi-criterion strategy. In the former case, we set Un

h to the modulus |un
h| of the velocity

at time tn in (14), while the multi-criterion approach merges the metrics associated with
the two driving quantities unh,x and unh,y. Following [57], we are led to replace matrix
GK(R∇(Un

h ) −∇Un
h ) with

GK(R∇(unh,x) −∇unh,x) +GK(R∇(unh,y) −∇unh,y).

Column (d) in Fig. 3 highlights that the adapted mesh yielded by the multi-criterion
strategy poorly describes the main dynamics in the central portion of Ω and that the
bottom-left vortex is not detected by the streamlines. On the contrary, the mono-
criterion strategy guarantees an accurate modeling of the flow dynamics (compare with
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(a) Un
h = unh,x

#T n
h = 7685

(b) Un
h = unh,y

#T n
h = 5359

(c) Un
h = |un

h|
#T n

h = 8660
(d) Un

h = unh,x & unh,y
#T n

h = 8262

Figure 3: Lid-driven cavity flow – adaptation in space: anisotropic adapted mesh (top)
and associated flow streamlines (bottom) at the final time tf for different choices of the
driving quantity Un

h .

Fig. 2, left), with a reduction in computational time from 501 to 280 minutes1 (i.e.,
23876 versus 8660 elements). The efficiency of the space adaptation algorithm is further
confirmed by cross-comparing the performance of the anisotropic algorithm with the cor-
responding isotropic implementation, which demands 669 minutes (i.e., 19872 triangles)
to ensure the same accuracy τs = 5e−3 (see Fig. 4).

To sum up, we will adopt Un
h = |un

h| as the driving quantity for the space adaptation,
since providing the best performance so far.

4.1.2 Adaptation in time

Regarding the time adaptive procedure, we adopt the same driver used to update the
tessellation Th, namely we pick UV

h = |uh| in (20). We set the tolerance τt in (23) to 8e−1
with ∆t1 = 1e−2, and we adopt the fixed mesh T 0

h in Fig. 2 as spatial discretization.
Moreover, the upper bound ∆tmax = 1.5 is imposed to avoid over-coarsening when the
flow reaches the stationary state.
In Fig. 5 (left), we display the evolution of ∆t in time, which gradually increases until
reaching the prescribed limit ∆tmax when the flow stabilizes. Notice that, there is a
considerable discrepancy in terms of order of magnitude between the fixed time-step
∆t1 in Fig. 2 and the average value (i.e., {∆t} = 0.9) of the predicted adapted time-step

1The computations have been run on a 12th Gen Intel® Core™ i7-1260P, Mesa Intel® Graphics, 16
GB RAM desktop computer.
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Figure 4: Lid-driven cavity flow – adaptation in space: isotropic adapted mesh (left)
and associated flow streamlines (middle) at the final time tf ; comparison between the
isotropic and anisotropic mesh adaptation in terms of time evolution of the number of
triangles (right).

in Fig. 5, left. Unavoidably, this has an impact onto the computational time that is
reduced from 501 to 27 minutes.

Figure 5: Lid-driven cavity flow – adaptation in time: evolution of the time step for a
fixed (left) and an adapted (right) spatial mesh.

To corroborate the reliability of the time adaptation procedure, we compare the obtained
velocity profiles with results consolidated in the literature, referring, in particular, to [53].
The maximum percentage error associated with components uh,x and uh,y of the flow
velocity is 0.08% and 0.13%, respectively, in terms of the maximum norm.
As a last check, motivated by the notable difference between ∆t1 and {∆t} and to
validate the usefulness of the adaptation procedure in time, we approximate the flow
velocity on T 0

h after setting ∆t1 = {∆t} = 0.9. This assessment highlights that the
maximum percentage error increases to 4.18% and 3.69% for uh,x and uh,y, respectively
when resorting to a fixed space-time discretization. The benefits yielded by the procedure
in Sect. 3.2 are thus confirmed.
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4.1.3 Space-time adaptation procedure

This section emphasizes the advantages ensured by the combination of anisotropic mesh
with time-step adaptation, following the strategy in Sect. 3.3. In particular, in (25)
we assign the values 1e−6 and 1e−4 to the tolerances tols and tolt, while preserving
τs = 5e−3 and τt = 8e−1 to constrain the adaptation in space and time, respectively.
The initial mesh T 0

h and time-step ∆t1 do coincide with the ones employed in Sec-
tions 4.1.1-4.1.2.
The anisotropically adapted mesh together with the associated flow streamlines at the
final time tf are provided in Fig. 6 (a)-(b) – exhibiting a good match with the reference
solution in Fig. 2, left – while the evolution of the time step, ∆tn, is provided in Fig. 5,
right. The cardinality of the final adapted mesh in Fig. 3 (c) and in Fig. 6 (a) is compa-
rable (8660 vs 8370), as well as the distribution of the streamlines in Ω with a reliable
description of the main vortices in both cases. Concerning the adaptation in time, a
cross-comparison between the two plots in Fig. 5 showcases a common trend towards
the upper bound for ∆t, with a higher incremental rate for the space-time adaptation,
leading to 222 instants instead of 270 times required by the time adaptation alone. More-
over, the irregular trend in the right panel can be ascribed to the adaptation in space
and to the corresponding variable projection onto the new tessellation.
As expected, the space-time adaptation procedure yields the lowest computational effort
in terms of CPU time when compared with a fixed space-time discretization, a partial
(in space or in time only) adaptation, both in an isotropic and an anisotropic context
(see Table 1). In particular, the space-time process in Fig. 1 requires 15 minutes to be
delivered, corresponding to a 97.2% computational saving with respect to the time (501
minutes) characterizing the simulation in Fig. 2. The combination of time with space
adaptation halves the requested CPU time when compared with an adaptation in time
only (running in 27 minutes), and features a 94.64% and 97.75% CPU time reduction
when compared with an anisotropic and isotropic adaptation in space only (running in
280 and 669 minutes), respectively.
The total computational time of the space-time adaptive procedure is unequally dis-
tributed among the various tasks involved in the procedure, as emphasized in Table 2.
About half of the whole time is required to carry out the adaptation in space, whereas
a limited percentage (∼ 3%) of the CPU time is employed by the time adaptation. This
time discrepancy can be partly explained by the difference in terms of dimensionality
between the spatial and the temporal domains (2D vs 1D, respectively).

#T f
h #∆t CPU time

Fixed space-time discretization 23876 5000 501 min
Anisotropic space adaptation 8660 5000 280 min

Isotropic space adaptation 19872 5000 669 min
Time adaptation 23876 270 27 min

Anisotropic space + time adaptation 8370 222 15 min

Table 1: Lid-driven cavity flow: comparison among different space-time discretizations.
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Task CPU time

System assembly and solver 338.329 s

Spatial error estimation 285.233 s
Metric computation 51.727 s

Anisotropic mesh adaptation 63.942 s

Time error estimation 27.667 s
Time adaptation 0.00186 s

Table 2: Lid-driven cavity flow - adaptation in space and time: CPU time associated
with the different tasks.

To challenge the robustness of the space-time adaptive procedure, we choose higher
values for the Reynolds number towards the modeling of an actual turbulent flow. As
interval of variation, we consider values ranging from Re = 1000 – i.e., a completely
laminar flow – to Re = 20000 – exceeding the experimentally-determined critical value
Recr = 8000 when instability phenomena begin to emerge. In particular, when dealing
with high values for Re, we have to extend the final time in order to ensure that the
flow fully develops and stabilizes. Additionally, it is necessary to use a finer space and
time discretization at t0 and to properly tune the space-time mesh adaptation in order
to accurately capture the whole flow dynamics development. Table 3, left panel, collects
the exact data adopted for the different choices of Re. Figure 6 gathers the adapted mesh
at the final time (on the left), the associated streamlines (in the middle). In particular,
we are interested in verifying the number and the position of the vortices. To this aim,
we adopt the results in [53] as reference (right column in Fig. 6).
Despite the increase in the number of vortices and in the characterizing complexity when
Re becomes larger and larger, the approximation of the flow turns out to be very accurate
when compared to the reference solution. This result is obtained thanks to increasingly
finer adapted meshes characterized by high aspect ratios, and with longer computational
times that, however, remain sustainable (see the right panel in Table 3).

Input data Output data

Re tf τs τt #T 0
h ∆t1 #T f

h maxK sK {∆tn} #∆t CPU time

1000 50 5e−3 8e−1 23876 1e−2 8454 90.41 0.2272 222 15 min
5000 150 5e−3 9e−1 34186 5e−3 10097 106.58 0.3008 501 42 min
10000 400 5e−3 1 60426 1e−3 11270 179.50 0.4915 816 70 min
20000 800 5e−3 1 94866 1e−3 12883 188.51 0.4888 1639 170 min

Table 3: Lid-driven cavity flow - adaptation in space and time: some of the input (left)
and output (right) data.

To make the comparison with the reference solution more quantitative, in Fig. 7
we superimpose the velocity profiles yielded by space-time adaptive approach to the
results in [53], tracked for uh,x and uh,y along the straight lines y = 0.5 and x = 0.5,
respectively. The output of the proposed procedure (solid blue line) is coherent with the
values in [53] (red markers). This holds for both the velocity components, independently
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of the Reynolds number value, and also in the presence of steep gradients.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6: Lid-driven cavity flow - adaptation in space and time: sensitivity analysis to
Re (= 1000, 5000, 10000, 20000, top-bottom) in terms of anisotropically adapted mesh
at tf (left), number and location of vortices (middle) with respect to the results in [53]
(right).
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Figure 7: Lid-driven cavity flow - adaptation in space and time: comparison between
the output of the procedure with the results in [53] at the final time, in terms of the two
components, uh,x, (left) and, uh,y (right) along lines y = 0.5 and x = 0.5, respectively,
for Re = 1000, 5000, 10000, 20000 (top-bottom).

Finally, Fig. 8 corroborates the reliability and efficiency of the space-time adaptation
when dealing with the most challenging fluid dynamics scenario here considered (Re =
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20000).
The spatial adapted mesh, combined with the adaptive selection of the time-step,

allows us to exactly follow the turbulent flow evolution throughout the whole time win-
dow with an affordable computational time. Conversely, performing the same simulation
with a fixed space-time discretization that is sufficiently fine to capture the flow details
(e.g., #T 0

h = 94866, ∆t1 = 3e−3) proves to be computationally prohibitive when using
the same resources.

Figure 8: Lid-driven cavity flow - adaptation in space and time at Re = 20000: time
evolution of the flow velocity magnitude and the underlying adapted computational mesh
for t = 2.0052, 7.00736, 12.0304, 17.1572, 22.0722, 27.1545, 42.3262, 800.
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With reference to the specific choice made for the space-time adaptation algorithm,
we observe that spatial adaptation only slightly changes the mesh cardinality (see Fig. 9,
left). On the contrary, temporal adaptation leads to more significant variations in the
time step in order to accommodate the complex flow dynamics (see Fig. 9, right) and
due to the projection step in the scheme of Fig. 1, in accordance with what observed
in Fig. 5, right. The overall oscillatory behavior of both plots in Fig. 9 is due to the
difficulty in reaching the flow’s stationary state.

The values in Table 1 and the results Figs. 6–8 support the selection of the space-time
adaptation, with an anisotropic tessellation of Ω, as the most strategic approach for the
modeling of flows, independently of the selected Reynolds number.

Figure 9: Lid-driven cavity flow - adaptation in space and time at Re = 20000: evolution
of the mesh cardinality (left) and of the time step (right).

4.2 The backward-facing step

The second test case we consider is the backward-facing step (BFS), a classic fluid
dynamics configuration frequently used in engineering in order to study separation and
reattachment phenomena. Typically, the BFS geometry involves a two-dimensional duct
featuring a step, leading to an abrupt increase in the cross-sectional area. As a result,
the flow separates from the surface, forming a recirculation zone past the step - a region
characterized by high turbulence and mixing - before eventually reattaching further
downstream. The step height, the variation of the cross-sectional area, and the Reynolds
number are critical parameters that influence the flow characteristics.

Figure 10: Backward facing step geometry
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The reference setting we adopt is based on the work in [54]. Specifically, the domain
Ω and the boundary portions ΓD and ΓN are illustrated in Fig. 10. The problem data
are set as follows: ν = 1e−1; ρ = 1; f = 0; ψ = 0; u0 = 0 with the inlet velocity φ
defined as

φ =


[

3νRe

(H − h)
(H − y) (y − h) , 0

]T
x = 0

0 elsewhere,

where Re ranges from 100 to 2000. The channel height is H = 10.1, and the step height
is h = 4.9, corresponding to an expansion ratio, H/(H − h), equal to 1.942. Concerning
the final time, tf , we have selected the time window according to the flow regime in order
to limit the whole computational budget of the simulation (see Table 4, left panel).
For the BFS setting, it is well-established that the computational mesh has to be fine
enough in order to sharply approximate the flow behavior near walls. As an alternative,
wall laws, such as the well-known logarithmic function [58, 59, 60], are used [61, 62, 63] as
modeling correction, in combination with moderately fine grids (see, e.g., [64, 65, 66, 67]
for an example in the VMS framework). However, using a fixed uniform mesh with an
element size sufficiently small or the wall law correction on a medium-resolution grid
leads, in general, to a prohibitive computational effort.
In this section, we pursue a different approach by skipping the wall law model and relying
on an adapted mesh, which is selectively refined where high velocity gradients occur. In
particular, we resort to the space-time adaptive scheme in Fig. 1, motivated by the
computational benefits yielded by the adaptive time-step selection when combined with
the spatial adaptation (see Table 3). Instances of mesh adaptation applied to the BFS
test case are available in the literature. In [21], in a 2D context, the VMS-Smagorinsky
model is enriched with an isotropic mesh adaptation for a fixed time-step. In [18, 22],
the authors resort to an anisotropic adapted mesh to model the flow dynamics for the
3D BFS. In particular, in [18], no turbulence correction is included in the CFD model
and the time-step is tuned by a heuristic CFL-based adaptive criterion. In [22], an
anisotropic error indicator based on the energy associated with the resolved small scales
drives the grid adaptation and the time-step is kept fixed.

We initiate the space-time adaptive procedure using a uniform initial mesh, T 0
h ,

consisting of 32422 elements. The initial time-step, ∆t1, is determined in order to
match the CFL condition according to the selected initial velocity magnitude (i.e., the
considered Reynolds number). We choose the velocity magnitude as driving quantity
for the whole adaptation process, and we set the associated parameters as ĈK = 1,
∆tmax = 1.5, hmin = 1e−1, tols = 1e−6 and tolt = 1e−4, while tolerances τs and τt
are tuned according to the flow regime.

We consider five scenarios characterized by increasingly complex fluid dynamics,
specifically with progressively higher values of Re, ranging from a laminar (Re = 100,
500) to a turbulent (Re = 1000, 1500, 2000) regime. As the Reynolds number increases,
maintaining stability becomes challenging due to the formation of steep velocity gradi-
ents close to the wall. To address this issue, we reduce the upper bound of the CFL
condition from 1 to 0.8. Additionally, we limit abrupt changes between two consecutive
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anisotropic adapted meshes, T n−1
h and T n

h , by employing a metric relaxation algorithm.
Figures 11–15 gather the distribution of the flow velocity magnitude (top panel), the
adapted mesh at the final time (center panel), and the streamlines (bottom panel) for
the different choice of the Reynolds number. In particular, figures are related to a spe-
cific portion of Ω where the more involved dynamics take place. This is instrumental to
identify the separation areas as well as the reattachment point coordinates.
As expected, when the value of Re increases, the fluid dynamics becomes more com-
plex, featuring a higher velocity (compare the different scales) and a larger number of
vortices. Accordingly, anisotropic adapted meshes are progressively refined, allowing for
an accurate track of the fluid separation and of the reattachment points, which are cor-
rectly identified in accordance with [54]. The right panel in Table 4 offers quantitative
information about the space-time adaptive simulations. When moving from a laminar to
a turbulent regime, we observe that the average time-step, {∆tn}, diminishes (i.e., #∆t
increases) and the first check in (25) demands more iterations to be satisfied. These
remarks justify the increment in terms of CPU time, which still remains affordable, as
confirmed by the values in the table.

As a further check about the adequacy of the spatial adapted grid, we rely on the
quantity

y+(x) =
uτ (x)hw(x)

ν

introduced in [68], where uτ is the friction velocity defined as uτ =
√

τw
ρ , where τw is

the wall shear stress and ρ is the fluid density, and hw denotes the distance from the
wall. Quantity y+ measures the relative importance of viscous and turbulent processes,
similarly to the local Reynolds number. To verify that the mesh is correctly refined close
to the wall in order to ensure an accurate modeling of the boundary layer, as a practical
rule, we consider the mesh to be adequate when y+ < 5 close to the boundary. Vice
versa, wall law corrections are deserved [68, 64].

Concerning the results in Figs. 11-15, the value of y+ computed according to the
equations in [64] is close to zero. This corroborates mesh adaptation strategy as a
reliable alternative choice to a uniform mesh refinement as well as to wall law corrections.
In addition, the proposed adaptive approach offers substantial computational saving
compared to using a wall correction model. For instance, for Re = 2000, ensuring y+ < 5
with the wall function in [64] results in a prohibitive cost of 14 seconds on average for
each instant. In contrast, this time reduces to just 4.12 seconds when resorting to the
proposed adaptive method.
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Input data Output data

Re tf τs τt ∆t1 #T f
h maxK sK {∆tn} #∆t CPU time

100 1043 4e−2 2 0.7189 2224 30.85 1.4694 702 25 min
500 933 8e−2 4 0.1438 3508 56.04 0.7483 955 66 min
1000 832 2e−1 16 0.0647 3340 51.41 0.4716 1764 89 min
1500 733 2e−1 256 0.0431 4506 71.14 0.3962 1749 113 min
2000 632 3e−1 1000 0.0324 4325 59.21 0.2933 2127 146 min

Table 4: Backward facing step - adaptation in space and time: some of the input (left)
and output (right) data.

Figure 11: Backward-facing step – adaptation in space and time at Re = 100: flow veloc-
ity magnitude (top), adapted computational mesh (middle), and associated streamlines
(bottom) at the final time tf .

24



Figure 12: Backward-facing step – adaptation in space and time at Re = 500: flow veloc-
ity magnitude (top), adapted computational mesh (middle), and associated streamlines
(bottom) at the final time tf .

Figure 13: Backward-facing step – adaptation in space and time at Re = 1000: flow
velocity magnitude (top), adapted computational mesh (middle), and associated stream-
lines (bottom) at the final time tf .
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Figure 14: Backward-facing step – adaptation in space and time at Re = 1500: flow
velocity magnitude (top), adapted computational mesh (middle), and associated stream-
lines (bottom) at the final time tf .

Figure 15: Backward-facing step – adaptation in space and time at Re = 2000: flow
velocity magnitude (top), adapted computational mesh (middle), and associated stream-
lines (bottom) at the final time tf .
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5 Conclusions

In this paper we focus on benefits and limits yielded by a space-time adaptive proce-
dure tailored to 2D high Reynolds number flows cast in a VMS-Smagorinsky turbulence
model. The computational mesh and the time window partition are selected through an
anisotropic and an isotropic a posteriori recovery-based error estimator, respectively.
As a first task, we have identified the velocity modulus as a reliable quantity to drive the
adaptation algorithm. Concerning the spatial discretization, anisotropic adapted meshes
confirm the capability in sizing, shaping and orienting triangles in order to follow the
intrinsic directionality of the flow, lowering the required CPU time when compared to
a fixed mesh setting or to an isotropic adaptive strategy. In particular, anisotropic
grids are capable of accurately resolving singularity regions and near-wall flow behavior,
without excessively increasing the number of mesh elements and avoiding any wall law
correction. As far as the time discretization is concerned, the implemented time-step
adaptive strategy allows for computational savings, especially when the flow reaches a
stationary condition, while ensuring small time-steps during phases of rapid flow change
to guarantee reliable accuracy. Results in Table 1 for the lid-driven cavity flow corrob-
orate the computational benefits led by the space and by the time adaptive algorithms,
separately as well as by the combination of the two adaptive strategies. In more detail,
the single space or time adaptation leads to a reduction of the CPU time by a factor
equal to 18. This gain increases to 33 when resorting to a whole space-time adaptation
procedure.

The reliability of the proposed adaptive discretization has been challenged on in-
creasingly complex fluid dynamics configurations and flow regimes. In particular, the
lid-driven cavity flow setting allows us to span from a laminar to an actual turbulent flow,
the Reynolds number ranging from 1000 to 20000. On the contrary, the abrupt changes
characterizing the BFS geometric configuration fuel strong velocity gradients near the
walls, thus limiting the Reynolds number variation from 100 to 2000. Independently of
the case study and of the flow regime, the space-time adaptive algorithm proved to be
effective in accurately capturing flow features with an affordable computational effort,
even in areas with singularities for the lid-driven cavity flow and in the ricirculation zone
past the step for the BFS. As a last check, we have assessed the consistency of the output
of our algorithm with respect to the literature. To this aim, we have verified the number
and the position of the vortices together with the velocity profile along specific sections
of the domain for the lid-driven cavity setting, and the reattachment point coordinates
for the BFS. Results in Figs. 6-7 and Figs. 11-15 are fully compliant with the reference
works.

The extensive numerical investigation has highlighted that the procedure in Fig. 1
requires additional care, when the flow is subject to instabilities, as for the BFS con-
figuration when Reynolds number increases. An actual remedy consists in reducing the
upper bound for the CFL condition and in limiting abrupt changes in the evolution of
the anisotropic spatial mesh. In addition, the selection of tolerances τs and τt constrain-
ing the space and the time adaptation, respectively, as well as of tolerances tols and
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tolt involved in the space-time adaptive process is not currently automatized, with a
consequent time consumption.
Thus, automating this process together with the extension to a 3D context constitute a
mandatory step in enhancing the practicality and scalability of the proposed space-time
adaptive method, with a view to broader applications.
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