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Abstract

We propose a new algorithm for the design of topologically opti-
mized lightweight structures, under a minimum compliance require-
ment. The new process enhances a standard level set formulation
in terms of computational efficiency, thanks to the employment of a
strategic computational mesh. We pursue a twofold goal, i.e., to deliver
a final layout characterized by a smooth contour and reliable mechan-
ical properties. The smoothness of the optimized structure is ensured
by the employment of an anisotropic adapted mesh, which sharply cap-
tures the material/void interface. A robust mechanical performance is
guaranteed by a uniform tessellation of the internal part of the opti-
mized configuration. A thorough numerical investigation corroborates
the effectiveness of the proposed algorithm as a reliable and compu-
tationally affordable design tool, both in two- and three-dimensional
contexts.

1 Introduction

Topology optimization is of utmost interest in different branches of industrial
design and engineering. The main objective is to devise how to place mate-
rial in a given design domain with the aim of obtaining the best performance,
according to specific criteria. This idea, firstly proposed for mechanical ap-
plications, has been extended to a variety of fields, such as biomedical, space,
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automotive, fluids, acoustics, electromagnetics, optics, architecture, design
of new materials (see, e.g., [1, 2, 3, 4, 5, 6]).
Independently of the specific field of application, the mathematical frame-
work is represented by a constrained optimization problem, so that a quan-
tity of interest is minimized under assigned constraints. For instance, in
this paper, we focus on the design of lightweight and stiff structures by min-
imizing the compliance with a constraint on the mass, in a linear elasticity
regime.

Several methods are available in the literature to address the formula-
tion of topology optimization. Among these, we mention the density-based
approaches [7, 8, 9], the level set methods [10, 11, 12], topological derivative
procedures [13], phase field techniques [14, 15], evolutionary algorithms [16],
homogenization [17, 18], performance-based optimization [19]. Comprehen-
sive reviews and comparisons of all these approaches are covered in [8, 1].
In this paper, we are primarily concerned with the level set method. The
so-called level set function, whose zero-contour identifies the boundary of
the material layout, is evolved in order to target the objective functional
and the imposed constraints. With this aim, it is standard to resort to a
diffusion equation in a pseudo-time setting, relying on a topological deriva-
tive and a Laplacian smoothing term [20]. Among the most recent works
where the level-set method is applied to topology optimization, we cite [21,
22, 23, 24, 25, 26, 27].

The new contribution of this paper is represented by the enhancement
of the standard level set formulation, by means of a computationally strate-
gic selection of the design domain discretization, in a finite element setting.
With this aim, we adopt an advanced metric-based mesh adaptation tech-
nique for anisotropic triangular [28, 29] and tetrahedral elements [30, 31],
driven by an a posteriori recovery-based error estimator [32, 33]. In addi-
tion, in order to guarantee a reliable mechanical analysis, we modify the
fully anisotropic metric into a graded spacing, where stretched elements are
preserved to describe the material boundary, whereas an isotropic tessel-
lation is used in the interior portion of the structure [34]. We name the
newly proposed algorithm LEVITY (LEVel set with mesh adaptivITY). In
a similar spirit, in [35], the authors carry out topology optimization through
h-refinement and coarsening, but restricted to the context of isotropic Carte-
sian meshes.

This paper aims at verifying the good properties of LEVITY that can
be thus listed:

• automation, that is guaranteed for free by the adopted metric-based
mesh adaptation process [31];

• cost-effectiveness, that is supported by the well-established advantages
ensured by adapted (anisotropic) meshes when compared with fixed
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grids (see, e.g., [36, 37, 38, 39, 40]), and by the computational cheap-
ness of the recovery-based error estimators here exploited [41];

• limited post-processing of the optimized structure before manufactur-
ing, thanks to the smoothness of the optimized layout boundary pro-
vided by the allocation of highly stretched elements;

• mechanical reliability, guaranteed by the employment of isotropic ele-
ments inside the structure, thus preserving the approximation of the
compliance by any bias [34].

Moreover, a numerical comparison between LEVITY and the standard
level set approach for topology optimization highlights that the new algo-
rithm essentially preserves the good properties of the original one, such as
the independence of the final layout with respect to both the initial topology
and computational grid.

In short, LEVITY can be classified as a mechanically reliable and compu-
tationally convenient design tool able to provide optimized structures char-
acterized by very clear-cut contours, at a limited computational effort. This
allows us to deal with challenging 3D configurations which, in general, are
not efficiently affordable with standard topology optimization tools.

The paper is organized as follows. Section 2 introduces the minimum
compliance problem together with the standard level set approach for topol-
ogy optimization. Section 3 formalizes the LEVITY algorithm, after pro-
viding the metric-based anisotropic mesh adaptation basics. In Section 4,
we perform an extensive numerical assessment of LEVITY algorithm on 2D
case studies, which are benchmark in the literature. Successively, we chal-
lenge LEVITY on realistic 3D configurations in Section 5. Finally, some
conclusions and future perspectives are drawn in the last section.

2 The minimum compliance design problem: a
level set approach

We consider a generic topology optimization framework which relies on a
function χ ∈ X, that is used to label the void (χ(x) = 0, with x ∈ Ω) or the
material (χ(x) = 1, with x ∈ Ω) to be alternated inside the design domain
Ω ⊂ Rd, with d = 2, 3. In particular, we assume as a reference setting the
optimization problem

min
χ∈X

F (u(χ), χ) :


S(u(χ), χ; v) = 0 ∀v ∈ U

Ci,m ≤ Ci(u(χ), χ) ≤ Ci,M i = 1, ..., NC

χ ∈ [χmin, 1],

(1)

where u = u(χ) ∈ U denotes the state function; F represents the goal
functional, which a priori may depend on both the design, χ, and the state,

3



u, variables, with U and X function spaces to be properly selected. The
optimization process is constrained by the state equation, S(u(χ), χ; v) = 0,
which coincides with the weak formulation of the partial differential equation
(PDE) model characterizing the physics of interest; by NC box inequalities,
which involve the physical quantities Ci strictly related to the configuration
at hand, with Ci,m and Ci,M the corresponding lower and upper bounds,
respectively; by the admissible range of values for the design function χ,
with χmin ≥ 0 arbitrarily small.

The topology process in (1) is fully general. A suitable choice for the
goal functional, for the state equation, and the constraints can cast the
optimization into different scenarios. In particular, the focus of this paper
is on the minimization of the compliance of a structure which is loaded
by the external traction t along the portion Γt of the domain boundary ∂Ω,
under a linear elasticity regime [42]. This context provides a well-established
benchmark case study [43, 7, 8]. Thus, the goal functional in (1) coincides
with the compliance

F (u(χ), χ) =

∫
Γt

t · u(χ) dγ, (2)

with u = [u1, . . . , ud]
T the displacement induced by the imposed load; the

state equation is framed in a suitable subset U of the Sobolev space H1(Ω),
which accounts for possible essential boundary conditions [44], being

S(u(χ), χ;v) = aχ(u(χ),v)− l(v) = 0, (3)

with

aχ(u(χ),v) =

∫
Ω
χσ(u(χ)) : ε(v) dΩ, l(v) =

∫
Γt

t · v dγ. (4)

In the linear elasticity regime under consideration, the stress tensor is σ(u(χ)) =
2µε(u(χ)) + λtr(ε(u(χ)))I, where ε(u(χ)) = (∇u(χ) +∇u(χ)T )/2 denotes
the strain tensor, tr(·) the trace operator, I ∈ Rd×d the identity matrix,
λ = Eν/[(1 + ν)(1 − 2ν)] and µ = E/[2(1 + ν)] the Lamé coefficients, E
being the Young modulus and ν the Poisson ratio.
In particular, we highlight that in (4) the variable χ modifies the standard
linear elasticity equation in order to drive the design of the topologically
optimized structure, here denoted by Σ. Moreover, the linear functional in
(4) does coincide with the compliance in (2), for v = u(χ).
Concerning the box constraints in (1), we resort to a control on the maxi-
mum allowed material quantity, by setting NC = 1 and by identifying

C1(u(χ), χ) = C(χ) =
∫
Ω
χdΩ, C1,m = 0, C1,M = αV0,

where α ∈ (0, 1] is the prescribed volume fraction with respect to the initial
volume of the structure, V0 =

∫
Ω 1dΩ.
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Thus, the minimum compliance problem reads as:
find χ ∈ L∞(Ω) such that:

min
χ∈L∞(Ω)

l(u(χ)) :


aχ(u(χ),v)− l(v) = 0 ∀v ∈ U

C(χ) ≤ αV0

χ ∈ [χmin, 1].

(5)

Notice that the lower bound for C(χ) is automatically satisfied due to (5)3.
In the following, the dependence of u on the design variable χ will be dropped
to simplify the notation.

2.1 The level set formulation

The choice for the design function χ in (1) is not unique. According to a
level set approach, the boundary, ∂Σ, of the structure, Σ ⊂ Ω ⊂ Rd, to be
designed is described by the zero-isocontour of a (d+1)-dimensional surface
Γ : Ω → Rd+1 so that Γ(x) = (x, φ(x)), with φ the level set function. In
particular, we select φ(x) : Ω → [−1, 1], to be

0 < φ ≤ 1 forx ∈ Σ

φ = 0 forx ∈ ∂Σ

−1 ≤ φ < 0 forx ∈ Ω\Σ.
(6)

The optimal layout corresponds to the portion in Ω where the level set
function takes non-negative values. As a consequence, function χ in (1) can
be identified with

χφ =

{
1 φ ≥ 0
χmin φ < 0,

(7)

Smoothness assumptions are made both on functions φ and χφ, namely
φ ∈ C0(Ω), while χφ ∈ L2(Ω).
Thus, the minimum compliance problem in (5) with the level set approach
is formulated as:
find φ ∈ H1(Ω; [−1, 1]) such that:

min
φ∈H1(Ω;[−1,1])

l(u) :

{
aχφ(u,v)− l(v) = 0 ∀v ∈ U

C(χφ) ≤ αV0,
(8)

where aχφ(·, ·) is defined as in (4) with χ = χφ, and where the last constraint
in (5) directly follows from the definition of χφ.

According to a level set approach, the identification of the optimized
solution to problem (8) relies on a time-dependent process, which evolves
an initial contour, φ0, towards the final layout boundary ∂Σ. Following, for
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instance, [20, 45], such evolution is governed by the diffusive process

∂φ

∂t
= κ dtF + τ∆φ in Ω, t > 0

∂φ

∂n
= 0 on ∂Ω, t > 0

φ = φ0 in Ω, t = 0,

(9)

with τ > 0 a parameter tuning the diffusivity of the level set evolution;

F = F (u,w, θ;φ) = l(u)−
[
aχφ(u,w)− l(w)

]
+ θG(φ),

the Lagrangian functional that commutes the constrained optimization in (8)
into an unconstrained procedure, by introducing the Lagrangian multipliers
w ∈ U and θ ∈ R+, being

G(φ) = C(χφ)− αV0 ≤ 0;

dtF the topological derivative of the Lagrangian functional F [20, 13, 46,
47]; κ > 0 a normalization factor. In particular, the minimum compliance
problem in (5) leads to identify the adjoint with the state problem, i.e.,
w = u (see, [20, 45] for all the details).

We remark that the diffusive contribution τ∆φ ensures the smoothness
of the level set function, acting as a perimeter control. Thus, by properly
tuning parameter τ , we can limit or promote the generation of complex ge-
ometric features [20, 45].
Finally, the differential problem in (9) is completed by homogeneous Neu-
mann boundary conditions for simplicity of implementation.

2.2 The level set discrete formulation

We numerically deal with problem (9) by adopting a standard continuous
finite element discretization for the spatial dependence, combined with a
backward Euler scheme to approximate the time evolution [44]. In addition,
in order to compute the Lagrangian functional F we have to approximate
the state equation in (8).

To this aim, we discretize domain Ω with a family of conforming tessel-
lations, {Th}, characterized by triangular/tetrahedral elements K. Analo-
gously, the considered time window is partitioned by the discrete instants
{tk} into uniform time intervals of length ∆t.
The approximation of the state equation in (8) and of problem (9) is per-
formed in the discrete spaces Uh = [X1

h]
d ∩U , and Φh = X1

h, which leads to
replace u with uh = [u1,h, . . . , ud,h]

T ∈ Uh, φ with φh ∈ Φh, being

X1
h = {f ∈ C0(Ω) s.t. f |K ∈ P1

K , ∀K ∈ Th},
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the space of the affine finite elements, and P1
K the polynomials of degree

one with real coefficients. Space X1
h is also adopted to approximate the

characteristic function χφ in (7) by χφ,h. The employment of a unique
discrete space to approximate all the functions involved in the level set
problem relieves us from any projection step among different spaces.

In Algorithm 1, we formalize the level set approach implementing the
discrete minimum compliance design problem.

Algorithm 1 Minimum compliance topology optimization with level set

Input: CTOL, kmax, φ0
h, T 0

h , ∆t, α, V0, χmin, τ

1: Set: k = 0, errComp = 1+CTOL

2: while errComp > CTOL & k < kmax do

3: χk
φ,h = characteristic(φk

h, T 0
h , χmin);

4: uk+1
h = solveState(χk

φ,h, vh);

5: [dtF
k+1

, κ] = topologicalDerivative(uk+1
h , α, V0);

6: φ̃k+1
h = evolveLevelSet(φk

h, dtF
k+1

, κ, τ , ∆t);

7: φk+1
h = threshold(φ̃k+1

h );

8: errComp = |l(uk+1
h )− l(uk

h)|/|l(uk
h)|;

9: k = k+ 1;

10: end while

11: Σh = extract(φk
h);

Output: Σh

The input values for the algorithm are CTOL and kmax to rule the while
loop; the initial level set function φ0

h defined on the mesh T 0
h ; the time step

∆t; the maximum prescribed volume fraction, α, with respect to the full-
material configuration volume, V0; the lower bound, χmin, for function χφ,h;
the coefficient τ driving the diffusive process in (9).

The algorithm essentially consists of five steps performed at each time
tk. In particular, there exists a correspondence between the index k of the
while loop and the instant tk, such that k = k+1 amounts to tk+1 = tk+∆t.
For each k, we first identify the characteristic function χk

φ,h by computing

the zero-isocontour of φk
h (line 3). Then, we solve the state equation in (8)

to update the discrete displacement (line 4). The new displacement and the
quantities characterizing the inequality constraint in (8) are provided as the
inputs to compute the topological derivative dtF and the factor κ (line 5).
Successively, the level set function φk

h is evolved according to the model in
(9) into φ̃k+1

h (line 6), which is then thresholded (line 7) by the rule

if |φ̃k+1
h | > 1 then φk+1

h = sign(φ̃k+1
h ).

7



The five-step procedure just detailed is constrained by a control on the rela-
tive accuracy, CTOL, on the compliance combined with a maximum number
of time steps, kmax.

Algorithm 1 returns the final layout Σh = {x ∈ Ω s.t. φk
h(x) ≥ 0},

coinciding with the minimum compliance structure (line 11).

3 Level set enriched by mesh adaptation

This section provides an advanced algorithm for problem (8) where a stan-
dard level set approach is enhanced by discretizing the PDE problems in (8)
and (9) on customized computational grids able to follow the progressive
design of the optimized structure.

3.1 A metric-based anisotropic mesh adaptation

Anisotropic mesh adaptation proved to be the optimal tool for modeling
phenomena characterized by preferential directions, e.g., in the presence of
boundary or internal layers, shocks, wakes, in diverse application fields [36,
37, 30, 48, 31, 38, 39].
An anisotropic mesh adaptation procedure consists of an iterative modifica-
tion of the numerical grid by optimally adjusting the size, the orientation and
the shape of the elements, in order to sharply track the occurring directional-
ities. In contrast to an isotropic mesh adaptation, which only prescribes the
optimal size of the elements while keeping the shape fixed, the anisotropic
approach guarantees more versatility and a higher efficiency (for instance,
by reducing the number of elements for a user-defined accuracy).

In the sequel, the anisotropic mesh generation is carried out in the well-
established setting proposed in the seminal works [28, 30, 31]. With reference
to a d-dimensional context, we recover the geometric description of a generic
element K ∈ Th, out of the spectral properties of the standard affine map,
TK : K̂ → K, such that

x = TK(x̂) = MK x̂+ tK ,

with x ∈ K and x̂ ∈ K̂, K̂ being the reference element inscribed into the
unit d-sphere. In particular, MK ∈ Rd×d is the Jacobian of map TK and
is responsible for the transformation of the unit d-sphere into a d-ellipsoid
circumscribing K, whereas tK ∈ Rd represents a rigid translation. The
geometric description of K is obtained by considering:

i) the polar decomposition MK = BKZK of the Jacobian, with BK ∈
Rd×d a symmetric positive definite deformation matrix and ZK ∈ Rd×d

a rotation;
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ii) the standard spectral decomposition of matrix BK , so that BK =
RT

KΛKRK , withRT
K = [r1,K , . . . , rd,K ] and ΛK = diag(λ1,K , . . . , λd,K),

the matrices of the eigenvectors and the eigenvalues ofBK , with λ1,K ≥
. . . ≥ λd,K > 0.

Matrices RT
K and ΛK completely characterize the element K. In particular,

the eigenvectors r1,K , . . . , rd,K are aligned with the directions of the semi-
axes of the d-ellipsoid circumscribed toK, while the eigenvalues λ1,K , . . . , λd,K

measure the length of such semi-axes (we refer to [28, 31] for more details).
To evaluate the anisotropy of the elementK with respect to the reference

isotropic case, we adopt the quantities

si,K =
(
λ
2(d−1)/d
i,K

)( d∏
j=1, j ̸=i

λj,K

)−2/d

i = 1, . . . , d,

which are referred to as aspect ratios. In particular, si,K ’s are identically
equal to 1 for an isotropic element.

3.1.1 The error estimator

An anisotropic mesh adaptation procedure can be driven by imposed crite-
ria, which are possibly related to the discrete solution under investigation.
Common strategies rely on suitable estimators for the discretization error
in order to identify the portions of the domain where the tessellation needs
to be refined, coarsened or deformed in order to capture the directionalities
of the solution at hand.

In this paper, we resort to a recovery-based analysis which consists of
two steps, i.e., the computation of a so-called recovered gradient and the
definition of the associated error estimator [32, 49, 33]. In more detail, we
adopt the anisotropic counterpart of the estimator in [33], proposed for the
first time in [50].

As a first step, we define the recovered gradient, P (∇·), by means of an
area-weighted average of the discrete gradient across the patch of elements,
∆K = {T ∈ Th : T ∩K ̸= ∅} associated with K,

P (∇wh)(x) =
1

|∆K |
∑

T∈∆K

|T | ∇wh|T x ∈ K, (10)

with wh a finite element approximation of the generic function w ∈ H1(Ω),
and |ϖ| the measure of the d-dimensional set ϖ. Notice that, follow-
ing [31, 30], we select a piecewise constant recovered gradient to simplify
the computations, by involving a sufficiently large number of mesh elements
in the average step.
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Successively, we introduce an anisotropic a posteriori error estimator
based on the recovered gradient (10), following [50, 30]. The global estima-
tor, η, can be characterized in terms of the elementwise contributions, ηK
by

η2 =
∑
K∈Th

η2K , (11)

with

η2K =

( d∏
j=1

λj,K

)−2/d d∑
i=1

λ2
i,K

(
rTi,K G∆K

(
E∇

)
ri,K

)
. (12)

Here, E∇ =
[
P (∇wh) −∇wh

]
denotes the recovered error on the gradient,

whileG∆K
(·) ∈ Rd×d is a symmetric positive semidefinite matrix with entries

[G∆K
(q)]i,j =

∑
T∈∆K

∫
T
qi qj dT with i, j = 1, . . . , d, (13)

for any vector-valued function q = (q1, . . . , qd)
T ∈ [L2(Ω)]d. The local

estimator (12) coincides with the anisotropic counterpart of the L2(K)-norm
of the recovered error E∇, scaled by factor (

∏d
i=1 λi,K)−2/d, which ensures

the consistency with the isotropic case.

3.1.2 From the estimator to the metric

As a next step, estimator (11)-(12) is exploited to predict the new spacing
of the mesh, known as metric [51]. In more detail, we combine two distinct
criteria, that is the minimization of the mesh cardinality, #Th, for a user-
defined accuracy, TOL, on the discretization error, and an equidistribution
of the error throughout the mesh elements, i.e., η2K = TOL2/#Th. With this
aim, it is instrumental to scale the local estimator (12) with respect to the
patch area |∆K |, so that

η2K = |∆K |
d∑

i=1

si,K

(
rTi,K Ĝ∆K

(E∇) ri,K

)
︸ ︷︷ ︸

F({si,K ,ri,K}i=1,...,d)

=
TOL2

#Th
= constant, (14)

with Ĝ∆K
(·) the scaled matrix G∆K

(·)/|∆K |, and |∆K | = (
∏d

i=1 λi,K) |∆̂K |,
where ∆̂K = T−1

K (∆K) is the pull-back of the patch ∆K via map TK .
As a consequence, in order to minimize the mesh cardinality, we are led
to maximize the area of each element, which turns out to be equivalent to
minimize the quantity F({si,K , ri,K}i=1,...,d) in (14). This leads us to solve
the following constrained minimization problem for each K ∈ Th:

min
si,K ,ri,K

F({si,K , ri,K}i=1,...,d) :


ri,K · rj,K = δij

s1,K ≥ . . . ≥ sd,K

s1,K · . . . · sd,K = 1,

(15)
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where δij is the Kronecker symbol and i, j = 1, . . . , d. The solution to such
a problem can be computed in a closed form [52, 31], as stated in the result
below.

Proposition 3.1 Let {gi,gi}i=1,...,d be the eigenpairs associated with Ĝ∆K
(E∇),

with g1 ≥ . . . ≥ gd > 0 and {gi}i=1,...,d orthonormal vectors. Then, the so-
lution to the minimization problem (15) is

s∗i,K =

( d∏
i=1

gi,K

)1/d

g−1
d+1−i, r∗i,K = gd+1−i with i = 1, . . . , d. (16)

By the equidistribution criterion, the optimal values for lengths λ∗
i,K are

λ∗
i,K =

(
TOL2

d#Th|∆̂K |

)1/d( d∏
i=1

gi,K

)(d−2)/2d2

g
−1/2
d+1−i. (17)

Proposition 3.1 provides the information necessary to assign the spac-
ing characterizing the new mesh, namely the metric M. It is standard to
define M as a piecewise constant tensor on the mesh Th, given by M|K =
(R∗

K)T (Λ∗
K)−2R∗

K , with (R∗
K)T = [r∗1,K , . . . , r∗d,K ] and Λ∗

K = diag(λ∗
1,K , . . . , λ∗

d,K).
Actually, many mesh generators require a nodewise metric information, M1,
so that the optimal quantities in (16) and (17) are averaged throughout the
patch of elements associated with each vertex, V, of the mesh Th. For
further details, we refer the interested reader to [30, 52].

3.1.3 Tuning the elements deformation through graded anisotropy

It is well-known that anisotropic adapted grids represent an ideal tool to
track steep gradients in an accurate and computationally cheap way. Vice
versa, in general, isotropic adapted meshes require a larger number of ele-
ments to reach the same sharpness in steep gradient detection, since they
allow to tune the element size only. This consideration justifies the employ-
ment of anisotropic adapted meshes to track the material/void interface in
the topology optimization design.
Nevertheless, strongly deformed elements might bias the mechanical finite
element analysis of the optimized layout, by underestimating the displace-
ment and the compliance of the structure. For this reason, it is advisable to
resort to isotropic grids in order to guarantee a reliable engineering charac-
terization of the optimized designs.

As a consequence, following [34], we exploit anisotropic elements just
as a design tool to deliver layouts exhibiting very smooth contours, while
preserving an isotropic tessellation within the optimized structure. This
leads us to use a so-called graded mesh, which alternates highly stretched
elements along the material/void contour with isotropic triangles/tetrahedra
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inside the structure. Such a choice ensures to have a twofold benefit, namely
an efficient design tool and mechanically reliable optimized configurations.
To this aim, we modify the metric M1 derived in the previous section by
the rule

M̃1(V) = Θ(V)M1(V) + θ(V) V ∈ Th,

where Θ, θ : Ω → Rd×d are generic tensor functions so that metric M̃1 is
symmetric positive definite.

The assessment in Sections 4-5 is carried out for the choices

Θ(V) = (1− χφ,h(V))I, θ(V) =
1

h2iso
χφ,h(V)I,

where hiso is a user-defined sizing of the isotropic mesh inside the structure.

3.2 The LEVITY algorithm

This section formalizes the novel design method proposed in this paper. The
level set topology optimization in Algorithm 1 is enriched by the anisotropic
mesh adaptation procedure detailed in Section 3.1. The quantity driving
the mesh adaptation coincides with a suitable filtered function of the level
set φh. Namely, we set wh = g(φh) in (10), with

g(·) = tanh(β ·)
tanh(β)

, (18)

and β ∈ R+. Function tanh acts on φh by sharpening the transition be-
tween values −1 and 1 of the level set function, according to the selected
parameter β. This choice is instrumental in order to confine the mesh adap-
tation to a thin region around the zero-isocountor of function φh, i.e., in a
neighbourhood of the layout boundary ∂Σ.

The idea is to alternate in a sequential way the topology optimization
with the adaptation of the computational mesh. In more detail, Algorithm 1
is enhanced by a new routine which implements the generation of the optimal
metric M1 (or M̃1) in Section 3.1. The adaptation step actually takes place
only when the percentage variation on the compliance is below a certain
threshold (namely, the evolution process is close to converge) or after a
fixed number of iterations to overcome the possible slow convergence of the
compliance. This strategy avoids to massively increase the computational
effort since confining mesh adaptation only to certain iterations, provided
that the time step ∆t is chosen sufficiently small in order to reliably track
the evolving contour ∂Σ.

The combination of the level set approach with mesh adaptivity sup-
ports the name LEVITY (LEVel set with mesh adaptivITY) assigned to the
proposed algorithm.
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Algorithm 2 LEVITY: LEVel set with mesh adaptivITY

Input : CTOL, TOL, ATOL, kmax, kStart, kAdapt, φ0
h, T 0

h , grade, hiso,
∆t, α, V0, χmin, τ , β

1: Set: k = 0, errComp = 1+CTOL, errMesh = 1 + ATOL

2: while errMesh > ATOL & k < kmax do

3: χk
φ,h = characteristic(φk

h, T k
h χmin);

4: uk+1
h = solveState(χk

φ,h, vh);

5: [dtF
k+1

, κ] = topologicalDerivative(uk+1
h , α, V0);

6: φ̃k+1
h = evolveLevelSet(φk

h, dtF
k+1

, κ, τ , ∆t);

7: φk+1
h = threshold(φ̃k+1

h );

8: errComp = |l(uk+1
h )− l(uk

h)|/|l(uk
h)|;

9: if k > kStart & (errComp < CTOL | mod(k, kAdapt) == 0) then

10: T k+1
h = adaptMesh(T k

h , φ
k+1
h , β, TOL, grade, hiso);

11: [uk+1
h , φk+1

h ] = project(uk+1
h , φk+1

h , T k+1
h );

12: errMesh = |#T k+1
h −#T k

h |/|#T k
h |;

13: else

14: T k+1
h = T k

h ;

15: end if

16: k = k+ 1;

17: end while

18: Σh = extract(φk
h);

Output: Σh, T k
h

Since LEVITY algorithm represents an enhancement of Algorithm 1,
here we focus on the new input parameters and code blocks.
The new input parameters coincide with the two tolerances TOL and ATOL,
which control the accuracy of the mesh adaptation according to (17) and
the stagnation of the mesh cardinality, respectively; the integers kStart

and kAdapt that are responsible for switching on the mesh adaptation step;
the flag grade which allows us to opt for a fully anisotropic discretization
(grade = 0) of the layout or for the graded approach (grade = 1) detailed
in Section 3.1.3, with a mesh inside the structure of size hiso (for grade = 0,
hiso can be set to any real value, as it is not used); the real value β that is
used to tune the sharpness of function g in (18).
Concerning the main changes on the code layout, we remark that the while
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loop now involves a check on the stagnation of the mesh cardinality, in
contrast to the control on the stagnation of the compliance in Algorithm 1.
Then, the update of the mesh characterizing the adaptive procedure leads
to vary the computational grid employed by the routines in lines 3-7.
The major modification to Algorithm 1 is represented by the command
block in lines 9-12 through the routines adaptMesh and project. After
a certain minimum number kStart of iterations is performed, the metric-
based methodology in Section 3.1 is introduced every kAdapt time steps or
when the relative variation, errComp, on the compliance is below the user-
defined threshold, CTOL. The displacement and the level set function are
successively projected onto the adapted mesh (line 11).
Finally, LEVITY algorithm returns the last adapted mesh together with the
associated layout Σh.

4 Verification on benchmark 2D case studies

We exploit this section to numerically verify the computational performance
of LEVITY algorithm on some two dimensional test cases, i.e., two cantilever
and a bridge configurations, which are reference models for topology opti-
mization [8, 53]. In particular, this section is devoted to assess the reliability
of LEVITY and to perform a sensitivity analysis of the output with respect
to both the level set and the mesh adaptation processes.

Since the proposed design tool is independent of the selected medium, we
refer to a generic material characterized by a Young modulus and a Poisson
ratio equal to E = 1000 and ν = 0.3, respectively.

Concerning Algorithm 2, the PDE problems implemented in routines
solveState and evolveLevelSet are approximated with FreeFEM [54]; the
metric-based anisotropic mesh adaptation in routine adaptMesh is carried
out through the dedicated FreeFEM function.

4.1 Central loaded cantilever

As a first benchmark test case, we consider a central loaded cantilever
(CLC). The design domain Ω coincides with the Cartesian set (0, 2)× (0, 1).
The external traction t = (0,−5)T is applied to the portion Γt = {(x, y) :
x = 2, 0.45 ≤ y ≤ 0.55} of the boundary ∂Ω, while a homogeneous Dirichlet
data is assigned to u on ΓD = {(x, y) : x = 0, 0 ≤ y ≤ 1} ⊂ ∂Ω; a ho-
mogeneous Neumann boundary condition on ∂Ω \ (Γt ∪ ΓD) completes the
physical setting.

On this configuration, we solve the minimum compliance problem (8)
by setting α = 0.5, V0 = 2, and χmin = 1e-03. The level set process is
characterized by the choices CTOL = 1e-04; kmax = 400; the initial guess for
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the level set φ0
h = 1− 21Υ1 − 21Υ2, with

Υ1 = {(x, y) : (x− 0.5)2 + (y − 0.5)2 ≤ 0.252}

Υ2 = {(x, y) : (x− 1.5)2 + (y − 0.5)2 ≤ 0.252}

and 1 the indicator function; an initial uniform mesh T 0
h consisting of 25600

triangles; ∆t = 0.1; τ = 6e-04.
Algorithm 1 converges in 154 iterations and returns the characteristic func-
tion χφ,h and the final layout Σh shown in Figure 1. It is evident that the
employment of a fixed computational mesh, which does not match the lay-
out boundary, results in a very irregular trend for function χφ,h. Despite
that, the contour of the final CLC inherits the smoothness of the level set
function, thus leading to a regular final design characterized by a compliance
l(uh) equal to 1.40e-02. This value is assumed as the ground truth for the
analysis below in terms of mechanical performance.

Figure 1: CLC. Output of the level set method on a fixed mesh: function
χφ,h (left) and final layout Σh (right).

Figure 2: CLC. Output of LEVITY algorithm: function χφ,h (left) and final
layout Σh (right).

The improvement led by the mesh adaptation onto the smoothness of
the material/void interface identified by χφ,h can be appreciated in Figure 2.
The two panels show the characteristic function (left) and the structure Σh

(right) designed by Algorithm 2 for the input parameters TOL = 8e-02,
ATOL = 5e-03, kStart = 150, kAdapt = 15, grade = 0, hiso = 8.0, and β =
10. Algorithm 2 converges after 180 iterations, while only 5 mesh adaptation
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steps take place, with the generation of the adapted tessellation in the left
panel of Figure 3. This grid consists of 5593 triangles, characterized by
a maximum aspect ratio maxK s1,K equal to 82.79. The most elongated
elements are confined to the layout boundary in order to sharply detect the
material/void interface. The internal part of the structure is tessellated by
anisotropic elements as well, the flag grade being set to zero. This feature is
likely responsible for the underestimation of the structural compliance l(uh)
which is 1.19e-02. The poorly reliable mechanical performance associated
with a fully anisotropic grid is evident when we switch the grading of the
mesh on, by setting grade = 1 and, for instance, hiso = 1/40. As shown
in Figure 3 (right), the adoption of such a variant of Algorithm 2 yields a
uniform discretization of the internal portion of the structure, which leads to
an improvement on the computation of the compliance, now being l(uh) =
1.39e-02. In particular, the graded mesh consists of 7877 elements with a
maximum value for s1,K equal to 34.89.

Figure 3: CLC. Output tessellation provided by LEVITY algorithm: fully
anisotropic (left) and graded (right) mesh.

Table 1 provides a further mechanical comparison between the fixed
mesh and the two adapted grids in terms of the minimum value of the y-
component of the displacement, umin

2,h , (notice that the maximum quantity,
umax
2,h , is zero, due to the homogeneous boundary data and to the downward

orientation of the load). The layouts associated with the fixed and with
the graded meshes are characterized by a very similar value for such a com-
ponent, while the fully anisotropic case leads to an underestimation of the
displacement along the y-direction. This quantitative analysis supports that
graded grids represent a more mechanically reliable choice with respect to a
fully anisotropic discretization of the computational domain.

Fixed Anisotropic Graded

umin
2,h −2.80e-2 −2.49e-2 −2.79e-2

Table 1: CLC. Minimum value of the displacement along the y-direction for
the layout optimized on different meshes.

As a further check, we compare the outcome of the level set method when
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applied to a really coarse grid, by distinguishing between a fixed and a graded
domain discretization. With this aim, we run Algorithms 1 and 2 starting
from the same initial structured mesh, T c

h , consisting of 2500 elements.
The first procedure yields the layout shown in Figure 4 (left). The mesh is
excessively coarse to identify an acceptable structure (notice the thin broken
diagonal struts). Moreover, the layout boundary is highly irregular and
may require a post-processing phase. On the contrary, the adoption of the
graded mesh module allows us to allocate the mesh elements in a strategic
way at the expense of a slight increment of the mesh cardinality, now equal
to 2654. As a consequence, the optimized structure is now admissible and
exhibits a sharply detected material/void interface. Despite the employment
of a very coarse mesh, the mechanical performance of the optimized CLC
is acceptable, with a relative error on the compliance equal to 2.20% with
respect to the ground truth value (1.37e-02 versus 1.40e-02).

All these considerations lead us to select LEVITY algorithm with graded
meshes as the tool for the design of innovative and mechanically reliable
topologically optimized structure in the assessment below.

Figure 4: CLC. Comparison of the output layout and associated mesh by
the level set method (left) and the LEVITY algorithm (right) for T 0

h = T c
h .

4.2 Central-bottom loaded bridge

The second case study coincides with the central-bottom loaded bridge
(CBLB), optimized starting from the design domain Ω = (−100, 100) ×
(0, 120) when a traction t = (0,−5)T is exerted onto the boundary portion
Γt = {(x, y) : −10 ≤ x ≤ 10, y = 0} of ∂Ω. As additional conditions com-
pleting the state equation, we impose u2 = 0 on ΓD = ΓD1 ∪ ΓD2, with
ΓD1 = {(x, y) : −100 ≤ x ≤ −90, y = 0} and ΓD2 = {(x, y) : 90 ≤ x ≤
100, y = 0}, and homogeneous Neumann data on the remaining part of the
boundary ∂Ω \ (Γt ∪ ΓD).

On this configuration, we run LEVITY with the following choice of the
input parameters: CTOL = 1e-04, TOL = 3.5e-01, ATOL = 5e-03, kmax = 400,
kStart = 175, kAdapt = 15, φ0

h = 1, T 0
h a uniform mesh with 69120

elements, grade = 1, hiso = 2, ∆t = 0.1, α = 0.5, V0 = 24000, χmin = 1e-03,
τ = 5e-01, and β = 10. The algorithm requires 217 iterations to converge,

17



after 6 mesh adaptations, and delivers the final layout and the mesh shown
in Figure 5 (left). The optimized topology associated with this choice of data
is rather complex and characterized by a compliance equal to 62.61. The
corresponding graded mesh is made by 22008 triangles, with very stretched
elements confined to the external boundary of the bridge, as well as along
the thin struts (with maxK s1,K = 72.01).

Figure 5: CBLB. Output layout and associated mesh returned by LEVITY
algorithm for τ = 5e-01 (left) and τ = 2 (right).

We exploit this test case to investigate the sensitivity of the output pro-
vided by LEVITY to the parameter τ . With this aim, we repeat the previous
run by preserving all the input parameters, except for τ which is now set
to 2. The new structure returned by the algorithm after 197 iterations, is
provided in Figure 5 (right). According to (9), a larger value of τ identifies
a more diffusive process of the level set evolution. This leads to the design
of a structure characterized by a simpler topology with respect to the case
τ = 5e-01, and by a slightly higher compliance, being l(uh) = 63.35.
The simplified layout is responsible for a coarser graded mesh, with #T 197

h =
14870, and for a milder maximum element deformation, with maxK s1,K =
32.34. Figure 6 offers a complete overview of the convergence trend of LEV-
ITY throughout the algorithm iterations in terms of volume fraction and
compliance (top) and mesh cardinality (bottom), for both the diffusivities
τ . A cross-comparison between the corresponding panels confirms that a
small diffusivity in the evolution of the level set leads to a slower conver-
gence history. In particular, the mesh cardinality for τ = 5e-01 demands an
additional adaptation step to match the stopping criterion, with respect to
the case τ = 2. The compliance exhibits a similar trend for both the diffu-
sivities, although the stagnation to the optimized value looks more straight-
forward for τ = 2. Finally, the volume fraction decreases in a similar way
for both the choices of τ .

As expected, we can conclude that a larger value for τ leads to the
design of structures characterized by a simplified topology and to a faster
convergence.
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Figure 6: CBLB. Convergence history of LEVITY for τ = 5e-01 (left) and
τ = 2 (right): trend of the compliance (solid line) and of the volume fraction
(dashed line) (top); evolution of the mesh cardinality (bottom). The vertical
lines mark the iterations where mesh adaptation takes place.

4.3 Central loaded short cantilever

As a last 2D benchmark case, we solve the optimization problem (8) in
the design domain Ω = (0, 160) × (0, 128), subject to the external traction
t = (0,−5)T applied to the boundary portion Γt = {(x, y) : x = 160, 60 ≤
y ≤ 68}. In addition, a null value is assigned to the displacement u on
ΓD = {(x, y) : x = 0, 0 ≤ y ≤ 128} and a homogeneous Neumann boundary
condition is imposed on ∂Ω \ (Γt ∪ ΓD), with Γt, ΓD ⊂ ∂Ω. In the sequel
we will refer to this design setting as to the central loaded short cantilever
(CLSC).

Algorithm LEVITY is launched on this configuration, when the input
parameters are set to: CTOL = 1e-04, TOL = 3.5e-01, ATOL = 5e-03, kmax =
400, kStart = 175, kAdapt = 15, φ0

h = φ0
1,h = 1, T 0

h = T 0,A
h a uniform

mesh consisting of 4960 elements, grade = 1, hiso = 2, ∆t = 0.1, α = 0.5,
V0 = 20480, χmin = 1e-03, τ = 1, β = 10. After 201 iterations and 5 mesh
adaptation steps, we break thewhile loop with the structure, CLSC-L-T1A,
associated with the optimized level set function in Figure 7 (bottom-left),
here overlapped to the final graded mesh.
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Figure 7: CLSC. Sensitivity of the LEVITY algorithm to the initial topol-
ogy: φ0

1,h, φ
0
2,h, φ

0
3,h (top, left-right) and final level set function overlapped

to the associated graded mesh (bottom, left-right).

This configuration is exploited to investigate the sensitivity of the output
by LEVITY to the initial topology. To this aim, we re-run the algorithm by
varying φ0

h, selected as in the top-center (φ0
2,h) and the top-right (φ0

3,h) pan-
els of Figure 7. The corresponding level set function and graded mesh are
provided in the bottom-center and bottom-right panels of Figure 7, which
are referred to as CLSC-L-T2A and CLSC-L-T3A, from now on. The output
topology is the same. We recognize only a slight variation of the hole size
when the initial topology becomes more complex.
Table 2 gathers some quantitative information about the mechanical perfor-
mance of the structures and about the mesh features. We observe a small
increment of the compliance when moving from CLSC-L-T1A to CLSC-L-
T3A, whereas essentially the same cardinality and maximum aspect ratio
characterize the final graded mesh. This confirms the robustness of the
LEVITY algorithm with respect to the choice of the initial topology.

l(uh) #T k
h maxK s1,K

CLSC-L-T1A 30.58 12534 48.35
CLSC-L-T2A 31.70 12382 42.81
CLSC-L-T3A 31.81 12129 48.89

Table 2: CLSC. Sensitivity of LEVITY algorithm to the initial topology:
compliance (first column), cardinality (second column) and maximum aspect
ratio (third column) associated with the final graded mesh.

We further explore the sensitivity of LEVITY to the initial mesh by run-
ning the algorithm for φ0

h = φ0
2,h and T 0

h = T 0,A
h , T 0,B

h , T 0,C
h , with T 0,B

h and
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T 0,C
h uniform meshes consisting of 2560 and 92160 triangles, respectively,

while preserving all the other input parameters. Figure 8 and Table 3 sum-
marize the results of such a comparison. It turns out that LEVITY output
is essentially independent of the initial mesh also, since it provides the same
final layout, as well as very similar values for the quantities tracked in the
table.

Figure 8: CLSC. Sensitivity of the LEVITY algorithm to the initial mesh:
final layout Σh for T 0

h coinciding with T 0,A
h (left), T 0,B

h (center), and T 0,C
h

(right).

l(uh) #T k
h maxK s1,K

CLSC-L-T2A 31.70 12382 42.81
CLSC-L-T2B 30.77 11838 44.65
CLSC-L-T2C 31.22 11733 41.99

Table 3: CLSC. Sensitivity of LEVITY algorithm to the initial mesh: com-
pliance (first column), cardinality (second column) and maximum aspect
ratio (third column) associated with the final graded mesh.

The improvements due to anisotropic adapted meshes in a topology op-
timization process have been already assessed when dealing with the most
widespread density-based method, namely the SIMP (Solid Isotropic Mate-
rial with Penalization) [7, 8, 9]. In particular, a new algorithm, named SIM-
PATY (SIMP with mesh AdaptiviTY), has been proposed in [37] for fully
anisotropic adapted grids and successively modified to account for graded
meshes [55, 34]. The main difference between SIMPATY and LEVITY con-
sists in the procedure adopted to change the topology under optimization.
In particular, in order to track the optimized layout boundary, SIMPATY
replaces the evolution equation (9) with a sound optimization step. It has
been verified that SIMPATY algorithm provides original free-form optimized
designs, and significantly limits the standard post-processing required by the
SIMP layouts. Indeed, anisotropic adapted meshes remove any staircase ef-
fect with a sharp detection of the layout boundary. In addition, SIMPATY
algorithm effectively erases checkerboard effects, despite the adoption of the
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same space to discretize both the displacement, u, and the density function,
ρ. Further developments of SIMPATY algorithm include the setting of a
new process at the microscale for the design of innovative metamaterials in
a multi-objective, multi-physics, multi-scale setting [56, 57, 5, 58], as well as
of a reduced order model for topology optimization [59].

Despite the different approaches at the base of SIMP and level set meth-
ods, it may be of interest to check the performance of SIMPATY algorithm
when applied to the CLSC configuration. With this aim, we also consider
a variant of SIMPATY algorithm, named SIMPATYG, where the standard
functional l(u) is replaced by

lG(u, ρ) = l(u) +
1

2
γ

∫
Ω
|∇ρ|2, (19)

with γ ∈ R+, which represents a regularization of the compliance (2) with
a control on the structure perimeter.
We replicate the simulation in Figure 7, for lG with γ = 2.5e-02, and starting
from an initial density ρ0i,h, which mimics the initial topology φ0

i,h, for i =
1, . . . , 3. These new runs yield the three layouts in Figure 9.

Figure 9: CLSC. Sensitivity of the SIMPATYG algorithm to the initial den-
sity: final density function overlapped to the associated graded mesh for ρ01,h
(left), ρ02,h (center), ρ03,h (right).

The optimized topology designed by SIMPATYG is different when compared
with LEVITY output and exhibits additional holes. Nevertheless, similarly
to LEVITY algorithm, SIMPATYG is scarcely sensitive to the initial density
distribution, as highlighted by the three panels in Figure 9 and by the values
in Table 4.
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l(uh) #T k
h maxK s1,K

CLSC-S-T1A 30.79 15044 47.9
CLSC-S-T2A 30.38 16117 57.143
CLSC-S-T3A 30.78 16427 43.24

Table 4: CLSC. Sensitivity of SIMPATYG algorithm to the initial density:
compliance (first column), cardinality (second column) and maximum aspect
ratio (third column) associated with the final graded mesh.

We remark that the regularization term in (19) is crucial to make SIM-
PATY independent of the initial topology. This is confirmed by Figure 10,
which replicates the same simulations as in Figure 9, by setting γ = 0,

Figure 10: CLSC. Sensitivity of the SIMPATY algorithm to the initial den-
sity: final density function for ρ01,h (left), ρ02,h (center), ρ03,h (right).

5 LEVITY as a design tool for 3D configurations

The 3D tests are employed to check the free-form design capability of LEV-
ITY in two different applications. In this framework, we still employ FreeFEM
to solve the PDE problems involved in Algorithm 2, while resorting to
Mmg [60] to manage the generation of the graded meshes.

5.1 The bridge

The first 3D topology optimization is applied to the parallelepiped Ω =
(0, 6) × (0, 1) × (0, 1), constituted by a material with unitary Young mod-
ulus and null Poisson ratio. The design domain is loaded in the area
Γt = {(x, y, z) : 2.95 ≤ x ≤ 3.05, 0 ≤ y ≤ 1, z = 1} by the traction
t = (0, 0,−1)T and subject to homogeneous Dirichlet conditions on the
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boundary portion ΓD = ΓD1 ∪ ΓD2 ∪ ΓD3 ∪ ΓD4, with

ΓD1 = {(x, y, z) : 0 ≤ x ≤ 0.01, 0 ≤ y ≤ 0.01, z = 0},

ΓD2 = {(x, y, z) : 5.99 ≤ x ≤ 6, 0 ≤ y ≤ 0.01, z = 0},

ΓD3 = {(x, y, z) : 0 ≤ x ≤ 0.01, 0.99 ≤ y ≤ 1, z = 0},

ΓD4 = {(x, y, z) : 5.99 ≤ x ≤ 6, 0.99 ≤ y ≤ 1, z = 0},

and to homogeneous Neumann data on ∂Ω \ (ΓD ∪ Γt). This configuration
leads to the design of a bridge structure.
For computational reasons, we perform the optimization on a quarter of the
domain, and then we recover the whole structure by symmetry.

LEVITY algorithm is run by setting the input parameters as: CTOL = 1e-
04, TOL = 6.5, ATOL = 5e-03, kmax = 500, kStart = 150, kAdapt = 20,
φ0
h = 1, T 0

h a uniform mesh with 52556 tetrahedra, grade = 1, hiso = 0.025,
∆t = 0.1, α = 0.1, V0 = 6, χmin = 1e-03, τ = 4e-04, and β = 5.

Figure 11 shows the output of Algorithm 2 provided after 471 itera-
tions and 17 mesh adaptations and characterized by a compliance equal to
1.08. The top panel displays the final layout which turns out to be particu-
larly smooth thanks to the employment of anisotropic tetrahedra along the
solid/void structure interface. The bottom panel shows the computational
mesh. The graded features of the grid are evident with very regular elements
inside the structure (see the bottom-left corner) and a very stretched tessel-
lation outside the bridge. Moreover, we can appreciate the different element
density inside and outside the optimized layout. Further details about the
bridge structure and the graded mesh are provided in Figure 12.

Figure 11: The bridge. Output of LEVITY algorithm: final layout Σh (top)
and graded mesh superimposed to the optimized structure (bottom).
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Figure 12: The bridge. Details of the output of LEVITY algorithm: spans
(left) and slices of the graded mesh (right).

The left panel in Figure 13 shows the trend of the mesh cardinality
throughout the 17 mesh adaptations. The adoption of a coarse initial mesh
justifies the abrupt increment of the number of mesh elements. However, six
mesh adaptations suffice to reach a stationary regime in the mesh evolution.
Finally, it is interesting to remark that the adaptation phase is computa-
tionally cheaper with respect to the evolution of the level set, taking only
15.26% of the overall runtime1.

Figure 13: Convergence history of LEVITY: evolution of the mesh cardinal-
ity: bridge (left); jet engine bracket (right).

5.2 The jet engine bracket

This test case is inspired by the well-known challenge promoted by GE
(General Electric) and GrabCAD in 20132. The optimization goal merges
performance requirements for the stiffness with a reduction of the structure
weight, consistently with problem (8).

The design domain Ω is illustrated in Figure 14. A load t = (0, 0, 1e-03)T

is applied to the boundary portion Γt, which is yellow-highlighted in the right
panel. Homogeneous Dirichlet boundary conditions for the displacement are

1The simulations are run on a computer with 8 GB of RAM, a CPU with 6 i7-3930K
cores and a maximum frequency of 3.20 GHz.

2https://grabcad.com/challenges/ge-jet-engine-bracket-challenge
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imposed on the boundary portion ΓD coinciding with the four bolt holes
highlighted in red. Since it is evident that these holes have to be preserved
during the design process, we exclude these areas from the optimization.
Finally, as far as the adopted material is concerned, we select E = 1 and
ν = 0.3.

Figure 14: The jet engine bracket. Design domain with color-coded ΓD (red)
and Γt (yellow) boundary portions: lateral (left) and front (right) views.

The topology optimization performed by LEVITY is identified by the
following choice for the input parameters: CTOL = 1e-04, TOL = 65, ATOL =
5e-03, kmax = 700, kStart = 200, kAdapt = 25, φ0

h = 1, T 0
h a uniform

mesh with 121472 tetrahedra, grade = 1, hiso = 5, ∆t = 0.1, α = 0.3,
V0 = 463368, χmin = 1e-03, τ = 1.5, and β = 20.

The convergence is reached after 525 iterations, with 14 mesh adapta-
tions. The returned final layout is characterized by a compliance equal to
0.21 and is shown in Figure 15 (top-left). The adapted graded mesh presents
highly anisotropic elements along the structure contour, isotropic tetrahedra
in the internal part, and a coarse tessellation of the design domain portion
Ω \ Σh, as highlighted in Figure 15 (top-right, bottom).
Similarly to the bridge case study, the anisotropic grid adaptation procedure
quickly reaches a stagnation on the mesh cardinality (see the right panel in
Figure 13), while requiring a minimal percentage (15.23%) of the whole com-
putational effort. The number of elements associated with the final graded
mesh is very limited (212360 tetrahedra). We do expect that Algorithm 1
does not deliver an optimized structure with the same smoothness for a
uniform mesh T 0

h characterized by a similar cardinality.
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Figure 15: The jet engine bracket. Output of LEVITY algorithm: final
layout Σh (top-left) and graded mesh superimposed to the optimized struc-
ture (top-right); cut views of the graded meshes of Ω superimposed to the
optimized layout (bottom).

As a last check, we investigate the outcome provided by the SIMPATYG

method for γ = 5e-03 in (19). The optimized bracket is shown in Figure 16
together with a cut view of the surface graded mesh. The compliance asso-
ciated with this layout is equal to 0.25 and the mesh cardinality is 205266.

A cross-comparison between Figures 15 and 16 highlights that the load
path towards the bolt holes is essentially the same, thus identifying four ma-
jor branches. On the contrary, the topology of the central body is different,
with the presence of an additional hole in the LEVITY configuration.
The smoothness of the jet engine bracket surface is fully comparable in
the two cases, as well as the limited computational time characterizing the
adaptation step (15.23% and 5.12% of the whole time for LEVITY and
SIMPATYG, respectively).

27



Figure 16: The jet engine bracket. Output of the SIMPATYG algorithm:
final layout Σh (left) and cut view of the graded mesh of Ω superimposed to
the optimized layout(right).

6 Conclusions

This paper introduces a new algorithm named LEVITY (LEVel set with
mesh adaptivITY) for topology optimization, which leads to outperform a
standard level set approach in terms of computational efficiency. The verifi-
cation carried out in a 2D setting shows that LEVITY essentially preserves
all the good properties of the level set formulation, such as the independence
of the initial topology and mesh, the smoothness of the layout, and the in-
volvement of few parameters in the design process. In this context, the most
relevant advantage yielded by an anisotropic adapted mesh is the smooth-
ness guaranteed also to the characteristic function χφ,h (compare Figures 1
and 2). Moreover, the graded feature of the computational mesh ensures
the reliability of the final design in terms of mechanical performances.

LEVITY algorithm shows the full potentiality due to the introduction
of anisotropic adapted grids in Section 5, where realistic configurations are
optimized. In particular, the computational module adaptMesh leads to
final layouts exhibiting a very smooth contour by demanding an almost
negligible computational effort (around 15% of the whole CPU time). This
process is fully automatic and very few iterations suffice to guarantee the
mesh cardinality stagnation (see Figure 13).

In Sections 4 and 5, we take into account another topology optimization
process, based on anisotropic mesh adaptation, namely SIMPATY (SIMP
with mesh AdaptivITY) algorithm. Although beyond the purpose of this
paper, a comparison between LEVITY and SIMPATY leads to some consid-
erations. SIMPATY suffers from the dependence of the optimized structure
on the initial topology in contrast to LEVITY (compare Figures 7 and 10).
The regularized compliance in (19) allows us to get rid of this limitation (as
confirmed by Figure 9) and to make the two methodologies more consistent,
as highlighted by the similar (although not identical) returned topologies
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(compare Figure 7 with 9 and Figure 15 with 16). The optimization step
characterizing SIMPATY unavoidably involves some parameters to be tuned
that may depend on the specific application. In this regard, the diffusive
process in (9) turns out to be more straightforward, since τ is the only pa-
rameter to be properly selected. This feature becomes a drawback when
the user is interested in a fine-tuning of the design procedure. Additionally,
the computation of the topological derivative dtF in (9) may become an
issue for optimization settings more complex with respect to the one in (8).
Finally, we remark that the employment of a graded grid both in LEVITY
and SIMPATY procedures make the two algorithms fully comparable from
a mechanical viewpoint, as shown by the very similar values for the compli-
ance (see Tables 2 and 4).
To sum up, we observe that the addition of a mesh adaptation routine into a
standard SIMP or level set topology optimization approach is instrumental
to set an efficient design tool capable of striking a balance between reliability
and computational affordability, and of delivering free-form structures. The
main discrepancies between SIMP and the level set are essentially preserved
by SIMPATY and LEVITY.

Concerning future developments of this research, we plan to tackle other
optimization frameworks characterized by various objectives and constraints
by exploiting the full generality of the proposed optimal design procedure.
As a second perspective, we aim at optimizing the implementation of Algo-
rithm 2 for an efficient management of the different blocks, also employing
parallel computing architectures. Moreover, we also foresee the introduction
of automatic differentiation in the algorithm pipeline to easily assemble the
sensitivities for diverse application contexts.
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