
MOX–Report No. 60/2014

CMFWI: Coupled Multiscenario Full Waveform
Inversion for seismic inversion

Signorini, M.; Micheletti, S.; Perotto, S.

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it





CMFWI: Coupled Multiscenario Full Waveform

Inversion for seismic inversion ∗

Marianna Signorini, Stefano Micheletti and Simona Perotto

December 12, 2014

MOX– Modellistica e Calcolo Scientifico
Dipartimento di Matematica

Politecnico di Milano
Piazza L. da Vinci 32, I-20133 Milano, Italy

{marianna.signorini,stefano.micheletti,simona.perotto}@polimi.it

Keywords: seismic inversion, Full Waveform Inversion, inverse problem, TV
regularization

Abstract

We present the new method Coupled Multiscenario Full Waveform In-
version (CMFWI) for the solution of the seismic inversion problem. As in
the case of Full Waveform Inversion (FWI), the proposed method is based
on seismic reflection signals and it tries to recover the subsoil velocity profile
by minimizing a suitable misfit functional between recorded and computed
data. CMFWI suitably combines data generated by shooting one source at
a time, but sharing the effect of this signal with the other sources. Moreover,
CMFWI differs from FWI employed with the same sources shot together,
and we numerically show that it performs better than FWI. In particular,
this comparison focuses on different types of boundary conditions, wave
sources, initial guesses of the velocity profile, and signal-to-noise ratio.

∗This work has been supported by the Projects MIUR-PRIN 2010/2011 “Innovative methods
for water resources under hydro-climatic uncertainty scenarios” and “Data-Centric Genomic
Computing” (GenData 2020)
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1 Introduction and motivation

The discovery of oil and gas fields is the main goal of seismic exploration. Clearly,
an accurate identification of the position and extension of the reservoirs becomes
mandatory because oil exploration is an expensive, high-risk operation.

Visible surface features such as oil or natural gas seeps and pockmarks (un-
derwater craters caused by escaping gas) provide basic evidence of hydrocarbon
generation (be it shallow or deep in the earth). However, these features do not
allow to exactly detect the extent of these deposits. This justifies the employ-
ment of sophisticated exploration geophysics technologies.
Therefore, several numerical techniques have been developed in order to facili-
tate locating hydrocarbon reservoirs. A first category of methods is provided by
refraction and reflection tomography techniques [1], which are based on travel
time kinematics of the seismic data. As an alternative, Full Waveform Inversion
(FWI) aims to estimate high-resolution velocity models by minimizing the misfit
between observed and modelled seismic waveforms, and uses the additional in-
formation provided by the amplitude and phase of the seismic waveform. From
a mathematical viewpoint, FWI amounts to solving an inverse problem hinging
on the wave equation and on a suitable misfit functional [18, 16, 17, 12, 21]. An
overview of FWI can be found in [20].

FWI is actually based on seismic reflection data, which are collected during
seismic surveys (see Fig. 1). In practice, FWI takes place either through ma-
rine or land exploration. In the first case, air guns are shot to generate waves
which propagate in the marine environment, while in the second setting, seismic
vibrators are employed to trigger waves in land geometries. In both cases, the
outcome of the exploration is a set of signals recorded at certain locations by
hydrophones in the marine case, and geophones in the land configuration. The
recorded data are post-processed and then compared with the ones predicted by
a numerical simulation of the same experiment.
It is well known that the inverse problem associated with FWI is, in general, ill-

source

receivers

Figure 1: Scheme of seismic survey

posed, because different velocity profiles can lead to (almost) the same recorded
data, and since the misfit functional may exhibit many local minima. In order
to try and improve this ill-posedness, a Tikhonov regularization is usually added
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to the misfit functional. Often, this workaround does not suffice to guarantee
an accurate modeling due to the high sensitivity of FWI to the initial velocity
guess.

The approach that we propose in this work aims at reducing this sensitivity as
well as at providing a regularization less aggressive than Tikhonovs’ correction.
The main idea is to suitably combine data generated by shooting one source at a
time, but sharing the effect of this signal with the other sources. This approach,
which we denote by Coupled Multiscenario FWI (CMFWI), differs from the
FWI method used with the same sources shot together and we numerically show
that it outperforms FWI. As an improvement over Tikhonov regularization, we
resort to the Total Variation (TV) correction, more suited to track discontinuty
velocity profiles.

2 Full Waveform Inversion

The objective of seismic inversion is to estimate the unknown velocity of the
wave, for a given set of measurements, recorded as a seismogram. In particular,
Waveform Inversion is a data-fitting procedure, based on wavefield modeling.
The data are usually recorded signals in correspondence with some receivers
located at the points {xi}, coinciding with the pressure sampled at discrete time
levels.

In this section, we provide the classical FWI method [18], completed with a
Total Variation (TV) regularization [22, 21] to mitigate the ill conditioning of
the problem.

Following [18], we consider the acoustic approximation of the wave equation
for isotropic media





σ
∂2p

∂t2
= ∇ · (∇p) + f in Ω × (0, T )

+ b.c. on ∂Ω × (0, T )

p = 0,
∂p

∂t
= 0 on Ω × {0}

(1)

where Ω ⊂ R
2 is a polygonal computational box identifying the geological do-

main, T is the final observation time, p is the acoustic pressure, σ(x) = 1/v2

is the squared slowness, with v the wave speed into the medium, and f is a
source term. Concerning the boundary conditions (b.c.), we consider homoge-
neous Dirichlet and absorbing boundary conditions, possibly assigned on dif-
ferent parts of the boundary [8]. Even though the Dirichlet conditions are not
thoroughly realistic, they are often adopted in seismic modeling since they can
be implemented in a straightforward way.

We introduce the functional

J(p, σ) =
1

2

∑

xi∈Xr

∫ T

0
(p(xi, t) − pobs(xi, t))

2 dt, (2)
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which measures the misfit in time between observed data and computed signals
with respect to the L2-norm. Standard notation is employed to denote Sobolev
spaces and their norms [6]. The solution p to (1) depends on σ, pobs is the
recorded data, and Xr collects the locations of the receivers.

The goal of FWI is to solve the minimization problem

min
σ

J (σ) = min
σ

J(p(σ), σ) = min
σ

[1

2

∑

xi∈Xr

∫ T

0
(p(xi, t) − pobs(xi, t))

2 dt
]
. (3)

In the following, to simplify notation, the dependence on (x, t) in understood.
It is well known that (3) is an ill-posed problem since J exhibits many local
minima. Therefore, some regularization is usually added to J . With this aim,
the most typical choice is a Tikhonov regularization, for example the L2-norm
or the H1-seminorm of σ [19]. As an alternative, we consider a Total Variation
(TV) regularization, i.e., the integral of the absolute value of the gradient of σ
[2, 22, 21]. The idea is inherited from the signal/image processing framework to
damp the excessive and possibly spurious details characterized by a high total
variation, while preserving only the important details of the signal [14].

Functional J in (3) is thus modified in

min
σ

J FWI(σ) = min
σ

JFWI(p(σ), σ) = min
σ

{
J (σ) + η

∫

Ω
φ (|∇σ|) dx

}
, (4)

where φ(s) =
√

δ2 + s2, δ is a regularization parameter, and η is the total varia-
tion constant. In practice, φ(|∇σ|) =

√
δ2 + |∇σ|2 is the “lifted” absolute value

with δ the (usually small) positive lifting parameter [4].

3 An optimal control approach to FWI

In order to solve (4), we apply the adjoint-state method, as done in [18, 12, 20].
Essentially, this approach amounts to interpreting the unknown field σ as a
control variable, which is to be determined by minimizing J FWI. In order to
deal with this minimization, we go back to the functional JFWI subject to the
constraint that p satisfies the wave equation. For the sake of simplicity, we
use homogeneous Dirichlet boundary conditions for equation (1). However, the
derivation of the adjoint problem in the case of absorbing boundary conditions
can be performed in an analogous fashion (see the Appendix for the details).

Let us consider the Lagrangian

L(p, σ, λ) = JFWI(p, σ) −
∫

Ω

∫ T

0
λ

(
σ

∂2p

∂t2
−∇ · (∇p) − f

)
dtdx, (5)

where p, σ, and λ are considered as independent variables, and JFWI is thought
of as a function of p and σ. The variable p is the state variable and solves the
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state or forward problem (1), while λ is the Lagrange multiplier and corresponds
to the adjoint variable.

According to the classical result of constrained optimization [11, 5], the first-
order necessary optimality condition requires that the solution of the optimiza-
tion problem (4) is obtained as the stationary points of L. In particular, if
(p, σ, λ) is a saddle point of L, then σ is a minimum point of J FWI.

For this purpose, we now compute the Gâteaux derivatives of L with respect
to λ, p, and σ, in order to obtain the gradient of J FWI with respect to σ.
By enforcing that the derivatives of L with respect to λ and p vanish, we obtain
the forward (or state), and backward (or adjont) problem, for p and λ, respec-
tively. Finally, the gradient of J FWI coincides with the derivative of L with
respect to σ, evaluated at (p(σ), σ, λ(σ)).

Now we provide the details of these computations.

Forward problem The forward problem can be obtained by imposing that

the Fréchet derivative,
DL
Dλ

, be identically equal to zero.

For this purpose, we compute the Gâteaux (directional) derivative of L at
(p, σ, λ) with respect to λ in the generic direction η. This yields

DL
Dλ

[η] = lim
ε→0

1

ε

(
L(p, σ, λ + εη) − L(p, σ, λ)

)

= −
∫

Ω

∫ T

0
η

(
σ

∂2p

∂t2
−∇ · (∇p) − f

)
dtdx = 〈DL

Dλ
, η〉,

where 〈·, ·〉 is the duality pairing between L2(0, T ; L2(Ω)) and itself. Thus
DL
Dλ

=

0 if we require that p be the solution to the forward problem (1), where the
boundary and initial conditions are strongly enforced.

Backward problem Analogously to the previous paragraph, we derive the

backward problem by imposing that
DL
Dp

= 0.

The Gâteaux derivative of L at (p, σ, λ) with respect to p in the generic
direction q, which satisfies the same boundary and initial conditions as p, is

DL
Dp

[q] = lim
ε→0

1

ε

(
L(p + εq, σ, λ) − L(p, σ, λ)

)
.

We compute each term of L(p+εq, σ, λ)−L(p, σ, λ) separately, and then we sum
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them up. We have

(I) =JFWI(p + εq, σ) − JFWI(p, σ)

=
1

2

∑

xi∈Xr

∫ T

0
((p + εq) − pobs)

2 dt − 1

2

∑

xi∈Xr

∫ T

0
(p − pobs)

2 dt

=
1

2

∑

xi∈Xr

∫ T

0

∫

Ω
2εqδxi

(
p − pobs

)
dxdt +

1

2

∑

xi∈Xr

∫ T

0
ε2q2dt

= ε

∫ T

0

∫

Ω

( ∑

xi∈Xr

(p − pobs)δxi

)
qdxdt +

ε2

2

∫ T

0

∑

xi∈Xr

q2dt,

δxi
being the Dirac distribution associated with the location xi, and

(II) = −
∫

Ω

∫ T

0
λ

(
σ

∂2(p + εq)

∂t2
−∇ · (∇(p + εq))

)
dtdx

+

∫

Ω

∫ T

0
λ

(
σ

∂2p

∂t2
−∇ · (∇p)

)
dtdx

= − ε

∫

Ω

∫ T

0
λ

(
σ

∂2q

∂t2
−∇ · (∇q)

)
dtdx.

Integrating by parts, we obtain

(II) =ε

[∫

Ω

∫ T

0
σ

∂λ

∂t

∂q

∂t
dtdx −

∫

Ω

(
σλ

∂q

∂t

)∣∣∣∣
T

0

dx

−
∫

Ω

∫ T

0
∇λ · ∇qdtdx +

∫ T

0

∫

∂Ω
λ∇q · ndtdγ

]

= ε

(
−

∫

Ω

∫ T

0
σ

∂2λ

∂t2
qdtdx +

∫

Ω

(
σ

∂λ

∂t
q

)∣∣∣∣
T

0

dx −
∫

Ω

(
σλ

∂q

∂t

)∣∣∣∣
T

0

dx

+

∫

Ω

∫ T

0
∇ · (∇λ)qdtdx −

∫ T

0

∫

∂Ω
∇λ · nq dtdγ +

∫ T

0

∫

∂Ω
λ∇q · ndtdγ

)

= ε

(
−

∫

Ω

∫ T

0
σ

∂2λ

∂t2
qdtdx +

∫

Ω

(
σ

∂λ

∂t
q

)∣∣∣∣
t=T

dx −
∫

Ω

(
σλ

∂q

∂t

)∣∣∣∣
t=T

dx

+

∫

Ω

∫ T

0
∇ · (∇λ)qdtdx +

∫ T

0

∫

∂Ω
λ∇q · ndtdγ

)
.

By summing up (I) and (II) and by dividing by ε, we obtain
DL
Dp

[q] as the

limit for ε → 0. Requiring that
DL
Dp

[q] = 0, for any q, we obtain the backward
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problem for the adjoint variable λ





σ
∂2λ

∂t2
= ∇ · (∇λ) +

∑

xi∈Xr

(p − pobs)δxi
in Ω × (0, T )

λ = 0 on ∂Ω × (0, T )

λ = 0,
∂λ

∂t
= 0 on Ω × {T}.

(6)

According to (6), the adjoint variable is obtained by propagating the residual
backward in time, namely the difference between recorded and computed data,
through the wave equation. The backward direction induces the final conditions
on λ.

Gradient equation The gradient equation is obtained by setting to zero the

gradient of J FWI with respect to σ, i.e., by computing
DL
Dσ

. The Gâteaux

derivative of L at (p, σ, λ) with respect to σ in the generic direction r is

DL
Dσ

[r] = lim
ε→0

1

ε

(
L(p, σ + εr, λ) − L(p, σ, λ)

)

= −
∫

Ω

∫ T

0
λ

∂2p

∂t2
rdtdx + η

∫

Ω

∇σ · ∇r√
δ2 + |∇σ|2

dx

= −
∫

Ω

∫ T

0
λ

∂2p

∂t2
rdtdx − η

∫

Ω
∇ ·

(
∇σ√

δ2 + |∇σ|2

)
rdx + η

∫

∂Ω

∇σ · n r√
δ2 + |∇σ|2

dγ

which yields the gradient equation

∇J FWI(σ) =
DL
Dσ

(p(σ), σ, λ(σ)) = −
∫ T

0
λ

∂2p

∂t2
dt − η∇ ·

(
∇σ√

δ2 + |∇σ|2

)
= 0,

(7)
after assuming homogeneous Neumann conditions for σ.

3.1 Numerical approximation

The minimization problem (4) is tackled by applying the Barzilai Borwein (BB)
method [3, 13]. This is an iterative two-step descent method suitable for the
solution of complex and high-dimensional minimization problems. At each step,
given the current value of σ, the BB method requires computing the funcional
J FWI and its gradient.
Generally, the iteration of the BB method applied to the minimization of a
nonlinear function f : R

n → R is given by: let w−1,w0 ∈ R
n be two initial

guesses; then, for k ≥ 0

wk+1 = wk − βkαk∇f(wk),
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where

αk =
(∇f(wk) −∇f(wk−1)) · (wk − wk−1)

‖∇f(wk) −∇f(wk−1)‖2
,

with the step-length βk chosen via a line-search method [13], ‖ · ‖ the Euclidean
norm on R

n.
When applied to (4), we identify f with J FWI and w with the discrete counter-
part of σ. Moreover, each evaluation of the gradient of J FWI requires solving
both the forward and the backward problems derived in the previous section.

The discretization of the problems (1) and (6), of J FWI in (4) and of its
gradient in (7) is performed by a finite difference method, based on second-
ordered centered schemes for both the space and time derivatives. For this
purpose, we set Ω = (a, b) × (c, d) and introduce a Cartesian grid characterized
by the uniform steps hx, hz, along the x and z direction, respectively. We thus
have Nx = (b − a)/hx and Nz = (d − c)/hz subintervals identifying the spatial
nodes

xij = (xi, zj) = (x0 + ihx, z0 + jhz) i = 0, ..., Nx + 1, j = 0, ..., Nz + 1,

with x0 = a, xNx+1 = b, z0 = c, zNz+1 = d. As for the time discretization, we
use a constant time step ∆t to partition the time window [0, T ] into Nt = T/∆t
intervals, with end points tk = k∆t, k = 0, ..., Nt + 1.

We use the standard notation vk
i,j to denote the space-time values v(xij , t

k) of

the mesh function v at (xij , t
k). To evaluate the integrals involved in the defini-

tion of J FWI and of its gradient, we adopt the composite trapezoidal quadrature
rule.

We detail the discrete scheme associated with (1) in the case of both homo-
geneous Dirichlet and absorbing boundary conditions. The discretization of the
backward problem (6) can be obtained in a similar way, just reversing the time
direction.

Let us first consider the case of homogeneous Dirichlet boundary conditions.
The overall scheme is: given p0

i,j = p1
i,j = 0 for i = 0, ..., Nx +1, j = 0, ..., Nz +1,

compute pk+1
i,j , for k = 1, ..., Nt, satisfying

pk+1
i,j = 2pk

i,j−pk−1
ij +

∆t2

σi,j

[
pk

i+1,j − 2pk
i,j + pk

i−1,j

h2
x

+
pk

i,j+1 − 2pk
i,j + pk

i,j−1

h2
z

+ fk
i,j

]
,

for i = 1, . . . , Nx, j = 1, . . . , Nz, and

pk+1
i,j = 0 for i ∈ {0, Nx + 1}, j ∈ {0, Nz + 1}.

Let us now consider the assignment of absorbing boundary conditions (ABC),
following the approximation proposed in [8], and to fix ideas, we focus on the
ABC on the bottom side of a rectangular domain Ω. Applying the Fourier
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transform in space (∂/∂x ↔ −ικx, ∂/∂z ↔ −ικz, with ι =
√
−1) and time

(∂/∂t ↔ ιω), to the homogeneous wave equation with a constant slowness

σ
∂2p

∂t2
− ∆p = 0,

we obtain the dispersion relation of a wave travelling in a homogeneous medium:

σω2 − κ2 = 0, (8)

where ω is the angular frequency, and κ =
√

κ2
x + κ2

z is the absolute value of
the wave vector of components κx and κz. From this relation, the vertical wave
number, κz, can be expressed as a function of κx/(σ1/2ω), i.e.,

κz = ±κz

( κx

σ1/2ω

)
. (9)

The quantity h = κx/(σ1/2ω) depends on the incidence angle of the wave.
For quasi-vertical plane waves (quasi-horizontal wave front), this ratio is small.
Equation (9) has two solutions, corresponding to waves that move vertically,
downward (+), and upward (−). In order to control the reflections occurring
at the boundary, we neglect the negative solution in (9). Thus, the positive
solution represents the exact absorbing boundary condition.

The dispersion relation (9) can be rewritten as

κz = σ1/2ω
√

1 − h2 with |h| ≪ 1. (10)

From this relation, we obtain the ABC conditions via a Taylor expansion:

κz = κz(0) + κ′
z(0)h +

κ′′
z(0)

2
h2 + . . . . (11)

In particular, the zero-th order Taylor truncation yields

κz = σ1/2ω.

By Fourier antitransforming this relation, we obtain

∂p

∂z
= −σ1/2 ∂p

∂t
, (12)

which represents the ABC condition adopted in this work. With reference to
the stencil in Fig. 2, this equation can be discretized as derived in [8]:

D−
z

(
pk

i,Nz+1 + pk+1
i,Nz+1

)
+ σ

1/2
i,Nz+1D

+
t

(
pk

i,Nz+1 + pk
i,Nz

)
= 0, (13)

for i = 1, . . . , Nx, where D−
z is the backward difference with respect to z and

D+
t is the forward difference with respect to t, i.e.,

D−
z vk

i,j = (vk
i,j − vk

i,j−1)/hz, D+
t vk

i,j = (vk+1
i,j − vk

i,j)/∆t.
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Figure 2: Stencil for the discretization of the ABC condition (12) on the bottom
boundary.

Expanding these discrete operators, (13) can be rewritten as

pk+1
i,Nz+1 =

σ
1/2
i,Nz+1

pk
i,Nz+1 − pk+1

i,Nz
+ pk

i,Nz

∆t
−

pk
i,Nz+1 − pk+1

i,Nz
− pk

i,Nz

hz

1

hz
+ σ

1/2
i,Nz+1

1

∆t

.

In principle, higher-order ABC could be obtained by keeping successive terms
in (11). However, stable higher-order (≥ 2) absorbing boundary conditions can
be derived only via a Padé approximation.

For a general boundary, the lowest order ABC is

σ1/2 ∂p

∂t
+ ∇p · n = 0,

where n is the unit outward normal vector to the boundary.

Approximation of the TV term

We focus on the numerical approximation of the term related to the TV regu-
larization, appearing in the expression of the gradient of J FWI in (7), i.e.,

∇ ·
(

∇σ√
δ2 + |∇σ|2

)
. (14)

We introduce Dx and Dz as the second-order finite difference operators with
respect to x and z, respectively, given by

Dxσi,j =





(−3σ0,j + 4σ1,j − σ2,j) /(2hx) i = 0

(σi+1,j − σi−1,j) /(2hx) i = 1, · · · , Nx

(σNx−1,j − 4σNx,j + 3σNx+1,j) /(2hx) i = Nx + 1

and analogously for Dz. Notice that we have omitted the dependence on the
super-index k since σ does not depend on time. We can therefore approximate
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(14) by

(∇σ)i,j ≃
[
Dxσi,j

Dzσi,j

]
, |∇σ|2i,j ≃ (Dxσi,j)

2+(Dzσi,j)
2, (∇·v)i,j ≃ Dxvx

i,j+Dzv
z
i,j ,

where v = (vx, vz)T , with vx, vz generic mesh functions. Combining these ap-
proximations, the discretization of (14) is

∇ ·
(

∇σ√
δ2 + |∇σ|2

)

i,j

≃

Dx

[
Dxσi,j√

δ2 + (Dxσi,j)2 + (Dzσi,j)2

]

i,j

+ Dz

[
Dzσi,j√

δ2 + (Dxσi,j)2 + (Dzσi,j)2

]

i,j

.

Remark 3.1 (Checkpointing) In order to deal with he backward problem in
a computationally efficient way, we have implemented the checkpointing strategy
[15, 9, 10]. The main idea of this technique is to store the forward solution
at some times instead of performing a full backup, and to recompute missing
information for the backward problem when missing. Uniform checkpointings
have been used, despite the optimal distribution in [9] could be employed.

4 Coupled Multiscenario Full Waveform Inversion
(CMFWI)

In this section, we formalize the new approach, named Coupled Multiscenario
Full Waveform Inversion (CMFWI), proposed to enhance the standard FWI in
order to strengthen its behavior with respect to the choice of the initial guess.
The general idea of this method is to introduce a multiscenario configuration,
where each scenario is associated with a particular slowness, depending on a
specific placement of the shots. The final outcome is unique and combines the
different configurations by a least-squares penalization. As shown in Section 5,
this multiscenario model makes FWI robuster, due to the more richness of in-
formation compared with the standard FWI.

For the sake of simplicity, we detail the method on problem (1) supplemented
with homogeneous Dirichlet boundary conditions, and we assume that each sce-
nario is driven by a single source term.

We introduce S scenarios, and for s = 1, ...,S, we denote by xs the position
of the corresponding source term. The problem for the pressure ps behind the
s-th scenario is





σs
∂2ps

∂t2
= ∇ · (∇ps) + fs in Ω × (0, T )

ps = 0 on ∂Ω × (0, T )

ps = 0,
∂ps

∂t
= 0 on Ω × {0},

(15)
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where σs is the squared slowness associated with the s-th source fs. We collect
all of the slowness fields in the vector σ = (σ1, . . . , σS)T .
The idea of CMFWI is to apply FWI to the separate S scenarios, each one
independent of the others, and to enforce the different slowness fields to be
somewhat the same (since there is only one Earth). More precisely, for s =
1, . . . ,S, we define the s-th functional

J CMFWI
s (σ) =

1

2

∑

xi∈Xr

∫ T

0
(ps(xi, t) − ps,obs(xi, t))

2 dt +
µ

4

S∑

j=1

j 6=s

‖σs − σj‖2
L2(Ω)

+ η

∫

Ω

√
δ2 + |∇σs|2 dx, (16)

where the first term accounts for the misfit between modelled and measured data,
the second quantity penalizes the discrepancy among the s-th slowness field and
all fields associated with the other scenarios, with respect to the L2(Ω)-norm,
and we have added a TV regularization term, but only to σs. Notice that, in this
case, we have S sets of observations, each set being associated with one source
only.
The global functional is obtained by summing all the single-source functionals
as

J CMFWI(σ) =
S∑

s=1

J CMFWI
s (σ). (17)

This functional represents the quantity to be actually minimized. At each step
of the overall minimization algorithm, we let the different J CMFWI

s be relatively
free to change, under the condition that J CMFWI decreases.
By proceeding in the same way as in classical FWI, we thus minimize (17) under
the S contraints (15), by applying the adjoint-state method. Hence, we have S
adjoint variables, where λs, s = 1, . . . ,S, solves the backward problem





σs
∂2λs

∂t2
= ∇ · (∇λs) +

∑

xi∈Xr

(ps − ps,obs)δxi
in Ω × (0, T )

λs = 0 on ∂Ω × (0, T )

λs = 0,
∂λs

∂t
= 0 on Ω × {T}.

(18)

The computation of the gradient of J CMFWI with respect to σ is analogous to
the one of classical FWI. In particular, the second term appearing in (16) acts
as a regularization term with respect to the L2(Ω)-norm, and accounts for the
misfit of σs with respect to a given reference value, say σ0, usually used in seismic
inversion, that is, ‖σs − σ0‖2

L2(Ω) [18]. Therefore, it is straightforward to check

that the s-th component of the gradient of J CMFWI can be written as

∂J CMFWI

∂σs
(σ) = −

∫ T

0
λs

∂2ps

∂t2
dt+µ

S∑

j=1

j 6=s

(σs−σj)−η∇·
(

∇σs√
δ2 + |∇σs|2

)
. (19)
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5 Numerical results

In this section, we compare FWI and CMFWI for different source terms and
boundary conditions. The constant characterizing the TV-regularization is picked
as δ = 10−2.
We consider the wave equation (1), where the domain is the square Ω = (0, 0.5)×
(0, 0.5)Km, and the source term, f , is chosen as a sine or a Ricker wavelet in
time, i.e.,

f(x, t) =
∑

xi∈Xs

δxi
(x) g(t),

where Xs is the set of the source locations, while g(·) is the sine wavelet of
frequency fp, or the classical Ricker wavelet

g(t) = A(2(πfp(t − t0))
2 − 1)e−(πfp(t−t0))2 ,

where A is the maximum amplitude, fp is the peak frequency, and t0 is the time
when the maximum amplitude is reached.
Both sources and receivers are located just beneath the surface, but they can be
located at different x-positions.

For both FWI and CMFWI, we employ the Barzilai Borwein (BB) method to
deal with the corresponding minimization problems. We enforce a lower bound
for σ (implying an upper bound for the speed) at each iteration in order to
guarantee the CFL condition. The parameter involved in the coupling of the
different σs in CMFWI is set to µ = 10−4, after a trial-and-error procedure. We
show the results obtained after 100 iterations of the BB method, and by using
a peak frequency fp = 8 Hz for the source. In all test cases, the observations
are obtained by running the forward problem after feeding in the exact slow-
ness profile, with the same space-time discretization parameters and boundary
conditions used in the actual runs.

5.1 Test Case I

We set T = 0.5s, hx = 8.3m, and ∆t = 0.001s. In Fig. 3(a), we plot the exact
profile in s2/Km2

σ =





0.25 {(x, z) : z ≤ 0.3} \ C
[3 − (cos(π(z − 0.3)/0.05)]−2 0.3 < z < 0.35

0.0625 z ≥ 0.35

0.1736 in C,

with C = {(x, z) : (x − 0.25)2 + (z − 0.2)2 < 0.0025}. This consists of a steep
variation along the z direction, plus an embedded circular discontinuity.

We fist assess the two methods in the case of Dirichlet boundary conditions.
The initial guess σ0 for σ is shown in Fig. 3(b), and coincides with the exact

13
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(a) True σ
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(b) Initial guess σ0 (c) Initial guess eσ0

Figure 3: Test case I: exact solution and initial guesses

(a) xs = Lx/4 (b) xs = 2Lx/4 (c) xs = 3Lx/4

Figure 4: Test case I: solutions for different source locations (circular marks)
using FWI with a sine wavelet g and initial guess σ0

(a) xs = Lx/4 (b) xs = 2Lx/4 (c) xs = 3Lx/4

Figure 5: Test case I: solutions for different source locations (circular marks)
using FWI with a Ricker wavelet g and initial guess σ0
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(a) Sine function (b) Ricker wavelet

Figure 6: Test case I: solutions using CMFWI with three evenly spaced sources,
and for different wavelets g and initial guess σ0

(a) η = 10−7 (b) η = 10−6

Figure 7: Test case I: solutions using CMFWI with a sine wavelet g, for different
values of the TV constant η and initial guess σ0
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σ, except for the absence of the circular pattern. The sources are located at
xi = i Lx/4, for i = 1, 2, 3, with Lx = 0.5Km. FWI and CMFWI are assessed for
both types of sources. We observe (see Figures 4-6) that both methods behave
better when we use the sine source. Moreover, the solution obtained by applying
the FWI method always depends on the source location. Instead, CMFWI takes
into account all the scenarios at the same time, and it thus yields a more global
imaging of the subsoil. Moreover, all the S profiles σs are very similar, and we
always show the prediction associated with the leftmost source, σ1. In some
sense, the similarity among all the predictions supports the uniqueness of the
final scenario.

Finally, in Fig. 7, we show that by tuning the TV constant η, it is possible
to obtain a sharper and more realistic velocity profile than without any regu-
larization term (compare Fig. 6(a) with Fig. 7). It appears that an excessive
regularization tends to blur the predicted scenario.

We now compare the choice of the boundary conditions, focusing on both
Dirichlet and absorbing boundary conditions. For this purpose, we consider a
more challenging initial guess, σ̃0 displayed in Fig. 3(c), which is less close to the
true σ due the smoother transition between the two constant values. Moreover,
we consider seven sources, located at xi = i Lx/8, for i = 1, . . . , 7. We show
the results obtained with the FWI method, using either one single source at
a time, or the seven sources together, and with CMFWI. We apply FWI with
seven sources together to understand whether the better performance obtained
with CMFWI depends only on the richness of information characterizing this
last approach, or by the intrinsic superiority of CMFWI itself.

First, we compare the results computed without any regularization term, and
with Dirichlet boudary conditions. Figures 8-11 gather the corresponding results
without TV regularization. In particular, Figures 8 and 9 show that FWI with a
single source provides for this smoothed initial guess a very poor profile. The sine
source yields a more noisy slowness profile compared with Fig. 9, whereas the
Ricker wavelet leads to a blurred approximation. In general, the FWI method
does not capture the discontinuity of the squared slowness in the background
profile, and this causes the failure of the method in identifying the desired profile.
On the other hand, by increasing the number of sources, the performance of FWI
actually improves, as shown in Fig. 10, with an analogous behavior with respect
to the type of wavelet. The quality of the predicted profile still improves in the
case of the new proposed method, as shown in Fig. 11. Therefore, we may claim
that CMFWI is indeed a richer method than the standard FWI.

Finally, in Figures 12 and 13, we compare the results obtained with the two
methods, both with seven sources and with the two types of wavelets, using
absorbing boundary conditions. As expected, CMFWI behaves better than FWI.
Moreover, the Dirichlet boundary conditions provide sharper slowness profiles
for both FWI and CMFWI as shown on comparing Fig. 10 with 12, and Fig. 11
with 13.
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(a) xs = Lx/8 (b) xs = 4Lx/8 (c) xs = 7Lx/8

Figure 8: Test case I: solutions for different source locations using FWI with a
sine wavelet and Dirichlet boundary conditions and initial guess σ̃0

(a) xs = Lx/8 (b) xs = 4Lx/8 (c) xs = 7Lx/8

Figure 9: Test case I: solutions for different source locations using FWI with a
Ricker wavelet and Dirichlet boundary conditions and initial guess σ̃0

(a) Sine wavelet (b) Ricker wavelet

Figure 10: Test case I: solutions with seven sources using FWI with Dirichlet
boundary conditions and initial guess σ̃0
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(a) Sine wavelet (b) Ricker wavelet

Figure 11: Test case I: solutions with seven sources using CMFWI with Dirichlet
boundary conditions and initial guess σ̃0

(a) Sine wavelet (b) Ricker wavelet

Figure 12: Test case I: solutions using FWI with seven sources with absorbing
boundary conditions and initial guess σ̃0

(a) Sine wavelet (b) Ricker wavelet

Figure 13: Test case I: solutions with seven sources using CMFWI with absorbing
boundary conditions and initial guess σ̃0
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5.2 Test Case II

(a) True σ (b) Initial guess

Figure 14: Test case II: exact solution and initial guess

(a) Sine wavelet (b) Ricker wavelet

Figure 15: Test case II: solutions using FWI with three evenly spaced sources

In this test case, we consider a variant of a test case considered in [7]. We
select the profile in Fig. 14(a), given by

σ =





0.4444 z ≥ R \ T
0.0816 z < R
0.0494 in T ,

with R = {(x, z) : z = 0.1x + 0.4} and T the (open) triangle defined by the
vertices: (0.1, 0.3), (0.1, 0.2), and (0.25, 0.25). The geometric configuration is
more complex than the one in the previous test case, due to both the wedge-
shaped body and the dipping reflector. In particular, we expect the bottom of
the body to be the most challenging part to be detected by a reflection-based
seismic inversion procedure.

We consider the FWI and CMFWI methods with the three sources placed
at xi = i Lx/4, with i = 1, 2, 3. We set T = 0.9s, hx = 8.3m, and ∆t = 0.001s.
First we neglect the regularization term, and we use only Dirichlet boundary
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(a) Sine wavelet (b) Ricker wavelet

Figure 16: Test case II: solutions using CMFWI with three evenly spaced sources

conditions.

On comparing the results in Fig. 15 and in Fig. 16, we still remark the
superiority of CMFWI, for the same number of sources. Moreover, a comparison
across wavelets points out that the Ricker signal leads to less reliable scenarios.
For both wavelets and methods, some artifacts appear beneath the triangular
body, likely due to the complex interaction with the reflector, which seem to be
less noticeable with the sine, though.

(a) η = 10−7 (b) η = 10−6

Figure 17: Test case II: solutions using CMFWI with three evenly spaced sources
and a Ricker wavelet

As a last check, we include the TV regularization in the CMFWI approach.
Figures 17 and 18 provide the slowness field for two choices of the parameter η.
The effect of η is different for the two wavelets. Indeed, whereas η = 10−6 does
not suffice to detect a clear-cut image with the Ricker wavelet, it turns out to
be excessive for the sine wavelet, yielding too blurred a prediction. The artifacts
are stronger when using a Ricker signal.
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(a) η = 10−7 (b) η = 10−6

Figure 18: Test case II: solutions using CMFWI with three evenly spaced sources
and a sine wavelet

5.3 Sensitivity analysis to noise

The recorded data are usually affected by noise due to error in measurements
or to the instrument precision. To simulate more realistic configurations, we
consider FWI and CMFWI when a Gaussian white noise is added to the observed
data, which are associated with the exact (noiseless) slowness profiles.

Let us consider a discrete signal {Xk}Nt+1
k=0 . The noisy signal {Y k}Nt+1

k=0 is
obtained by adding to Xk a Gaussian white noise in the following way:

Y k = Xk + wn with wn ∼ N
(

0,
‖X‖2/(Nt + 2)

SNR

)
,

where N (m, σ) identifies a normal distribution with mean m and variance σ,
and SNR is the signal-to-noise ratio. The noise wn is independent of the time
index k since it is white. No TV regularization is considered.

We consider Test case I and compare FWI with CMFWI by perturbing the
observed data pobs in (2) for different values of the parameter SNR , and by
shooting three sources simultaneously (see Fig. 19).
Figures 20 and 21 show that the CMFWI method is more robust with respect to
noise. In particular, FWI is reliable for SNR ≃ 1000, whereas CMFWI furnishes
qualitatively reasonale results also for SNR ≃ 100.

Increasing the numer of sources, with CMFWI one can even reduce SNR up
to 10 without missing important details (see Fig. 23). This is not the case of
the FWI appraoch which, even in the presence of seven sources, performs badly
(see Fig. 22). The slowness field associated with SNR = 1000 is slighly better
than the corresponding one in Fig. 20, but it is still very noisy.

6 Conclusions and future developments

We have proposed the Coupled Multiscenario Full Waveform Inversion (CMFWI)
method for solving the seismic inversion problem. Moreover, we included a TV
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(a) SNR = 1000, xr = Lx/2
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(b) SNR = 1000, xr = Lx/8
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(c) SNR = 1000, xr = Lx/12
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(d) SNR = 100, xr = Lx/2
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(e) SNR = 100, xr = Lx/8
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(f) SNR = 100, xr = Lx/12
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(g) SNR = 10, xr = Lx/2
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(h) SNR = 10, xr = Lx/8
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(i) SNR = 10, xr = Lx/12

Figure 19: Test case I: seismograms with noise for different SNR for three sources,
and for a sine wavelet

regularization term, instead of the more classical Tikhonov regularization, in
order to take into account possible abrupt velocity profiles, thus reducing in a
more effective way spurious small-scale oscillations.

We have implemented this new method in Matlabr and we have compared it
with the classical FWI on two test cases, considering both Dirichlet and absorb-
ing boundary conditions, as well as sine and Ricker wavelet sources. To make a
fair comparison, we use FWI with multiple sources, all shooting simultaneously.

The results show that CMFWI is better than classical FWI and robuster
with respect to noisy measurements. Moreover, while increasing the number of
sources improves the quality of the approximated slowness profile for CMFWI,
this is not always the case for FWI, especially with noise.

The current implementation of CMFWI has been developed in serial environ-
ment. To improve the computational performance, among the future develop-
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(a) No noise (b) SNR = 1000

(c) SNR = 100 (d) SNR = 10

Figure 20: Test case I: FWI solutions with three simultaneous sources and a sine
waveket, for different level of noise

ments, we include the parallelization of the code which can substantially exploit
the uncoupling of the forward problems, as well as of the backward problems.

The Dirichlet boundary conditions turn out to be the best choice with a
view to a reliable approximation. Also the absorbing boundary conditions do
not degrade the solution provided by the CMFWI method.

The comparison between sine and Ricker wavelets seem to suggest that, in
general, the first signal yields more accurate results.

Finally, a verification on more realistic cases is ongoing, to assess the effec-
tiveness of the proposed method.

Appendix

We outline the changes to the backward problem (6) when considering ABC
conditions on a portion, say ΓABC, of the boundary of the domain. The forward
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(a) without noise (b) SNR = 1000

(c) SNR = 100 (d) SNR = 10

Figure 21: Test case I: CMFWI solutions with three simultaneous sources and
a sine waveket, for different level of noise

problem becomes





σ
∂2p

∂t2
= ∇ · (∇p) + f in Ω × (0, T )

p = 0 on ΓD × (0, T )
√

σ
∂p

∂t
+ ∇p · n = 0 on ΓABC × (0, T )

p = 0,
∂p

∂t
= 0 on Ω × {0},

(20)

where ΓD is the portion of the boundary where Dirichlet boundary conditions
hold. In this case, the Lagrangian does not change, and the only point of the
analysis where we should care about boundary conditions is in the derivation of
the backward problem. Thus, we focus only on this last issue.

Backward problem with ABC As in the case of homogeneous Dirichlet

boundary conditions, the backward problem is obtained by requiring
DL
Dp

= 0,

where L is defined in (5), and we proceed exactly in the same way.
We compute the Gâteaux derivative of L at (p, σ, λ) with respect to p in the
generic direction q, satisfyng the same initial and boundary conditions as p. The
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(a) No noise (b) SNR = 1000

(c) SNR = 100 (d) SNR = 10

Figure 22: Test case I: FWI solutions with seven simultaneous sources and a
sine waveket, for different level of noise

contribution (I) associated with JFWI is the same as in the Dirichlet case, and is
not developed here. In the term (II), associated with the Lagrange multiplier,
only the boundary terms change.

−
∫ T

0

∫

∂Ω
∇λ · n q dtdγ +

∫ T

0

∫

∂Ω
λ∇q · n dt dγ

= −
∫ T

0

∫

ΓD

∇λ · n q dt dγ −
∫ T

0

∫

ΓABC

∇λ · n q dt dγ

+

∫ T

0

∫

ΓD

λ∇q · n dt dγ −
∫ T

0

∫

ΓABC

λ
√

σ
∂q

∂t
dt dγ

= −
∫ T

0

∫

ΓABC

∇λ · n q dt dγ +

∫ T

0

∫

ΓD

λ∇q · n dt dγ

+

∫ T

0

∫

ΓABC

√
σ

∂λ

∂t
q dt dγ −

∫

ΓABC

(√
σλq

)∣∣T
0

dγ.
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(a) without noise (b) SNR = 1000

(c) SNR = 100 (d) SNR = 10

Figure 23: Test case I: CMFWI solutions with seven simultaneous sources and
a sine waveket, for different level of noise

We therefore obtain that the second term (II) is

(II) = ε

(
−

∫

Ω

∫ T

0
σ

∂2λ

∂t2
q dt dx +

∫

Ω

(
σ

∂λ

∂t
q

)∣∣∣∣
t=T

dx −
∫

Ω

(
σλ

∂q

∂t

)∣∣∣∣
t=T

dx

+

∫

Ω

∫ T

0
∇ · (∇λ) q dt dx −

∫ T

0

∫

ΓABC

∇λ · n q dt dγ +

∫ T

0

∫

ΓD

λ∇q · n dt dγ

+

∫ T

0

∫

ΓABC

√
σ

∂λ

∂t
q dt dγ −

∫

ΓABC

(√
σλq

)∣∣
t=T

dγ

)
.

The overall contributions to
DL
Dp

[q] are obtained from (I) + (II), after dividing

by ε, and passing to the limit for ε → 0. Requiring that
DL
Dp

[q] = 0, for any q,
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the backward problem for λ follows:





σ
∂2λ

∂t2
= ∇ · (∇λ) +

∑

xi∈Xr

(p − pobs)δxi
in Ω × (0, T )

λ = 0 on ΓD × (0, T )

−√
σ

∂λ

∂t
+ ∇λ · n = 0 on ΓABC × (0, T )

λ = 0,
∂λ

∂t
= 0 on Ω × {T}.

(21)

According to (21), the adjoint variable is still obtained by back propagating
the residual, namely the difference between recorded and computed data, and
satisfies homogeneous boundary conditions on ΓD. On ΓABC, the ABC condition
is the same as in the forward problem, after a time-reversal, i.e., t 7→ τ = T − t.
Actually, if we rewrite the ABC in (20) with respect to τ , we obtain

√
σ

∂λ

∂τ
+ ∇λ · n = 0 on ΓABC × (0, T ).
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