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Abstract

We study statistical performance of different tests for comparing
the mean effect of two treatments. Given a test T0, we determine
which sample size and proportion allocation guarantee to a test T to
be better than T0, in terms of (a) higher power and (b) fewer subjects
assigned to the inferior treatment. The adoption of a response adaptive
design to implement the random allocation procedure is necessary to
ensure that both (a) and (b) are satisfied. In particular, we propose to
use a Modified Randomly Reinforced Urn design (MRRU) and we show
how to perform the model parameters selection for the purpose of this
paper. The opportunity of relaxing some assumptions is examined.
Results of simulation studies on the test performance are reported and
a real case study is analyzed.
Keywords: Response adaptive designs; Clinical trials; Randomly Re-
inforced Urns; Tests based on adaptive procedures.

1 Introduction

In this paper, we focus on statistical performance of an hypothesis
test for comparing the means of two populations. The procedures
introduced in the paper are illustrated within a clinical trial frame-
work, even if the generality of the mathematical setting would allow
the method to be applied to a broad set of applications. So, we consider
a clinical trial aiming at comparing the mean effect of two competitive
treatments, say R and W . We assume the normality of the responses
to the treatments. We consider a test T0 = (p0, n0) that involves n0

patients with a fixed proportion p0 of subjects allocated to treatment
R. We do not specific the experimental design used to implement
the test T0. In Section 2 we consider a test T with different sample
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size and proportion allocation and we realize a statistical study on the
comparison of their performance. In particular, the analysis aims at
determining which characteristics guarantee to a test T to perform
better than T0, in terms of (a) higher power and (b) fewer subjects as-
signed to the inferior treatment. To attain both these goals we adopt
a response adaptive design, i.e. an allocation procedure able to change
its strategy during the trial depending on the responses collected by
that moment. In a clinical setting, adaptive designs are very attractive
because they aim to achieve two simultaneously goals, concerning both
statistical and ethical purposes: (i) collect evidence to determine the
superior treatment, and (ii) minimize the number of units allocated to
the inferior treatment. For a complete literature review on response
adaptive designs see [10, 12].

The adaptive procedure we propose to adopt is the Modified Randomly
Reinforced Urn design (MRRU) introduced in [1]. A wide class of
response-adaptive randomized designs is based on urn models, be-
cause it is a classical tool to guarantee a randomized device [5, 18].
Asymptotic results concerning urn models with an irreducible mean
reinforcement matrix could be found in [2, 3, 5, 11, 18]. This irre-
ducibility assumption is not satisfied by the Randomly Reinforced Urn
(RRU) studied in [13, 16, 17], which has a diagonal mean replacement
matrix. The RRU models were introduced by [6] for binary responses,
applied to the dose-finding problems in [7, 8] and then extended to
the case of continuous responses by [4, 16]. An interesting property
concerning RRU models is that the probability to allocate units to the
best treatment converges to one as the sample size increases, that is
a very attractive feature from an ethical point of view. However, be-
cause of this asymptotic behavior, RRU models are not in the class
of designs targeting a proportion in (0, 1), that usually is fixed ad hoc
or computed by satisfying some optimality criteria. Hence, all the
asymptotic desirable properties concerning these procedures presented
in literature (see for instance [14] and [15]), are not straightforwardly
fulfilled by the RRU designs. Then, in [1] the Modified Randomly Re-
inforced Urn design (MRRU) was introduced in order to target any
prespecified asymptotic allocation proportion in (0, 1) with still an urn
design. Section 3 focuses on describing the MRRU model. We also
report some results proved in [1] and [9] concerning the almost sure
convergence of the urn composition and of the proportion of balls of
a specific color sampled from the urn, when the reinforcement means
are different. These asymptotic results, together with Proposition 3.3
proved in [15], have been crucial to construct the theory of this paper.

Section 4 is focused on the urn parameter selection in order to use
the MRRU model to construct the competitor test T described in Sec-
tion 2. In Section 5 some assumptions on reinforcement distribution
made in Section 2 are relaxed. We focus on the case of responses with
unknown variances and non Gaussian response distribution (exponen-
tial and Bernoulli). These analysis has been mainly realized through
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simulations.
Section 6 is focused on the simulation studies that have been computed
to illustrate and support the theory presented in the paper.
In Section 7 we report the analysis of a real case study realized with
the tools presented in the paper.
A short conclusion ends the paper (Section 8).
Data analysis and simulations have been carried out using R statistical
software [19].

2 The proportion - sample size space

This section focuses on the statistical properties of the classical hypoth-
esis test aiming at comparing the means of two Gaussian populations.
Even if the mathematical framework is very general and the results
shown in this section hold for many designs used in different areas,
this paper is set in the context of clinical trials. However, in this pa-
per the context will be represented by clinical trials. The goal of the
study is the comparison among the response means to two competing
treatments, the patients are sequentially assigned to. The allocation
rule applied to the sequence of patients depends on the specific experi-
mental design adopted in the trial. Let us fix p0 ∈ (0, 1). Consider any
procedure able to allocate a proportion of patients p0 to treatment R,
1 − p0 to treatment W . Let n0 ∈ N be the total number of subjects
involved in the experiment. In what follows, n0,R and n0,W indicate
the number of subjects assigned to treatment R and W , respectively
(n0,R + n0,W = n0). Moreover, we denote

• M1,M2, ..,Mn0,R
: the responses to treatment R, modeled as i.i.d.

random variables with distribution µR and expected value mR

• N1, N2, .., Nn0,W
: the responses to treatment W , modeled as

i.i.d. random variables with distribution µW and expected value
mW

We assume the distributions to be Gaussian, i.e. µR = N (mR, σ
2
R)

and µW = N (mW , σ2
W ), with known variances. Consider the classical

hypothesis test

H0 : mR −mW = 0 vs H1 : mR −mW 6= 0. (2.1)

In this context the critical region and the power curve of the test are
well known. Let us first fix

• α : the significance level of the test;

• ∆0 : the smallest difference among the means detected with high
power;

• β0 : the minimum power for a difference among the means of
±∆0;

Then, once fixed the proportion p0, it is univocally determined the
value of the sample size n0 which allows the test to satisfy the propri-
eties required by those parameters. Moreover, we have the following

3



expression for critical region of level α

Rα =

{
|Mn0,R

−Nn0,W
| >

√
σ2
R

n0,R
+

σ2
W

n0,W
zα

2

}
(2.2)

where Mn0,R
=
∑n0,R

i=1 Mi/n0,R and Nn0,W
=
∑n0,W

i=1 Ni/n0,W and zα
2

is the quantile of order 1−α/2 of a standard normal distribution. Fur-
thermore, the power of the test (2.2), is a function of the real difference
∆ = mR −mW (see Figure 1 in the case of equal variances), i.e.

β(∆) = P


Z < −zα

2
− ∆√

σ2

R

n0,R
+

σ2

W

n0,W


+P


Z > zα

2
− ∆√

σ2

R

n0,R
+

σ2

W

n0,W




Let us call T0 the test defined in (2.2), with n0 as sample size and p0 as
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Figure 1: The picture represents the power function β : R → [0, 1] of the test
defined in (2.2), in the case of α = 0.05 and β0 = 0.9.

proportion of patients allocated to the treatmentR. To construct a test
with equal parameters (α, ∆0, β0) and better statistical performance,
the proportion of assignment or the sample size has to be conveniently
modified. The test T0 could be represented in the space ((0, 1) × N),
that we call proportion - sample size space, by the couple (p0, n0). Any
other test T can be represented by a point (ρ, n) in the same space. The
goal of this section is to point out regions of this space characterized
by tests performing better than T0. A test T will be considered strictly
better than T0 if it satisfies both the following conditions
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(a) T has a power function uniformly higher than the power function
of T0;

(b) T assigns to the worst treatment fewer patients than T0.
Let us call βT0

and βT , the power functions of the tests T0 and T re-
spectively. To achieve condition (a) we impose the following constraint

βT (∆) ≥ βT0
(∆) ∀∆ ∈ R ⇔ σ2

M

nρ
+

σ2
N

n(1− ρ)
≤ σ2

M

n0p0
+

σ2
N

n0(1− p0)
(2.3)

Now, if we denote as popt the Neyman allocation proportion σM

σM+σN
,

we can rewrite inequality (2.3) in a more suitable form

popt
2

nρ
+

(1− popt)
2

n(1 − ρ)
≤ popt

2

n0p0
+

(1− popt)
2

n0(1− p0)
(2.4)

Inequality (2.4) divides the proportion - sample size space in two re-
gions. The boundary is computed by imposing the equality in (2.4)
and expressing the sample size n as a function of the proportion ρ.

nβ(ρ) =

(
p2opt
ρ

+
(1− popt)

2

1− ρ

)(
p2opt
n0p0

+
(1− popt)

2

n0(1− p0)

)−1

(2.5)

We refer to function (2.5) as nβ , since it was computed by imposing
the condition related with the power of the test β. This relationship
between ρ and n is visualized in Figure 2 by a red line. Each point over
this curve is a test T with a power uniformly higher than T0. Points
under the red line represent tests with a power uniformly lower than T0.
Notice that the function nβ : (0, 1) → (0,∞) expressed in (2.5) grows
boundlessly for proportions close to zero and to one and its global
minimum is reached in ρ = popt. This is reasonable as popt is the
allocation proportion which requires the minimum number of patients
to get any fixed value of power. Besides, the farther is proportion ρ
from popt, the greater is the number of subjects necessary to get that
power. More specifically, the minimum lies on a very interesting curve,
which is univocally identified by the parameters of the classical test.
Denoting with gmin : (0, 1) → (0,∞) the function associated with that
curve, we are able to express it in an analytic form

gmin(x) = n0

(
x2

p0
+

(1− x)2

1− p0

)−1

∀x ∈ (0, 1) (2.6)

The curve is represented in Figure 2 by a red dotted line. The functions
nβ and gmin cross in two points, in general different, that we denote
M and Q. The point M is the minimum of the function nβ and it
corresponds to the Neyman allocation proportion

M =


popt , n0

(
p2opt
p0

+
(1 − popt)

2

1− p0

)−1

 (2.7)
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The point Q is the maximum of the function gmin and it corresponds
to the test T0: Q = (p0, n0). The points M and Q coincide only when
p0 = popt. In this case, the curves nβ and gmin are tangents in M ≡ Q.
Moreover, there are other relevant points highlighted by the function
gmin. In fact, the curve starts in XW,0 = (0, n0(1 − p0)) and ends in
XR,0 = (1, n0p0). The ordinates of points XW,0 and XR,0 tell us how
many patients have been allocated by the test T0 to the treatment W
and R, respectively.
To satisfy (b) we have to distinguish two different cases, depending on
which is the superior treatment

• if mR > mW ⇒ the superior treatment is R and the condition to
be imposed is

n(1− ρ) < n0(1− p0) ⇔ ρ > 1− n0

n
(1− p0); (2.8)

• if mR < mW ⇒ the superior treatment is W and the condition
to be imposed is

nρ < n0p0 ⇔ ρ <
n0

n
p0. (2.9)

Both these constraints are depicted in blue in the proportion - sample
size plane. Below each of these lines, the first or the second condition is
verified. In conclusion, we divided the proportion - sample size space
in three regions:

• Region A :

A =
{
(x, y) ∈ (0, 1)× (0,∞) : nβ(x) < y <

p0
x
n0

}

tests T ∈ A have a power uniformly higher and allocate to treat-
ment R less patients than T0.

• Region B :

B =

{
(x, y) ∈ (0, 1)× (0,∞) : y > max

{
p0
x
;
1− p0
1− x

}
· n0

}

tests T ∈ B have a power uniformly higher and allocate to both
treatments more patients than T0.

• Region C :

C =

{
(x, y) ∈ (0, 1)× (0,∞) : nβ(x) < y <

1− p0
1− x

n0

}

tests T ∈ C have a power uniformly higher and allocate to treat-
ment W less patients than T0.

Hence, a test T with better performance than T0 is a point (ρ, n) in the
region A if mR < mW , or in the region C if mR > mW . Unfortunately,
the experimenter cannot know which is the superior treatment before
conducting the trial. For this reason, it could be useful to adopt a re-
sponse adaptive design to construct the test, since this method is able

6



0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

proportion

sa
m

pl
e 

si
ze

p0

n0

A B C
M

Q

XW,0 X R,0

Figure 2: The picture represents the regionsA, B and C, on the proportion - sample
size plane. The red line represents the function nβ in (2.5); it separates the test T
with power βT (∆) > βT0

(∆), from the test with power βT (∆) < βT0
(∆). Blue lines

separates tests according on the number of patients allocated to the treatments R
and W , with respect to n0,R and n0,W . The dotted red line represents the function
gmin in (2.6).

to target different allocation proportions according to the responses
collected during the trial.
Let us introduce a vector (X1, X2, ..., Xn) ∈ {0; 1}n composed by the
allocations to the treatments according to the adaptive design, i.e.
Xi = 1 if the subject i receives treatmentR orXi = 0 if the subject i re-
ceives treatment W . Then, we define the quantities NR(n) =

∑n
i=1 Xi

and NW (n) =
∑n

i=1(1−Xi), that represent the number of patients al-
located to treatments R and W , respectively. Notice that the sample
sizes NR(n) and NW (n) are random variables. Let us also define the
adaptive estimators based on the observed responses until time n, i.e.

M(n) =

∑n
i=1 XiMi

NR(n)
and N(n) =

∑n
i=1(1−Xi)Ni

NW (n)
. (2.10)

Then, the test T is defined by the following critical region

Radaptive
α =

{
|M(n)−N(n)| >

√
σ2
R

NR(n)
+

σ2
W

NW (n)
zα

2

}
(2.11)

whose properties depend on the type of adaptive design has been ap-
plied in the trial. The authors propose to adopt the Modified Randomly
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Reinforced Urn design (MRRU) described in [1]. The scheme of this
urn model is presented in the next section.

3 TheModified Randomly Reinforced Urn

Design

Let us consider the response probability laws µR and µW introduced
in Section 2. In general, we can define an opportune utility function
u to turn the responses into values which can be interpretable as urn
reinforcements. To ease of notation, in this paper we will use the
identity as utility function, i.e. we will interpret the response distri-
butions to treatment R and W as the reinforcement distributions of
red and white balls, respectively. The model requires some assump-
tions on the reinforcement probability laws µR and µW : both the sup-
ports are contained in [a, b], where 0 ≤ a ≤ b < +∞, both the means

mR =
∫ b

a
xµR(dx) and mW =

∫ b

a
xµW (dx) are strictly positive, and

both the variances σ2
R and σ2

W are finite. So, without loss of gener-
ality, we consider the superior treatment as the one associated to the
color with higher reinforcement mean.
Now, let us describe the urn model. First, let (Un)n be a sequence
of independent uniform random variables on [0, 1]. Then, visualize an
urn initially containing r0 balls of color R and w0 balls of color W . Set

R0 = r0, W0 = w0, D0 = R0 +W0, Z0 =
R0

D0
.

At time n = 1, a ball is sampled from the urn; its color is X1 =
1[0,Z0](U1), a random variable with Bernoulli(Z0) distribution. Let
M1 and N1 be two independent random variables with distribution µR

and µW , respectively; assume that X1,M1 and N1 are independent.
Next, if the sampled ball is R, it is replaced in the urn together with
X1M1 balls of the same color if Z0 < η, where η ∈ (0, 1) is a suit-
able parameter, otherwise the urn composition does not change; if the
sampled ball is W , it is replaced in the urn together with (1 −X1)N1

balls of the same color if Z0 > δ, where δ < η ∈ (0, 1) is a suitable
parameter, otherwise the urn composition does not change. So doing
we update the urn composition in the following way

R1 = R0 +X1M11[Z0<η],

W1 = W0 + (1−X1)N11[Z0>δ],

D1 = R1 +W1, Z1 =
R1

D1
.

(3.1)

Now iterate this sampling scheme forever. Thus, at time n+ 1, given
the sigma-field Fn generated by X1, ..., Xn,M1, ...,Mn and N1, ..., Nn,
let Xn+1 = 1[0,Zn](Un+1) be a Bernoulli(Zn) random variable and, in-
dependently of Fn and Xn+1, assume that Mn+1 and Nn+1 are two
independent random variables with distribution µR and µW , respec-
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tively. Set
Rn+1 = Rn +Xn+1Mn+11[Zn<η],

Wn+1 = Wn + (1−Xn+1)Nn+11[Zn>δ],

Dn+1 = Rn+1 +Wn+1,

Zn+1 =
Rn+1

Dn+1
.

(3.2)

Z = (Zn, n = 1, 2, ...) is a sequence of random variables that are pro-
portions of balls of color R in the urn. The (n + 1)-patient entering
the study is allocated to treatment R according to this probability Zn.
The Modified Randomly Reinforced Urn model has been widely stud-
ied in [1] and [9]. In those works, many convergence results have been
proved and the asymptotic behavior of the urn process has been dis-
cussed. The properties highlighted in those papers make the MRRU
design very attractive from many point of view and for this reason we
decided to adopt this model as the adaptive design to be applied in the
framework presented in Section 2. In particular, in [1] the following
result is proved

Theorem 3.1 The sequence of proportions (Zn)n∈N of the urn process
converges almost surely and

limn→∞Zn =





η if
∫ b

a
xµR(dx) >

∫ b

a
xµW (dx),

δ if
∫ b

a
xµR(dx) <

∫ b

a
xµW (dx).

(3.3)

The urn proportion process (Zn)n∈N converges to a value which de-
pends on the unknown means of the reinforcement distributions. This
aspect characterizes the adaptive nature of the design based on the
urn model. In particular, this urn model generates a process (Zn)n∈N

that converges almost surely to one of the values {δ, η}, according to
which reinforcement presents the distribution with the greatest mean.
When mR = mW we do not have the explicit form of the asymptotic
distribution of the urn proportion Zn. Nevertheless, we know that
(Zn)n∈N converges to a random variable Z∞ whose distribution has no
atoms and its support is S∞ = [δ, η]. In [9] the asymptotic behavior of
different quantities related to the MRRU model has been studied. One
of those results concerns the number of red balls sampled from the urn
divided by the total number of draws. This quantity converges almost
surely to the same limit of the urn proportion of red balls Zn.

Proposition 3.2 The sequence (NR(n)/n)n∈N converges almost surely
and

limn→∞
NR(n)

n
=





η if
∫ b

a
xµR(dx) >

∫ b

a
xµW (dx),

δ if
∫ b

a
xµR(dx) <

∫ b

a
xµW (dx).

.

Notice that this result is very useful because the number of red (white)
balls sampled from the urn, divided by the number of draws, represents
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exactly the proportion of patients allocated to treatment R (W ).

Consider an estimation problem for the means mR and mW of the
responses to treatments. The a.s. limit of the urn process (Zn)n in
the MRRU model is in the open interval (0, 1), so both the sequences
NR(n) =

∑n
i=1 Xi and NW (n) =

∑n
i=1(1 − Xi) diverge to infinity

almost surely. This allows us to apply the results proved in [15] con-
cerning the adaptive estimators (2.10). The main asymptotic result is
the following:

Proposition 3.3 The estimators M(n) and N(n) are consistent esti-
mators of mR and mW , respectively. Moreover as n → ∞,

(√
NR(n)

(M(n)−mR)

σR

,
√
NW (n)

(N(n)−mW )

σW

)
→ (Z1, Z2)

in distribution, where (Z1, Z2) are independent standard normal ran-
dom variables.

This result gives us the asymptotic normality of the adaptive estima-
tors. This property is not trivial since the sample sizes NR(n) and
NW (n) are random quantities that also depend on the treatment re-
sponses. This result is very useful in an inferential setting, when a
statistics based on the adaptive estimator is used. In fact, in that
context the Proposition 3.3 provides the probability model which al-
lows us to build the critical region or to compute the p-value of a test
to compare mR and mW based on adaptive design driven by MRRU
model.

4 The parameters selection to construct

the test T
Consider the situation presented in Section 2. Initially the problem
is faced with a classical no-adaptive test. Let us denote this test as
T0. Assume a sample size n higher than the one of the test T0 (i.e.,
n = c·n0 with c > 1). For any n ≥ n0, we can individuate the following
intervals

• IAn = {x ∈ (0, 1) : (x, n) ∈ A}
• IBn = {x ∈ (0, 1) : (x, n) ∈ B}
• ICn = {x ∈ (0, 1) : (x, n) ∈ C}

Notice that

• IAn
⋃
IBn
⋃
ICn ⊂ (0, 1)

• IAn
⋂
IBn = ∅, IBn

⋂
ICn = ∅, IAn

⋂
ICn = ∅,

The aim is to point out an adaptive test T represented in the proportion
- sample size space by a point in region A when R is the inferior

10



treatment, or in the ICn when W the inferior one. This goal is achieved
when 




NR(n)
n

∈ ICn if
∫ b

a
xµR(dx) >

∫ b

a
xµW (dx),

NR(n)
n

∈ IAn if
∫ b

a
xµR(dx) <

∫ b

a
xµW (dx).

.

Inspired by Proposition 3.2, we set δ ∈ IAn and η ∈ ICn , so that

limk→∞
NR(k)

k
∈ IAn if mR < mW and limk→∞

NR(k)
k

∈ ICn if mR >
mW . This choice implies that the test T is in the right region, where
both condition (a) and (b) are satisfied. In Figure 3 we show how the
urn process Zn converges towards the right region.
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Figure 3: The pictures represents the regions A, B and C, for a particular choice
of α, β0, ∆0 and p0. For each fixed sample size n, the parameters of the urn model
δ, η ∈ (0, 1) are chosen such that (δ, n) ∈ A and (η, n) ∈ C. On the left: simulations
with mR < mW . On the right: simulations with mR > mW . In both pictures, the
black lines represent 10 replications of the urn process (Zk)k.

The speed of convergence of the urn model is a key point for the success
of this procedure. In general, the asymptotic behavior of the urn pro-
cess (Zn)n∈N depends on the reinforcement distributions (µR, µW ) and
on the parameters (δ, η). Once the assumptions on the reinforcement
probability laws are made and the statistical parameters are fixed, the
regions A,B,C can be determined and the rate of convergence depends
only on the unknown means mR and mW ; in particular, the speed of
convergence is an increasing function of the mean distance |µR − µW |.
Moreover, since the value of the sample size n has been computed as
a decreasing function of ∆0, the closeness of the urn proportion Zn

to its limit (η or δ) after n draws, depends mainly on the size of the

normalized distance |µR−µW |
∆0

. If this ratio is large it means that the
treatments’ performance are very different with respect to the mini-

mum relevant distance |∆0|. In this case, the quantity NR(n)
n

will be
quickly closed to the limit of the urn process and so the procedure will
actually design a test T which lies in the right region. At the contrary,

if |µR−µW |
∆0

is small, it means that the difference between the treatments
becomes less relevant. The urn proportion (Zn)n∈N will be a process
which slowly converges to its limit. Therefore, in this situation, the
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assumption that NR(n)
n

is a good approximation of its limit is less rea-
sonable and so the test T will be easily found outside the right region.
Naturally, it is useless to choose an excessively little value of ∆0 just to

increase the ratio |µR−µW |
∆0

; in fact, this change would heavy increase
the sample size n0, in order to fulfill the level and power constraint of
T0. As a consequence, the power evaluated at the real difference of the
means β(∆) would be so high that there would be no need to maximize
it.

There are other factors which influence the speed of convergence of the
process (Zn)n∈N, like the values of the parameters η and δ. In fact,
it is known that the closer to a border point of the interval (0, 1) the
limit is, the slower the process converges. This fact is relevant when

we propose to improve the approximation of NR(n)
n

with its limit (δ or
η) by increasing the sample size n, i.e. using ñ = c̃ · n0 (with c̃ >> c)
instead of n. Naturally, since we are using more subjects here, it will be
more likely that the urn proportion Zñ will be closer to the limit η (or
δ), which was previously fixed in the interval IAn (or ICn ). The problem
is that the points (δ, ñ) and (η, ñ) could be not in the regions A and
C anymore. In fact, when we use the sample size ñ instead of n, we
should locate the parameters η and δ in the intervals IAñ and ICñ instead
of IAn and ICn ; so doing, we can be sure that the points (δ, ñ) and (η, ñ)
are in the right regions. Moreover, as the sample size n grows the in-
tervals IAn and ICn become smaller and move towards the border points
0 and 1. This slows down the convergence of the process (Zn)n∈N and
makes negligible the initial gain obtained by increasing the sample size.

Remark 4.1 The main inferential problem of this paper is a two-sided
hypothesis test for comparing the mean effect of two treatments (2.1).
It’s worth to notice that nothing changes if we consider an one-sided
test, where the alternative hypothesis states that one treatment is better
than the other one, for instance H0 : mR ≤ mW and H1 : mR > mW .
In this case the goal (b) reduces to assign more patients to treatment
W , so we can fix the parameter δ arbitrarily in the interval (0, η). In
Figure 4 we show the partition of the plane proportion - sample size
and the choice of the parameters δ and η with an one-sided test.

5 Different response distributions

In this section we relax some assumptions on reinforcement distribu-
tions. First, we consider the situation with Gaussian laws but unknown
variances, then, we discuss the case of non-Gaussian response distri-
butions (exponential and Bernoulli).

In Section 2 we made the assumption that the variances of the re-
sponses’ distributions σ2

R and σ2
W are known. This hypothesis is very

strong and in many cases unrealistic, since the variability of a new phe-
nomenon is typically unknown and the variance usually has to be esti-

12



0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

proportion

sa
m

pl
e 

si
ze

p0δ η

n
n0

B C

Figure 4: The picture shows the case of an one-sided test. The regions B and C
are defined for a fixed level α and a test T0 characterized by (p0, n0). Once fixed a
new sample size n > n0, the parameters of the urn model δ, η ∈ (0, 1) are chosen
such that (δ, n) ∈ B and (η, n) ∈ C

mated through the same observations used to realize the test. Then, a
good design should incorporate the possibility of estimating variances,
updating them at each step of the procedure and maintaining the good
properties obtained with known variances.
First, fix δ = η = p0. Then, we denote as S2

R(n) and S2
W (n) the

adaptive estimators for the responses’ variances, expressed as follows

S2
R(n) =

∑n
i=1 Xi(Mi −M(n))2

NR(n)− 1
, and S2

W (n) =

∑n
i=1(1−Xi)(Ni −N(n))2

NW (n)− 1
.

(5.1)
So we can replace the true variances σ2

R and σ2
W with their estimators

S2
R(i) and S2

W (i); then, in the critical region (2.11) the quantile of
the t-student substitutes the quantile of the Gaussian distribution.
Moreover, the function nβ(·) introduced in (2.5) has to be redefined as
follows

nβ(ρ; i) :=

(
p̂2opt(i)

ρ
+

(1− p̂opt(i))
2

1− ρ

)(
p̂2opt(i)

n0p0
+

(1 − p̂opt(i))
2

n0(1− p0)

)−1

where p̂opt(i) =
SR(i)

SR(i)+SW (i) . This procedure has to be done at every

step i ≤ n, after that a new response is collected and one of the two
estimates can be updated. Notice that the function nβ(·; i) is random
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and changes for any i ≤ n, because now it depends on the observations.
As a consequence, also the intervals IAi , IBi , ICi will be random too and
we have to recompute them for any i ≤ n. This leads to two sequences
(δi)i, (ηi)i instead of two parameters δ, η, since we need to maintain
the property that the parameters of the urn model are chosen in the
corresponding intervals: δi ∈ IAi and ηi ∈ ICi .
In [15] it has been proved that when the sequences NR(n) and NW (n)
are divergent, adaptive estimators like S2

R(n) and S2
W (n) are strongly

consistent. This result implies the nβ(t; i) →i nβ(t) almost surely for
any t ∈ (0, 1). This fact ensures that it’s always possible to create two
convergent sequences (δi)i → δ, (ηi)i → η such that δ ∈ IA and η ∈ IC .

When we relax the normality assumption on the reinforcements distri-
bution it is difficult to write the power function of the test in an analytic
form. It is not always possible to solve the condition βT (∆) ≥ βT0

(∆)
and then to compute the function nβ . Anyway, this task can be real-
ized in simulation and so we will show that the proportion - sample size
plane can be partitioned again in the regions A−B−C also with non-
Gaussian reinforcements. In particular, we focus on two situations:
exponential and Bernoulli responses.

Exponential responses :
Let us make the following assumptions on patients’ responses

• M1,M2, ..,Mn0,R
: the responses to treatment R, modeled as i.i.d.

random variables with distribution µR = E(λR)

• N1, N2, .., Nn0,W
: the responses to treatment W , modeled as i.i.d.

random variables with distribution µW = E(λW )

Our aim is to perform the following hypothesis test

H0 : λR = λW vs H1 : λR 6= λW . (5.2)

We will keep the notation of Section 2. We use the likelihood ratio test
to compute the critical region. The likelihood function of the whole
sample is

L(λR, λW , data) = λ
n0,R

R λ
n0,W

W exp

(
−λR

n0,R∑

i=1

Mi − λW

n0,W∑

i=1

Ni

)

=
(
λp0

R λ1−p0

W exp
(
−λRMn0,R

p0 − λWNn0,W
(1 − p0)

) )n

where Mn0,R
=
∑n0,R

i=1 Mi/n0,R and Nn0,W
=
∑n0,W

i=1 Ni/n0,W . Then,
the likelihood ratio test gives us the following critical region

{
supλR=λW∈(0,∞) L(λR, λW , data)

sup(λR,λW )∈(0,∞)2 L(λR, λW , data)
< cα

}
=





M
p0

n0,R
· N

1−p0

n0,W

Mn0,R
· p0 +Nn0,W

· (1− p0)
< n

√
cα





where cα ∈ (0, 1) can be determined setting the significance level of
this critical region to α.
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Bernoulli responses :
Let us make the following assumptions on patients’ responses

• M1,M2, ..,Mn0,R
: the sequence of the responses to treatment R,

modeled as i.i.d. random variables with distribution µR = B(pR)
• N1, N2, .., Nn0,W

: the sequence of the responses to treatment
W , modeled as i.i.d. random variables with distribution µW =
B(pW )

Let us consider now the following hypothesis test

H0 : pR = pW vs H1 : pR 6= pW . (5.3)

The likelihood function for two samples of Bernoulli variables is

L(pR, pW , data) =
(
p
Mn0,R

p0

R (1− pR)
(1−Mn0,R

)p0p
Nn0,W

(1−p0)

W (1− pW )(1−Nn0,W
)(1−p0)

)n

Then, the likelihood ratio test gives us the following critical region

{
suppR=pW∈(0,1) L(pR, pW , data)

sup(pR,pW )∈(0,1)2 L(pR, pW , data)
< cα

}
=





P
P
(1− P )1−P

M
Mn0,R

p0

n0,R
(1−Mn0,R

)(1−Mn0,R
)p0N

Nn0,W
(1−p0)

n0,W
(1−Nn0,W

)(1−Nn0,W
)(1−p0)

< n
√
cα





where

P =

∑n0,R

i=1 Mi +
∑n0,W

i=1 Ni

n
= Mn0,R

p0 +Nn0,W
(1 − p0).

Also in this case cα ∈ (0, 1) can be determined setting the significance
level of this critical region to α.

The power function (β̂(p0,n0)) in both cases (5.2) and (5.3) can be com-
puted through simulations and so we can empirically compute function
nβ(·) in this way: for any ρ ∈ (0, 1)

nβ(ρ) := min
{
n ≥ 1 : β̂(ρ,n) ≥ β̂(p0,n0)

}

Now that we have defined the function nβ(·), we can partition the
proportion - sample size plane, introduce the intervals ICn and IAn and
after that fix the parameters η and δ within them. When the urn model
is used to allocate the patients the design becomes adaptive and the
critical region should be written in a different form, replacing Mn0,R

,

Nn0,W
and ρ with M(n), N(n) and ρ(n). As we can see from Figures 5

and 6, the structure of the regions is the same of those computed in
the Gaussian response case.
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Figure 5: This is an example with exponential distributed responses (λR = 2 and
λW = 1). The parameters are: α = 0.05, 1 − β0 = 0.2, ∆0 = ∆ = 1/2. The test
T0 uses an allocation proportion p0 = 1/2 and needs a sample size of n0 = 67. The
red line represents the function nβ(·) computed by simulation.

6 Simulation Studies

We realized some simulation studies aiming at illustrating the theory
presented in the paper. In this section, we are going to show some of
those simulations; in particular, we want to highlight the good prop-
erties provided by the use of an adaptive design in the framework of
Section 2.

Let us consider the two-sided hypothesis test (2.1), for comparing the
mean effect of two treatments R and W . We simulated the responses
to treatments R and W from two sequences of i.i.d. random vari-
ables, with probability laws µR and µW Gaussian with means mR and
mW and variances σ2

R and σ2
W , respectively. In all the simulations,

mW = 10 and mR ranges from 5 to 15; we analyze separately the situ-
ation of equal variances (σ2

R = 1.52, σ2
W = 1.52) and different variances

(σ2
R = 1, σ2

W = 4). We set the significance level α = 0.05 and the
minimum power β0 = 0.9 for a difference of ∆0 = 1. We assume to
have a balanced non adaptive design p0 = 0.5. Then, we compute the
right value for the sample size n0 to fulfill the conditions of significance
level and power set in advance, which is n0 = 96 when the variances
are equal and n0 = 106 when the variances are different.
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Figure 6: This is an example with Bernoulli distributed responses (pR = 0.2 and
pW = 0.5). The parameters are: α = 0.05, 1 − β0 = 0.2, ∆0 = ∆ = 0.3. The test
T0 uses an allocation proportion p0 = 1/2 and needs a sample size of n0 = 76. The
red line represents the function nβ(·) computed by simulation.

At this point, we apply the procedure described in Section 2 to get a
new adaptive test T performing better than T0. The sample size of T
has been increased of a 25% (n = 1.25 · n0), obtaining n = 120 in the
case of equal variances and n = 132 with different variances. In both
cases, we can design the regions A, B and C and the corresponding
intervals IAn , IBn and ICn ; we set δ in the center of IAn and η in the
center of IAn . In particular, we have

• σ2
R = 1.52, σ2

W = 1.52 ⇒ IAn = (0.127, 0.402), ICn =
(0.598, 0.632).

• σ2
R = 1, σ2

W = 4 ⇒ IAn = (0.279, 0.403), ICn = (0.597, 0.721)

In all simulations, the urn has been initialized with a total num-
ber of balls d0 = (mR + mW )/2; the initial urn proportion z0 has
been set at the center of the interval (δ, η). Then, for each value
of mR ∈ {5, 7, 9, 9.5, 10.5, 11, 13, 15}, we have run 1000 urn processes
(Zk)k stopped at time n, following the algorithm described in Section 3.
The results are reported in Table 1 (equal variances) and 2 (different
variances).

The proportion of simulation runs the test T has a power higher than
T0 is very high. In other words, it means that most of the simulations
yields an allocation proportion after n step such that (NR(n)/n, n) ∈
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mR ∆ #{βT ≥ βT0} #{NR(n) < n0,R} #{NW (n) < n0,W}
5 -5 0.954 (0.766) 0.011

7 -3 0.967 (0.573) 0.057

9 -1 0.970 (0.320) 0.178

9.5 -0.5 0.973 (0.301) 0.201

10.5 0.5 0.969 0.210 (0.283)

11 1 0.976 0.182 (0.319)

13 3 0.961 0.083 (0.486)

15 5 0.962 0.040 (0.608)

Table 1: The table represents the proportion of simulation runs T performs better
feature than T0. The parenthesis indicate the column of the inferior treatment. For
every choice of mR, 1000 simulations have been realized. Here, the case of equal
variances has been reported: σ2

R = σ2
W = 1.52.

{A⋃B
⋃
C}. Moreover, this result has been found for any values of

∆, that is remarkable since the means are unknown before doing the
test. The second goal of this design was minimizing the number of
subjects assigned to the inferior treatment. In Table 1 we report the
proportion of runs T allocates to each treatment less subjects than
T0. To better understand this aspect of the performance of the MRRU
model, we report in Figure 7 the flanked boxplots of the number of
subjects allocated to the inferior treatment in the 1000 replications of
the urn design. The red line indicate the number of subject allocated
to the inferior treatment by T0. Then, the goal is to maximize the
number of cases below the red line. The numbers within parenthesis
in Table 1 represent the proportion of simulation runs that are below
the red line in Figure 7.
Notice from Figure 7 that, the greater is the mean distance |∆| =
|mR − mW |, the smaller is the number of subjects allocated to the
inferior treatment.

In the case of different variances (Table 2), in most of the runs T
has a power greater than T0. Nevertheless, it seems that the larger is
the value of mR the less is the proportion of times the power of T is
greater than T0. The reason of this fact is due to the asymmetry of
variances: with these values of σ2

R and σ2
W the length of the interval

ICn is very small. Then, when the urn process (Zk)k overcomes η can
occur more often that Zn goes out from the interval ICn , and so does
the allocation proportion NR(n)/n. When this happens, we have that
(NR(n)/n, n) /∈ {A⋃B

⋃
C} and so the power of T will be smaller

than the power of T0.

In Table 2 we also report the proportion of simulation runs T allocates
to each treatment fewer subjects than T0. Figure 8 shows the boxplots
of the number of subjects allocated to the inferior treatment with the
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Figure 7: The picture shows, for any ∆ ∈ {−5,−3,−1,−0.5, 0.5, 1, 3, 5}, the
flanked boxplots of the number of subjects allocated to the inferior treatment by T .
In order to compute the boxpots, 1000 replications of the urn process (Zk)k have
been used. The red line represent the number of subject allocated to the inferior
treatment by T0, that in both cases is n0p0 = n0(1 − p0) = 48. Here, the case of
equal variances has been reported: σ2

R = σ2
W = 1.52.

1000 replications of the urn process.
It is easy to note from Figure 8 that, even when the variances are
different, the greater the mean distance |∆| = |mR−mW |, the smaller
the number of subjects allocated to the inferior treatment. In this
case, the design performs better when the worst treatment is W . As
explained before, this occurs because with these values of σ2

R and σ2
W

the interval ICn is very short.

7 Real Case Study

In this section we show a real case study, where the application of the
methodology presented in the paper would have improved the perfor-
mance of a classical test, from both the statistical and ethical point
of view. We consider data concerning treatment times of patients af-
fected by ST- Elevation Myocardial. The main rescue procedure for
these patients is the Primary Angioplasty. It is well known that to
improve the outcome of patients and reduce the in-hospital mortality
the time between the arrival at ER (called Door) and the time of in-
tervention (called Baloon) must be reduced as much as possible. So
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mR ∆ #{βT ≥ βT0} #{NR(n) < n0,R} #{NW (n) < n0,W}
5 -5 1.000 (0.895) 0.003

7 -3 0.98 (0.636) 0.042

9 -1 0.928 (0.364) 0.131

9.5 -0.5 0.930 (0.345) 0.136

10.5 0.5 0.887 0.222 (0.232)

11 1 0.876 0.205 (0.265)

13 3 0.847 0.092 (0.361)

15 5 0.799 0.064 (0.447)

Table 2: The table represents the proportion of times the new test T presented
a different feature with respect to the classical test T0: having higher power of
assigning fewer patients to one of the two treatment. The parenthesis indicate the
column of the worst treatment. For every choice of mR, 1000 simulations have
been realized. Here, the case of different variances has been considered: σR = 1
and σW = 2.

the Door to Baloon time (DB) is our treatment’s response. We have
two different treatments: the patients managed by the 118 (free-tall
number for emergency in Italy) and the self presented ones. We design
our experiment to allocate the majority of patients to treatment per-
forming better, and simultaneously collect evidence in comparing the
time distributions of DB times.

We have at our disposal the values of the door-to-baloon time (DB)
in minutes of 1179 patients. Among them, 657 subjects have been
managed by 118, while the others 522 subjects reached the hospital
by themselves. We denote the choice of calling 118 as treatment W
and the choice of going to the hospital by themselves as treatment R.
In this case, since the lower are the responses (DB time) the better is
the treatment, a decreasing utility function is necessary. Moreover, the
urn model presented in Section 3 requires the reinforcements distribu-
tions to be positive. Then, we choose the monotonic utility function
u(x) = 6− log(x) to transform responses (DB time) into reinforcement
values, in order to satisfy those assumptions. To ease notation, from
now on we refer to the responses transformed by the utility function
as the responses collected directly from the patients. In this situation,
the means and variances computed using all the data at our disposal
are taken as the true means and variances of the populations R and W :
mR = 1.503, mW = 1.996, σR = 0.518, σW = 0.760. Notice that, since
the true difference of the means ∆ = mR −mW = −0.493 is negative,
W is the best treatment. We want to conduct a non-adaptive test and
a response adaptive one that aim at determining the best treatment,
in order to compare their performance.

Initially, we imagine to conduct a non-adaptive test T0 to compare
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Figure 8: The picture shows, for any ∆ ∈ {−5,−3,−1,−0.5, 0.5, 1, 3, 5}, the box-
plots of the number of subjects allocated to the inferior treatment by T . In order to
compute the boxplots, 1000 replications of the urn process (Zk)k have been used.
The red line represent the number of subject allocated to the inferior treatment
by T0, that in both cases is n0p0 = n0(1 − p0) = 53. Here, the case of different
variances has been reported: σ2

R = 1 and σ2
W = 4.

the mean effects of treatments R and W . We fix a significance level
α = 0.01, a minimum power β0 = 0.95 for a standard difference of the
means ∆0 = 0.5. Then, we assume responses to treatments R and W
are i.i.d random variables with distributions µR and µW , respectively.
Moreover, we assume the laws are Gaussian: µR = N (mR, σ

2
R) and

µW = N (mW , σ2
W ) (verified by empirical tools). The allocation pro-

portion is set to p0 = 0.468, the empirical one. With these parameters
we can conduct a two-sided t-test that requires a total of n0 = 119
subjects, n0p0 = 56 allocated to treatment R and n0(1 − p0) = 63
allocated to treatment W . To compute n0 we have assumed known
variances. The power of this test computed in correspondence to the
true difference of the means is βT0

(∆) = 0.945.

Now, consider the urn model presented in Section 3 to construct the
adaptive test T . T involves more subject in the experiment than T0, in
particular n = 1.25 ·n0 = 148. Nevertheless, since in practice variances
are unknown, n0 and n should be computed from the estimates of the
variances. As a consequence, the total number of subjects needed for
T is random, because it depends on the variance estimation. For this
reason, we may have replications with different sample size n.
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We realize 500 replications of the urn procedure. Since the data at
our disposal are much more than the amount of data we need for each
trial, by permutating the responses we can take at random different
data with a different order in each replication. In Figure 9, we repre-
sent 10 simulations of the urn proportion process (Zn)n.
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Figure 9: Black lines represent 10 replications of the urn proportion process
(Zn)n. Each replication uses responses taken at random from the data at our
disposal. The proportion - sample size space has been partitioned assuming
the variances known.

As we can see from Figure 9, the urn process seems to target region
A, where parameter δ is set. This is because R is the worst treatment
in this case. Test T has higher power and assigns to treatment R less
patients than T0. This is our goal, since we know that R is the worst
treatment (mR < mW ).
For each one of the 500 replications we compute analytically the power
at the true difference of the means ∆. In general, the power will be
different for any simulation because different is the number of subjects
assigned to the treatments (NR and NW ). In Figure 10 we show a box-
plot with the 500 values of the power computed using the urn model,
to be compared with the power obtained with T0. Moreover, we show
for each simulation the number of subjects assigned to treatment R,
to be compared with the number of subjects assigned to R by T0.

From Figure 10, we notice that the urn design described in Section 3
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Figure 10: On the left: boxplot representing 500 values of power evaluated
at the true difference of the means ∆ = −0.493 using T : βT (∆). The
red line represents the power obtained with T0: βT0(∆) = 0.945. On the
right: boxplot representing 500 values of the number of subjects assigned
to treatment R by T : NR. The red line represents the number of subjects
assigned to treatment R by T0: n0 · p0 = 56.

allows us to construct a test T with higher power than T0. This occurs
for more than 99% of the replications, and the mean of the power
computed overall the runs is

1

500

500∑

i=1

βT i(∆) = 0.975 > 0.945 = βT0
(∆).

Even if T needs a sample size n larger than T0, the number of subjects
allocated to the inferior treatment R is less for T for the 52.6% of the
runs. Besides, the mean of the number of units assigned to treatment
R in all the runs is almost the same of the number computed with T0

1

500

500∑

i=1

NRi = 56.43 ≃ 56 = n0 · p0.

8 Conclusions

In this paper we have conducted an analysis on the statistical proper-
ties of tests that aim at comparing the means of the responses to two
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treatments. Starting from any non-adaptive test T0, we pointed out
the features of an adaptive test T performing better than T0. Since the
framework here is represented by clinical trials, this goal is achieved
when T has (a) higher power and (b) assigns to the inferior treatment
less subjects than T0. We investigated this task by individuating in
the proportion - sample size space the subregions associated to tests
T performing better than T0.
The test T can be implemented by adopting a response adaptive de-
sign. We propose an urn procedure (MRRU) that is able to target
a fixed proportion allocation in (0,1). Thanks to this property, the
urn model can individuate the test T in different regions depending
on which is the inferior treatment, and both goals (a)-(b) can be ac-
complished. We showed that the assumption of normal responses and
known variances can be relaxed and the procedure to partition the
proportion - sample size space and to detect the test T still holds. We
reported simulations and a case study that highlight the goodness of
the procedure.
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