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École Polytechnique Fédérale de Lausanne, Switzerland

francesco.regazzoni@polimi.it

Keywords: Cardiac electromechanics, Eikonal model, PV loops, Numerical simulations

AMS Subject Classification: 22E46, 53C35, 57S20

Abstract

We present a new model of human cardiac electromechanics for the left ventricle where elec-
trophysiology is described by a Reaction-Eikonal model and which enables an off-line resolution
of the reaction model, thus entailing a big saving of computational time. Subcellular dynamics
is coupled with a model of tissue mechanics, which is in turn coupled with a windkessel model
for blood circulation. Our numerical results show that the proposed model is able to provide
a physiological response to changes in certain variables (end-diastolic volume, total peripheral
resistance, contractility). We also show that our model is able to reproduce with high accuracy
(and with a considerably lower computational time) the results that we would obtain if the
monodomain model should be used in place of the Eikonal model.

1 Introduction

The functioning of the heart is driven by three main physical processes: electrophysiology, tissue
mechanics and blood dynamics. Electrophysiology drives the mechanical wall deformation through
the propagation of an action potential that stimulates cardiomyocites to contract, thanks to the
generation of active forces.

The electrophysiology (EP) of the heart is often modeled by either the bidomain or the mon-
odomain model,19,44,46,58 time-dependent nonlinear PDEs describing the electrical activity of the
myocardium in terms of variations of transmembrane potential coupled with a system of ODEs for
the ionic currents. Both models accurately describe the EP of the myocardium;21,44,64 However, due

1



to the small space and time discretization parameters needed to capture the propagating front,38,43

such models are so computationally demanding to harm their interest in the clinical practice.
To accurately describe the heart function, EP models should be coupled with models for the active

force generation and active/passive mechanics.34,46 The active force generation can be described by
phenomenological models32,37, by approximations of physics-based models28,49,69, or by fully physics-
based models,28,52,53,69 which derive force generation models from the first physics principles.

The coupling of cardiac electromechanics (EM) models with blood circulation is often obtained
by the simple windkessel or closed-loop lumped parameter models.7,11,26

All these mathematical models, which describe different physical processes, interact one another,
leading to a highly coupled system.3,6,15,54,55,59,61 Computational strategies for the resulting cardiac
EM models have made significant developments in recent years.3,12,27,32,63 However, as mentioned
above for EP models, the computational costs typically remain still very large.

To overcome such limitations, in Ref. [62] the authors proposed to use a reduced EP model,
namely the Reaction-Eikonal (RE) model36, in the context of an EM description. The RE model
is an extension of the Eikonal model,18,19,22,46 the latter being a steady problem describing the
activation times, widely used thanks to its very low computational costs.13,31,40 In particular, the RE
model consists in exploiting the solution of the Eikonal problem for the computation of the applied
current to be used in an unsteady monodomain-like reaction problem. The latter is numerically
approximated following the Finite Element Method on the Eikonal mesh, a coarser mesh with
respect to the fine one needed by mono- and bidomain models, allowing to obtain the transmembrane
potential and the ionic variables. With respect to standard numerical strategies for EM, the idea in
Ref. [62] allows to simplify the EP step, as it requires to solve at each time step a reaction problem
on a coarse mesh, see also Ref. [63].

The main goal of the present paper is to improve the strategy proposed in Ref. [62] by further
reducing the computational burden. Moreover, while the analysis carried out in Ref. [36] focused
on electrophysiological outputs, in this paper we investigate the ability of an EM model based on
a RE-like model to faithfully reproduce mechanical outputs (such as pressure-volume loops), with
an accuracy comparable with that achievable using the full monodomain model. The aim is to test
whether the lack of mechano-electrical feedbacks, which the Eikonal model neglects by construc-
tion, can affect the quality of the results. In particular, the novelties of the paper consist in: (i)
the proposal of an efficient way to solve the reaction problem, based on pre-computed solutions,
shifted in time according to the solution of the Eikonal equation; (ii) the coupling of the EP with
a physics-based active force model (RDQ20-MF),53 which can provide mechanistic understanding,
unlike phenomenological models. (iii) an analysis of numerical results, reproducing significant me-
chanical outputs such as PV loops and ejection fraction; (iv) a comparison of the mechanical outputs
in EM obtained describing EP either through the monodomain or the RE model.

The structure of this paper is as follows. In Sec. 2, we present the fully coupled Eikonal-Reaction-
Mechanics (ERM) model. In Sec. 3, we present the numerical approximation of the proposed ERM
model. In Sec. 4, we present the numerical results and some comparisons with the EM model using
the monodomain model.

2 Mathematical Model

From a phenomenological perspective, EP affects the active force generation through the calcium
concentration in cardiomyocytes, within the so called excitation-contraction coupling process.6 In
a multiscale context, the active tension generated in the cells determines the contraction of the
tissue. The mechanical model induces some feedback both on active force generation and on EP,
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the most relevant one implying that action potential propagates in a moving domain. Since in our
EM model EP is solved by means of a steady Eikonal problem, we cannot take into account such
a feedback, which is not a significant limitation in those contexts where no cardiac arrhythmias are
present.20,23,27

Based on the latter consideration and starting from the strategy presented in Ref. [62], we
propose in what follows our model for EM coupled with blood circulation, see Figure 1.

Figure 1: General structure of the ERM model proposed in this work. In the green box we report the
first numerical step of our strategy consisting in the solution of the Eikonal model. The second step,
in the orange box, consists in the offline solution of the monodomain-like reaction model. The final
step, in the blue box, consists in the time advancement which involves the active force generation,
the active and passive mechanics and the coupling with the systemic circulation.

Let Ω ⊂ R3 be a left ventricular domain with the boundary ∂Ω composed by the endocardium
Γendo, the epicardium Γepi, and the base Γbase, see Figure 2.

2.1 Eikonal model

We model the electrical activity of the LV with the following Eikonal-diffusion equation,18,46 (Figure
1 green box): 

c0
√
∇ψ · 1

χCm
D∇ψ − ε∇ ·

(
1

χCm
D∇ψ

)
= 1 in Ω,(

1
χCm

D∇ψ
)
· n = 0 on ∂Ω \ Sa,
ψ = ψa on Sa,

(1)

where ψ : Ω→ R is the unknown activation time, Sa is the portion of the physical boundary where
the activation time ψa is prescribed, surrogating the effect of the Purkinje network10,16,40,67 and n
the outward directed unit vector normal to the boundary ∂Ω of the domain Ω. In system (1), the

3



Figure 2: Computational domain Ω: LV 3D geometry.

conductivity tensor D is defined as

D = σff0 ⊗ f0 + σss0 ⊗ s0 + σnn0 ⊗ n0, (2)

where σf , σs and σn are the conductivities along the fibers f0, the sheets s0, and the normal
n0 directions, respectively. This local orthonormal coordinate system for the left ventricle can
be generated using rule-based algorithms.4,42 The constants χ and Cm represent the surface to
volume ratio and the trans-membrane capacitance, whereas c0 is associated with the velocity of
the depolarization wave along the fiber direction for a planar wavefront and ε is a dimensionless
parameter, being both uniform in the domain Ω.

Problem (1) will be compactly written as

ψ = E(ψa).

2.2 Reaction model

In order to couple the Eikonal system (1) with an active force generation model, we need to compute
the intracellular calcium ions concentration [Ca2+]i (see Figure 1 orange box) for every (x, t) in
Ω × (0, T ), where T is the final time. With this goal, we start by considering the monodomain
model19:

Jχ

[
Cm

∂u

∂t
+ Iion(u,w, z)

]
−∇ ·

(
JF−1DF−T∇u

)
= J Iapp(x, t) in Ω× (0, T ),

dw

dt
= H(u,w) in Ω× (0, T ),

dz

dt
= G(u,w, z) in Ω× (0, T ),(

JF−1DF−T∇u
)
·N = 0 on ∂Ω× (0, T ),

(3)

where u : Ω× (0, T )→ R is the unknown transmembrane potential, Iion(u,w, z) is the ionic current
modeled by means of a suitable ionic model19, w : Ω × (0, T ) → Rr are the gating variables,
z : Ω × (0, T ) → Rs are the ionic concentrations, H ∈ Rr and G ∈ Rs are functions which depend
on the specific ionic model. The anisotropic diffusion tensor D encodes the electrical conductivity
in the different directions, while F denotes the deformation gradient of the tissue, to be defined in
Section 2.4 and J its Jacobian.
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We then consider the following simplified version of the monodomain model (3), obtained by
neglecting the diffusion term36:

χ

[
Cm

∂u

∂t
+ Iion(u,w, z)

]
= Iapp(t− ψ(x)) in Ω× (0, THB),

dw

dt
= H(u,w) in Ω× (0, THB),

dz

dt
= G(u,w, z) in Ω× (0, THB),

(4)

with periodic conditions u(x, THB) = u(x, 0), w(x, THB) = w(x, 0) and z(x, THB) = z(x, 0) for any
x ∈ Ω, with THB being the heartbeat period, where ψ(x) is the solution of the Eikonal model (1)
and

Iapp(t) =

{
Iapp if 0 ≤ mod(t, THB) < δstim,

0 otherwise,
(5)

for suitable prescribed constant values Iapp and δstim. The function mod denotes the modulo opera-
tion (i.e. remainder after division) and encodes the periodicity of the applied current. Furthermore,
the periodic conditions ensure that the solution corresponds to a limit cycle of the ionic model.51

In this way, we are localizing an applied current for each point x in a temporal neighborhood of
ψ(x), i.e. the time of activation of x. The introduction of this chain of internal currents surrogates
the physical process described by the diffusion term (here neglected) in the standard monodomain
problem.

The solution of (4) requires, in principle, the solution in the infinite points of the domain (after
introducing the finite element space discretization, this will boil down solving it at the mesh nodes)36.
This makes the approach still quite heavy from the computational point of view. To lighten this,
we propose an efficient way to solve it. We notice that in (4) the spatial points are decoupled from
each other (no spatial correlation exists). Hence, we propose to solve the equation in a single point
(that is, in a 0D manner):

χ

[
Cm

du0D

dt
+ Iion(u0D,w0D, z0D)

]
= Iapp(t), in (0, T ), (6a)

dw0D

dt
= H(u0D,w0D), in (0, T ), (6b)

dz0D

dt
= G(u0D,w0D, z0D) in (0, T ), (6c)

with periodic conditions u0D(THB) = u0D(0), w0D(THB) = w0D(0) and z0D(THB) = z0D(0). Then,
we recover the solution in each point x ∈ Ω by shifting in time the functions u0D, w0D and z0D

according to the time of activation of each point of the domain:

u(x, t) = u0D(t− ψ(x)),
w(x, t) = w0D(t− ψ(x)),
z(x, t) = z0D(t− ψ(x)),

(7)

where the 0D solution has been periodically extended outside the interval [0, THB]. We remark that
since problem (6) is independent of the point x, is can be precomputed off-line, with a significant
saving in the computational costs.

Once we have computed (u, w, z), we can identify a single concentration variable of z (or
combination of them) as the intracellular calcium ions concentration:

[Ca2+]i(x, t) = [Ca2+]0D
i (t− ψ(x)). (8)
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Problem given by (7)-(6)-(8) will be compactly written as

[Ca2+]i = R(ψ).

2.3 Mechanical activation model

We model the force generation in the cardiac muscle tissue with the physics-based active force model
RDQ20-MF53, which takes advantage of a biophysically detailed representation of the proteins in
the sarcomeres (Figure 1 blue box). This reads as follows:

ds

dt
= K

(
s, [Ca2+]i, SL,

dSL

dt

)
in Ω× (0, T ), (9)

with s(0) = s0 in Ω at t = 0. The vectorial functions s : Ω × (0, T ) → R20 represent the 20 state
variables of the RDQ20-MF model. The latter describe the chemical and mechanical states of the
regulatory (troponin and tropomyosin) and contractile (actin and myosin) proteins concurring at
the sarcomere function. The ODE system (9) takes as input the calcium variable [Ca2+]i defined in
(8) and the sarcomere length SL. The latter is determined by the local tissue stretch in the fiber
direction, as we will explain later in Sect. 2.4. We here emphasize the dependence of the activation
model on the variable d, which describes the tissue displacement and which is the solution of the
mechanical model described in Sect. 2.4. The generated active tension (denoted by Ta), which is the
input of the mechanical model in Sect. (2.4), can be computed from the state s and the sarcomere
length SL as follows

Ta = G(s, SL), (10)

where G is a suitable nonlinear function.53

Problem given by (9)–(10) will be compactly written as

Ta = F([Ca2+]i,d).

2.4 Active and passive mechanics models

We model the dynamics of the displacement d : Ω × (0, T ) → R3 of the tissue by the momentum
conservation equation:39

ρ
∂2d

∂t2
−∇ ·P(d, Ta) = 0 in Ω× (0, T ),

P(d, Ta)n + Kepid + Cepi ∂d

∂t
= 0 on Γepi × (0, T ),

P(d, Ta)n = −pLV(t)JF−Tn on Γendo × (0, T ),

P(d, Ta)n = pLV(t) |JF−Tn |vbase(t) on Γbase × (0, T ),

(11a)

(11b)

(11c)

(11d)

with d = d0 and
∂d

∂t
= ḋ0 in Ω at t = 0. The Piola-Kirchhoff stress tensor P = P(d, Ta) includes

both the passive and active mechanics in the following form:

P(d, Ta) =
∂W(F)

∂F
+ Ta

Ff0 ⊗ f0√
I4f

, (12)

with F = I + ∇d the deformation tensor. The first term of (12) represents the passive part, the
second one represents an active stress formulation for the active part,35 and the term Ta is the active
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tension provided by the mechanical activation, see Sect. 2.3. The fourth invariant I4f = Ff0 · Ff0

is a measure of the tissue elongation along the fibers direction. The strain energy density function
W is modeled by the Guccione constitutive law W(F) = C

2 (eQ − 1), with C = FTF the right
Cauchy-Green deformation tensor and Q as in Ref. [25].

Boundary condition (11b) models the interaction of the LV with the pericardium41, defining the
tensors:

Kepi = Kepi
⊥ (n⊗ n) +Kepi

‖ (I − n⊗ n), (13a)

Cepi = Cepi
⊥ (n⊗ n) + Cepi

‖ (I − n⊗ n). (13b)

Kepi
⊥ , Kepi

‖ , Cepi
⊥ , Cepi

‖ are the positive constant local values of stiffness and viscosity of the epicardium

in the normal and tangent directions.
Eqs. (11c) and (11d) represent the boundary conditions at the endocardium and the base,

respectively, where pLV (t) is the blood pressure provided by the 0D model (Sect. 2.5), whereas
vbase(t) =

∫
Γendo JF−TndΓ/

∫
Γbase ‖JF−Tn‖dΓ allows for the definition an energy-consistent bound-

ary condition.50 The local sarcomere length SL, which is an input for the active force generation, is
determined starting from the sarcomere length at rest SL0 as SL = SL0

√
I4f .

Problem given by (11) will be compactly written as

d =M(Ta, pLV ,d),

where the implicit dependence on d refers to the nonlinearity induced by the constitutive law in
(12).

Remark 2.1 We highlight that problem (11) should be written in the stress-free configuration do-
main Ω, i.e. the domain without any blood pressure action. This is crucial for the evaluation of the
Piola-Kirchhoff tensor (12) at the right working points in the stress-strain non-linear curve. Thus,
the LV geometry Ωclin usually reconstructed from clinical images should be virtually deflated by the
diastolic blood pressure in order to obtain a stress-free configuration Ω.24,45,54,55

2.5 Circulation model

We finally model the hemodynamics of the circulatory system dividing the heartbeat into four phases,
starting the cardiac cycle at systole, following the model proposed in.50 In particular, this gives the
pressure p0D

LV = pLV which provides the boundary datum for the mechanics, see (11):

• Phase 1 - isovolumetric contraction: we solve problem (11) under the constraint V 3D
LV = EDV ,

where EDV represents the imposed end-diastolic volume, and where p0D
LV is determined as the

Lagrange multiplier enforcing the constraint;

• Phase 2 - ejection: the aortic valve opens when the pressure value has reached the fixed value
p0D

AVO at time instant tAVO. It closes at the time instant tAVC, when the flow rate becomes
retrograde. From tAVO to tAVC (both unknown and determined by the coupling), we model
the pressure evolution with the two-element windkessel model:70

C
dp0D
LV

dt
+

1

R
p0D
LV =

dV 3D
LV

dt
t ∈ (tAVO, tAVC). (14)

where R represents the total peripheral resistance and C the total arterial compliance. At time

instant tAVC, the first time instant in which
dV 3D

LV

dt changes its sign, we define p0D
LV (tAVC) = p0D

AVC;
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• Phase 3 - isovolumetric relaxation: we solve problem (11) under the constraint V 3D
LV = ESV ,

where ESV represents the end-systolic volume reached at the end of phase 2, until p0D
LV = p0D

MVO

when the mitral valve opens;

• Phase 4 - filling : we linearly increase the pressure p0D
LV until the prescribed value p0D

ED (repre-
senting the end diastolic pressure) is reached at the end of the cardiac cycle.

The volume V 3D
LV (t) = V 3D

LV (d(t)) in Eq. (14) represents the volume of the LV in the 3D model
computed as:

V 3D
LV (t) =

∫
Γendo

J(t)((h⊗ h)(x + d(t)− b)) · F−T (t)NdΓ, (15)

where d is the myocardial displacement, h a vector lying on the LV base and b the coordinate of an
arbitrary point inside the LV.54–56

Problem (14) represents the flow rate continuity. The pressure continuity is given by conditions
(11c)-(11d) in the mechanical problem.

Problem given by one of the phases described above (depending on the time instant in the cardiac
cycle) together with Eq. (15) will be compactly written as

pLV = C(d).

2.6 Review of the global problem

According to the notations introduced above, we summarize in a compact way the full ERM model
given by (1)-(6)-(8)-(9)-(11)-(14)-(15) proposed in the previous sections as follows:

Steady Eikonal ψ = E(ψa),

Dynamic Electrophysiology [Ca2+]i = R(ψ),

Active tension Ta = F([Ca2+]i,d),

Mechanics d =M(Ta, pLV ,d),

0D circulation model pLV = C(d).

(16a)

(16b)

(16c)

(16d)

(16e)

By substituting the other relations into (16d), we obtain the following fixed-point problem for the
myocardial displacement d, which highlights the dependence on the sole input ψa:

d =M(F(R(E(ψa)),d), C(d),d).

The overall coupled problem is graphically reviewed in Figure 3.
Here, we can appreciate that the EP problem is independent from the other subproblems, since

we have no feedback from the mechanics; in particular we are neglecting that the EP problem should
be solved in a moving configuration. The accuracy of this modeling assumption will be investigated
in Section 4 by means of numerical tests.

3 Numerical approximation

The ERM model (16) has been numerically approximated by a segregated method, based on a
loosely-coupled strategy for both mechanics/activation and mechanics/0D model couplings. This
choice was made in order to use pre-existing available codes and to address different spatial and
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Figure 3: General structure of the ERM model proposed in this work, highlighting the compact
version of the involved mathematical systems.

temporal scales associated to the each described process. Notice that the EP subproblem is already
segregated at the level of the continuous problem.

Regarding the time discretization of the ERM model (16), we discretized all the evolutionary
problems with the Backward Differentiation Formula (BDF) scheme of order 1. With this aim, we
considered a time step ∆t for problems (16c)-(16d)-(16e). At each time step, problem (16c), that
requires a finer time step for numerical stability purposes, is advanced resorting to an inner iteration
loop, according to the scheme proposed in Ref. [53].

Given a function of time α(t), we will denote by αn ' α(tn) its approximation at tn = n∆t.
Regarding the solution of the steady Eikonal problem (1), we obtained it as the steady-state

solution of the following parabolic problem:

∂ψ

∂τ
+ c0

√
∇ψ 1

χCm
D∇ψ − ε∇ ·

(
1

χCm
D∇ψ

)
= 1,

with the same boundary and initial conditions as in (1) and where τ is the pseudo-time. The time
discretization of such problem has been performed using a fully implicit BDF scheme of order 1 used
in combination with the Newton algorithm.

The time discretization of (16b) was based on the BDF scheme of order 1 for problem (6a) and
the first order implicit-explicit (IMEX) scheme with an explicit treatment of the ionic concentrations
and an implicit treatment of the gating variables for the ionic current problems (6b)-(6c).2 Notice
that to obtain the calcium concentration for any time and at any spatial point, it is enough to solve
only the ODE problem (6), whose solution is independent of the computational domain.

The space discretization of each subproblem has been performed through Finite Element Method
(FEM)48 of order 1 on hexahedral meshes (Q1). The resulting linear systems arising at each time
step have been solved by the GMRES method preconditioned with the AMG preconditioner.8,57

We considered a coarser representation of the computational domain for the active force generation
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and the mechanics models (16c)-(16d), whereas a finer one for the Eikonal diffusion model (16a)
according to the need of capturing the propagating front. Specifically, we considered two nested
hexahedral meshes, generating the finer one by a uniform refinement of the coarser one, recursively
splitting each element into eight sub-elements until the reaching of the desired refinement (about
0.8 mm for the mesh length).9

Summarizing, setting N = T
∆t the total number of time steps, we propose Algorithm 1 (see also

Figure 4):

Algorithm 1: Solution of the ERM model

Given ψa solve the Eikonal problem ψh = Eh(ψa);
Solve the ODE model (5)-(6) and build the calcium concentration [Ca2+]i,h = Rh(ψh);
for 0 ≤ n < N do

Interpolate in time [Ca2+]i,h to obtain [Ca2+]ni,h;

Compute Tn+1
a,h = Fn+1

h ([Ca2+]ni,h,d
n
h);

if isovolumetric contraction then

Compute (pn+1
LV ,dn+1

h ) solving

{
dn+1
h =Mn+1

h (Tn+1
a,h , pn+1

LV ,dn+1
h ),

V n+1
LV = V nLV ,

until

pn+1
LV = pAVO;

else if ejection then

Compute pn+1
LV solving (14) until dVdt (tn+1) ' V n+1−V n

dt changes its sign;

Compute dn+1
h =Mn+1

h (Tn+1
a,h , pn+1

LV ,dn+1
h );

else if isovolumetric relaxation then

Compute (pn+1
LV ,dn+1

h ) solving

{
dn+1
h =Mn+1

h (Tn+1
a,h , pn+1

LV ,dn+1
h ),

V n+1
LV = V nLV ,

until

pn+1
LV = pMVO;

else if filling then
Linearly increase pn+1

LV until pLV = pED;
Compute dn+1

h =Mn+1
h (Tn+1

a,h , pn+1
LV ,dn+1

h ).

end

We remark that in the isovolumetric contraction and isovolumetric relaxation phases, problem
(11) is solved under the constraint V n+1

LV = V nLV , leading to a saddle-point problem. We solved it
by means of a Schur complement reduction.5,50 In Algorithm 1, the operators Eh and Rh represent
the discretized counterparts of the corresponding continuous operators, introduced above. Similarly,
Fn+1
h , Cn+1

h and Mn+1
h represent the operators associated with the time advancement numerical

scheme from time tn to time tn+1, after space discretization, for the force generation, circulation and
mechanical models, respectively. Notice that the dependence on the variables at previous iterations
is understood.

The non-linear problem
dn+1
h =Mn+1

h (Tn+1
a,h , pn+1

LV ,dn+1
h )

is solved by using the Newton algorithm.47

All the numerical methods involved in the presented ERM model have been implemented within
lifex (https://lifex.gitlab.io), a in-house developed high-performance C++ library mainly fo-
cused on cardiac applications, based on the deal.II Finite Element core.1
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Figure 4: General structure of the algorithm for solving the ERM model proposed in this work.

4 Numerical results

We now present the numerical results obtained with the ERM model proposed in the previous
sections and with the EM-Monodomain model obtained by using the (discretized) monodomain
problem (3) instead of the Eikonal-reaction one. The geometry for the computational domain has
been segmented from the Zygote Solid 3D heart29. All the meshes (the finer and the coarser ones)
were generated using the vmtk tool (www.vmtk.org) by means of a set of new meshing generation
tools.17 We used the following space and time discretization parameters: h = 0.85 mm for the finer
mesh, h = 3.4 mm for the coarser mesh and ∆t = 10−4s for the time step . All the numerical
results have been obtained using the available HPC resource at MOX Laboratory, Politecnico di
Milano. The simulations of the ERM model were ran on 20 Intel Xeon E5-2640 v4 CPUs, while the
simulation of the EM-monodomain model were run on 56 Intel Xeon Gold 6238 CPUs.

To trigger the action potential propagation, we applied an electrical current at three points
located at the endocardial septum of the LV, as depicted in Figure 5. The stimulation configuration
has been employed in order to mimic the functioning of the Purkinje network in the LV,14,67,68

which is not included in the presented mathematical model. Specifically, we selected the radius of
the stimuli equal to 0.6 mm and a delay between them in order to reproduce the conduction velocity
of about 500 cm s−1 in the Purkinje network.30,66 To fulfill the periodic boundary conditions of the
Reaction problem (6), we performed 1000 cycles, with the 18-variables ten Tusscher-Panfilov ionic
model65, in order to reach a limit cycle (i.e. a periodic solution). The last cardiac cycle has been then
extracted as the reference one to compute the calcium ion concentration. We report all parameters
related to the EP model in Tab. 1. We here denote by σ̂α = σα/(Cmχ), for α ∈ {f, s, n} the
normalized conductivities and by Iapp = Iapp/(Cmχ) the normalized applied current magnitude.

Regarding the mechanical activation model (9), we employed the values reported in Ref. [53],
with a crossbridge stiffness aXB = 1.6 · 102 MPa, which can be interpreted as the contractility of
the cardiac muscle. We also set the following parameters: k̄d = 0.4 µM, αkd = −0.2083 µM µm−1,
γ = 30, koff = 40 s−1, kbasic = 8 s−1, µ0

fP
= 32.255 s−1 and µ1

fP
= 0.768 s−1. Finally, we reported in

Tab. 2 all parameters related to the mechanical and circulation models.
Since the electrical propagation velocity is different along the fiber and crossfiber directions,
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Figure 5: Location of stimulation sites and activation map in the LV.

σ̂f (m2 s−1) σ̂s (m2 s−1) σ̂n (m2 s−1) Iapp (V s−1) δstim (ms)
1.529 · 10−4 0.699 · 10−4 0.225 · 10−4 9.427 3

c0 (s−1/2) ε ψa(x1) (ms) ψa(x2) (ms) ψa(x3) (ms)
62 7.5 0 5 10

Table 1: Electrophysiology model parameters.

Kepi
⊥ (Pa m−1) Kepi

‖ (Pa m−1) Cepi
⊥ (Pa s m−1) Cepi

‖ (Pa s m−1) SL0 (µm)

2 · 105 2 · 104 2 · 104 2 · 103 2

R (Pa s m−3) C (Pa−1 m3) pED (mmHg) pAVO (mmHg) pMVO (mmHg)
5 · 107 4.5 · 10−9 10 83 5

Table 2: Mechanics and circulation models parameters.

the inclusion of the fiber orientation in the EM model plays a fundamental role in the propagation
of the electrical signal. Standard MRI and CT imaging techniques do not provide information on
the geometry distribution of the fibers, since thier spatial resolution is not fine enough. Hence, to
estimate the fiber orientation we used the Bayer-Blake-Plank-Trayanova rule-based algorithm.4 We
used the following boundary values for the fibers and the sheets angles: αepi = −60◦, αendo = 60◦,
βepi = 20◦ and βendo = −20◦.42
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4.1 Test I: Reference scenario

We present the first numerical test. We calibrated the conductivities in the Eikonal model in order
to reproduce physiological conduction velocity values (test I). Specifically, we obtained 0.63 m s−1

along the longitudinal direction of the fibers, 0.42 m s−1 along the transversal direction, and 0.2 m s−1

along the normal direction.60 In Figure 5 we show the corresponding activation map on the LV, with
a focus on the stimulation areas on the septal epicardium. We performed 5 cardiac cycles (T = 4 s)
to study the convergence to a limit cycle of the ERM model. In Figure 6 we show the corresponding
final PV loops. We notice that the limit cycle is attained at the second cardiac cycle. From now on,
unless differently specified, all numerical results will correspond to the second cardiac cycle only.

In Figure 6, we also show the evolution in time of the LV pressure, fluid volume and solid
volume. Specifically, analyzing the time evolution of the fluid volume and pressure, we notice the
isovolumetric contraction phase, in which the volume of the chamber remains constant while the
pressure increases due to the closure of the mitral valve. Then, the aortic valve opens and the volume
of blood in the chamber rapidly decreases until the closure of the valve. The diastole starts and the
volume reaches its minimum value and remains unchanged in the isovolumetric relaxation phase in
which the pressure decreases. Finally, the mitral valve opens and the chamber is filled with blood
increasing its internal volume.

Figure 6: Top left: left ventricle PV loops of 5 cardiac cycles. Top right: corresponding time
evolution of fluid volume. Bottom left: time evolution of the solid volume. Bottom right: time
evolution of the pressure in the LV. Test I.

To characterize the LV mechanical function and the associated PV loop, we introduce a set
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of biomarkers. Specifically, the maximum pressure in the ventricle pmax; the end-diastolic volume
(EDV ), which represents the volume of blood in the ventricle at the end of the diastolic phase; the
end-systolic volume (ESV ), which represents the volume of blood at the end of the contraction; the
stroke volume (SV ), which is computed as SV = EDV −ESV and which represents the volume of
blood pumped from the ventricle in the cardiac cycle; the ejection fraction (EF ), which is computed
as EF = SV/EDV ×100 and which represents the volumetric fraction of the blood ejected from the
ventricle within a cardiac cycle. From Figure 6 we obtain the following values: pmax = 122 mmHg,
EDV = 127 mL, ESV = 56 mL, SV = 71 mL and EF = 56%. We want to underline that all these
values are reached in the second heartbeat, starting from an initial imposed EDV = 120 mL. All
the obtained values lie within physiological ranges for the human LV.33

In addition, in Figure 7 we show the displacement on the LV computational domain at four
different time instants during the heartbeat. We notice the filled ventricle at the initial time instant,
in which the chamber has its maximum internal volume. Then, the ventricle contracts and reduces
its volume, increasing its displacement. Finally the LV starts to relax decreasing its displacement.

Figure 7: Displacement on the LV domain at four time instants of the cardiac cycle: 0.0 s, 0.2 s,
0.4 s, 0.6 s. With a reduced opacity it is highlighted the LV volume at the initial time step. Test I.

We refer to the results obtained with test I, obtained using the values reported in Tabs. 1-2, as
the reference scenario.

4.2 Tests II, III, IV: Sensitivity analysis on mechanical parameters

Then, we tested how our ERM model reacts to some different scenarios with respect to the reference
one. We started varying the preload, by modifying the imposed EDV = 120 mL (test II). In Figure
8 (left) we show the obtained PV loop increasing the EDV by 20% at the top and decreasing the
EDV by 20% at the bottom. In Tab. 3 we report all values obtained for the two scenarios. With
respect to the reference scenario, we notice that the larger is EDV , the larger the maximum pressure
pmax is. As a consequence, SV and EF follow the same trend.

Then, we varied the afterload by acting on the total peripheral resistance R in the windkessel
model (test III). In Figure 8 (middle) are depicted the corresponding PV loops with an increased
R by 20% (at the top) and a decreased R by 20% (at the bottom) with respect to the reference
scenario. We can notice that increasing R directly increases pmax and ESV , and decreases SV and
EF . Decreasing R yields to the opposite effect. This behavior is in agreement with the physiological
meaning of the variation parameter. Increasing, or decreasing, the total peripheral resistance, means
that an higher, or lower, pressure is needed in order to pump the blood out of the chamber. This
may represent, for example, the effect of a vasoconstrictor or vasodilator drug, respectively.
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We finally varied also the contractility value aXB in the mechanical activation model (test IV).
In Figure 8 (right) we show the PV loops with an increased aXB by 20% (at the top) and a decreased
aXB by 20% (at the bottom) with respect to the reference scenario. We notice that increasing aXB

directly increases SV and EF and decreases ESV , while decreasing it provides the opposite effects.
This is coherent with expectation, as well as increasing the contractility of the LV entails that the
muscle is able to fill with more blood (increased SV ) and to eject an higher amount of fluid (increased
EF ).

Figure 8: PV loops in different scenarios: variations of EDV (left), variation of total peripheral
resistance R (middle), variation of contractility aXB (right). Top: increased parameters. Bottom:
decreased parameters. All PV loops are compared with the reference scenario in blue. Test II (left),
test III (middle), test IV (right).

EDV [mL] ESV [mL] pmax [mmHg] SV [mL] EF [%]
Reference 127 56 122 71 56
EDV +20% 145 56 138 89 61
EDV −20% 106 56 105 50 47
R +20% 127 68 142 59 46
R −20% 127 42 101 85 67
aXB +20% 127 36 145 91 72
aXB −20% 127 71 103 56 44

Table 3: Mechanical bio-markers in the reference scenario (Test I) and in the considered variations
parameters scenarios (Tests II, III, IV).
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4.3 Test V: Abnormal variation of EDV

We analyzed how the ERM model reacts to a huge variation in the EDV value, specifically increas-
ing it by 50% (test V), see Figure 9. As we notice from Figure 9, on the left, the PV loop leads to
non-physiological values of SV = 129 mL and EF = 70%, which are out of bounds with respect to
physiological ranges.33 We calibrated the other parameters (R and aXB) in order to obtain physi-
ological SV , still with an increased EDV . We set R = 7 · 107 Pa s m−3 and aXB = 1.2 · 102 MPa.
In Figure 9 right the final PV loop compared with the reference scenario one. We obtained a
physiological SV = 68 mL. However, EF = 32 % which is clearly out of range.33

Figure 9: PV loop obtained with an increased EDV (left) and after the calibration of the total
peripheral resistance and contractility (right). Test V.

4.4 Test VI: Simulation with grey zone and scar

As an additional scenario, starting from the values in the reference scenario, we introduced in the
LV geometry the presence of two sub-volumes with a reduced conductivity: the grey zone and the
scar (test VI). With this goal, we intersected the LV with two spheres obtaining the configuration
depicted in Figure 10 (top). Specifically, we multiplied the conductivity tensor D in (1) by a factor
0.5 for the grey zone and 0 for the scar in order to obtain areas with reduced conductivity and zero
conductivity, respectively. In Figure 10 (bottom left) we show the activation map in the reduced
conductivity scenario and the corresponding PV loop.

We notice that the presence of the grey zone affected the activation time pattern with respect to
the reference one, see Figure 5. Also by a mechanical point of view we obtained significant results. In
Figure 10 (bottom right), the obtained PV loop (in red) is compared with the reference scenario one
(in blue). We notice that the pmax remained almost unchanged, but the ESV increased. Specifically,
we obtained ESV = 67 mL, SV = 60 mL and EF = 47 %. As expected, the pumping ability of the
LV was reduced: in the simulation a lower volume of blood was pumped out from the ventricle into
the circulatory system.

4.5 Tests VII-VIII: Comparison with EM-monodomain model

As a final test, we compare the results of simulations obtained through the electromechanical model
proposed in this paper with those obtained using the monodomain model rather than the Eikonal
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Figure 10: Top: Geometric configuration in the reduced conductivity scenario. In red the healthy
tissue, in green the grey zone with a reduced conducitivity, and in blue the scar with zero conduction.
Bottom: Activation map in the reduced conductivity scenario (left) and PV loop, in red, with respect
to the reference scenario one, in blue (right). Test VI.

one, all other models and parameters being equal. First, we carry out this comparison in the
reference setting, corresponding to physiological conditions (Test VII). More precisely, we perform
two simulations. The first one is obtained through the models and methods presented in Sections 2
and 3 (ERM model). The second one, instead, is obtained by computing the intracellular calcium
concentration through the solution of problem (3) rather than (4)-(5) (EM-monodomian model). For
the numerical approximation of the latter, we refer the interested reader to54,55. For simplicity, we
here consider only the first heartbeat. To perform the comparison, we calibrate the conductivities in
the Eikonal and monodomain models, respectively, in such a way the latest activation time obtained
with the two models is similar. As shown in Figure 11, the PV loops obtained in this setting with
the two approaches are virtually overlapping. Table 4.5 shows that, for the mechanical bio-markers
considered above, the ERM model provided very accurate results compared to the EM-monodomain
model (relative difference of the order of 10−3).

To further test the ERM model as a surrogate for the EM-monodomain model, let us consider
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Figure 11: Comparison of the results of two electromechanical simulations, obtained relying on the
Eikonal model and monodomain model, respectively, to describe the wavefront propagation (tests
VII and VIII).

a pathological case, with an abnormally high EDV (Test VIII). This experiment is designed to
accentuate the effects of mechano-electrical feedback, due to the large strains, which are ignored
by construction in the Eikonal model, since (1) is solved in a fixed domain. Although this setting
is particularly challenging for the Eikonal model, as shown in Figure 11, the latter model is able,
when coupled with the mechanical model, to produce very accurate PV loops compared to those
produced by the monodomain model. As shown in Table 4.5, the differences between ERM and
EM-monodomain results obtained in Test VIII are indeed only slightly larger than for test VII. We
stress that, for fairness, we did not recalibrate the conductivities to perform this test, but used the
same ones calibrated for the physiological case.

EDV [mL] ESV [mL] pmax [mmHg] SV [mL] EF [%]
Test VII
EM-monodomain 120.00 57.94 112.64 62.06 51.72
ERM 120.00 57.78 112.67 62.22 51.85
relative difference 0 2.8 · 10−3 2.7 · 10−4 2.6 · 10−3 2.6 · 10−3

Test VIII
EM-monodomain 180.00 65.78 147.94 65.78 63.46
ERM 180.00 65.38 147.77 65.38 63.68
relative difference 0 5.9 · 10−3 1.1 · 10−3 3.4 · 10−3 3.4 · 10−3

Table 4: Mechanical bio-markers in tests VII and VIII: comparison between ERM and EM-
monodomain models and relative differences.

4.6 Computational times

For the reference scenario and for all the tests that we analyzed with the ERM model, the total
computational time for each cardiac cycle, on the available HPC resources cited above (20 cores),
consists of: about 50 s for the Eikonal problem and about 9 h 30 min for the temporal loop part.
The Reaction problem has been numerically solved once and for all in order to obtain the off-line
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calcium concentration for the ERM model, taking nearly 400 s on a single core. On the other hand,
the simulations obtained with the EM-monodomain model took about 102 h hours with 56 cores.
The EM-monodomain model therefore provides a very advantageous speedup, while remaining very
accurate.

5 Conclusions

We presented a new electromechanical model for the cardiac function, based on a RE model, which
enables an off-line solution of the Reaction problem. The efficient way to solve the Reaction problem
leads to a reduction of the computational costs with respect to the standard electromechanical
models. We coupled the EP part with a physics-based active force model, to better describe and
characterize the coupling, and the mechanics with a windkessel model for blood circulation. We
showed numerical results by focusing on the reproducibility of significant mechanical outputs. The
ERM is able to provide a physiological response to variations in variables such as end-diastolic
volume, total peripheral resistance, and contractility, with a low computational cost, thanks to
solution of the Eikonal and the off-line Reaction problems. Moreover, the model allows for the
inclusion of domain regions with a reduced or zero conductivity. Finally, we showed that the ERM
model is able to produce mechanical outputs that are accurate with respect to the outputs of the EM-
monodomain model, in a reference setting and even in a setting where the role of mechano-electrical
feedbacks - an aspect that the ERM model neglects by construction - is accentuated.
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[50] F. Regazzoni, L. Dedè, and A. Quarteroni. “Machine learning of multiscale active force gen-
eration models for the efficient simulation of cardiac electromechanics”. In: Comput Method
Appl M 370 (2020), p. 113268.

[51] F. Regazzoni and A. Quarteroni. “Accelerating the convergence to a limit cycle in 3D cardiac
electromechanical simulations through a data-driven 0D emulator”. In: Computers in Biology
and Medicine 135 (2021), p. 104641.
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