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Summary. Logistic Regression (LR) is a widely used statistical method in empirical stud-
ies in many research fields. However, these real-life scenarios oftentimes share complex-
ities that would hinder the application of the as-is model. First and foremost, the need to
include high-order interactions to capture the variability of their data. Moreover, these stud-
ies are seldom developed in imbalanced settings, with datasets growing wider, sample size
from very large to extremely small and a strong need for model and results interpretability.
In this paper we present a novel algorithm, High-Order Interaction Learning via targeted
Pattern search (HOILP), to select interaction terms of varying order to include in a LR for
an imbalanced binary classification task when input data is categorical. HOILP’s rationale
is built on the duality between item sets and categorical interactions, and is composed of
(i) an interaction learning step based on a well-known frequent item set mining algorithm
and (ii) a novel dissimilarity-based interaction selection step, that allows the user to control
for the number of interactions to include in the LR model. Besides HOILP we present here
two variants (Scores HOILP and Clusters HOILP), that can suit even more specific needs.
Through a set of experiments we validate our algorithm and prove its wide applicability to
real-life research scenarios, surpassing the performance of a benchmark state-of-the-art
algorithm.

1. Introduction

Despite the evolution of statistical learning theory, Logistic Regression (LR) is still a
commonly used statistical method in empirical studies in many research fields (Dreiseitl
and Ohno-Machado, 2002). It is widely regarded as the model of choice for situations
where the occurrence of a binary (dichotomous) outcome is to be predicted from one
or more predicting variables (Boateng and Abaye, 2019). Examples can be found in
medical research (Boateng and Abaye, 2019), educational research (Niu, 2020), public
health research (Lemon et al., 2003), political sciences (Nicolau, 2007), economics (Sloane
and Theodossiou, 1994; Zaghdoudi, 2013) and many others.

Regardless of the context of application, it is oftentimes the case that the logit of
the expected value of the dichotomous response variable cannot be explained solely by
additive functions of the predicting variables. In other terms, when the function f(x, y)
cannot be expressed as g(x) + h(y) for some function g and f , we say that there’s an
interaction in f between x and y.
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Many of the aforementioned field of research share the need for introducing these
interaction effects between their predictors to better infer on - and characterize - the
outcome. For instance, in Genome-Wide Association Studies (GWAS) there is increas-
ing awareness that epistasis, or gene-gene interaction, plays a role in susceptibility to
common human diseases (Moore, 2003; Onay et al., 2006). It has been argued (Moore,
2003) that epistasis is a ubiquitous component of the genetic architecture of common
human diseases and that complex interactions are more important than the independent
main effects of any susceptibility gene.

This calls for novel statistical approaches to identify the complex non-additive rela-
tionships between multiple variables to include into a predictive model that would fully
capture the underlying relationship with the target. However, when dealing with real-
world applications of LR and interaction search such as the one described above, several
additional considerations are to be kept in mind.

First of all, nowadays datasets are growing wider, but the sample size may vary
from extremely large to very limited. Linear models scale relatively well when handled
via standard software, up to thousand of features together (Lim and Hastie, 2015).
However, scalability becomes an issue when dealing with interactions. Indeed, in a
model with p numerical predictors that includes a constant, every predictor and every
possible interaction, there is a number of terms equal to

p∑
k=0

(
p

k

)
= 2p

This exponential growth gets even steeper in the presence of categorical covariates,
as each one of the features’ levels has to be considered. Nevertheless, dealing with a
huge moltitude of categorical covariates is getting more frequent for instance in the
aforementioned GWAS studies, where interactions between millions of Single Nucleotide
Polimorphisms (SNPs) with triplets of levels affect even extremely rare mutations in the
patients’ phenotype. This makes the inclusion of higher order interactions technically
intractable, and causes the problem of finding interactions to fall in the framework
of ”large p small n” problems, where the number of features significantly surpasses the
number of observations and the curse of dimensionality affects undeniably the reliability
of statistical modeling.

In particular, when fitting LR models with no prior knowledge regarding the structure
of the parameters, the traditional choice is Maximum Likelihood Estimation (MLE).
However, a recent contribution from Sur and Candès (2019) shows how as p grows
w.r.t. n, estimates seem systematically biased, in the sense that effect magnitudes
are overrestimated, they are far more variable than classically predicted, and inference
measures, e.g. p-values, are unreliable especially at small values. This makes both
prediction and interpretation of results extremely questionable and hinders the validity
of the analysis.

Moreover, oftentimes researchers are forced not only to deal with complex dynamics
in the intrinsic structure of data, high dimensionalities and small sample sizes, but
they’re required to cluster observations that show a significant disproportion when it
comes to the number of observed cases in one, or more, of the classes. The extremely
common issue of class imbalance requires specific tailoring of classification models that
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would otherwise incur in the risk of losing predictive power on the underrepresented
class. This effect would be particularly concerning in some application areas, such as
healthcare or insurance fraud, where correctly identifying the underrepresented class is
the most - if not the only - relevant matter.
It is for all these reasons that newly developed statistical methods need to be tailored
to address the aforementioned complexities, in order for LR to be significantly and ef-
fectively applied in most research domains. Our present work goes in this direction
and focuses on developing a novel approach to Interaction Learning specifically designed
to: (i) identify a restricted number of most salient interactions of arbitrarily high order
among categorical features; (ii) optimize the selection of interactions for the separation
of the classes in cases of strong imbalance; (iii) allow the user to keep control over the
number of interactions to include in the model, to foster significance and interpretability
of the resulting LR. All these aspects were considered in the design of the proposed algo-
rithm while guaranteeing (iv) scalability, tractable computational times, and robustness
to varying dimensionality, sample size and imbalance ratio.

1.1. Interaction Learning Approaches and Our Contribution
Discovering interactions is an active area of research (Lim and Hastie, 2015). However,
when discussing related approaches in the multifaceted scenario our proposal deals with,
it is important to make a distinction between two fairly independent lines of research
that address different aspects of the subject matter.

Note that, as previously mentioned, our proposition focuses on identifying interac-
tions between categorical features, where the risk of including an intractable number
of covariates when considering interaction terms is extremely high. Indeed, the first
relevant line of research deals with a similar setting - even though some studies try to
expand their applicability to continuous features - and it is devoted to finding lists of
high-order feature interactions associated with a target variable. One example can be
found in Shah and Meinshausen (2014). The group of researchers devoted to significant
(discriminative) pattern mining expands this concept taking into account the statistical
significance of the association, controlling the Family-Wise Error Rate (FWER), or the
probability to detect false positive patterns (Llinares-López et al., 2015; Papaxanthos
et al., 2016; Pellegrina and Vandin, 2018; Sugiyama and Borgwardt, 2019). These works
found a broad range of applications in some of the domains we mentioned beforehand,
such as statistical genetics or healthcare (Llinares-López et al., 2019; Ceddia et al.,
2020). However, their final objective is that of identifying all significantly associated
interactions, without specific requirements on the number of selected patterns or their
predictive power and tractability once fed to a classification model as LR.

The other related research line focuses more on the identification of interactions to use
within non-linear models and Generalized Linear Models (GLM) like LR. Most of these
methods deal with different regularization strategies to shrink models to the most useful
primary effects and interaction terms (Radchenko and James, 2010; Rosasco et al., 2010;
Bien et al., 2013; Lim and Hastie, 2015), while Chen et al. (2011) propose a stochastic
search algorithm for variable selection in Bayesian LR.
One drawback of using penalized models when selecting among very large numbers of
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features, is the complexity of directly controlling for the number of terms introduced in
the final classification model - despite their undeniable potential in producing powerful
classification models. Especially when dealing with high-order categorical interaction
terms, even in the presence of a very strong penalization, the actual number of terms in
a LR may easily explode. As previously mentioned, the growing number of predictors
may lead to an inflation of the estimates, hindering the attempt to make significant
inference out of the resulting model, besides reducing the results interpretability.

Our contribution lies at the crossing of these two research lines. Indeed, we first de-
velop a targeted (as explained later) high-order interaction search algorithm to produce
a list of useful interactions associated with the target variable and ranked on the basis
of their Odds Ratio (OR). Then, we introduce a novel feature selection method designed
to pick from the list only a predefined number of salient interaction terms to include in
a LR model that would discriminate well between classes (even in cases of small sample
size and imbalanced setting) and allow for interpretable results and significant statistical
inference.
The algorithm was developed in Python 3 (Van Rossum and Drake, 2009), and the pack-
age is available upon request.

The paper is structured as follows. In Section 2 we detail our methodology, starting
from the main algorithm, HOILP, and then discussing a few possible alternatives (respec-
tively in 2.3.1 and 2.3.2). In Section 3 we validate our design choices for the algorithms
and provide empirical evidence that both HOILP and its variants can perform very well
in binary classification tasks with categorical covariates, even under conditions of high
imbalance and low sample size. In Section 4, by running experiments on both simulated
and real data, we compare our approaches with glinternet (Lim and Hastie, 2015),
a state-of-the-art algorithm for interaction learning in contexts of Logistic Regression.
There we show that HOILP and its variants can perform comparably well, with the addi-
tional advantage of returning models that are much more interpretable. In Section 5 we
draw the conclusions and discuss possible future developments. Finally, more technical
algorithmic details and mathematical insights can be found in the Appendix, respectively
in subsections A and B.

2. High-Order Interaction Learning via Targeted Pattern Search

In this section we formally introduce HOILP, the proposed High-Order Interaction Learning
via targeted Pattern search algorithm.

Note that the method was developed to handle interactions among categorical co-
variates. Therefore, we will firstly provide some context and notation to describe the
specific setting we are dealing with and its intrinsic peculiarities. Then, we will detail
the two main steps of the algorithm, that together represent the Interaction Learning
core of HOILP, i.e. the preliminary targeted pattern search and the subsequent novel
dissimilarity-based interaction selection method.

Because of our interest in developing a methodology broadly applicable to most real-
life research domains, we include in this work two variants of the main algorithm - namely
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Scores HOILP and Clusters HOILP. As further detailed in the last part of this section,
these two alternative strategies are meant to satisfy specific user and data requirements,
while also improving interpretability of the model.

2.1. Notation
Let us first provide some background to set the scene and introduce the needed notation
to follow the details of our proposed methodology.
We are given p categorical random variables X1, .., Xp, where each Xj takes values in

some set of labels {l(j)m1 , .., l
(j)
mj}. Notice that the number of levels mj depends on j: in

particular, the categorical variables may have different supports.
First of all, we define the so-called dummy variables

X
(i)
j = 1{l(j)mi

}(Xj) j = 1, .., p, i = 1, ..,mj

so that X
(i)
j is {0, 1}-valued and equals 1 if and only if Xj attains the ith level. Next, we

introduce the collection of all possible interaction terms among the covariates X1, .., Xp

as

I =

∏
j∈J

X
(ij)
j

∣∣∣∣ J ⊆ {1, .., p}, ij ∈ {1, ..,mj}


so that each interaction is a binary r.v. that encodes the co-presence of certain level
combinations. We adopt the standard convention by which the order of an interaction
corresponds to the number of terms within it (equivalently, its degree as a polynomial)
minus one; for instance, X0

1X
1
3 defines a first order interaction. With little abuse of

notation we let 1 ∈ I be the empty interaction (J = ∅) and we allow for 0-order
interactions, meaning that all dummies also fall in I.

It is straight forward to see that

|I| = (m1 + 1) · ... · (mp + 1)

in fact, when defining an interaction each Xk leave us with exactly (mk +1) choices: dis-
carding that variable or including one of the corresponding mk dummies. In particular,
if m1 = ... = mp = m, then the cardinality of |I| = (m+ 1)p grows exponentially with p.

For more readability, let us introduce a few more preliminary definitions:

• For an interaction T ∈ I we write |T | to denote the number of dummy variables
involved in the product representation of T ;

• Given two interactions T, S ∈ I we say that T is a subinteraction of S if all its
dummies appear in the product expansion of S; equivalently, S = T · Z for some
Z ∈ I;

• For T, S ∈ I we define their maximum common divisor, MCD(T , S), as the highest
order interaction Z ∈ I that is both a subinteraction of T and S;
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• We say that two interactions T and S are incompatible, and we write T ⊥ S, if they
respectively include two different levels of a same random variable. Equivalently,
T · S is identically zero, whichever is the joint distribution of the underlying r.v.s
(X1, .., Xp).

2.2. Interaction Learning
We are given a dataset D = {(x1,i, ..., xp,i, yi)}ni=1 consisting of n i.i.d. observations of p
categorical covariates X1, ..., Xp and a binary target variable Y . We assume to be in an
imbalanced setting with respect to Y , that is we suppose the classes O = {i | yi = 1}
and Z = {i | yi = 0} to come in remarkably different proportions. Without loss of
generality, we consider the case of O being the minority class, which reflects the situation
of P(Y = 1)� P(Y = 0).

Our first purpose is to deduce from the data a suitable subcollection of interactions
that is both small in size but also informative w.r.t. Y . To achieve such goal, we perform
two steps: identification of all the candidates interactions through a targeted pattern
search; choosing of the top K most relevant interactions via our novel dissimilarity-based
interaction selection method, where K is user-specified and tipically satifies K � |I|.

2.2.1. Targeted pattern search
In principle, starting from the data in D, it is very easy to compute the sample values
corresponding to any given T ∈ I. However, as in general the cardinality of I is huge,
it is seemingly impossible to study each conceivable interaction term alone; it is this
redvery drawback that highlights the need of finding a preliminary subset of candidates
Î ⊂ I.

To address this task, we propose to focus only on those interactions that appear (in
the sense that they equal 1) within the minority class O with an empirical frequency
that is higher than a fixed threshold suppmin > 0.

This choice, which we further discuss in Section 3.3 and we will also refer to as
One-Class-Learning (OCL), is mainly driven by the need of undertaking the imbalance
between the two classes, but has also a few advantages in terms of computational cost.

In what follows, for an interaction T ∈ I we write ti to intend its corresponding
ith observations in the dataset. redAs aforementioned, we propose to scan the minority
class data in order to define

Î :=

{
T ∈ I such that

1

|O|
∑
i∈O

ti > δ

}
Again, it is not feasible to actually compute such frequencies for all T ∈ I, which

poses the question on how to actually determine Î. To overcome this issue, we notice
that in our context there is a useful duality between the concepts of interactions and
itemsets. The latter, which are also referred to as patterns, are tipically found in problems
of association rule learning such as market basket analysis (Borgelt, 2012), intrusion
detection (Bekti et al., 2017) and others. There, one is given a set of possible items and
a list of transactions, which are nothing but sets of items. The goal is then to mine the
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list of such transactions in order to find which subsets of items (itemsets) occur with a
sufficient frequency (also called support).

In our framework, we observe that there is a one-to-one correspondence between item-
sets and interactions, as these can be thought as being itemsets of dummy variables. In

fact, if we interpret dummy variables as items, then the observations {(x(1)1,i , ..., x
(mp)
p,i )}ni=1

are nothing but transactions (where an item is picked if and only if its corresponding
dummy equals 1); similarly, a certain pattern of dummies is present in the transaction
if and only if the corresponding interaction term is nonzero.

This is very useful as it allows us to take advantage of all the wide variety of fre-
quent item set mining algorithms, which are recently becoming more and more efficient
(Borgelt, 2012; Shah and Meinshausen, 2014). In particular, we may reformulate the

problem of computing Î as that of finding a list of patterns that appear with a frequency
greater than suppmin (minimum support) within the minority class. Many possible im-
plementations - such as the Apriori algorithm, which we later make use of - are available
for our purpose, and it can be convenient to test different ones depending on the data.

After having constructed the candidate set Î, preliminary to the next phase we build
for each T ∈ Î the contingency table of (T, Y ) along the whole dataset D. Doing so im-
plies at least computing the corresponding frequencies in the majority class, 1

|Z|
∑

i∈Z ti.

We point out that, beside the possibly high-cardinality of Î, this step can now be per-
formed very efficiently: for more technical details, we refer to the Appendix, Section
A.1.

2.2.2. A dissimilarity measure based feature selection algorithm

Knowing the contingency table (T, Y ) for every T ∈ Î allows us to associate to each
candidate interaction an odds-ratio:

ORT :=

(∑
i: ti=1 yi

)
/
(∑

i: ti=1(1− yi)
)(∑

i: ti=0 yi
)
/
(∑

i: ti=0(1− yi)
)

We use such statistic to rank the candidate interactions in Î: more precisely, we sort
the patterns in descending order according to the quantity log |ORT |, so that reciprocal
odds-ratios are treated equally.

Next, given a fixed K ∈ N, we propose a way to extract from the sorted list of
candidates {Tk}Lk=1 a subset of (at most) K interactions that is suitable for inferring
on Y . Naively, one may think of selecting the first K patterns in the list. However,
this approach may present several drawbacks (cfr. Section 3.3): due the combinatorial
nature of high-order interactions, such strategy could easily result in a list of nested
patterns (subinteractions) that carry similar information; if K is small, this may lead to
overfitting-like phenomena, as the feature space is not explored sufficiently.

As a remedy, we introduce a dissimilarity measure, d : I × I → [0,+∞), by letting

d(T, S) :=

{
|T | ∨ |S| T ⊥ S
|T | ∨ |S| − |MCD(T, S)| otherwise,
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where x∨y := max {x, y}. This allows us now to compare two different patterns. Notice
that the definition of d does not rely on the data, instead it directly involves the formal
structure of the interaction terms.

By definition, d returns higher dissimilarities for patterns that involve completely dif-
ferent variables (empty MCD) and for those that are incompatible. Because of these two
properties, we consider d a suitable measure for exploring different regions of the feature
space. For the sake of readability, we avoid diving here deeper into the mathematical
properties that d enjoys: for a few straightforward insights we refer to the Appendix,
Section B.

By making use of the dissimilarity measure d, we extract K patterns from the sorted
list Î according to the following iterative procedure:

1. We remove from I the first interaction T , which corresponds to the one that max-
imizes log |ORT |, and place it in a new list IK ;

2. We search for those interactions in Î that are the most dissimilar from the ones
in IK . In other words we determine argminT∈Î minS∈IK d(T, S). Among these, we

select the one with highest rank and move it from Î to IK ;

3. We repeat the instructions in (2) until IK contains K interactions.

In the end, we are left with a collection IK = {Tk}Kk=1 of K interactions which can
now be used as predictors in a logistic model with response Y . In other words, our final
model reads

logitP (Y = 1|T1, .., TK) = β0 +
K∑
k=1

βkTk (1)

We conclude this paragraph with a final remark. Especially when the sample size is
not substantial, it can be convenient to primarly filter the candidate list Î by removing
those interactions that have an odds-ratio suspiciously close to 1. For example, as we
did in our case study (cfr. Section 4.2), one may choose a γ ∈ (0, 1) and discard all
those patterns whose γ-level confidence interval for the odds-ratio contains the value 1.
In general, this will not affect the ranking and the final steps described above, but can
result in more robust models.

2.3. Variants
In this paragraph we explore two variants of our algorithm which aim at increasing
interpretability and tractability of the final model. Although in our context of categorical
predictors even high-order interactions remain highly interpretable (as aforementioned,
they encode the co-presence of multiple levels of different variables), further reductions
in the model structure can be of great interest in certain applications (cfr. Section 5).

Below we discuss two possible approaches: Scores HOILP, which condenses all the
information into just a pair of variables; Clusters HOILP, that is instead a possible
compromise between the other two, where the K identified interactions are grouped into
multiple Compatibility Clusters. Note that, in both cases the number of terms in the
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model is smaller than K (or at most equal). This makes the two alternatives a go-to
solution in case we needed to include the information carried by several interactions (for
instance, in a p� n setting), without incurring in the risk of ending with an LR model
that has too many terms w.r.t n.
As both variants necessitate of a further reshaping of the information carried by the
selected interaction terms, we can expect their performances to be slightly worse w.r.t.
the traditional HOILP where all terms are included independently. However, as mentioned
beforehand - and further expanded in the Discussion (Section 5) - these variants present
several advantages in terms of both interpretability and dimensionality reduction, two
aspects that play a key role in certain research scenarios and make these algorithms
widely applicable.

2.3.1. Risk and Protection Scores: Scores HOILP

In Section 2.2, we ranked the candidate interactions in a unique list using the log odds-
ratio as criteria. However, we may avoid mixing together terms that exert opposite
influences on the target and instead split the collection Î into two sublists

R̂ := {T ∈ Î | ORT > 1}, P̂ := {T ∈ Î | ORT < 1}

which we may now sort separately, respectively by descending and ascending odds-
ratios. We refer to the two collections as risk and protection patterns, a terminology
that is mostly motivated by the majority of clinical applications.

Given an even integer K, we then apply our dissimilarity selection algorithm in order
to extract two groups, R̂K/2 ⊂ R̂ and P̂K/2 ⊂ P̂, each of dimension K/2. Then, we
construct the Risk Score R and Protection Score P as

R :=
∑

T∈R̂K/2

T, P :=
∑

S∈P̂K/2

S

The intuition between the two scores is that R (resp. P ) counts the number of selected
risk (protection) patterns that are present within a certain observation. In this way,
the information relevant for inferring on Y gets squished into a single pair of highly
interpretable variables. The final model is then

logitP (Y = 1|R,P ) = µ0 + αR+ βP (2)

2.3.2. Compatibility Clusters: Clusters HOILP

The approach described in the previous section has the advantage of substituting the p
original covariates Xi with two scores that carry information about possible interactions.
However, compressing the two lists, R̂K/2 and P̂K/2, directly into the scores R and P
could be too rough.

Here we propose a milder aggregation criteria, the compatibility clusters, which is
based on the idea that we should not bind together incompatible patterns. In princi-
ple, in fact, no observation can ever present two incompatible patterns simultaneously;
therefore, we may want to weight them differently in our model. Concretely, after having
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defined R̂K/2 and P̂K/2 as in the previous section, we focus on each of them separately

and propose a way to aggregate their terms. Starting from R̂K/2, we wish to find a par-

tition R̂1
K/2 ∪ ...∪ R̂

a
K/2 = R̂K/2 for which: 1) all interactions within the same subgroup

R̂j
K/2 are compatible with one another; 2) given two subgroups there always exists at

least a pairing of incompatible patterns, that is: no subgroups can be fused together
without violating the first rule.

Stated as it is, there is no unique way of doing this. In our experiments, we decided
to construct the groups in a way that their total number was as small as possible, thus
maximazing the information compression. Further details on the implementation can be
found in the Appendix, Section A.2.

Performing the described steps also for the protection patterns allows us to define
the cluster scores

Rj =
∑

T∈R̂j
K/2

T, Pj =
∑

T∈P̂i
K/2

T,

for j = 1, .., a and i = 1, .., b. The final model reads:

logitP
(
Y = 1|R1, .., Ra, P 1, .., P b

)
= µ0 +

a∑
j=1

αjRj +

b∑
i=1

βiPi (3)

Comparing (3) with (2), we see that now we are splitting the risk and protection scores
into more sub-scores, arguing that each one describes different, possibly incompatible,
situations.

3. Simulation Study

This section is devoted to verify some of the statements made on the most relevant
aspects of the proposed algorithm throughout the paper. In order to provide these
empirical evidences in a controlled setting, we had to build a suitable simulation protocol.
Indeed, to be meaningful, the following experiments required a dataset where the binary
independent variable showed complex dependencies with multiple categorical covariates
simultaneously, so that learning the right interactions would be essential to separate the
two classes. In Section 3.1 we describe how the needed data was defined and simulated;
then, on such data, we compare the performances of HOILP and its variants with those
achieved by other logistic models that do not account for interaction effects.

The subsequent experiments are instead devoted to (i) verifying whether the ”tar-
geted” search (or OCL), focused on identifying patterns in the positive class only, could
actually compete against the same algorithm fed with lists of interactions extracted from
both classes. Then, (ii) we validate the value added by the dissimilarity-based feature
selection in building the final set of interactions to include in the LR, w.r.t. picking
the top K interactions ranked on ORs. Finally, we verify the robustness of HOILP to
variations in (iii) sample size and (iv) class imbalance rate.
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3.1. Simulated Data
For the definition of the datasets adopted in all the simulation experiments described in
the following, we exploited a geometric model. This allowed us to synthetically introduce
the aforementioned outcome-covariates dependency based on multiple interactions.

The underlying geometric model is defined as a double squared tiling structure (Fig.1).
Each instance in the dataset is represented by a couple of triangular tiles, one picked from
the left tiling and one from the right with uniform probability. Two example instances
are reported in Fig.1.a. All the covariates in the dataset are binary representations of
the position of one of the two tiles (from left or right tiling). Indeed, the position of the
first tile on the left is described by 5 binary features defined as the following:

• R1 (right) takes value 1 if the tile is in the right half, 0 otherwise.

• U1 (up) takes value 1 if the tile is located in the upper half of the tiling, 0 otherwise.

• D1 (diagonal) takes value 1 if the tile is located below the main diagonal of the
tiling, 0 otherwise.

• A1 (anti-diagonal) takes value 1 if the tile is located below the anti-diagonal, 0
otherwise.

• O1 (outside) takes value 1 if the tile is outside the inner square (the 45-degrees
rotated square - composed of 8 triangular tiles - that has its vertices on the mean
points of the tiling’s edges), 0 otherwise.

Similarly, R2, U2, D2, A2 and O2 describe the position of the second tile in the right
squared tiling. Notice that to recover the notation adopted in Section 2 one may simply
let X1 := R1, X2 := U1, . . . , X10 := O2.

The dependent variable Y , that defines the two classes (y = {0, 1}), signals whether at
least one of the two tiles of the observations falls within one of the red areas highlighted
in Fig. 1.b. As such, Y is univocally determined by the 10 covariates described above.
However, in order for the classification problem to be less deterministic, we artificially
added noise to the data by mislabeling some observations. In particular:

Fig. 1. Geometric model behind simulated data. On the left (a) are two illustrative observations
in the dataset, represented by two tiles from each squared tiling. On the right (b) represents the
tiles that determine the positive class.
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• If both tiles of an instance i (left and right) fell in one red area (hence, yi = 1), the
label is changed to yi = 0 with a probability p̃ = 0.005.

• In all other cases, the value of y is changed to the opposite class with a probability
q̃ = 0.05.

There are several reasons motivating this construction of the dataset. First of all, note
that the two classes are unbalanced by construction. Indeed, before introducing the

noise, one has P(Y = 1) = 1 − P(Y = 0) = 1 −
(
14
16

)2 ' 23.4%, as the two tiles are
extracted independently and, due to uniform distribution, each one of them has a prob-
ability of 14/16 of not falling within a red zone. Secondly, strong dependencies exist
within groups of covariates: for instance, if R1,i = U1,i = 1, then necessarily A1,i = 1.
Lastly, the minority class (yi = 1) is built in such a way that it would be impossible
to attain a good classification performance without introducing interaction terms in the
model, as the red tiles need to be described with more variables simultaneosly to be
properly identified in the tilings. It is indeed not surprising how the experiment in the
following section makes evident the inaccuracy of a LR with no interaction terms on this
data.

3.2. Learning with or without interactions
As mentioned, the simulated data was built with the aim of challenging the traditional
LR models that try to classify observations exploiting the additive effect of the predictors
alone. As a starting point, we hence compare the performance of a traditional LR and a
Lasso Regression without interaction terms against our proposed algorithm in its three
variants. For this experiment, we adopted the previously described procedure in order to
generate 10 datasets, each of n =10,000 observations with P(Y = 1) ' 0.234. We then
splitted each dataset into training and test sets according to a 70/30 ratio. It is clear
from Table 1 how considering only main effects and their additive contribution makes the
model practically useless in discriminating between the two classes (AUC = 0.49±0.015
for both LR and Lasso). The Lasso Regression was performed imposing λ = 10−5,
because larger λ values shrinked the model to no term at all.

Note that our algorithm (here with K = 10 and suppmin = 10%) is yielding a very
high score in all its variants. Nonetheless, it is not surprising to see HOILP using as-is
interactions obtain the highest AUC.

One of the positive aspects that should not be undervalued about building statistical
models with high-order interactions derived from categorical features, is the undeniable
interpretability of the resulting model itself. This is especially true when applying HOILP,
that returns an arbitrarily long list of high-order interaction terms selected in order to
(i) be highly descriptive of one class in particular and (ii) cover as much diverse infor-
mation as possible regarding such class - thanks to the dissimilarity-based selection. In
Figure 2 we provide a concrete demonstration of this claim. We represented graphically
the 10 interaction terms included in the model generated by HOILP in one of the trials
of this experiment. The tiles in each pair of squared tilings are colored higlighting the
areas defined by the dummies included in each of the K = 10 selected interactions. Red
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Table 1. Results on the simulated dataset for glinternet (with varying number of interactions and
consequent number of terms) and HOILP (last row).

Model Terms AUC Sensitivity Specificity NPV PPV
LR 20 0.494 ± 0.015 0.465 ± 0.069 0.603 ± 0.105 0.759 ± 0.015 0.299 ± 0.035
Lasso 9.900 ± 0.316 0.494 ± 0.015 0.465 ± 0.069 0.604 ± 0.105 0.759 ± 0.015 0.299 ± 0.034
HOILP 10 0.919 ± 0.007 0.862 ± 0.015 0.945 ± 0.034 0.951 ± 0.006 0.855 ± 0.077
Scores HOILP 2 0.835 ± 0.022 0.710 ± 0.052 0.845 ± 0.070 0.892 ± 0.016 0.634 ± 0.087
Clusters HOILP 7.400 ± 0.516 0.853 ± 0.031 0.726 ± 0.044 0.840 ± 0.070 0.896 ± 0.016 0.630 ± 0.092

Fig. 2. K patterns identified by HOILP in one trial of the first simulation experiment (where
K = 10). Tiles are colored according to the areas defined by the categorical terms involved in
each of the selected interactions. Red patterns are considered risk patterns (OR > 1), while
protection patterns (0 < OR < 1) are colored in blue.

and blue coloring depend on the OR. The order in which the terms are drawn (to be
read by row), is the order in which the algorithm picked each of them. This means, for
instance, that the only blue pattern was selected as 6th interaction to be included. It
can be easily noticed how each of the selected interaction describes precisely an aspect
of the two classes. For instance, the first pattern spots one triangle in the right tiling
that appears to be associated with the minority class, which is coherent with the original
construction of the data (cfr. Figure 1.b). In contrast, the second selected interaction
highlights a completely different (but still consistent) area. It is interesting to see how
the only protection pattern, despite not telling much about the right tiling, precisely
defines an area in the left one where no minority class observation should fall.

3.3. One-Class Targeted Search and the relevance of Dissimilarity-based Interaction
Selection

Irrespectively of whether the objective were to fit a classification model, or to identify
all relevant patterns, the search for high-order interactions is a computational challenge
by nature because of its combinatorial character. As extensively discussed above, HOILP
algorithm exploits the interaction-item set duality to extract relevant high-order inter-
actions from the training data. To do that, it employs the widely recognized Apriori
algorithm for frequent item set mining, focusing the search on the positive class observa-
tions only. Among other things, the experiment here conducted in our simulated setting
is meant to support this approach by empirically demonstrating how it not only does
not hinder the classification of both classes, but it may foster performance and save time
w.r.t. extracting item sets from the two.
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Fig. 3. In order, performance of HOILP in its three interaction-representation versions (Individ-
ual Interactions, Scores and Clusters), against DS-HOILP with suppmin = 0.1, DS-HOILP with
suppmin = 0.5 and TOP HOILP on simulated data.
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Once proven the validity of this first relevant aspect of the proposed algorithm, the sec-
ond fundamental design choice that deserves an empirical evaluation is the dissimilarity-
based feature selection method. Indeed, this peculiar passage builds arbitrarily long lists
of features (interactions) by selecting the most diverse among those with the highest OR.
This method was designed under the assumption that a more diverse set of interactions
might reduce noise, generalize better on unseen minority class observations by captur-
ing the whole underlying class’ distribution and collect the most useful interactions to
interpret and characterize this group. We tested these ideas within the same experiment
as above.

We exploited the same 10 datasets described in 3.2 but trained four different algo-
rithms:

(a) HOILP in its traditional One-Class-Learning (OCL) version, searching on minority
class examples only with suppmin = 0.1. We tested the algorithm in all its three
variants.

(b) Two-Class-Learning HOILP (referred to as Double Search HOILP), building the list
of interactions searching separately in both classes. Similarly to OCL HOILP we
imposed suppmin = 0.1.

(c) Double Search HOILP with suppmin = 0.5.
(d) To evaluate the substantiation of the hypotheses on the value added by the dissimilarity-

based feature selection, the fourth algorithm is a version of the OCL HOILP that
only picks the top K interaction terms from the ranked list (Top HOILP).

In Figure 3 we provide the results of this experiment. The most traditional implemen-
tation of HOILP outperforms all other versions basically on all the considered metrics.
First of all, note that the DS-HOILP with the same suppmin performs almost comparably
in terms of AUC, but Sensitivity is strongly affected by searching for patterns within
both classes. This result testifies in favour of our OCL approach to foster classification
accuracy specifically on the underrepresented class.

Interestingly enough, the DS-HOILP with the highest support is the worst performer
on all dimensions: at first sight, this is surprising as one would expect highly frequent
patterns in both classes to separate the two at best. However, raising the suppmin

value, especially for what concerns the minority class, can result in a poor performance
whenever the separating patterns are very different and scattered along the data.

For what concerns Top HOILP, its performance is particularly low in terms of Sen-
sitivity. Comparing this metric with the others, it is straightforward to deduce that
the algorithm’s performance is hindered by a very high number of False Negatives
(Sensitivity = TP/(TP + FN) ' 0.2).

For the purpose of our empirical demonstration, this latter result is an interest-
ing one, that sheds a light on one of the multiple reasons why the dissimilarity-based
interaction selection step helps in capturing the real underlying distribution of minor-
ity class observations in a generalized and robust manner. Indeed, the K interactions
selected by Top HOILP with their high OR are very specific to certain minority class
observations (PPV ' 1), thus guaranteeing a precise majority class classification as well
(Specificity ' 1, as the identified patterns are extremely rare in the overrepresented
class), but their generalizability to the whole minority class is quite low.
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Fig. 4. Performance of HOILP, Scores HOILP and Clusters HOILP for varying sample sizes.

In other words, the algorithm is including a set of interactions that exist within the pos-
itive class only, but they all similarly describe one subgroup of this class - which appears
to be quite distant from all other examples in the dataset. This situation may arise in
the presence of outliers within the underrepresented class, or in case of an irregularly
distributed minority class with two or more subgroups of observations. As a matter of
fact, note that the simulated data has evident subgroups, as positive observations are
defined by several distinct areas in the geometric space. This testifies in favour of the
robustness of the dissimilarity-based feature selection method that would, by design,
include at least one of the high OR patterns (thus describing the subgroup), but would
then be forced to add dissimilar interaction terms, lowering the risk to overfit the group
of outliers (or the subgroup), and providing a better generalization on the whole minority
class population.

3.4. On the robustness to Sample Size
Nowadays, real-life research settings present an extremely wide range of different sce-
narios when it comes to sample size. Huge data sets in some domains are opposed to
extremely limited samples in others, above all the healthcare or medical sector. There-
fore, any novel statistical approach that aims at finding broad application needs to be
flexible to the different situations it might encounter.

This experiment is meant to evaluate and discuss the performance of HOILP for ex-
tremely limited sample sizes. Indeed, as n grows larger, the only foreseeable drawback
of the proposed methodology regards computational time. It has already been discussed
what precautions were taken to limit the impact of extremely large datasets, therefore
the focus here will be around the potential complexities in implementing HOILP on very
few observations.

Indeed, mining item sets on one class only may easily induce low generalization
capability of the identified interactions, if the sample is too small or poorly representative
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of the real class’ distribution.
Moreover, decreasing minority class sample size may bias the structure (and reduce

the number) of patterns to evaluate for inclusion as interaction terms. Indeed, as the
sample size gets smaller, fewer levels of each covariate may be represented in minority
class examples.
With this experiment we wish to empirically demonstrate that thanks to the combined
effect of the suppmin parameter, the OCL search, and the dissimilarity-based FS, HOILP
can handle extremely limited sample sizes granting a good performance on all evaluation
metrics. Indeed, searching on minority class examples with a low threshold on suppmin

allows the algorithm to identify a sufficiently large set of interactions despite working
on very few observations. Moreover, the dissimilarity-based selection lowers the risk to
overfit the small pool of observed data points and include in the final model interactions
that might generalize better on the overall population.

For the experiment we trained HOILP, Scores HOILP and Clusters HOILP on datasets
of varying sample size with small n and K = 10. For each sample size (n ∈ {100, 1000}
with a step of 50 observations) we generated 50 training sets and test sets. In Figure
4 we provide the obtained results in terms of mean and standard deviation on several
evaluation metrics. As the reader may notice, despite sample size gets significantly
small and the number of terms included in the LR is rather limited (10 terms at most),
the performance is not degrading significantly (lowest AUC score around 0.7 with the
smallest sample of 100 observations only). Among the three, HOILP with ungrouped
interactions performs significantly better than the other two versions. Again, this is not
surprising as we are adding more terms to the LR without any information reprocessing.
Nonetheless, the two other versions provide a solid performance as well, and might be
useful in the case the number K of interactions had to grow larger, or to satisfy specific
interpretability requirements.

3.5. On the robustness to Class Imbalance
The last relevant matter to discuss regarding the broad applicability of our proposed
approach, is its capability to handle situations of strong class imbalance. As a matter
of fact, the nature of the algorithm itself makes it almost unaffected by class imbalance
ratios if the number of observations within minority class is sufficiently large. Indeed, the
one-class-learning procedure vanishes the effect of class imbalance, that would instead
make the problem rather intractable in case the algorithm searched on the whole dataset
together.

Let us consider an extreme case in which the itemset i has empirical frequency fi,1 ' 1
among minority class and fi,0 ' 0 within majority observations. In what follows we write
n1 for the number of minority class observations and we let p1 := n1/n. Then, in order for
the algorithm to include i (which is extremely relevant in discriminating between the two
classes) in the list of interactions we should impose suppmin < p1. In strongly imbalanced
settings, p1 can easily take values below 0.1. This would mean that including patterns
specific to the positive class would force the imposition of extremely low suppmin values,
causing the list of potential interactions to explode. This would increase computational
time, noise, and lower the probability of including strongly discriminative interactions
in the model despite the high associated ORs.



18 Massi, Franco et al.

Fig. 5. Performance of HOILP, Scores HOILP and Clusters HOILP for varying imbalance ratios.
The percentages on the x-axis (reported in log-scale) represent the portion of minority class
observations on the whole dataset.

Instead, the OCL approach of HOILP overcomes this limitation and identifies relevant
interactions irrespectively of the imbalance ratio. Indeed, in Figure 5 it can be noticed
how none of the presented metrics are strongly affected by the incresingly imbalanced
setting of the classification problem. For this experiment we generated 50 training and
test set for each percentage of minority class observations, from p1 := n1/n = 1% to
p1 = 40%, with n = 5, 000. Minimum support was set to 0.1 and K = 10. Of course,
in this case the algorithm was dealing with a rather large n. However, as we already
discussed the performance for small sample sizes, we were more interested in observing
the effect of the imbalance ratio only. The three variants demonstrate a solid performance
for extreme imbalancement as well, and (especially for traditional HOILP) basically reach
and robustly keep their best performance from 5% on.

4. Benchmark Experiments

As discussed in Section 1.1, our proposition lies at the crossing of two independent
research lines, building on concepts borrowed from the best of both.

In particular, the group of works dealing with significant pattern mining provides a
set of potential alternatives for the identification of the list of interaction to be filtered
on a dissimilarity basis. As a first development of our methodology we decided to
apply the most widely recognized item set mining algorithm, the Apriori algorithm.
Nonetheless, future developments might include alternative pattern mining methods
that might scale better, improve the efficiency or handle some data and problem-specific
requirements more effectively. As a matter of fact, we see these methodologies more as
potential additions to our algorithm, than actual competitors. Therefore, to compare the
performance of our algorithm with a competing benchmark, we focused on the second
line of research mentioned among related works. In particular, we chose the recent work
of Lim and Hastie (2015), where the authors present Group-Lasso INTERaction-NET -
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Table 2. Results on the simulated dataset for glinternet (with varying number of interactions and
consequent number of terms) and HOILP (last row).

Param AUC Sensitivity Specificity Mean N Vars Fitting Time [s]
ninter = 3 0.843± 0.010 0.895± 0.008 0.760± 0.03 25.6 0.437± 0.057
ninter = 4 0.867± 0.012 0.884± 0.023 0.810± 0.039 33.8 0.476± 0.049
ninter = 5 0.878± 0.019 0.884± 0.012 0.837± 0.047 36.4 0.496± 0.047
ninter = 6 0.891± 0.021 0.875± 0.016 0.879± 0.044 41.2 0.544± 0.063
ninter = 7 0.899± 0.021 0.868± 0.018 0.916± 0.062 44 0.723± 0.505
ninter = 8 0.920± 0.012 0.861± 0.013 0.968± 0.036 49.8 2.406± 1.490
ninter = 10 0.924± 0.007 0.859± 0.011 0.985± 0.004 60.2 5.055± 1.198
K = 10 0.917± 0.009 0.854± 0.015 0.949± 0.036 10 1.185± 0.053

glinternet, a state-of-the-art approach when it comes to selecting interactions for LR
models.

To compare HOILP with glinternet we applied both algorithms to simulated data
and to a dataset from UCI Machine Learning Repository (Dua and Graff, 2017), namely
Breast Cancer † dataset.

For readability and comparability of results there are a few considerations to make re-
garding glinternet. The algorithm is indeed a regularization-based interaction learning
method and as such it does not allow for a precise control over the number of terms in-
cluded in the model, especially in case of categorical covariates. In facts, the open source
software‡ allows the user to define the number of interactions (ninter) to include in the
model, and then the algorithm iteratively relaxes the regularization to get as close as
possible to ninter interactions. The procedure stops when the algorithm reaches at least
niter, meaning that the number of interactions may be larger than required. Moreover,
glinternet includes main effects and interactions by enclosing the whole variable, with
all its categorical levels. As a consequence, given A and B binary variables, including
the interaction A×B requires 4 terms to be included in the LR model.

4.1. Benchmark comparison on simulated data
To test HOILP’s performance against the benchmark, we run glinternet on 10 simulated
training and test set. To compare results on the basis of how many terms were introduced
in the LR as well, we imposed several different ninter values (ninter ∈ {3, 4, 5, 6, 7, 8, 10}).
Then, we collected the number of β parameters associated with each level of the selected
covariates to count precisely the number of terms in the model. Table 2 reports the
results of the experiment. Again, HOILP was trained with K = 10 and suppmin = 0.1.

Our proposed algorithm performs notably better then the benchmark competitor on
average, up until glinternet includes 10 interaction terms in the model. However, using
10 interactions translates in including on average 50 or 60 terms in the LR, as opposed
to HOILP that is using 10 pattern-terms only. This makes the resulting model way more
interpretable, and the estimated β parameters more robust.

† https://archive.ics.uci.edu/ml/datasets/breast+cancer
‡ cran.r-project.org/web/packages/glinternet/index.html
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Table 3. Results on the Breast Cancer dataset for HOILP - (i) Individual interactions, (ii) Scores and
(iii) Clusters, (iv) LR without interactions, (v) Lasso Regression and (vi) glinternet (with varying
number of interactions and consequent number of terms).

Method Parameters AUC Sensitivity Specificity Mean N Terms
HOILP K = 4 0.726 ± 0.068 0.692 ± 0.096 0.683± 0.062 4
Scores HOILP K = 12 0.747 ± 0.064 0.692 ± 0.054 0.725± 0.086 2
Clusters HOILP K = 12 0.746 ± 0.064 0.700 ± 0.057 0.710± 0.084 2.6 ± 0.516
No Int. LR - 0.643± 0.053 0.615± 0.083 0.677± 0.064 241
Lasso LR λ = 10−2 0.710± 0.086 0.665± 0.073 0.723± 0.064 12.2± 2.044
glinternet ninter = 2 0.715± 0.081 0.646± 0.149 0.765± 0.127 51.2
glinternet ninter = 3 0.716± 0.075 0.635± 0.123 0.772± 0.125 68.4
glinternet ninter = 4 0.712± 0.089 0.592± 0.206 0.810± 0.125 103.3
glinternet ninter = 5 0.710± 0.086 0.542± 0.175 0.863± 0.080 135.1
glinternet ninter = 6 0.705± 0.079 0.600± 0.126 0.808± 0.096 169.4
glinternet ninter = 8 0.701± 0.075 0.588± 0.106 0.813± 0.112 209.7
glinternet ninter = 13 0.687± 0.068 0.569± 0.155 0.818± 0.123 336.1

4.2. Breast Cancer Case Study

For this last benchmarking experiment it was chosen a freely available dataset from UCI
Machine Learning Repository, namely Breast Cancer Dataset. This data set includes
201 instances of one class and 85 instances of another class. The instances are described
by 9 categorical attributes, some of which are continuous binned into categories and
some are nominal.

What makes this dataset interesting for this application is the rather small sam-
ple size (typical of a real-life medical experimental setting), and the varying number
of levels per feature, ranging from 2 to 11. In Table 3 the results of the application
of the three versions of HOILP, against glinternet, a LR model and a Lasso Regres-
sion both without interactions. Because of the small sample size, the cross-validation
was performed by bootstrapping training and test set 10 times with splitting ratio 70/30.

Our algorithms were all trained with suppmin = 0.3 and the additional use of 90%
confidence intervals for the odds-ratios; we used different values for K, as reported in
Table 3. HOILP and its variants consistently attain the best performance in terms of
AUC and Sensitivity, using the smallest number of terms in the model. Lasso Regres-
sion and glinternet perform comparably, however the latter includes in the model an
eccessive and disproportionate number of terms. Indeed, as the number of terms grows,
the performance of glinternet worsens.

These results suggest that the interaction effect in describing the target variable in
this particular dataset is not extremely evident, nor necessary. Indeed, the absence of
interaction terms is not strong enough to hinder the classification capability of the Lasso.
However, the co-occurrence of some specific dummy variables in the minority class seems
to capture a relevant part of the variability in the data, allowing HOILP and its variants
to provide the best accuracy with a very limited pool of patterns.
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5. Discussion and Conclusions

In this paper we presented HOILP, an High-Order Interaction Learning algorithm via
targeted Pattern search, to select high-order interactions among categorical covariates
and build a LR model. Together with HOILP, we proposed two alternative strategies
to represent and include the selected interactions in the model, namely Scores HOILP

and Clusters HOILP, to respond to problem-specific needs of the research community
using LR for inference and modeling. Throughout the sections we validated the claims
regarding some relevant aspects of our proposed methodology through a wide set of
experiment on simulated or real data. In particular, as HOILP was designed specifically
to address a broad range of real-life data analysis issues, we wish to conclude the paper
by recalling and discussing the most notable pros of the algorithm.

First and foremost, HOILP was designed to make LR models more powerful by intro-
ducing interaction terms between categorical covariates. However, to make the resulting
model reliable for inference, a strict control over model dimensionality is needed. To
this specific aim, the option to choose the precise number of interaction terms (K) to
incude allows the user to tailor the LR fitting on the problem at hand, managing the risk
of biased estimates and unreliable inference (Sur and Candès, 2019) induced by p � n
settings. Controlling for the dimensionality of the model surely makes HOILP extremely
effective in small sample size settings. Nonetheless, the algorithm is fast and scalable
enough to be applied to research scenarios where both p and n are large. Indeed, the
proposed method provides a useful feature selection technique, that reduces the compu-
tational cost by focusing its pattern search on one class only (targeted search) without
losing generalizability, and that returns lean and interpretable models in manageable
running times.

Besides inference robustness, model dimensionality surely impacts interpretability as
well. Most real-life application domains are willing to sacrifice a little on the performance
side, to foster readability and explainability of results. HOILP addresses this aspect by
providing an arbitrarily small and extremely descriptive set of discriminative interaction
terms, that are easy-to-read and interpret. We provided a clear example via simulation,
where the selected patterns described precisely the areas where the two classes were to
be sought for. Moreover, as mentioned we introduced two alternatives to the principal
algorithm (Scores HOILP and Clusters HOILP), whose aim is that of serving this need.
Indeed, some potential applications of the two variants could be easily identified in
the healthcare and lifescience domain, where n is traditionally very small, p may grow
extremely large and interpretability is key. For instance, genome-wide association studies
may require long lists of interactions to properly characterize a patient and introducing
K terms in the model may reduce both interpretability and reliability of results (as even
K may be larger than n). Furthermore, the Risk and Protection Scores of Scores HOILP

provide a clear representation of the patterns and their role in profiling the population,
while being an agile scoring system that can be easily accompanied by other descriptive
covariates.

Another point of paramount importance, is the ability of HOILP and its variants to
manage even extremely imbalanced settings. We already highlighted how oftentimes
minority class represents the most interesting class to study, while researchers need
to make reliable inference on a very small sample of this critical population. HOILP,
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combining targeted search with dissimilarity-based interaction selection, demonstrated
to be a powerful tool to capture the underlying minority class distribution in a robust
and generalizable manner, even in presence of very few observations.

Lastly, it is relevant to address the fact that HOILP and its variants focus their atten-
tion on the search for interactions among categorical covariates. This apparent limitation
is actually grounded on a solid and multifaceted rationale. First of all, as previously men-
tioned, fully categorical data are getting more and more common in several scenarios,
such as life sciences. The tractability of these types of data within LR models with
interactions is strongly affected by the exponential growth of the number of covariates
to be considered as the number of levels grow. This same impact is less dramatic when
dealing with continuous features. Nonetheless, HOILP was designed to solve this specific
issue at best, while being a flexible and effective addition to a broader study framework
with various data types as well. Indeed, once selected a restricted and powerful subset of
K interaction terms from the categorical subset of variables (absorbing a great portion
of computational complexity), the user can easily accompany them with additional nu-
merical covariates - and their interactions. These further terms might indeed be selected
- separately or jointly with the K HOILP’s terms - via other traditional techniques, that
could work on a reduced number of features w.r.t. using the whole original data.

We also compared the performance of the proposed algorithm with that of a state-
of-the-art interaction selection method, glinternet, demonstrating our method’s supe-
rior performance in terms of accuracy, interpretability, and significance of the resulting
model, as HOILP and its variants obtained higher scores with notably less terms in the
model.

In conclusion, with its targeted approach, the introduction of a novel dissimilarity-based
interaction selection, and its flexibility to be tailored around the specific user needs (i.e.
number and order of interaction terms, interaction representation via Scores or Com-
patibility Clusters, confidence adjustment), HOILP results to be a powerful approach to
face the complexities of applying LR to many real-life research domains.
Future works may be devoted to improving the algorithm’s efficiency by including more
refined item set mining methods at its core and expanding the methodology to include
numerical covariates in a noise-adverse manner.

Appendix

In what follows, we assume to be given a dataset D = {(x1,i, ..., xp,i, yi)}ni=1 of n i.i.d.
observations of p categorical covariates X1, ..., Xp, resp. with m1, ..,mp levels, and a
target variable Y . Again, we denote by I the set of all possible interaction terms
(classical and degenerate) for the Xi’s.

A. Algorithmic Details

A.1. Support computation
After the mining phase, one is left with a candidate subset Î ⊂ I. In order to compute
the corresponding odds-ratios, the datamatrix Î has to be constructed; however, as the
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number of candidate patterns is tipically very large, evaluating each interaction term by
its formula can be unnecessarily expensive. Parallel computing may surely help, but we
can also exploit the particular structure of patterns to grant a faster computation.

Without loss of generality, let us rename the dummie variables {X(1)
1 , ..., X

(mp)
p } as

{Zi}di=1, where d =
∑p

i=1mi, and let Z ∈ Rn×d be the datamatrix of such dummies.

For |Î| = L and Î = {Tk}Lk=1 we define the incompatibility matrix M ∈ Rd×L as (recall
that here we allow dummies to be degenerate interactions)

Mi,k :=

{
1 Zi ⊥ Tk
0 otherwise

i = 1, .., d, k = 1, .., L

If we consider Z,M and Î as logical matrices (that is, matrices having entries in the
boolean domain {0, 1}), then, because each observation always attains exactly one level
for each variable, it is very easy to see that

Î = ¬ (Z ·M) (4)

where the matrix product is intended in the boolean sense, whereas ¬ is the common
notation for the logical negation operator (here applied entry-wise). Let us briefly sketch
the proof for (4). Consider the jth observation for the kth interaction, ij,k. By definition
of logic sum and product, the corresponding term on the right-hand side of (4) is

¬

(
d∑

i=1

zj,imi,k

)
= ¬ (∃i ∈ {1, .., d} | zj,i ∧mi,k) =

= ¬ (∃i ∈ {1, .., d} | zj,i ∧ Zj ⊥ Tk) = ¬ (¬ij,k) = ij,k

in fact, the absence of a pattern is equivalent to the presence of (at least) an incom-
patible dummie.

A.2. Compatibility clusters computation
In Section 2.3.2, we described the algorithm Clusters HOILP, which condensates the
information coming from the interaction terms into fewer variables associated to certain
compatibility clusters. For more readability, let us recall the notation we used in that
context. From the list of candidates Î, we exploited the dissimilarity measure to extract
K patterns (withK even). Half of those were selected from the risk interactions, resulting

in the sublist R̂K/2; similarly, the other half consisted of protective patterns, P̂K/2. Next,
our algorithm requires the partitioning of these two lists (separately) into smaller groups
of patterns so that: each group is formed by pairwise compatible patterns; different
groups always have -at least- two incompatible patterns. For the sake of simplicity, we
address this problem only for the risk patterns.

To determine a suitable partition of R̂K/2 into compatibility clusters R̂1
K/2, ..., R̂

a
K/2,

it can be convenient to consider the interactions as nodes of an undirected compatibility
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Fig. 6. Example of a compatibility graph. Several interactions terms (two of which are degen-
erate) involving the dummies of four {0, 1}-valued random variables, A,B,C and D, define the
nodes within the graph. Two nodes share a link if and only if the corresponding interactions are
compatible. Our greedy decomposition breaks the graph into two clusters: the maximal clique
{B(0), C(1), A(1)C(1), A(1)B(0)D(0)} and the remaining pair {A(0)B(0)C(0), C(0)D(1)}.

graph G(R̂K/2), where two interactions are linked together if and only if they are com-
patible. In that way, our original problem becomes equivalent to that of partitioning a
graph into cliques, with the additional constraint that such cliques should not be further
joinable into a larger ones. As foretold, in general the solution to such puzzle is not
unique and many partitions are feasible; in the optic of dimensionality reduction, one
may thus want to strengthen the constraints and search for a minimal cover. However,
the problem of finding a minimal clique cover for a graph is known to be NP-hard (Karp,
1972), so we partially avert these issue by opting for a greedy procedure. In short: it-

eratively, we find the maximal clique in G(R̂K/2), store its nodes in the new list R̂j
K/2,

and remove the clique from the graph; we keep this up until the graph becomes empty.
The determination of the maximal clique can be done in several ways. In our ex-

amples, we actually relayed on the more general Born-Kerbosch algorithm (Bron and
Kerbosch, 1973), which in principle allows one to list all the maximal cliques within a
graph. This algorithm is known for being computationally expensive on large graphs,
but that was not our case as we typically picked small values for K. Whenever large
values of K are needed, it may be convenient to relay on other maximal clique search
algorithms (Tarjan and Trojanowski, 1977; Robson, 1986; Tomita and Kameda, 2007;
Konc and Janežič, 2007).

A.3. Further technicalities
Here we address a few last technical details that can be considered when implementing
HOILP or one of its variants.

First of all, even by exploiting the most sophisticated routines certain datasets may
still yield too high computational times in the first training phase. Aside from replacing
Apriori with other frequent itemsets mining algorithms, another possibility is that of
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reducing the interaction search only to those patterns that have a length smaller than
a fixed L > 0. This further constraint can be easily added as it does not impact on
the subsequent steps of the algorithm. Fixing a maximal length L can also be used to
intentionally bound the order of the interactions, which may be of interest depending
on the context.

Finally, another possible issue is that of finding interactions T that along the dataset
have an uncomputable rank, log |ORT |. This happens everytime the contingency table
of (T, Y ) has at least an empty cell. To deal with such situations, several approaches can
be adopted. For example one may either: 1) further investigate the anomaly and decide
whether to discard the interaction or force its presence in the final list of patterns; 2)
adopt an adjusted version of the OR, for instance by employing the Haldane-Anscombe
correction (Ruxton and Neuha, 2013), which consists in preliminary increasing each
value in the contigency table by 0.5.

B. On the dissimilarity measure

In Section 2.2.2, we introduced a dissimilarity measure d : I × I → [0,+∞) for the
purpose of comparing different patterns.

Here, we wish to point out a few theorical facts about d. First of all, the proposed
dissimilarity measure defines a so called semi-metric over I (Wilson, 1931). In fact, as
the MCD of two interactions is always a subinteraction of them both, it is straightforward
to see that d satisfies:

1) d(T, S) ≥ 0 for all T, S ∈ I (positivity);

2) d(T, S) = 0 ⇐⇒ T = S (identity of indiscernibles),
in fact d(T, S) = 0 if and only if either |T | = |S| = 0 or |MCD(T, S)| = |T | = |S|,
which is equivalent to T = S;

3) d(T, S) = d(S, T ) (symmetry)

In general though, d does not define a metric over I. Consider for instance the case
of three binary variables A,B and C. Then, for T := A(0)B(0)C(0), S = A(0)B(0)C(1)

and Z = A(0)B(0), because T ⊥ S, one has

d(T, S) = 3 > 2 = d(T,Z) + d(Z, S)

which violates the triangular inequality.
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Konc, J. and D. Janežič (2007). An improved branch and bound algorithm for the
maximum clique problem. MATCH Commun. Math. Comput. Chem. 58, 569–590.

Lemon, S. C., J. Roy, M. A. Clark, P. D. Friedmann, and W. Rakowski (2003). Clas-
sification and regression tree analysis in public health: methodological review and
comparison with logistic regression. Annals of behavioral medicine 26 (3), 172–181.

Lim, M. and T. Hastie (2015). Learning interactions via hierarchical group-lasso regu-
larization. Journal of Computational and Graphical Statistics 24 (3), 627–654.
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