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Abstract

Disease progression models are a powerful tool for understanding the development of
a disease, given some clinical measurements obtained from longitudinal events related
to a sample of patients. These models are able to give some insights about the disease
progression through the analysis of patients histories and can be also used to predict the
future course of the disease for an individual. In particular, Hidden Markov Models are
suitable for disease progression since they model the latent unobservable states of the
disease. In this work we introduce a novel HMM where the outcome is multivariate and
its components are not independent; to accomplish our aim, since we do not make any
usual normality assumptions, we model the outcome using copulas. We first test the
performance of our model in a simulation setting and show the validity of the method.
Then, we study the course of Heart Failure, applying our model to an administrative
dataset from Lombardia Region in Italy, showing how episodes of hospitalization can
give information about the disease status of a patient.
Keywords: Copulas; Disease progression; Hidden Markov Models; Multivariate data.

1 Introduction
Hidden Markov Models (HMMs) are a popular method for modeling disease progression

and estimating the rates of transition between the stages of a disease, widely used in many
fields including bioinformatics [7], signal processing [5], finance [23]. In the literature, there
are many examples of HMMs used to model the progression of a chronic disease (see, e.g.,
the study of bronchiolits obliterans syndrome [19], glaucoma and Alzheimer’s disease [21],
HIV disease [15]). HMMs consist of a Markov model in which the underlying states visited
by the Markov process are unobservable (i.e. hidden) but the distribution that generates
the output depends on the state. Basically, a HMM can be considered as a generalization
of a mixture model where the hidden variables, which control the mixture components,
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are not independent of each other but related through a Markov process [25]. We only
consider models where the state space of the hidden variables is discrete but the observations
can either be generated by a discrete or continuous distribution; for example, like in many
medical applications, the states of the Markov process may represent different severities
of a disease, while the observations are some measure of a clinical index. In particular,
in this work, we want to extend the use of HMMs to multivariate observations. In the
multivariate HMM framework, there are examples of HMMs where the outcome is modelled
using mixtures of multivariate Gaussian distributions [3] or, alternatively, using independent
nonnormal distributions and it is possible to find R packages able to do the task [9, 28]. In
general, assuming a multivariate normal distribution is not a suitable approach to model the
joint distribution of certain variables. Therefore, to find a more appropriate multivariate
model, we use copulas.

Copulas have been introduced in [26] but they received particular attention in statistical
modelling only in the last two decades. A copula is a function that "couples" a multivariate
distribution function to its marginal distribution functions and contains all the information
about the dependence structure between the components of a random vector [22]. As a result,
we can model the components of a random vector using different marginals by incorporating
a flexible modelling of the dependence structure. For this reason, copulas are very appealing
in many fields when the multivariate dependence is of interest and the multivariate normality
is questionable; for instance, they are used in finance [4], medicine [8], engineering [14]. For
further details about copulas and their theory, see among others [10,22].

In this paper, we develop a novel HMM where the outcome is modelled using a mixture
of multivariate distributions. The dependence structure between the continuous components
of the outcome is described using the copula. Since our motivating problem regards disease
progression, we apply our model to a dataset regarding patients in the Lombardia region
of Italy affected by Heart Failure (HF), a degenerative pathology that interests the heart
muscle. Specifically, the dataset is extracted from an administrative database and provides
information about the hospital admissions of patients. For a detailed description of the
dataset, along with a study using multi-state models, see [18]. The reason of our model
choice consists in the fact that the dataset contains for each patient a sequence of observation
vectors that cannot be modelled as realizations of a multivariate gaussian distribution and,
since each element of the vector brings information about a single patient for a specific
hospitalization, considering the presence of a dependence structure is the most obvious
choice. Moreover, for each patient, we have a sequence of vectors that evolves in time and
the HMMs are able to capture their progression through different stages of the disease.

The paper is organized as follows: in Section 2 we present the model, giving some
background information about the theory of HMMs and copulas; in Section 3 we assess
the performance of our model in a simulation study and in Section 4 we apply it to the
administrative dataset; finally, Section 5 contains some discussion and conclusions. All
the analysis have been carried out using the statistical software R [24] and the codes are
available upon request.
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2 The model
A Hidden Markov Model [12] is a bivariate process {(Qk,Xk)}k≥0 defined on a given

probability space (Ω,F ,P) such that

• {Qk}k≥0 is a Markov chain with a discrete and finite state space {s1, . . . , sN}, with
N ≥ 1, transition matrix A = {aij} = P(Qk = sj |Qk−1 = si) and initial distribution
ν, where νi = P(Q0 = si);

• for each k, Xk is a d-dimensional random vector. Given the state process {Qk}k≥0, Xk

is a sequence of conditionally independent random vectors; the conditional distribution
of Xk only depends on Qk for each k and admits a probability density function fXk|Qk

.

For any i = 1, . . . , N , we denote with bi( · ; θi) = fXk|Qk=si
( · ; θi) the emission probability

density function of the random vector Xk conditionally on the event {Qk = si}. Such density
depends on some parameters θi that belongs to a set Θ ∈ RL, L ≥ 1, e.g., if fXk|Qk=si

( · ; θi)
is the pdf of an univariate exponential distribution, Θ = R+ contains the rate parameter
of the distribution. Hence, we can completely define our HMM with the set of parameters
λ = (ν, A,θ1, . . . ,θN ).

Let us indicate with x = {xk, 1 ≤ k ≤ K} a single realization of length K of the
stochastic process (Xk)k; then we can denote with L(λ|x) the likelihood function of the
parameters of the model λ given the data x. There are usually three fundamental problems
(see among others [25] and [11]) associated with HMMs:

1. find L(λ|x) for some observation x = (x1, . . . ,xK);

2. given some x and λ, find the best state sequence Q = (Q1, . . . , QK) that explains x;

3. find λ∗ = argmax
λ

L(λ|x).

As usually done in the literature, to address these problems we use the forward-backward
procedure, the Viterbi algorithm and the Baum-Welch algorithm, respectively. In particular,
since there are no modifications of the Viterbi algorithm due to our model, we only focus on
the first and third problem. Let us recall the forward variables αk(j) defined as

αk(j) = f(X1,...,Xk,Qk)|λ(x1, . . . ,xk, sj),

i.e. the probability density function of observing the partial sequence X1, . . . ,Xk and ending
in the state Qk, given the model λ. We can solve for αk(j) inductively, as follows:

(1) initialization: α1(j) = νjbj(x1; θj), for 1 ≤ j ≤ N ;

(2) induction: αk+1(j) =
[∑N

i=1 αk(i)aij
]
bj(xk+1; θj), for any 1 ≤ k ≤ K − 1 and 1 ≤ j ≤

N ;

(3) termination: L(λ|x) =
∑N
i=1 αK(i).
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Since these quantities are made up of products of probabilities, as k increases they become
progressively smaller and eventually they are rounded to zero. In order to solve this problem,
it is essential to introduce an appropriate scaling procedure, see for instance [25]. Hence, at
each step k of the algorithm, we introduce a scaling parameter ck = 1/

∑N
i=1 αk(i), such that

the scaled variable can be written as α̂k(j) = ckαk(j). The backward procedure is similar;
the backward variables βk(i) can be defined as

βk(i) = f(Xk+1,...,XK)|(Qk,λ)(xk+1, . . . ,xK , si),

i.e. the probability density function of the partial observation sequence Xk+1, . . . ,XK given
that we started at state Qk = si and the model λ. We can solve for βk(i) inductively, as
follows:

(1) initialization: βK(i) = 1, for 1 ≤ i ≤ N ;

(2) induction: βk(i) =
∑N
j=1 aijbj(xk+1; θj)βk+1(j), for any 1 ≤ k ≤ K − 1, 1 ≤ i ≤ N ;

(3) termination: L(λ|x) =
∑N
i=1 β1(i)νibi(x1; θi).

Again, it is essential to scale appropriately these variables. At each step k of the algorithm,
we compute β̂k(j) = ckβk(j), using the values of ck computed in the forward step. Both
procedures are able to compute L(λ|x) separately but we need them both in order to find
the model λ that maximizes the likelihood.

Since the sequence of states occupied by the Markov-chain component of an HMM is
unobservable, the usual approach consists in treating the states as missing data and apply an
EM algorithm [6] to find the maximum likelihood estimates of the parameters. In the HMM
framework, the algorithm is known as Baum-Welch algorithm (for further details see [1,2,29]
for the case of discrete observations and [3] for the case of continuous observations).

In order to describe the procedure for the estimation of the HMM parameters, we first
define ξk(i, j), the probability of being in state si at time k, and state sj at time k+ 1, given
the model and the observation sequence, i.e.

ξk(i, j) = P (Qk = si, Qk+1 = sj | X1 = x1, . . . , XK = xK , λ)

We also define the probability of being in the state si at time k, given the observation
sequence and the model

γk(i) = P (Qk = si | X1 = x1, . . . , XK = xK , λ) =
N∑
j=1

ξk(i, j),
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From [11], the log-likelihood of our model is

log(L(λ|x)) =
N∑
j=1

γ1(j) log νj︸ ︷︷ ︸
term 1

+
N∑
i=1

N∑
j=1

(
K∑
k=2

ξk(i, j)
)
log aij︸ ︷︷ ︸

term 2

+
N∑
j=1

K∑
k=1

γk(j) log fXk|Qk=sj
(xk; θj)︸ ︷︷ ︸

term 3

.

(2.1)

Using this expression, it is possible to perform the EM algorithm for HMMs by following
iteratively the two steps:

• E step replace the quantities ξk(i, j) and γj(k) by their conditional expectations given
the current parameter estimates and the observations

ξk(i, j) = αk(i)aijbj(xk+1; θj)βk+1(j)∑N
i=1

∑N
j=1 αk(i)aijbj(xk+1; θj)βk+1(j)

,

γk(i) = αk(i)βk(i)∑N
j=1 αk(j)βk(j)

;

• M step maximize the log-likelihood in (2.1). Since each term of the expression
depends on different parameters, we can split it into three parts and maximize each
term separately. The solutions which maximize each term are the following:

1. ν̄i = γ1(i), i.e., the expected number of times in state si at time k = 1;

2. āij =
∑K−1

k=1 ξk(i,j)∑K−1
k=1 γk(i)

, i.e., the ratio between the expected number of transitions from
state si to state sj and the expected number of transitions from state si;

3. the maximization of the third term depends on the assumptions for the state-
dependent distributions. More details will be given at the end of the next section.

All the formulas presented until now only consider a single observation sequence. In order
to have sufficient data to obtain reliable estimates of all model parameters, we need to use
multiple sequences. Let us denote the set of observation sequences as

X = (x(1), . . . ,x(M))

where M is the number of statistical units, each one of them being a sequence of length
Km, m = 1, . . . ,M , i.e., x(m) = (x(m)

1 x(m)
2 · · · x(m)

Km
) is the m-th observation sequence of
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length K. We assume all the sequences to be independent from each other; our goal is to
adjust the parameters of the model λ to maximize the following likelihood:

L(λ|X ) =
M∏
m=1
L(λ|x(m)). (2.2)

For more details about all the reestimation formulas of the HMM parameters, see [25].

2.1 The Copula Approach

We now focus on the study of the estimate of the emission probability density functions
b1, . . . , bN . Since we want to model the dependence among the components of each Xk, if
any, we construct our multivariate distribution using copula models. Differently from what
is already available in the literature, in this work we want to consider a more general case,
where the observations vectors are not necessarily gaussian and the components have a
dependence structure. To fulfill this goal we create a probability model based on copulas,
where the marginals are coupled into a joint distribution. First, we have to model the
marginals by making some assumptions on the distribution family and then use a copula to
take into account the dependence among the components (see [22]).

A d-dimensional copula is a function C : [0, 1]d → [0, 1] with the following properties:

1. ∀u ∈ [0, 1]d, C(u) = 0 if any ui = 0, for i = 1, 2, . . . , d;

2. if all elements of u are 1 except ui, then C(u) = ui;

3. ∀u,v ∈ [0, 1]d such that ui < vi for all i,

VC([u,v]) ≥ 0,

where [u,v] = [u1, v1]× [u2, v2]× . . .× [ud, vd] and VC([u,v]) is the nth order differ-
ence of C on [u,v], i.e., VC([u,v]) = ∆v

uC(t) = ∆vn
un

∆vn−1
un−1 · · ·∆v1

u1C(t), t ∈ [0, 1]d,
where the kth first order difference of the function C is defined as ∆vk

uk
C(t) =

C(t1, . . . , tk−1, vk, tk+1, . . . , tn)− C(t1, . . . , tk−1, uk, tk+1, . . . , tn).

For instance, if we take d = 2, the function C : [0, 1] × [0, 1] → [0, 1] is a copula if,
for every u, v ∈ [0, 1], C(u, 0) = C(0, v) = 0, C(u, 1) = u, C(1, v) = 1 and for every
u,v ∈ [0, 1] × [0, 1] such that u1 ≤ u2, v1 ≤ v2, for each hyperrectangle [u,v] we have
VC([u,v]) = C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0. See [22] for further details.

Let us recall Sklar’s Theorem [22], which is one of the main results about copulas and
represents the theoretical foundation for their application.

Theorem 2.1 (Sklar). Let F be a multivariate d-dimensional distribution function with the
related marginal distribution functions F1, . . . , Fd. Then there exists a d-dimensional copula
C such that for all (x1, . . . , xd) ∈ Rd:

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (2.3)
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If all the marginal distribution functions F1, . . . , Fd are continuous, then the copula function
C is unique. Conversely, if C is a d-dimensional copula and F1, . . . , Fd are cumulative
distribution functions, then the function F defined in (2.3) is a d-dimensional distribution
function with marginals F1, . . . , Fd.

Given d uniform marginal distributions U1 = F1(X1), . . . , Ud = Fd(Xd) of d random
variables X1, . . . , Xd defined on a given probability space (Ω,F ,P), if the marginal inverse
distributions F−1

i exist for all i = 1, . . . , d, we can write:

F (x1, . . . , xd) = P[X1 ≤ x1, . . . , Xd ≤ xd]
= P[F−1

1 (U1) ≤ x1, . . . , F
−1
d (Ud) ≤ xd]

= P[U1 ≤ F1(x1), . . . , Ud ≤ Fd(xd)]
= C(F1(x1), . . . , Fd(xd)).

In this work we consider the case where each Fi is continuous and differentiable. Therefore,
we can compute the copula density as

c = ∂dC

∂F1 · · · ∂Fd
.

As a consequence of Sklar’s Theorem, the joint density f(x1, . . . , xd) can be written as:

f(x1, . . . , xd) = f1(x1) · · · fd(xd) · c[F1(x1), . . . , Fd(xd)], (2.4)

where fi(xi) is the density corresponding to Fi(xi). This result states that the joint density,
under appropriate conditions, can be written as a product of the marginal densities and the
copula density.

In the literature, there are several classes of copulas, including the archimedean and
the elliptical copulas. Archimedean copulas are very popular thanks to their tractability
(see [13, 22]) while elliptical copulas are multivariate functions derived from elliptically
countered distributions. Two common elliptical copulas are the Gaussian and Student’s
t. In this paper we focus on the d-dimensional Gaussian copula, since it is associated
to a correlation matrix which allows us to model dependence and, differently from the
archimedean copula, their marginal distributions are available analytically.

Let us denote with Γ the correlation matrix of the vector x ∈ Rd. Like other copula
families, the gaussian copula allows any marginal distribution but similarly to the multivariate
normal distribution it only consider pairwise dependence between individual components of
a random vector. Let Φ denote the standard univariate normal distribution function while
ΦΓ represents the standard multivariate normal distribution function with correlation matrix
Γ. Then the Gaussian copula can be written as

CΓ(u1, . . . , ud) = ΦΓ(Φ−1(u1), . . . ,Φ−1(ud))

with the corresponding density [27]

cΓ(u1, . . . , ud) = det(Γ)−1/2exp{−1
2qT (Γ−1 − I)q}. (2.5)
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where q = (q1, . . . , qd)T and for all i = 1, . . . , d, qi = Φ−1(ui), with ui = Fi(xi). Using
this result and (2.4), we can construct the desired joint density given any marginal density
functions f1, . . . , fd as:

f(x1, . . . , xd) = f1(x1) · · · fd(xd) · cΓ(u1, . . . , ud) (2.6)

Let us recall (2.1) and, in particular, the third term of the equation. As we stated in the
previous section, its maximization depends on the assumptions made for the state dependent
distributions. In the model we are considering each state distribution to emit an observation
that can be modelled through copulas as a generic multivariate distribution. Since we are
considering multiple observation sequences and we want to maximize the likelihood in (2.2),
using the result obtained in (2.6), term 3 can be rewritten as:

term 3 =
M∑
m=1

Km∑
k=1

N∑
j=1

γk(j) log fXk|Qk=sk
(xk; θj)

=
M∑
m=1

Km∑
k=1

N∑
j=1

γk(j)
(
log cΓ[F1(x1k; θ1j), . . . , Fd(xdk; θdj)] +

d∑
i=1

log fij(xik; θij)
)
(2.7)

where fij( · ; θij) and Fij( · ; θij) are the univariate marginal pdf and cdf for component i and
state j, respectively. Both the parameters of the marginal distributions θj = (θ1j , . . . ,θdj),
for all j = 1, . . . , N , and the correlation parameters contained in the matrix Γ belong to a
set Θ ⊂ RL, L ≥ 1. To perform all the estimates and reduce the computational difficulty of
the algorithm, we implement the two-stage estimation method called Inference Functions
for Margins (IFM) proposed in [10]. Let us denote with ρ the vector containing all the
correlation parameters of the correlation matrix Γ for the copula. In the first step we
estimate the parameters (θlj)l=1,...,d;j=1,...,N of the marginal distributions by computing for
every state j and every component l

θ̂lj = argmax
θlj

M∑
m=1

Km∑
k=1

γk(j) log fl(xlk; θlj).

To perform this step, we use the results presented in [17] and [20] and extend the estimators
commonly used in the i.i.d. framework into the theory of the HMM. Specifically, let us
denote with η a vector of parameters modelling the distribution of a sequence X1, . . . ,XK

of i.i.d. random vectors and consider an estimator of η defined as η̂ = g(
∑K
k=1 Xk,K) for

some multivariate function g. Then, we can extend these estimators to the HMM framework
and write the estimator θ̂j of θj based on the function g defined as follows:

θ̂j = g
(

M∑
m=1

Km∑
k=1

γk(j) Xk,
M∑
m=1

Km∑
k=1

γk(j)
)
. (2.8)

8



Given these estimates, in the second step, we can compute the correlation parameters ρj ,
for all j = 1, . . . , N , by

ρ̂j = argmax
ρj

M∑
m=1

Km∑
k=1

γk(j) log c[F1(x1k, θ̂1j), . . . , Fd(xdk, θ̂dj); ρj ],

where we use the estimator proposed in (2.8).

3 Simulation Studies
In this section we present the results of a simulation study designed to investigate the

performance of the copula model presented in the previous section (model A) and we compare
it with a simpler HMM, where the components of the outcome are considered independent
(model B). Moreover, we also consider some model selection criteria regarding the number
of states for the HMM.

We generate a sample x1, . . . ,xn, with n = 5000, in order to have M = 250 sequences
of length K = 20. Each element of the sample is a realization of the joint distribution
(X1, X2, X3) where:

• X1|sj ∼ Be(pj);

•
(
X2
X3

)
= X1Y + (1 −X1)Z = X1

(
Y1
Y2

)
+ (1 −X1)

(
Z1
Z2

)
, with Yij = Yi|sj ∼ E(λij)

and Zij = Zi|sj ∼ E(µij).

Note that, conditionally to the state, X1 ⊥⊥ (Y,Z). For each statistical unit, the observations
are the realization of a Markov process with three states, where State 3 is an absorbing state.
Furthermore, given the state sj , when generating the data we consider the components of
the vectors Y and Z to be correlated with a correlation parameter ρj = corr(Y1j , Y2j) and
σj = corr(Z1j , Z2j), respectively.

We use the following parameters to generate the data:

• State 1: p1 = 0.2, λ11 = 2, λ21 = 0.75, µ11 = 3, µ21 = 1, ρ1 = 0.8, σ1 = 0.

• State 2: p2 = 0.7, λ12 = 1, λ22 = 0.5, µ12 = 1.5, µ22 = 0.75, ρ2 = 0.2, σ2 = −0.8.

• State 3: p3 = 0.3, λ13 = 0.1, λ23 = 0.01, µ13 = 0.2, µ23 = 0.05, ρ3 = −0.5, σ3 = 0.5.

ν = (1 0 0), A =

0.70 0.20 0.10
0.15 0.80 0.05

0 0 1


In Fig. 1a and Fig. 1b we can see two plots along with the marginal histograms of the
simulated dataset. Without using our prior knowledge, we assume the data to be marginally
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(b) Simulated data for x1 = 1

a mixture of exponential distributions. Given the state sj , the emission probability density
function of an observation xk = (x1, x2, x3)k for model A is computed as

bA
j (xk; λj ,µj , ρj , σj) = {pj · f1j(y1k;λ1j) · f2j(y2k;λ2j) · c[F1j(y1k;λ1j), F2j(y2k;λ2j); ρj ]}x1k

· {(1− pj) · f1j(z1k;µ1j) · f2j(z2k;µ2j) · c[F1j(z1k;µ1j), F2j(z2k;µ2j); σj ]}(1−x1k)

where fkj and Fkj , k = 1, 2, are the pdf and the cdf of an exponential distribution, respectively.
Starting from (2.7), taking into account that now we deal with a mixture of distributions,
the third term of the likelihood to be maximized becomes:

(term 3)A =
M∑
m=1

Km∑
k=1

x1k ·
N∑
j=1

γk(j)
(
log c[F1j(y1k; λ1j), F2j(y2k; λ2j); ρj ]

+ log pj + log f1j(y1k; λ1j) + log f2j(y2k; λ2j)
)

+
M∑
m=1

Km∑
k=1

(1− x1k) ·
N∑
j=1

γk(j)
(
log c[F1j(z1k; µ1j), F2j(z2k; µ2j); σj ]

+ log (1− pj) + log f1j(z1k; µ1j) + log f2j(z2k; µ2j)
)

For model B, the emission probability density function is instead computed as

bBj (xk; λj ,µj , ρj , σj) = {pj · f1j(y1k;λ1j) · f2j(y2k;λ2j)}x1k

· {(1− pj) · f1j(z1k;µ1j) · f2j(z2k;µ2j)}(1−x1k)

where the joint density function is simply the product of the marginals, because of the
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Figure 2: AIC and BIC for our model applied to the simulated data with N = 2, . . . , 5 states.

independence between the two variables. The relative term to maximize for model B is

(term 3)B =
M∑
m=1

Km∑
k=1

x1k ·
N∑
j=1

γk(j)
(
log pj + log f1j(y1k; λ1j) + log f2j(y2k; λ2j)

)

+
M∑
m=1

Km∑
k=1

(1− x1k) ·
N∑
j=1

γk(j)
(
log (1− pj) + log f1j(z1k; µ1j) + log f2j(z2k; µ2j)

)
Before investigating the results obtained for the parameter estimates, we run the Baum-
Welch algorithm using the model presented in the previous section with N = 2, . . . , 5 states
to select the appropriate number of states, i.e., the "order" of the HMM. To this end, we
compute the AIC and BIC for each HMM [11]. In Fig. 2 we can see a plot of the results of
the two model criteria plotted against the number of states. Both AIC and BIC exhibit the
lowest value for N = 3 states which represent the ’optimal’ number of states.

We run 50 replications of the Baum-Welch algorithm on the simulated data and then
compute the Average Mean Square Error and standard deviation of the results, which are
reported in Tab. 1. Both models are able to identify the presence of an absorbing state, for
this reason we don’t show the result for the estimates of the third row of matrix A, since
the estimates are accurate for both models. If we compare all the results, it is clear that
model A is able to give much more precise estimates of all the parameters used to generate
the data, both in terms of mean value and standard deviation. Moreover, with model A we
can also obtain accurate estimates of the correlation parameters used to generate the data.

4 Case study: disease progression
The data we use in this study belongs to a Heart Failure project and was extracted

from the administrative warehouse of Regione Lombardia. All the observations are records
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Table 1: A.M.S.E. (S.D.) of the HMM parameters for 50 simulation runs of the Baum-Welch algorithm
with N = 3 states for model A and model B.

Parameter Model A Model B
a11 4.08 · 10−4(0.0213) 9.04 · 10−3 (0.0558)
a12 3.04 · 10−4 (0.0203) 8.24 · 10−3 (0.0382)
a13 8.85 · 10−5 (0.0129) 1.34 · 10−4 (0.0093)
a21 1.33 · 10−3 (0.0249) 2.95 · 10−2 (0.0827)
a22 1.4 · 10−3 (0.0266) 2.77 · 10−2 (0.0792)
a23 6.08 · 10−5 (0.0111) 8.62 · 10−5 (0.0131)
p1 6.01 · 10−4 (0.0155) 6.01 · 10−4 (0.0270)
p2 1.20 · 10−3 (0.0185) 7.7 · 10−1 (0.0653)
p3 8.31 · 10−5 (0.0080) 3.02 · 10−1 (0.0072)
λ11 6.90 · 10−2 (0.2624) 12.01 (1.3959)
λ21 4.39 · 10−3 (0.0956) 6.87 · 10−2 (0.4919)
µ11 1.8 · 10−2 (0.1117) 1.90 · 10−2 (0.1346)
µ21 8.98 · 10−4 (0.0335) 1.87 · 10−2 (0.0588)
λ12 1.49 · 10−3 (0.0424) 1.90 (1.0137)
λ22 1.49 · 10−3 (0.0186) 1.03 · 10−2 (0.0241)
µ12 3.10 · 10−2 (0.0797) 2.51 · 10−1 (0.3171)
µ22 3.02 · 10−3 (0.0562) 4.92 (1.4875)
λ13 2.37 · 10−5 (0.0025) 1.33 · 10−5 (0.0035)
λ23 1.52 · 10−7 (0.0003) 3.34 · 10−7 (0.0004)
µ13 1.92 · 10−5 (0.0045) 3.29 · 10−5 (0.0041)
µ23 1.88 · 10−6 (0.0012) 1.42 · 10−6 (0.0013)
ρ1 7.45 · 10−5 (0.0647) —
ρ2 4.76 · 10−6 (0.034) —
ρ3 5.77 · 10−6 (0.0223) —
σ1 2.56 · 10−7 (0.0192) —
σ2 8.41 · 10−5 (0.0231) —
σ3 6.72 · 10−6 (0.0244) —
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of hospital admissions of a patient, collected in a data warehouse, called SDO (Scheda di
Dimissione Ospedaliera, i.e., hospital discharge paper) database and contains all the HF
episodes with subsequent hospitalizations. Moreover, it is possible to retrieve information
about both the hospitalizations (diagnoses and procedures, date of admission and discharge,
vital status at discharge, ...) and the patients (sex, date of birth,...). For the patients who
died before the end of study, the date of death was obtained through database linkage with
the Italian National Registry of deaths (for further details about the dataset, see [18]).

In order to describe the relation between hospital admissions, length of hospitalizations
and mortality of the patients, we adopt a HMM to describe how an individual moves
between a series of discrete states in time. For each patient and each hospitalization we
consider the following three outputs for our model: the time to readmission from a previous
hospitalization, the length of stay (LOS) in hospital and a binary variable indicating if the
patient was admitted to intensive care (IC) during the stay at the hospital. We consider a
sample of 2,248 patients, corresponding to 11,039 observations, containing hospitalizations
from 2006 to 2012 and excluding all the events with less than four hospitalizations recorded,
in order to be able to see at least one transition between two states, if any. Among these
individuals, 1,284 (57.11%) died by the end of the study.

The number of admission to hospital per patient ranged between 1 and 28. The mean
(standard deviation) LOS is 10.8 (10.1) days (min = 1, median = 8, first and third quartiles
respectively equal to 4 and 14, max = 134 days) while the mean (standard deviation) Time
to Readmission is 207.3 (271.8) days (min = 1, median = 102, first and third quartiles
respectively equal to 32 and 274, max = 2,091 days). Moreover, among all the hospitalizations,
only for 817 (7.4%) of them the patient was submitted to intensive care.

In Fig. 3a and Fig. 3b we plotted the data, with the Time to Readmission to hospital on
the horizontal axis and the LOS on the vertical axis, on the left for patients who did not
undergo to intensive care and on the right for the patients who did. We can consider both
variables to be marginally mixtures of exponential distributions. Before fitting the data to
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Figure 4: AIC and BIC for our model applied to the HF data with N = 3, . . . , 8 states.

our model, we perform the Hoeffding’s independence test [16] to justify if there is global
dependence between the two variables. Since we obtain a low p-value for the test, 0.0484,
we can state that there is some dependence between the two variables and we can proceed
with the application of our model.

Since the real number of states is not a priori known for our data, we apply the model
described in Section 3, using as number of states N = 3, . . . , 8, and we compute AIC and BIC,
which are plotted against the number of states in Fig. 4. Both criteria suggest that N = 6
represents the optimal number of states for this dataset, where we have by construction 5
transients states and 1 absorbing state which corresponds to death.

In Tab. 2 we show the results obtained for the chosen number of states. Specifically, we
can detect two "groups" of states among the transient ones: group A, represented by states
1, 2 and 4, contains all the patients with a less advanced stage of the pathology, contrarily
to the patients belonging to state 3 and 5, that belong to group B. In fact, the probability
of starting from group B is null, as it is the probability of going to the death state from a
state of group B. Moreover, we can notice how the probability p of being in intensive care
is higher when belonging to a state of the group A. It is interesting to look at the values
representing the average LOS. If we compare λ−1

2 · and µ−1
2 · we can see how the estimated

value of the LOS is in general higher for the patients admitted to intensive care but it is
definitely higher for those belonging to group B. Finally, it is also worth noticing that the
values of the correlation parameters are usually close to zero or negative meaning that,
conditionally to the state, if the time to readmission increases the LOS tends to decrease, so
patients who spend more time in hospital tend to be hospitalized more often.
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Table 2: Results of the Baum-Welch algorithm applied to the HF data for the HMM with N = 6
states.

Parameter State 1 State 2 State 3 State 4 State 5 State 6
ν· 0.7420 0.0652 0.0000 0.1928 0.0000 0.0000
p· 0.0508 0.0085 0.1276 0.0806 0.1377 0.3509
a1 · 0.5691 0.0321 0.2425 0.0600 0.0963 0.0000
a2 · 0.0020 0.8308 0.0410 0.0013 0.1250 0.0000
a3 · 0.1954 0.0465 0.0055 0.0081 0.0247 0.7197
a4 · 0.4789 0.0112 0.1077 0.3017 0.1005 0.0000
a5 · 0.0000 0.0354 0.0212 0.0521 0.3599 0.5314
λ−1

1 · 309.5748 106.2818 301.9847 23.3091 42.1138 —
λ−1

2 · 12.3933 13.1573 36.1757 11.5663 18.9560 —
ρ· 0.0222 -0.5847 0.0282 -0.1530 -0.0773 —
µ−1

1 · 280.2974 96.5228 291.9966 25.9869 35.0322 —
µ−1

2 · 9.8776 11.9321 10.1254 10.5595 12.4020 —
σ· 0.0088 0.1280 0.0467 -0.1010 -0.1403 —

5 Discussion and future developments
In this paper we propose a novel HMM to fit multivariate data, where the components

of the outcome have a dependence structure, which is modelled by means of copulas. The
model is very general, since it allows the choice of any marginal distributions and does not
need to consider any normality assumptions on the data. In the simulation study we first
showed how this model is a considerable improvement over the HMMs whose outcome has
independent components and is able to estimate with high precision all the parameters of
the model. Then, we applied the new model to an administrative longitudinal database
concerning patients affected by HF. The obtained results provide an interesting insight at
the latent disease progression.

In the context of HMMs, some generalizations can be done to enrich the model; for
instance, in this work we only considered the case with discrete time, but it could be
interesting to investigate a more general and complex case, where the HMM evolves in
continuous time and can jump from a state to another one at any time. Another improvement
can be done by modifying the model and adding some covariates, which would help to
have a better understanding of some problems, both in the prior and the transition model.
Finally, some more developments can be done when modeling the dependence structure by
considering different kinds of copulas and then choosing the best one using some goodness-
of-fit criteria. For example, by considering a Student’s t or an Archimedean copula, it would
be possible to take into account data with different dependency structures.

15



References
[1] Baum, L. (1972). An inequality and associated maximization technique in statistical

estimation of probabilistic functions of a Markov process. Inequalities, 3, 1-8.

[2] Baum, L. E., Petrie, T., Soules, G., Weiss, N. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov chains. The
annals of mathematical statistics, 41(1), 164-171.

[3] Bilmes, J. A. (1998). A gentle tutorial of the EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models. International
Computer Science Institute, 4(510), 126.

[4] Cherubini, U., Luciano, E., Vecchiato, W. (2004). Copula methods in finance. John
Wiley & Sons.

[5] Crouse, M. S., Nowak, R. D., Baraniuk, R. G. (1998). Wavelet-based statistical signal
processing using hidden Markov models. IEEE Transactions on signal processing, 46(4),
886-902.

[6] Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the royal statistical society. Series
B (methodological), 1-38.

[7] Durbin, R., Eddy, S. R., Krogh, A., Mitchison, G. (1998). Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge university press.

[8] Eban, E., Rothschild, G., Mizrahi, A., Nelken, I., Elidan, G. (2013). Dynamic copula
networks for modeling real-valued time series. Artificial Intelligence and Statistics (pp.
247-255).

[9] Jackson, C. H. (2011). Multi-state models for panel data: the msm package for R.
Journal of statistical software, 38(8), 1-29.

[10] Joe, Harry. Joe, H. (1997). Multivariate models and multivariate dependence concepts.
Chapman and Hall/CRC.

[11] Zucchini, W., MacDonald, I. L., Langrock, R. (2016). Hidden Markov models for time
series: an introduction using R. Chapman and Hall/CRC.

[12] Cappé, O., Moulines, E., Rydén, T. (2009). Inference in hidden markov models.
Proceedings of EUSFLAT Conference (pp. 14-16).

[13] Genest, C., Rivest, L. P. (1993). Statistical inference procedures for bivariate
Archimedean copulas. Journal of the American statistical Association, 88(423), 1034-
1043.

16



[14] Genest, C., Favre, A. C. (2007). Everything you always wanted to know about copula
modeling but were afraid to ask. Journal of hydrologic engineering, 12(4), 347-368.

[15] Guihenneuc-Jouyaux, C., Richardson, S., Longini Jr, I. M. (2000). Modeling markers
of disease progression by a hidden Markov process: application to characterizing CD4
cell decline. Biometrics, 56(3), 733-741.

[16] Hoeffding, W. (1948). A non-parametric test of independence. The annals of mathe-
matical statistics, 546-557.

[17] Juang, B. H. (1985). Maximum-likelihood estimation for mixture multivariate stochastic
observations of Markov chains. AT&T technical journal, 64(6), 1235-1249.

[18] Ieva, F., Jackson, C. H., Sharples, L. D. (2017). Multi-State modelling of repeated
hospitalisation and death in patients with Heart Failure: the use of large administrative
databases in clinical epidemiology. Statistical methods in medical research, 26(3), 1350-
1372.

[19] Jackson, C. H., Sharples, L. D. (2002). Hidden Markov models for the onset and
progression of bronchiolitis obliterans syndrome in lung transplant recipients. Statistics
in medicine, 21(1), 113-128.

[20] Liporace, L. (1982). Maximum likelihood estimation for multivariate observations of
Markov sources. IEEE Transactions on Information Theory, 28(5), 729-734.

[21] Liu, Y. Y., Li, S., Li, F., Song, L., Rehg, J. M. (2015). Efficient learning of continuous-
time hidden markov models for disease progression. Advances in neural information
processing systems (pp. 3600-3608).

[22] Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.

[23] Paas, L. J., Vermunt, J. K., Bijmolt, T. H. (2007). Discrete time, discrete state latent
Markov modelling for assessing and predicting household acquisitions of financial
products. Journal of the Royal Statistical Society: Series A (Statistics in Society),
170(4), 955-974.

[24] R Core Team (2017). R: A language and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

[25] Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2), 257-286.

[26] Sklar, A. (1959). Functions de repartition à n dimensions et leurs marges. Publ. Inst.
Stat. Univ. Paris, 8, 229-231.

[27] Song, P. X.-K.(2000). Multivariate dispersion models generated from Gaussian copula.
Scandinavian Journal of Statistics, 27(2), 305-320.

17



[28] Visser, I., Speekenbrink, M. (2010). depmixS4: an R package for hidden Markov models.
Journal of Statistical Software, 36(7), 1-21.

[29] Welch, L. R. (2003). Hidden Markov models and the Baum-Welch algorithm. IEEE
Information Theory Society Newsletter, 53(4), 10-13.

18



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

56/2018 Antonietti, P.F.; Manzini, G.; Verani, M.
The conforming virtual element method for polyharmonic problems

57/2018 Ferro, N.; Micheletti, S.; Perotto, S.
POD-assisted strategies for structural topology optimization

58/2018 Ferro, N.; Micheletti, S.; Perotto, S.
A sequential coupling of shape and topology optimization for structural
design

55/2018 Cerroni, D.; Laurino, F.; Zunino, P.
Mathematical analysis, finite element approximation and numerical solvers
for the interaction of 3D reservoirs with 1D wells

54/2018 Dal Santo, N.; Deparis, S.; Manzoni, A.; Quarteroni, A.
Multi space reduced basis preconditioners for parametrized Stokes equations

53/2018 Giantesio, G.; Musesti, A.; Riccobelli, D.
A comparison between active strain and active stress in transversely isotropic
hyperelastic materials

52/2018 Possenti, L.; di Gregorio, S.; Gerosa, F.M.; Raimondi, G.; Casagrande, G.; Costantino, M.L.; Zunino, P.
A computational model for microcirculation including Fahraeus-Lindqvist
effect, plasma skimming and fluid exchange with the tissue interstitium

51/2018 Stella, S.; Vergara, C.; Giovannacci, L.; Quarteroni, A.; Prouse, G.
Assessing the disturbed flow and the transition to turbulence in the
arteriovenous fistula

50/2018 Gervasio, P.; Quarteroni, A.
The INTERNODES method for non-conforming discretizations of PDEs

49/2018 Massi, M.C.; Ieva, F.; Lettieri, E.
Data Mining Application to Healthcare Fraud Detection: A Two-Step
Unsupervised Clustering Model for Outlier Detection with Administrative
Databases


	qmox59-copertina
	mox-2018112013922
	qmox59-terza_di_copertina

