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Abstract

Numerical solution of partial differential equations can be made more
tractable by model reduction techniques. For instance, when the problem
at hand presents a main direction of the dynamics (such as blood flow in
arteries), it may be conveniently reduced to a 1D model. Here we compare
two strategies to obtain this model reduction, applied to classical advection-
diffusion equations in domains where one dimension dominates the others.

1 Introduction

Many applications in scientific computing demand for surrogate models, i.e.,
simplified models which are expected to be computationally affordable and reli-
able from a modeling viewpoint. Problems presenting an evident main direction,
such as blood flow in arteries, gas dynamics in internal combustion engines, etc.,
are naturally reduced to 1D equations along the coordinate of the main (or
“axial” as opposed to “transverse”) direction. Here we consider and compare
two different strategies to get surrogate models for this kind of problems. The

1



first procedure stems from an appropriate average of the equation along the
transverse direction, combined with (plausible) problem-dependent simplifying
assumptions. The second approach comes from a different representation of the
axial and of the transverse dynamics, according to what has been called a Hi-
erarchical Model (Hi-Mod) reduction [4]. In particular, transverse dynamics are
represented by a modal expansion, that is supposed to require just a few modes
for the nature of the problem. This leads to solve a system of 1D coupled equa-
tions. At the bottom line, when using just one transverse mode, this leads to a
genuinely 1D model. For the sake of comparison, these two reduction procedures
are applied to the following two-dimensional advection-diffusion problem





−µ∆u + b · ∇u = f in Ω ≡ (0, L) × (−R0, R0)

u = g on Γin ≡ {0} × (−R0, R0)

µ
∂u

∂n
= 0 on Γout ≡ {L} × (−R0, R0)

µ
∂u

∂n
+ χu = uext on Γlat ≡ ∂Ω\(Γin ∪ Γout),

(1)

where x is the main direction, y is the transverse one, and with µ ∈ L∞(Ω), b =
(b1, b2)

T ∈ [W 1,∞(Ω)]2, f ∈ L2(Ω), g ∈ H1/2(Γin), χ ∈ L∞(Ω), uext ∈ L2(Γlat),
µ∂u/∂n the conormal derivative of u. Standard notation are adopted for the
Sobolev spaces. We distinguish in the domain Ω a supporting fiber Ω1D aligned
with the main stream and a set of transverse fibers γx, with x ∈ Ω1D, parallel to
the secondary transverse dynamics. Since Ω coincides with a rectangle, γx = γ,
for each x.
We assume suitable assumptions on the data to guarantee the well-posedness of
the weak form of (1), i.e.,

find u ∈ V ≡ H1
Γin

(Ω) s.t. a(u, v) = F (v) ∀v ∈ V, (2)

with a(u, v) =
∫
Ω
[µ∇u · ∇v + b · ∇uv] dΩ +

∫
Γlat

χuv dΓ and F (v) =
∫
Ω

fv dΩ +∫
Γlat

uextv dΓ − a(ρg, v), ρg denoting a lifting of g on Γin. Problem (1) models,
for instance, the oxygen transport inside an artery. In this case, u represents
the oxygen partial pressure, µ denotes the diffusivity of oxygen in blood, field
b takes into account the blood dynamics, f is a generic sink or source term, g
usually coincides with a concentration profile, the Robin boundary conditions
model the absorption of the oxygen through the vessel walls, with χ depending
on the absorption properties of the wall and uext measuring the oxygen partial
pressure outside the vessel. For simplicity, we assume µ and χ constant.
When comparing the two approaches mentioned above, we address in particular
the combination of models with different accuracy. For the first approach, this
leads to what has been called a geometrical multiscale formulation [2]. For Hi-
Mod reduction, this is obtained by selecting a different number of modes in
different regions of the domain [4, 5].

2



2 A transverse average model

We particularize the approach in [3] for modeling the transport of solutes in
arteries with bifurcations to an elliptic setting. Let us introduce the transverse
profile of the solution, given by

p(x, y) =
u(x, y)

U(x)
with U(x) =

1

|γ|

∫

γ
u(x, y) dy,

U(x) denoting the mean of the solution along the transverse (constant) section γ
of Ω. As first modeling hypothesis, we assume that the profile p does not depend
on x, i.e., only the mean of the solution may vary along the x-direction. Thus,
after separation of variables, the solution u can be regarded as a certain profile
varying in y tuned by a function varying along x, i.e., u(x, y) = U(x)p(y). By
exploiting this representation of u in the assignment of the boundary conditions
on Γlat, i.e., on the boundary of γ, we get

(
± µ

∂p(y)

∂y

)∣∣∣
y=±R0

=
(
− χp(y) +

uext(x)

U(x)

)∣∣∣
y=±R0

.

Consistently with the previous assumption on p, we postulate that the ratio
uext(x)/U(x) is constant along the whole length of the domain. Finally, we
constrain the advective field, by assuming ∇ · b = 0 and b|Γlat

= 0. Since b

is divergence-free, we can rewrite the full model (1) in a conservative form, as
−µ∆u + ∇ ·

(
bu

)
= f . Now, integrating with respect to y along γ, we obtain

− µ
∂2

∂x2

∫

γ
u(x, y) dy − µ

∂u(x, y)

∂y

∣∣∣
y=R0

y=−R0

+
∂

∂x

∫

γ

[
b1(x, y)u(x, y)

]
dy

+
(
b2(x, y)u(x, y)

)∣∣∣
y=R0

y=−R0

=

∫

γ
f(x, y) dy.

By exploiting the Robin conditions and the hypothesis on b|Γlat
, we have

− µ
∂2

∂x2

∫

γ
u(x, y) dy + χ

(
u(x, R0) + u(x,−R0)

)
+

∂

∂x

∫

γ

[
b1(x, y)u(x, y)

]
dy

=

∫

γ
f(x, y) dy + uext(x, R0) + uext(x,−R0).

Now, we exploit the factorization u(x, y) = U(x)p(y) assumed for the solution u
together with the fact that, by definition, the mean of p along γ is equal to one,
to get the desired averaged 1D model (the primes denoting x-differentiation)

−µU ′′(x) + (U(x)wr(x))′ + σrU(x) = fr(x) for x ∈ (0, L), (3)

with

wr(x) =
1

|γ|

∫

γ
b1(x, y)p(y) dy, σr = χ

p(R0) + p(−R0)

|γ|
,

fr(x) =
1

|γ|

∫

γ
f(x, y) dy +

uext(x, R0) + uext(x,−R0)

|γ|
.

(4)
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The reduction procedure leads from a 2D advection-diffusion problem to a 1D
advection-diffusion-reaction problem. To close the model we need to select a
profile p in (4). For simplicity, it may be assumed constant or, more in general, it
is suggested by physical considerations. It could be advantageous an automatic
criterion to select p. A strategy in such a direction is proposed in the next
section.

Remark 2.1 From a physical viewpoint, the most restrictive hypothesis for de-
riving model (3) is the independence of p on x. Nevertheless, the numerical
validation shows that this surrogate model provides reliable results even when
this hypothesis is not strictly guaranteed. The second assumption is reasonable,
at least in haemodynamics, since the ratio uext(x)/U(x) may be reliably con-
sidered constant. The two requirements on b are standard in a haemodynamic
context. Hypothesis ∇ · b = 0 ensures the incompressibility of the blood, while
assumption b|Γlat

= 0 imposes a no-slip condition on Γlat.

2.1 A geometrical multiscale approach

A geometrical multiscale formulation consists of coupling dimensionally hetero-
geneous models. The idea is to alternate a full-dimensional model with suitable
downscaled models to be associated with the areas characterized by the most
complex and by the simplest dynamics, respectively (see, e.g., [2, Chapter 11]).
The identification of appropriate matching conditions and the location of the in-
terface between the two models represent the main issues of this approach. We
identify the full model with (1) and the downscaled model with (3). We choose
Ω = (0, 10)×(0, 1), µ = 1, b = (20, 0)T , f = 10

(
(x−1.5)2+0.4(y−0.5)2 < 0.01

)
,

χ = 1 and uext = 0.02. We assign a homogeneous Neumann condition on
Γout = {10} × (0, 1) and a profile compatible with the conditions along Γlat

on Γin. In Figure 1 (top-left), we provide the contour plots of the full solu-
tion approximated via linear finite elements on a uniform unstructured grid of
8918 elements. The solution exhibits more significant transverse dynamics in
the leftmost part of the domain, where the source term is localized. Conversely,
the solution profile is less fluctuating in the rightmost part of Ω, as assumed
in the derivation of model (3). This suggests to split Ω into two subdomains,
Ω1 and Ω2, such that Ω = Ω1 ∪ Ω2. On Ω1 we solve problem (1), while we
resort to (3) in Ω2. Both the problems are discretized via linear finite elements
on uniform meshes. The coupling between the two models is performed via a
relaxed Neumann/Dirichlet scheme. In more detail, we exploit the derivative
of the 1D surrogate solution u2 to assign a constant Neumann condition on Ω1

as µ∂u1/∂n(xi, y) = u′
2(xi), where u1 is the full solution defined on Ω1 and

Γxi
= {xi} × (0, 1) identifies the interface Ω1 ∩ Ω2. To correctly define the

problem on Ω2, we have to properly select the boundary condition at xi and
the solution profile. As Dirichlet data we assign u2(xi) = |γ|−1

∫
γ u1(xi, y) dy,

while we follow a new approach to select p(y) at xi. The idea is to exploit

4



0 2 4 6 8 100.00
0.25
0.50
0.75
1.00

0 2 4 6 8 101.1

1.4

1.7

2.0

0 2 4 6 8 100.00
0.25
0.50
0.75
1.00

0 2 4 6 8 100.00
0.25
0.50
0.75
1.00

Figure 1: Geometrical multiscale: full solution (top-left); graph of σr (top-right);
coupled solution for Γ4 (bottom-left) and Γ2.5 (bottom-right)

the problem in Ω1 instead of resorting to an a priori selection. Thus, we pick
p(y) = |γ|u1(xi, y)/

∫
γ u1(xi, y) dy. This definition justifies the prescription of

a Neumann condition on the left hand side of Γxi
to allow the solution profile

to develop freely. Indeed, the adoption of the surrogate model in Ω2, implicitly
assumes that p is completely developed at Γxi

. Figure 1 (bottom) compares
two couplings associated with different interfaces, i.e., Γ4 and Γ2.5, respectively.
The second choice introduces the interface where the transverse dynamics are
still too significant, thus violating the hypothesis on a fully developed profile.
We provide a bidimensional visualization also for the surrogate model simply by
using relation u(x, y) = U(x)p(y). In Figure 1 (top-right) we show the reactive
coefficient in (4), computed via the profile of the full solution. Since σr strongly
depends on p, we argue that when the profile stabilizes, σr reaches a constant
value. So a possible heuristic way to select Γxi

is to locate it in a region where
σr is constant.

3 Hi-Mod reduction

Hi-Mod reduction is an alternative approach to “compress” high dimensional
problems. In this case, a full 2D (or even 3D) model is reduced to a system of
1D coupled differential problems associated with the dominant dynamics [4]. In
the geometric setting of a Hi-Mod formulation, for any x ∈ Ω1D, we introduce
a map ψx between the generic fiber γx and a reference fiber γ̂, so that the com-
putational domain Ω is mapped into the reference domain Ω̂ = Ω1D × γ̂ via the
map Ψ, given by Ψ(z) = ẑ, where z = (x, y) ∈ Ω, ẑ = (x̂, ŷ) ∈ Ω̂, with x̂ = x and
ŷ = ψx(y). In particular, for the domain Ω in (1) a unique map ψ can be used
for each point x ∈ Ω1D. The Hi-Mod approach strongly relies upon the fiber
structure postulated on Ω. The idea is to differently tackle the dependence of
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the full solution on the dominant and on the transverse directions. We perform
a modal approximation of the transverse dynamics coupled with a Galerkin rep-
resentation along the axial direction. The rationale driving this approach is that
the transverse dynamics can be suitably described with a few degrees of (modal)
freedom, resulting in a hierarchy of one-dimensional models which differ each
other according to the number of included transverse modes. To state the Hi-
Mod reduced formulation for problem (1), we move from the weak form (2). Now,
let V1D be a space spanned by functions defined on Ω1D which properly includes
the boundary conditions assigned along Γin and Γout, and let {ϕk}k∈N

+ be a

modal basis of functions in H1(γ̂), orthonormal with respect to the L2(γ̂)-scalar
product and compatible with the boundary conditions along Γlat. As a conse-
quence, we look for a reduced solution um which belongs to the Hi-Mod reduced
space Vm =

{
vm(x, y) =

∑m
k=1

ṽk(x)ϕk(ψ(y)), with ṽk ∈ V1D, x ∈ Ω1D, y ∈ γ
}
.

A conformity and a spectral approximability hypothesis are introduced on Vm

to guarantee the well-posedness and the convergence of um to u [4]. We identify
the Galerkin representation along Ω1D with a finite element discretization, so
that the modal coefficients belong to a finite element space V h

1D ⊂ V1D asso-
ciated with a partition Th of Ω1D. Thus, the Hi-Mod reduced form for (2) is:
for a certain modal index m ∈ N

+, find ũh
k ∈ V h

1D, with k = 1, . . . , m, such
that

∑m
k=1

a(ũh
k ϕk, θiϕj) = F (θiϕj), with j = 1, . . . , m and i = 1, . . . , Nh,

where θi denotes the generic finite element basis function in V h
1D and with

Nh = dim(V h
1D) < +∞. From a computational viewpoint, the Hi-Mod for-

mulation leads to solve a system of m coupled 1D advection-diffusion-reaction
problems instead of problem (1). As in the derivation of the surrogate model (3),
the Hi-Mod reduction procedure yields reactive terms, while no reactive contri-
bution is included in the full model. The system is characterized by an m × m
block matrix, where each block is an Nh × Nh matrix exhibiting the sparsity
pattern typical of the selected finite element space.
The modal index m can be selected a priori moving from some preliminary
knowledge of the phenomenon at hand [4] or automatically, driven by an a pos-
teriori modeling error analysis [5]. Another important issue is the choice of
the modal basis, in particular when Robin boundary conditions are assigned
on Γlat as in (1). We build a specific modal basis able to automatically in-
clude these conditions. The idea proposed in [1] is to solve on γ̂ an auxiliary
Sturm-Liouville eigenvalue problem, with conditions on ∂γ̂ coinciding with the
conditions assigned on Γlat. We call this modal basis educated basis.

3.1 Piecewise Hi-Mod reduction

Now, the idea is to properly exploit the hierarchy of models provided by the
Hi-Mod reduced space to couple models with a different accuracy. A different
choice for the modal index m identifies a reduced model with a certain level of
detail in describing the phenomenon at hand. As a consequence, by properly
tuning m over different regions of Ω, we are able to capture the local significant
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Figure 2: Piecewise Hi-Mod reduction: reduced solutions associated with {5, 2}
modes, the interface is Γ4 (on the left) and Γ2.5 (on the right); h = 0.05 on Ω1D

features of the solution with a relatively low number of degrees of freedom.
Following [4], we denote this approach by piecewise Hi-Mod reduction. This
leads to dimensionally homogeneous models (yet with a locally varying level of
accuracy), as opposed to the geometrical multiscale approach. For instance,
with reference to the test case in Figure 1, we can preserve the two splittings
of the domain identified by Γ4 and Γ2.5 and employ a number of modes in Ω1

higher than in Ω2, e.g, 5 and 2, respectively. This choice is motivated by the
fact that the most complex dynamics are localized in Ω1 and, consequently,
more modes are demanded in this area. To glue the two models we employ a
relaxed Neumann/Dirichlet scheme as in the geometrical multiscale formulation.
At each iteration of this scheme, we apply a uniform Hi-Mod reduction on Ω1

and Ω2, separately, i.e., we solve two systems of coupled 1D problems with a
block matrix of order 5N1

h and 2N2
h , respectively N i

h denoting the dimension of
the one dimensional finite element space introduced on Ω1D ∩ Ωi, for i = 1, 2.
As detailed in [5], to rigorously formalize the piecewise Hi-Mod approach, we
introduce a suitable broken Sobolev space, endowed with an integral condition
which weakly enforces the continuity of the reduced solution in correspondence
with the minimum number of modes common on the whole Ω. This does not
necessarily guarantee the conformity of the piecewise reduced solution. This
is evident in Figure 2. The loss of conformity is particularly significant when
the interface is located in an area involved by strong transverse dynamics. The
reduced solution in Figure 2 (left) is in good agreement with the full one in
Figure 1 (top-left) and it is very similar to the one in Figure 1 (bottom-left).

4 A numerical comparison

For a fair comparison between the two approaches, we consider here a test case
where the “low-fidelity” model (the genuine 1D in the geometrical multiscale
and a low-mode approximation in the Hi-Mod) are straightforwardly compara-
ble. This means that we employ a single mode in the Hi-Mod approximation. In
particular, we consider problem (1) with Ω = (0, 6)× (0, 1), µ = 1, b = (20, 0)T ,
f = 10

(
[(x−1.5)2 +0.4(y−0.75)2 < 0.01]+ [(x−1.5)2 +0.4(y−0.25)2 < 0.01]

)
,

χ = 3 and uext = 0.05. The boundary conditions are as in Section 2.1 and
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Figure 3: Full solution (top-left); geometrical multiscale solution (top-right) and
Hi-Mod solution with {3, 1} (bottom-left) and {5, 1} (right) modes

the interface is located at x = 3. Numerical results are provided in Figure 3.
The top-left panel displays the full solution discretized via standard linear finite
elements on a uniform unstructured grid of 5084 triangles. The top-right panel
shows the geometrical multiscale solution. This is fairly accurate even though it
suffers from an underestimation of the reactive term induced by the 1D average.
This is evident in the contour line associated with the value 0.09. The bottom
panels display the Hi-Mod solution, having a “low-fidelity” model with m = 1
and two different models for the “high-fidelity” part. In particular, on the left
we take m = 3 which is clearly not enough to capture reliably the solution in
the leftmost domain. In the right-panel, with m = 5 we have a pretty accurate
solution, where the inaccuracy present in the geometrical multiscale solution as
well as the model non-conformity do not pollute significantly the results.
An extensive comparison between the two approaches cannot be clearly com-
pleted by these preliminary results. As a matter of fact, the computational
advantages of the one approach over the other must be evaluated on 3D more
realistic test cases, solved with compiled softwares. However, we may notice
that, even though the Hi-Mod approach relies entirely on a “psychologically”
1D representation of the solution within a dimensionally heterogeneous frame-
work, it may provide accurate solution also in presence of significant transverse
components. For this reason, we do expect it may lead to easily implemented
and manageable solvers, with competitive performances in terms of both ac-
curacy and efficiency. A framework of investigation of practical interest is the
blood flow simulation in a network of arteries.
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