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Abstract

It is well known that the solution of topology optimization problems may be affected
both by the geometric properties of the computational mesh, which can steer the
minimization process towards local (and non-physical) minima, and by the accuracy
of the method employed to discretize the underlying differential problem, which may
not be able to correctly capture the physics of the problem. In light of the above
remarks, in this paper we consider polygonal meshes and employ the virtual element
method (VEM) to solve two classes of paradigmatic topology optimization problems,
one governed by nearly-incompressible and compressible linear elasticity and the other
by Stokes equations. Several numerical results show the virtues of our polygonal VEM
based approach with respect to more standard methods.
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1 Introduction

The study of numerical methods for the approximation of partial differential equations
on polygonal and polyhedral meshes is drawing the attention of an increasing number
of researchers (see, e.g., the special issues [13, 18] for a recent overview of the different
methodologies). Among the different proposed methodologies, here we focus on the Virtual
Element Method (VEM) which has been introduced in the pioneering paper [6] and can be
seen as an evolution of the Mimetic Finite Difference method, see, e.g., [15, 41] for a detailed
description. Recently, VEM has been analyzed for general elliptic problems [10, 21], linear
and nonlinear elasticity [7, 34, 16], plate bending [25, 33], Cahn-Hilliard [3], Stokes [2, 17],
Helmbholtz [44], parabolic [53], Steklov eigenvalue [42], elliptic eigenvalue [36] and discrete
fracture networks [22]. In parallel, several different variants of the VEM have been proposed
and analysed: mixed [24, 9], discontinuous [26], H(div) and H (curl)-conforming [8], hp
[12], serendipity [11] and nonconforming [5, 32, 31, 54, 4] VEM.

Such a flourishing research activity founds an important motivation in the great flexi-
bility that the use of polytopal meshes can ensure in dealing with problems posed on very
complicated and possibly deformable geometries. In this respect, as first recognized by
G.H. Paulino and his collaborators in a series of ground breaking papers [51, 49, 50, 48, 35],
topology optimization represents an intriguing challenge for the use of polyhedral meshes.
Topology optimization is a fertile area of research that is mainly concerned with the auto-
matic generation of optimal layouts to solve design problems in Engineering. The classical
formulation addresses the problem of finding the best distribution of an isotropic ma-
terial that minimizes the work of the external loads at equilibrium, while respecting a
constraint on the assigned amount of volume. This is the so-called minimum compliance
formulation that can be conveniently employed to achieve stiff truss-like layout within a
two-dimensional domain. A classical implementation resorts to the adoption of four node
displacement-based finite elements that are coupled with an elementwise discretization of
the (unknown) density field. When regular meshes made of square elements are used,
well-known numerical instabilities arise, see in particular the so-called checkerboard pat-
terns. On the other hand, when unstructured meshes are needed to cope with complex
geometries, additional instabilities can steer the optimizer towards local minima instead of
the expected global one. Unstructured meshes approximate the strain energy of truss-like
members with an accuracy that is strictly related to the geometrical features of the dis-
cretization, thus remarkably affecting the achieved layouts. On this latter issue, as pointed
out also in [51], the use of polyhedral meshes provide flexibility in the difficult computa-
tional task of meshing complex geometries, while, in parallel, it can contribute to avoid
that the geometry of the mesh dictates the possible layout of material and the orientation
of members, thus excluding physical optimal configurations from the final design obtained
by the numerical procedure.

The aim of this paper is to push forward the study of [51, 35, 48]. In [51] the authors
analyze the possibility of avoiding sub-optimal (non-physical) layout in topology optimiza-



tion for structural applications when polygonal finite elements and polytopal meshes are
employed, whereas in [35] the virtual element method is employed for solving compliance
minimization and compliant mechanism problems in three dimensions. In [48] polygonal
finite elements are employed to solve topology optimization problems governed by Stokes
equations on polygonal meshes. In view of the above contributions, and with the goal
of deepening the comprehension of the role of VEM and polygonal meshes in topology
optimization, we focus on the use of this latter method for solving topology optimization
governed by linear elasticity (compressible and nearly-incompressible) and Stokes flow. For
each of the above examples, we systematically consider the impact that the combined ap-
proach VEM and polygonal meshes has on the quality of the obtained layout and compare
them with the ones provided by standard approaches.

The outline of the paper is the following. In Section 2 we present the continuous
formulation of the topology optimization problems that we will consider throughout the
paper, while in Section 3 we introduce the corresponding virtual element discretizations.
In Section 4 we present and extensively discuss several numerical experiments assessing the
virtues of the combined use of VEM and polygonal meshes in solving each of the previously
introduced topology optimization problems. Finally, in Section 5 we draw some conclusion.

2 Topology Optimization problems: continuous formulation

We briefly recall the continuous formulations of the topology optimization problems we are
interested in, namely the minimum compliance problem governed by the linear elasticity
equation (Section 2.1) and the optimal flow problem governed by the Stokes equation
(Section 2.2). We first recall some notation that will be useful in the following. Let  be
a two-dimensional bounded, polygonal domain with boundary I' = 02 and let I'y C T" be
a subset of the boundary of the domain. We introduce the following spaces

Vo = {ue(HY(Q)?: u=0only}
V, = {ue(HY(Q)?: u=uqonly}

where uq is a possibly null given function. Moreover, let us introduce the control space
Qua={peL®Q): 0<pmin<p<lae. inQ}

of bounded functions representing the material density in €2, where pmin is some positive

lower bound.

2.1 Minimum compliance

In this section we shortly describe the topology optimization problem for minimum compli-
ance. This corresponds to find the optimal distribution of a given amount of linear elastic



isotropic material (described by an element of Q,4) such that the work of the external load
against the corresponding displacement at equilibrium is minimized.

More precisely, let Ag and pg be the Lamé coefficients of the given material and introduce
the bilinear form a(-,-) : (H'(22))? x (H'(2))? — R defined as follows

a(u,v) = 210 /

e(u) : e(v) dx + /\0/ div u div v dx,
Q

Q

where e(u) = % (Vu+ VTu) is the symmetric gradient. Moreover, let us introduce the
semi-linear form a(p;-,-) : Qaq X (H1(2))? x (H1(Q))? = R

a(p;u,v) = 2/S]M(p)e(u) ce(v) dx + /Q A(p)div u div v dx

where, according to the classical SIMP approach, we set A(p) = Agp(z)P* and pu(p) =
pop(z)Pr, being py and p, positive parameters (typically equal to 3). Clearly, when p =1
in Q we have a(p;u,v) = a(u,v). Finally, let the linear functional F(-) : (H*(Q2))? — R
be defined as

f(v)—/ f-vdx
Iy

where I'y = T'\ T'y and the given function f; € (L?(I';))? represents the external load. In
view of the above definitions, given a material distribution described by the function p, the
elasticity problem (or direct problem) reads as follows: find u € V; such that

a(p;u,v) = F(v) (2)

for any v € V. According to the Clapeyron theorem, the continuous formulation of the
topology optimization problem for minimum compliance governed by the elasticity equation
can be therefore written as:

min  C(p,u) :/ fi-ude
pGQad Iy

st.  a(pyu,v)=F(v) VWwel (3)

g
— | pdx < Vy,
\ VQ d

being V; the available amount of material as a fraction of the whole domain V' = fQ ldz.
Minimizing the compliance C of a structure acted upon by a prescribed set of assigned
forces means minimizing the work of external loads, i.e. looking for a stiff structure.
When \g — 400 we refer to (3) as the minimum compliance problem in the case of nearly-
incompressible elasticity, otherwise for moderate values of A\g we refer to it as the minimum
compliance problem in the case of compressible elasticity.




2.2 Optimal Stokes flow

In this section we recall the classical topology optimization problem for optimal Stokes
flows [23]: given a design domain 2 with certain boundary conditions, we are interested
in determining at what places of € there should be fluid or solid in order to minimize a
certain energy functional £ (subject to the constraint of the availability of a given amount
of fluid). More precisely, let us introduce the bilinear form

a(p;u,v) = 2#0/

Q

e(u) : e(v) de + )\0/

divu divv dx +/ a(p)uv (4)
Q

Q

where pg is the viscosity of the fluid, A\g is a penalty parameter employed to enforce
the incompressibility condition and «(p) = %‘2‘. Given a material distribution described
by the function p € Q,q, the Stokes problem (or direct problem) reads as follows: find
u = u(p) € Vg such that

a(p;u,v) =0 Vv € V. (5)

Thanks to the choice of a(p), it turns out that the solution u of the above problem is null
where p = pmin and solves a plane flow model where p = 1 (see [23] for more details). This
amounts to interpret the region where p = pnin as occupied by a solid material, whereas
the region where p = 1 as occupied by the fluid.

In order to formulate our optimization problem, let us introduce the energy functional

1
E(p,u) = §a(p; u, u) which is a measure of the dissipated energy associated the pair (p, u).

Thus, the optimal flow problem governed by the Stokes equation reads as

min  E(p,u
pEQad (p )
s.t. a(p;u,v) =0 Vv el

1
= | pdz <V
V/Q”x—f

3 VEM discretization

In this section we introduce the virtual element discretization of the topology optimization
problems (3) and (6), which will be addressed in Sections 3.1 and 3.2, respectively. Let Ty,
represent a decomposition of {2 into general, possibly non-convex, polygonal elements F
with diam(E) = hg, where diam(E) = max, yecg || — y||. In the following, we will denote
by e the straight edges of the mesh 7} and, for all e € 0F, n%, will denote the unit normal
vector to e pointing outward to E. We will use the symbol Px(w) to denote the space of
polynomials of degree less than or equal to k > 1 living on the set w C R2. Moreover, we
will work under the following mesh regularity assumption on 7y, (see, e.g., [6]):



Assumption 3.1. We assume that there exist positive constants cs and ¢, such that every
element E € {Qp}y is star shaped with respect to a ball with radius p > cshg and every
edge e € OF has at least length he > cLhp.

Let us first introduce the discrete counterpart of the space 9.4, namely the finite
dimensional space of piecewise constant admissible controls

Qaa = {pn € Qada : pnip € Po(E) VE € Tp} .

Clearly, a function p;, € Q,q is uniquely determined by its value pg in each polygon E € Tp,.
Hence, the dimension of Q,q equals the cardinality of 7p.

3.1 Minimum compliance

Following [7], it is possible to introduce the low-order discrete VEM spaces V, C Vy and
V), C V, a discrete form ap(pp; up, vy) approximating a(p;u,v) and a discrete functional
Fn(vp) approximating F(v) such that the VEM discretization of (2) reads as: given p, €
Qaq find vy, € Vy, such that

an(ph; Un, Vi) = Fa(vn)

for any vj, € Vyj. In particular, the global VEM spaces V; and Vj, are obtained by
gluing suitable local discrete VEM spaces, denoted by Vi (E), whose elements are uniquely
identified by the values at the vertices of the polygon E and contain linear polynomials, i.e
(P1(E))? C Vu(E). It is immediate to verify that the dimension of Vj, (the same happens
for V) equals two times the number of the interior vertices of the partition 7, plus those
belonging to I';, having fixed the values at vertices belonging to I'g to incorporate Dirichlet
boundary conditions. More precisely, according to [7], we have

Vh(E) = {vi € (H'(E))?: Axguovi = 0 on E,vy|c € (P1(e))? Ve € OE}

where
Ay ol = — 210 (U120 + %(“Lyy + u2,0y)) + Ao(UL gz + U2,yz)
010 2,“0(%(“1,3/90 +u2.z2) +uzyy) + Ao(uray +uzyy) )

Let us now define the projection operator 1% : V;,(E) — (P1(E))? solution of

a”(gvy, q) = a¥(vi,q) Va e (Pi(E))?
HeEVh =V

for all v, € Vj,(FE), where a”(-,-) is the bilinear form a(-,-) restricted to the element E
and, for any regular function ¢, we set

1
o - ;1 »(Vi) Vi = vertices o

6



It is easy to see that II%, is computable from the degrees of freedom of the local VEM space.

The construction of the global form ay(pp; up, vp,) hinges upon the construction of local
forms a (up, vi) : Vi(E) x V4 (E) — R defined as

ay (ap, vp) = 2#0/

e(Ilzuy) : e(Igv),) dx + /\0/ div H%uy, div yv, dx
E E

+ SEE(uy, — Oy, vy, — M5vy),

where the bilinear form SF:€ is a suitable stabilization term with the same scaling properties
of the sum of the first and second term (see [7] for more details). Then, the global form
reads as follows:
an(pr; Un, Vi) = > plpay (an, vi),
EeTy,

where we employed the fact that p,|p € Po(E).

In the case of nearly-incompressible materials, i.e. for A\g — +00, the local discrete
bilinear form is modified as follows:

af(ay,,vy) = QMO/EE(H%uh) ce(IIgvy,) dx + Ao /E(Hodivuh)(ﬂodivvh) dx

+ SEC(uy, — OGuy, vy, — OGvy), (7)

where I denotes the L?-projection on constant functions and the bilinear form S is a
suitable stabilization term with the same scaling properties of the first term. We refer to
[7] for more details.

Remark 3.1. For nearly-incompressible elasticity, in [7] it is not theoretically proved that
the resulting lowest-order discrete VEM problem stemming from (7) is well posed. However,
in [14], it is reported numerical evidence that, in the context of Mimetic Finite Differences
(MFD), the formulation is well posed on hexagons.

According to the previous considerations, the VEM discretization of the topology op-
timization problem (3) reads as follows:

in Clpn ) =F
i (pn,ap) n(up)

s.t. ah(ph; uh,vh) = ]:h(vh) Vvy, € V(]}h

1
— de < V;.
V/Qphﬂf_f



3.2 Optimal Stokes flow

Hinging upon the results of the previous sections, the virtual discretization of (6) easily
follows. Indeed, bearing in mind (7), the discrete virtual counterpart of (5) reads as: given
pn € Qaq find uy € Vy, such that

ap(pr;up,vy) =0

for any v, € Vy ,, where as usual the global discrete form ap,(pp; up, vp,) is defined in terms
of the local forms as ap(pp;up, vy) = ZEeTh af(uh,vh) + bf(ph;uh,vh) with af(uh,vh)
being the same as in (7) and

S0
bE (pp;ap, vi) = / pTH%uh % vde + SEO (v, — 1%y, vy, — O%vy),
E FPE

where I1%, : V,(E) — (P1(E))? is the L%-projection and the bilinear form S0, as above, is
a suitable stabilization term with the same scaling properties of the first term. Note that,
using the augmented space argument (see [1]), on the local VEM space the projections HOE
and II%, coincide, thus H% is computable.

In order to formulate the discrete optimization problem, let us introduce the energy

1
functional &, (pn,up) = §ah(p; up, up). Thus, the virtual discretization of (6) reads as

min  E(pp, up)
pe@ad

s.t. a(pp;up, vy) =0 Vv, € Vo

1
= dx < Vy.
V/Qphw_f

4 Numerical results

Several numerical examples are presented in this section dealing with the VEM discretiza-
tion of the topology optimization problems introduced above. The minimum compliance
problem governed by compressible (Section 4.1) and nearly-incompressible linear elasticity
(Section 4.2) is solved, as well as the optimal flow problem governed by the Stokes equation
(Section 4.3).

The Method of Moving Asymptotes (MMA) [47], an algorithm based on sequential
convex programming, is herein adopted to tackle the discrete optimization problems (8)-
(9).

As described in the previous section, an element—wise density discretization is imple-
mented to approximate the unknown density field. This conventional discrete scheme is



affected by well-known numerical instabilities, such as the arising of checkerboard patterns
and mesh dependence, see e.g. [19]. Several methods are available in the literature to over-
come both problems [45]. Following [40] and some robust application in stress—constrained
topology optimization, see e.g. [28, 37, 38, 39|, a filter is herein applied to the density
unknowns pgp and a new set of physical variables pg is defined as:

ﬁE = 231}[ Z HE,E'PEU HE,E'/ = Z max((),rmm - diSt(E, E,))

E'eTy HEE preg, E'CTy,
In the above equation dist(F, E’) is the distance between the centroid of the elements F
and E’, whereas rpin > d,, is the size of the filter radius; d,, is the square root of the
area of each polygon/element in the discretization 7. Enforcing i, = 1, 5d,,, undesired
checkerboard patterns are inhibited; adopting larger values of 7y, a heuristic control on
the minimum thickness of any member in the design is additionally embedded within the
optimization.

4.1 Compressible elasticity

In this section a set of numerical simulations is performed to investigate the features of
the proposed VEM-based procedure when addressing topology optimization governed by
compressible elasticity. Structured and unstructured polygonal grids have been employed
to discretize the design domain. Figure 1 shows examples of grids including 501 polygonal
elements. The achieved VEM-based results are compared with analogous ones obtained by
employing the classical bilinear displacement—based finite elements on Cartesian meshes,
see [19]. A linear elastic isotropic material is considered in the simulations, assuming Young

Figure 1: Examples of structured (left) and unstructured (right) polygonal grids consisting
of 501 elements.

modulus £ = 1 and Poisson’s ratio v = 0.3. In the whole set of minimizations, the volume
fraction of available material is Vy = 0.3. Different values of filter radius are considered.



Figure 2: Compressible elasticity. Geometry and boundary conditions for the numerical
simulationsof Example 1 (rectangular cantilever, left) and Example 2 (square cantilever,
right). In each case P = 1 is the intensity of the unitary traction f; applied as a nodal
force oriented as indicated by the arrow.

4.1.1 Example 1: rectangular cantilever

The first design problem refers to the rectangular cantilever represented in Figure 2(left).
A reference solution is conventionally obtained implementing bilinear displacement—based
finite elements on a Cartesian grid consisting of 8192 squares (2% elements lie along the
thickness of the cantilever), along with a filter radiusrpin = 3.0d,,. As shown in Figure
3(b), a truss—like structure arises: inclined members carry shear forces whereas horizontal
ones cope with bending actions; both set of members undergo axial stresses. Figure 3(a)
shows the optimal design found through the proposed VEM-based minimization algorithm
on a structured mesh consisting of 7990 polygonal elements (2° elements lie along the
thickness of the cantilever). The same filter radius is adopted, e.g. 7rmin = 3.0d,,. The
result obtained with our VEM-based method is substantially equal to the one found by the
classical FEM-based approach.

An additional set of numerical simulations is performed on a coarser discretization
adopting 2° elements along the thickness of the cantilever. The same filter radius imple-
mented in the previous investigations is assumed. Figure 4(a) shows the optimal layout
found through the proposed VEM-based approach on a structured mesh consisting of 2006
polygonal elements, whereas Figure 4(b) refers to the optimal design achieved by the bi-
linear displacement—based approach on a regular mesh of 2048 square elements. Although
the main layout of Figure 3 is recovered in both pictures, the FEM-based design is affected
by an unexpected variation in the inclination of the thinner reinforcing braces. Due to the
limited amount of available material (V; = 0.3) and the rough mesh of square elements,
the optimizer gets stuck in a final layout with 45-degree inclination, a mesh—dependent
local minimum. The VEM-based result is not affected by such a numerical instability.
Indeed, the VEM-based algorithm succeeds in finding the expected layout even in case of
coarse unstructured meshes; Figure 5 shows the optimal design obtained on a discretization

10



consisting of 2048 polygonal elements for the same filter radius rpyi, as above.

(b)

Figure 3: Compressible elasticity. Example 1: rectangular cantilever. Optimal topologies
computed on structured meshes with 26 elements along the thickness of the cantilever:
proposed VEM sed formulation (a), bilinear displacement-based formulation (b).

Figure 6 provides a comparison between the VEM-based approach (see Fig. 6(a)) and
the displacement—based one (see Fig. 6(b)) for fine regular meshes of 32028 and 32768 ele-
ments, respectively (27 elements lie along the thickness of the cantilever). Notwithstanding
the adopted smaller filter radius ryiy, = 1.5d,,, the achieved optimal layouts are almost
identical.

4.1.2 Example 2: square cantilever

The second investigation addresses the square cantilever shown in Figure 2(right). An
assessment of the VEM-based topology optimization method is provided, adopting un-
structured grids of polygonal elements as those shown in Figure 1(b).

First, an unstructured discretization accounting for 4096 elements (2° along the thick-
ness of the cantilever) is used. The adopted filter radius reads ryi, = 1.5d,,, being d,,, as
before, the square root of the average area of the polygonal elements in the unstructured
grid. Figure 7 shows the achieved optimal layout, a truss—like structure whose central node

11



(b)

Figure 4: Compressible elasticity. Example 1: rectangular cantilever. Optimal topologies
computed on structured meshes with 2° elements along the thickness of the cantilever:
proposed VEM formulation (a), bilinear displacement—based formulation (b).

receives two thick tensile—stressed trusses along with two thin compressive—stressed bars.
Figure 8 shows the optimal solutions achieved for an increased value of the enforced filter
radius, i.e. rmin = 3.0d,,. A simpler design arises that is made of two ties and one big
strut, in full agreement with the well-known solution of this benchmark problem, see e.g.
[19].

Finally, Figure 9 provides the optimal layout computed when a finer discretization
with 27 elements along the thickness of the cantilever is implemented. The overall number
of polygonal elements is 16384. The filter radius is Tmin = 6.0d,,, which is nearly the
value used for the result shown in Figure 8. No mesh dependence affects the proposed
VEM-based formulation, since the same optimal layout is found in both figures.

4.1.3 Example 3: circle loaded with four point load

Let us consider a circular lamina that is loaded by a set of self-balanced forces applied at
points A,B,C,D as shown in Figure 10.

12



Figure 5: Compressible elasticity. Example 1: rectangular cantilever. Optimal topology
achieved through the proposed VEM formulation for an unstructured mesh with 2° elements
along the thickness of the cantilever.

The geometry is discretized using the commercial code Strand7 [52] to achieve a mesh
of 2168 quadrilateral elements, see Figure 11. The conventional FEM-based formulation
is adopted to find the volume—constrained minimum compliance solution. First, the load
case presented in Figure 10 is applied to the mesh in Figure 11. Then, the same load
case is applied to the discretization achieved after a 30-degree anticlockwise rotation of
the original mesh around its centroid. Figure 12 shows the result of the topology optimiza-
tion procedure for the unrotated mesh of standard bilinear finite elements (see Fig. 12(a))
and the rotated one (see Fig. 12(b)). The achieved layouts are remarkably different and
point out a lack of robustness of the solution with respect to the considered rotation of the
mesh. In both cases a mesh—dependent solution is found that is not a truss—like structure.
Due to the geometrical features of the adopted discretizations, non—straight members arise,
curved beams in Figure 13(a) or piecewise linear elements in Figure 13(b). Both kinds of
elements have to cope with bending stresses, meaning that a sub—optimal performance is
achieved with respect to any stiff truss—like structure.

A similar investigation is performed adopting the proposed VEM-based approach to
solve the considered problem of optimal design. The geometry is discretized using the aca-
demic code Polymesher [50] to achieve a mesh of 2268 polygonal elements, see Figure 13.
Figure 14 shows the results of the VEM-based topology optimization for the unrotated
mesh of Figure 13 (a) and for a discretization achieved after a 30-degree anticlockwise
rotation of the original mesh around its centroid (b). The achieved layouts are very sim-
ilar to each other: the considered rotation of the mesh induces only minor effects on the
solution. In both cases a stiff truss—like structure arises, thus assessing the robustness of
the proposed algorithm with respect to mesh rotations.

13



(b)

Figure 6: Compressible elasticity. Example 1: rectangular cantilever. Optimal topologies
computed on structured meshes with 27 elements along the thickness of the cantilever:
proposed VEM formulation (a), bilinear displacement—based formulation (b).

4.2 Nearly-incompressible elasticity

Differently from displacement—based finite elements, the adopted VEM approximation is
well-suited to cope with the analysis of quasi-incompressible media, since, at least numer-
ically (see Remark 3.1), it satisfies the classical inf-sup stability condition and no locking
is expected when dealing with problems assuming plane strain. As originally investigated
in [46], a conventional SIMP-law that uses the same exponent p to approximate the de-
pendence of the modulus A and p with respect to the density p can fail when addressing
the optimal design of (nearly-)incompressible media: region with low density but high
stiffness may arise in the solution, thus achieving optimal layouts that are unfeasible from
a physical point of view. This problem can be simply overcome adopting a larger penal-
ization on A than p, e.g. enforcing py = 6 along with p,, = 3 instead of py = p,, = 3, see [29].

Figure 15(left) shows a benchmark problem for nearly-incompressible two—dimensional

bodies undergoing plane strain conditions. Figure 15(right) shows the optimal design
obtained by our VEM-based procedure (for symmetry reasons only half of the domain has

14



Figure 7: Compressible elasticity. Example 2: square cantilever. Optimal topology com-
puted with the proposed VEM formulation on an unstructured mesh with 26 elements
along the thickness of the cantilever and filter radius ryi, = 1.5d,, ~ 1.5/ 26,

been tackled in the optimization). The achieved layout is in full agreement with those
found in the literature, see in particular the results obtained by adopting robust truly—
mixed discretizations based on triangles [29] or square elements [27].

4.3 Optimal Stokes flow

In this section we consider the numerical solution of the discrete problem (9) related to
the optimization of Stokes flows. In particular, we will deal with some classical benchmark
examples first introduced in [23] together with some suitable variants aiming at highlighting
the virtues of the VEM-based topology optimization on polygonal meshes.

In the sequel, following [23] we will work under the following choice of the penalty
function a(p) (cf. (4)), namely

1+a

Oé(p) :a+(g*d)pp+qv

where ¢ = 0.1, a = 2.5119/100? and & = 2.5.0/0.012.

The profile of the prescribed non-zero velocity at the boundary is parabolic, i.e. the
magnitude of the velocity can be written as g*(1 — (2s/1)?), with s € [~1/2,1/2] where g*
is the maximum value, whereas [ is the length of the boundary part where the parabolic
profile is prescribed.

Throughout all the following numerical experiments we choose jig = 1 and A\g = 103.

15



Figure 8: Compressible elasticity. Example 2: square cantilever. Optimal topology com-
puted with the proposed VEM formulation on an unstructured mesh with 26 elements
along the thickness of the cantilever and filter radius ryi, = 3.0d,, ~ 1.5/ 2%,

4.3.1 Optimal pipe

Here we consider the design region depicted in Figure 16(top) where the inflow equals the
outflow and set ¢* = 1. We employ an unstructured mesh of hexagons made of 4096 and
16384 elements, respecticely and the obtained optimal shapes of the pipe minimizing the
dissipated energy are shown in Figure 16(bottom). The optimal result is in agreement with
the configuration found in the literature (see, e.g., [23]).

4.3.2 Optimal pipe with obstacle

In this section we modify the previous test case by including an obstacle represented by a
circle centered at C' = (0.5,0.5) with radius r = 0.3 (see Figure 17(top)). Thus the circle is
a non-design region, i.e. pp = pmin, and the optimal flow has to accommodate the presence
of the obstacle. The results of the optimization process are reported in Figure 17(bottom)
and clearly show the capability of the polygonal mesh to accommodate curved no-design
regions.

4.3.3 Optimal diffuser

Here we consider the design region depicted in Figure 18 (top) where the inflow and the
outflow have been chosen to respect the mass conservation, i.e. ¢g* = 1 at the inlet and
g* = 3 at the outlet. We employ an unstructured mesh of hexagons made of 4096 and
16384 elements, respectively, and the obtained optimal shape of the pipe minimizing the
dissipated energy is shown in Figure 18 (bottom). Also in this case, the optimal result

16



Figure 9: Compressible elasticity. Example 2: square cantilever. Optimal topology com-
puted with the proposed VEM formulation on an unstructured mesh with 27 elements
along the thickness of the cantilever and filter radius ryi, = 6.0d,, ~ 1.5/ 2%,

obtained with our VEM based approach is in agreement with the configuration found in
the literature (see, e.g., [23]).

4.3.4 Optimal diffuser with obstacle

Similarly to the optimal pipe test, we modify the previous test case by including a circular
obstacle (pn, = pmin) centered at C = (0.5,0.5) with radius » = 0.1 (see Figure 19(top)).
The optimal flow taking into account the presence of the obstacle is reported in Fig-
ure 19(bottom) for two polygonal grids with 4096 and 16384 elements, respectively. The
same comments of Section 4.3.2 apply here.

5 Conclusions

In this paper we considered the numerical solution of two paradigmatic examples of topol-
ogy optimization problems on polygonal meshes employing the virtual element method.
The first optimization problem is the minimum compliance governed by linear elasticity
(compressible and nearly-incompressible) while the second one is related to the minimum
energy dissipation of Stokes flows. From the numerical results presented in the previous
section, we can draw the following conclusions:

e optimal layouts do not seem to be affected by the geometrical features of the polygonal
mesh, whereas the use of standard quadrilateral grids may steer the optimization
process towards sub-optimal (non-physical) configurations;
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Figure 10: Compressible elasticity. Geometry and boundary conditions for the numerical
simulations of Example 3 (circle loaded with four point load).
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Figure 11: Compressible elasticity. Example 3: circle loaded with four point load. Mesh
of 2168 quadrilateral elements built with commercial code Strand7
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Figure 12: Compressible elasticity. Example 3: circle loaded with four point load. Final
configuration with bilinear displacement—based formulation: (a) no mesh rotation; (b)
mesh rotation of 30 degrees.
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Figure 13: Compressible elasticity. Example 3: circle loaded with four point load. Polyg-
onal grid consisting of 2268 elements built with Polymesher [50].
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(a) (b)

Figure 14: Compressible elasticity. Example 3: circle loaded with four point load. Final
configuration with VEM on structured meshes with 2268 elements: (a) no mesh rotation;
(b) mesh rotation of 30 degrees.

F=2

Figure 15: Nearly-incompressible elasticity. Left: design domain. Right: optimal design
(half by symmetry) on polygonal grid consisting of 4096 hexagons (v = 0.4999999).
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Figure 16: Optimal pipe. Top: design domain (taken from [23]). Bottom: optimal configu-
ration on unstructured polygonal grid consisting of 4096 (left) and 16384 (right) elements.
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Figure 17: Optimal pipe with obstacle. Top: design domain with circular obstacle. Bottom:
optimal configuration on unstructured polygonal grid consisting of 4096 (left) and 16384

(right) elements.
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Figure 18: Optimal diffuser. Top: design domain. Bottom: optimal configuration on
unstructured polygonal grid consisting of 4096 (left) and 16384 (right) elements.
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Figure 19: Optimal diffuser with obstacle. Top: design domain with obstacle. Bottom:
optimal configuration on polygonal grid consisting of 4096 (left) and 16384 (right) elements.
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e optimal layouts obtained with polygonal meshes seem to be robust with respect to
mesh rotations, whereas rotated standard quadrilateral grids may give rise to different
optimal configurations;

e optimal configurations obtained on polygonal meshes seem to be mesh independent,
i.e. they do not seem to depend on the granularity of the computational mesh;

e optimal layouts in the case of topology optimization governed by nearly-incompressible
elasticity or Stokes flow have been successfully identified, thanks to the accuracy and
stability properties of the adopted virtual element approximation.

Hinging on the results of the present paper, it seems to be promising, in terms of reduction
of the overall computational cost, the adoption of mesh adaptivity during the optimization
process (see, e.g., [30, 43]). This will be addressed in a future work.
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