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Abstract

We deal with the Ambrosio-Tortorelli approximation of the well-known
Mumford-Shah functional to model quasi-static crack propagation in brittle
materials. We employ anisotropic mesh adaptation to efficiently capture the
crack path. Aim of this work is to investigate the numerical sensitivity of the
crack behavior to the parameters involved in both the physical model and in
the adaptive procedure.

1 Introduction to the problem

The Mumford-Shah functional plays a key role in many applications, from image
segmentation to mechanical problems [8]. One such application is the fracture
propagation in brittle materials, where no predefined crack path is required. The
Mumford-Shah functional is used for the first time by G. Francfort and J.-J.
Marigo in [6] to model the quasi-static evolution of such a crack along the critical
points of the energy. From a mathematical viewpoint, this leads to minimizing a
nonconvex and nonsmooth functional which involves the displacement function u
together with a lower dimensional set representing the crack Γ. This is an inter-
esting challenge for both the theoretical analysis and the numerical computation.
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In the two sections below we address a suitable regularization of the Francfort-
Marigo functional and a corresponding discrete approximation. This smoothed
model will allow us to tackle the numerical approximation via the employment of
a suitable anisotropic adapted mesh, able to follow tightly the crack path.

1.1 The Modified Ambrosio-Tortorelli (MAT) functional

The functional provided by L. Ambrosio and V.M. Tortorelli is one of the most
popular approach to dealing with the intrinsic irregularity of the Francfort-Marigo
functional [1]. It is given by

Iε(u, v) =

∫

Ω
(v2 + η)|∇u|2 dx + κ

∫

Ω

[
1

4ε
(1 − v)2 + ε|∇v|2

]
dx, (1)

where Ω ⊂ R
2 is an open domain, 0 < η ≪ ε ≪ 1, κ > 0 approximates the

elasticity constant of the material, while u : H1(Ω) → R and v : H1(Ω) → [0, 1]
represent the displacement and the crack path, respectively. The first integral
takes into account the elastic energy of the material, while the second integral is a
fictitious energy spent in propagating the crack inside the material. Furthermore,
when v = 1, the second integral vanishes, indicating the absence of a crack,
whereas, when v = 0, only the fictitious energy does contribute and we are in
the presence of an actual crack. The Ambrosio-Tortorelli functional enjoys the
desirable property to Γ-converge to the Mumford-Shah functional [1].

To drive the crack evolution, an external load g : Ω× [0, T ] → R is applied on
a subset ΩD± of Ω, defined as follows

g(x, t) =

{
±t if x ∈ ΩD± ,
0 elsewhere ,

(2)

with T > 0 the final time of interest and x = (x1, x2)
T . For simplicity, we denote

hereafter g(x, t) with g(t). Let us also introduce the space of admissible solutions
A(g(t)) = {u ∈ H1(Ω) : u|ΩD±

= g(t)|ΩD±
}. Associated with the time interval

[0, T ], we define a uniform partition 0 = t0 < t1 < . . . < tn = T of step ∆t.
According to a quasi-static evolution, at any time level tk, with k = 1, . . . , n, we
solve the following minimization problem

(uε(tk), vε(tk)) ∈ arg min
u ∈ A(g(tk)), v ∈ H1(Ω)

s.t. v(x, tk) = 0, ∀x ∈ CRk−1

Iε(u, v), (3)

with CRk−1 = {x ∈ Ω | vε(tk−1) < CRTOL}, and where CRTOL is a tolerance con-
trolling somehow the thickness of the crack. At the initial time, we set CR−1 = ∅,
i.e., the constraint in (3) is removed since the crack is not yet present. Conver-
gence results relating the actual continuos model with the present time-discrete
version can be found in [5].
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In [2], we relax the constraints in (3) via suitable penalization terms which
allow us to deal with an unconstrained minimization for the Modified Ambrosio-
Tortorelli (MAT) functional

IMAT
ε (u, v) =

∫

Ω

[
(v2 + η)|∇u|2 dx +

1

4ε
(1 − v)2 + ε|∇v|2

]
dx

+
1

γA

∫

ΩD±

(g(tk) − u)2 dx +
1

γB

∫

CRk−1

v2 dx,

(4)

where γA and γB are (small) penalty constants and κ = 1 is assumed for conve-
nience. Moreover, as remarked in [2], condition 0 ≤ v ≤ 1 is guaranteed by the
minimization process.

1.2 The discretized MAT functional

We consider the discrete counterpart of the functional (4) via a finite element
approximation. For this purpose, we introduce a family {Th} of meshes of Ω and
denote by Eh the skeleton of Th. Moreover, we associate with Th the space Xh

consisting of continuous piecewise linear functions.
The discretization of the MAT functional based on Xh is

IMAT
h (uh, vh)=

∫

Ω

[ (
Ph(v2

h) + η
)
|∇uh|

2 dx +
1

4ε
Ph((1 − vh)2) + ε|∇vh|

2
]
dx

+
1

γA

∫

ΩD±

Ph

(
(gh(tk) − uh)2

)
dx +

1

γB

∫

CRk−1

Ph

(
v2
h

)
dx,

where Ph : C0(Ω) → Xh is the Lagrangian interpolant onto Xh, and gh(tk) is the
L2(ΩD±)-projection of g(tk) onto Xh. In practice, the minimization problem (3)
is replaced by the following one

(uh(tk), vh(tk)) ∈ arg min
(buh, bvh) ∈ Xh × Xh

IMAT
h (ûh, v̂h).

The critical points of IMAT
h satisfy relation (IMAT

h )′(uh, vh; ϕh, ψh) = 0, where
(IMAT

h )′ denotes the Fréchet derivative of the discrete MAT functional given, for
any (ϕh, ψh) ∈ Xh × Xh, by

(IMAT
h )′(uh, vh; ϕh, ψh)

= 2

(∫

Ω
(Ph(v2

h) + η)∇uh · ∇ϕh dx +
1

γA

∫

ΩD±

Ph ((uh − gh(tk))ϕh) dx

)

+2

(∫

Ω

[
Ph(vhψh)|∇uh|

2 +
1

4ε
Ph((vh − 1)ψh) + ε∇vh · ∇ψh

]
dx

+
1

γB

∫

CRk−1

Ph (vhψh) dx

)
.

The proof that the condition 0 ≤ vh ≤ 1 is automatically satisfied also in the
discrete case can be found in [2].
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2 The anisotropic a posteriori error estimator

We introduce now the basic setting useful to enrich the discretization above with
mesh adaptation. In particular, we adopt an anisotropic approach due to the
highly directional nature of the crack propagation as well as to the expected com-
putational saving led by the employment of anisotropic meshes.
Following, e.g., [7], the geometric information describing a generic stretched el-
ement K ∈ Th are the unit vectors r1,K and r2,K along the directions of the
semi-axes of the ellipse circumscribed to K, and the positive scalars λ1,K , λ2,K ,
with λ1,K ≥ λ2,K , which measure the length of these semi-axes. In practice, these
quantities are computed by exploiting the spectral properties of the affine map
TK between the reference element K̂ and the actual triangle K, whose diameter
and area are denoted by hK and |K|, respectively.

The theoretical tool driving the adaptive procedure in Section 3 is provided
by the following result, where we employ the standard notation ‖ ·‖k,p,̟ to denote
the norm in the Sobolev space W k,p(̟), with ̟ ⊂ R

d for d = 1, 2 and where k is
omitted when zero.

Proposition 2.1 Let (uh, vh) ∈ Xh × Xh be the critical point of IMAT
h . Let us

assume that #∆K ≤ N , where ∆K = {T ∈ Th : T ∩ K 6= ∅} is the patch

of elements associated with K, and that diam(T−1
K (∆K)) ≤ C∆. Then, for all

ϕ, ψ ∈ H1(Ω), there exists a constant C = C(N , C∆) such that

|(IMAT
h )′(uh, vh; ϕ, ψ)| ≤ C

∑

K∈Th

{
ρA

K(vh, uh)ωK(ϕ) + ρB
K(uh, vh)ωK(ψ)

}
, (5)

where the residuals ρA
K(·, ·) and ρB

K(·, ·), and the weight ωK(·) are given by

ρA
K(vh, uh) = ‖2vh∇vh · ∇uh‖2,K + 1

2‖[[∇uh]]‖∞,∂K‖v2
h + η‖2,∂K

(
hK

λ1,Kλ2,K

)1
2

+
δ
K,Ω±

D
γA

(
‖uh − gh(tk)‖2,K + ‖gh(tk) − g(tk)‖2,K

)

+ 1
λ2,K

[
‖v2

h − Ph(v2
h)‖∞,K ‖∇uh‖2,K +

|K|1/2 h2
K

γA
|uh − gh(tk)|1,∞,K

]
,

ρB
K(uh, vh) = ‖(|∇uh|

2 + 1
4ε)vh − 1

4ε‖2,K + ε
2 ‖[[∇vh]]‖2,∂K

(
hK

λ1,Kλ2,K

)1
2

+
δK,crk−1

γB
‖vh‖2,K +

h2
K

λ2,K

[
‖ |∇uh|

2 + 1
4ε‖2,K +

|K|
1
2 δK,crk−1

γB

]
|vh|1,∞,K ,

ωK(w) =
[ ∑2

i=1 λ2
i,K(rT

i,KG∆K
(w)ri,K)

]1/2
for w = ϕ, ψ,

with δK,̟ the Kronecker symbol associated with ̟, such that δK,̟ = 1 if K ∩
̟ 6= ∅ and δK,̟ = 0 otherwise, G∆K

∈ R
2×2 the symmetric matrix with entries

[G∆K
(w)]i,j =

∫
∆K

(
∂w/∂xi

) (
∂w/∂xj

)
dx, i = 1, 2, [[wh]] =

∣∣[∂wh/∂n]
∣∣ on Eh ∩Ω

and [[wh]] =
∣∣∂wh/∂n

∣∣ on Eh∩∂Ω the jump of the normal derivative of wh = uh, vh.
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For the proof of this proposition, we refer to [2]. We just observe that an impor-
tant role is played by the anisotropic estimates for the Clément quasi-interpolant
[7]. The actual a posteriori error estimator, say ηMAT , involved in the adaptive
procedure coincides with the right-hand side of (5) after replacing ϕ and ψ with
uh and vh, respectively, and taking C = 1.

3 An optimize-and-adapt algorithm

The minimization of the functional IMAT
h is a non-trivial task since it is non-

convex. However, in [3] a first strategy to deal with it is proposed and further
analyzed in [4]. The idea is to resort to a Gauss-Seidel-like algorithm consisting
of a two-step procedure, first minimizing with respect to uh for a fixed vh, and
then to minimize also with respect to vh using the updated uh. Moving from this
idea, in [2] we couple this optimization step with an anisotropic mesh adaptation
procedure in two different ways. In particular, following [7], we employ a metric-
based approach relying on result (5) with the aim of minimizing the number of
mesh elements for a fixed tolerance REFTOL≪ 1 on ηMAT . The first algorithm,
optimize-then-adapt, in [2], which is a variant of ALGORITHM 1 in [4], applies the
mesh adaptation after convergence of the minimization algorithm on both uh and
vh. Since the coupling between optimization and adaptation is not so tight, this
algorithm is weak in the presence of sudden breakdowns of the material. As a
consequence, in the second algorithm, optimize-and-adapt, we introduce a closer
alternation of the optimization and mesh adaptation phases, by adapting the mesh
just after two steps of the Gauss-Seidel algorithm without waiting for convergence.

In more detail, after fixing a termination tolerance VTOL≪ 1 for the mini-
mization algorithm, a relative tolerance MESHTOL≪ 1 on the change of the mesh
cardinality, the optimize-and-adapt algorithm is the following:

Optimize-and-Adapt Algorithm

1. Set k = 0, T
(1)

h = Th ;
2. If k = 0, set v1

h = 1; else v1
h = vh(tk−1);

3. Set i = 1; errmesh = 1; err= 1;
while errmesh ≥ MESHTOL & err ≥ VTOL do

4. ui
h = arg min

zh∈X
(i)
h

IMAT
h (zh, vi

h);

5. vi+1
h = arg min

zh∈X
(i)
h

IMAT
h (ui

h, zh);

6. Build the metric-based adapted mesh T
(i+1)

h with tolerance REFTOL;
7. err = ‖vi+1

h − vi
h‖∞,Ω;

8. errmesh = |#T
(i+1)

h − #T
(i)

h |/#T
(i)

h ;
9. Set v1

h = Πi→i+1(v
i+1
h );

10. i ← i + 1;
end while

11. uh(tk) = Πi−1→i(u
i−1
h ); vh(tk) = v1

h; T k
h = T

(i)
h ;
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Figure 1: Computational domain (left), final anisotropic adapted mesh (center),
zoom in (right) for the default parameters

12. Set T
(1)

h = T k
h ;

13. k ← k + 1;
14. if k > n, stop; else goto 2.

An interpolation step between two successive adapted meshes is employed before
restarting any new optimization or time loop. This is carried out by a suitable
interpolation operator, Πj→j+1(wh), which maps a finite element function wh de-

fined on T j
h onto the new mesh T j+1

h . The convergence of the mesh adaptivity is
checked by monitoring the change of the number of elements, which is an effective
stopping criterion though not rigorously sound.

4 Sensitivity assessment

In this section we carry out a sensitivity analysis of the optimize-and-adapt algo-
rithm to its main parameters. The test case used for this purpose is the curved
crack configuration studied in [4, 2].
We consider a rectangle Ω = (0, 2) × (0, 2.2) including the slit {1} × [1.5, 2.2],
2 ·10−5 wide, and a circular hole of radius 0.2 and center at (0.3, 0.3) (see Figure 1
(left)). In (2) we choose ΩD− = (0, 1) × (2, 2.2) and ΩD+ = (1, 2) × (2, 2.2). The
default values for the parameters are ε = 2 · 10−2, η = 10−5, γA = γB = 10−5,
∆t = 10−2, CRTOL = 3 · 10−4, VTOL = 2 · 10−3, ADAPTOL = 10−2, and REFTOL

= 10−2. In Figure 1 we show the anisotropic mesh yielded by the algorithm at
the final time T = 1.43 along with a detail around the crack. The number of
the elements and the maximum aspect ratio maxK∈Th

λ1,K/λ2,K are 15987 and
3.06 · 103, respectively. The first series of tests check on the sensitivity to the
penalty constants γA = γB, by choosing three pairs of values, i.e., 10−4, 5 · 10−5,
10−5. From Figure 2, it is evident that the higher the values of these constants,
the larger is the deviation of the crack path with respect to the one assumed as
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Figure 2: Sensitivity to the penalty constants: colour plot of the vh-field for
γA = γB = 10−4 (left), γA = γB = 5 · 10−5 (center), γA = γB = 10−5 (right)

Figure 3: Sensitivity to REFTOL: colour plot of the vh-field for REFTOL= 10−1 (left),
REFTOL= 10−2 (center), REFTOL= 8 · 10−3 (right)

default. In particular, with the first two choices the crack even misses the hole.
The two meshes yielding the straight path consist of fewer elements (12027 and
12628) than the default mesh in Figure 1.

The second trial of checks deals with the sensitivity to the tolerance REFTOL

involved in the mesh adaptation procedure. We choose both a larger and a smaller
value with respect to the default, namely REFTOL= 10−1 and REFTOL= 8·10−3. The
associated vh-field are displayed in Figure 3. The largest value leads to a wrong
path detection with only 8547 triangles, whereas the choice REFTOL= 8 ·10−3 iden-
tifies essentially the same path as the default one, but with an excessive number
of elements (23521). Thus, it seems that too small a tolerance just increases the
computational effort without improving the crack path tracking.

The last batch of tests assesses the behaviour of the optimize-and-adapt algo-
rithm for a different value of ε, i.e., ε = 5 · 10−2. We observe that ε controls the
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Figure 4: Colour plot of the vh-field for REFTOL= 10−1 (left), REFTOL= 10−2

(center), and adapted mesh for t = 1.43 and REFTOL= 10−2 (right)

width of the crack. As expected, the larger value of ε widens the crack bound-
aries (compare the thickness of the crack in Figures 3 and 4). Moreover, also
the crack trajectory changes considerably. For ε = 5 · 10−2 the crack suddenly
turns left entering directly the hole, independently of the two chosen tolerances
REFTOL= 10−1, 10−2. Although from a physical viewpoint the behavior seems cor-
rect, the bending of the actual path occurs too early and the crack leaves the hole
downward instead to the left. A cross-comparison between Figures 3 and 4 leads
to argue that for ε = 5 · 10−2 the value of REFTOL is not so crucial in identifying
the actual path of the crack.

The assessment above seems to confirm that there is an actual sensitivity of
the crack behaviour to the parameters involved in both the MAT functional and
in the optimize-and-adapt algorithm. The employment of an anisotropic mesh
adaptation seems strategical to explore the possible scenarios to single out the
most reliable one, thanks to the computational saving due to an anisotropic grid.
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