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4 Professor Emeritus, École polytechnique fédérale de Lausanne, Lausanne, Switzerland

Abstract

Two crucial factors for accurate numerical simulations of cardiac electromechan-
ics, which are also essential to reproduce the synchronous activity of the heart, are:
i) accounting for the interaction between the heart and the circulatory system that
determines pressures and volumes loads in the heart chambers; ii) reconstructing the
muscular fiber architecture that drives the electrophysiology signal and the myocardium
contraction. In this work, we present a 3D biventricular electromechanical model cou-
pled with a 0D closed-loop model of the whole cardiovascular system that addresses the
two former crucial factors. With this aim, we introduce a boundary condition for the
mechanical problem that accounts for the neglected part of the domain located on top of
the biventricular basal plane and that is consistent with the principles of momentum and
energy conservation. We also discuss in detail the coupling conditions that stand behind
the 3D and the 0D models. We perform electromechanical simulations in physiological
conditions using the 3D-0D model and we show that our results match the experimental
data of relevant mechanical biomarkers available in literature. Furthermore, we investi-
gate different arrangements in cross-fibers active contraction. We prove that an active
tension along the sheet direction counteracts the myofiber contraction, while the one
along the sheet-normal direction enhances the cardiac work. Finally, several myofiber
architectures are analysed. We show that a different fiber field in the septal area and
in the transmural wall effect the pumping functionality of the left ventricle.

Keywords: Cardiac electromechanics, Cardiac fiber architecture, Multiphysics modeling,
Finite Elements.
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1 Introduction

Over the years, computational models of cardiac electromechanics (EM) [8, 10, 39, 48, 53,
68, 101] have been developed with increasingly biophysical detail, by taking into account the
interacting physical phenomena characteristic of the heart EM - electrophysiology, active
contraction, mechanics [20, 23, 72, 95, 97]. However, most of the existing EM models refer
to the left ventricle (LV) only [40, 57, 63, 77, 86, 89, 92] and neglect the important effects
of the right ventricular deformation on the heart pumping function [71]. Only recently,
biventricular EM models [3, 9, 21, 24, 37, 43, 49, 96] have been purposely developed.
Two crucial factors for an accurate numerical simulation of the cardiac EM, which are
also essential to reproduce the synchronous activity of the heart, are: i) accounting for the
interaction between the heart and the circulatory system and ii) reconstructing the muscular
fiber architecture.

The coupling between the circulatory system haemodynamics and the cardiac mechanics
determines pressures and volumes in the heart chambers [9, 26, 40, 44, 52, 109]. Typically,
3D EM models are coupled with Windkessel-type preload/afterload models for the cir-
culatory system [30, 59, 94, 99, 108, 111]. In these models, the different phases of the
pressure-volume loop (PV-loop) are managed by solving different sets of differential equa-
tions, one for each phase [25, 32, 40, 106]. Still, more meaningful and physiologically sound
interface conditions can be obtained by coupling the 3D EM model with a 0D closed-loop
fluid dynamics model of the complete circulatory system for the whole cardiac cycle. [7, 17,
64, 70, 86]. A further advantage of the latter approach is that closed-loop circulation models
do not require to be adapted through the different phases of the cardiac cycle [9, 26, 68, 87].
However, solving efficiently the coupling between the EM model and the closed-loop model
for the whole cardiovascular system is a challenging task [9]. To the best of our knowledge,
this coupled problem has been so far addressed only in a few works, namely [9, 49, 52, 86].

The myocardial fibers plays a key role in the electric signal propagation and in the my-
ocardial contraction [18, 42, 75, 88, 100]. Due to the difficulty of reconstructing cardiac
fibers from medical imaging, a widely used strategy for generating myofiber orientations in
EM models relies on the so called Laplace–Dirichlet-Rule-Based-Methods (LDRBMs) [13,
28, 80, 112], recently analysed under a communal mathematical setting [75]. While it is
well recognized that myofibers orientation is crucial for the construction of a realistic EM
model, their architecture has been explored only in a few works and it is not fully under-
stood [11, 42, 44, 71, 76]. Another crucial issue for the reconstruction of a suitable cardiac
fiber architecture consists in considering the myofibers dispersion around a predominant
direction [2, 44, 45, 98]. Based on experimental measures [58], cross-fibers active tension
has been introduced in [38, 91, 110] to model the contraction caused by dispersed myofibers.
However, to the best of our knowledge, this aspect was addressed in EM models only in [33,
57].

With the aim of facing the computational challenges formerly described, our contribu-
tions in this paper move along two strands: i) on the one hand, we present a biophysically
detailed 3D biventricular EM model coupled with a 0D closed-loop lumped parameters
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model for the haemodynamics of the whole circulatory system; ii) on the other hand,
we investigate the effect of different myofiber architectures, by considering three type of
LDRBMs, on the biventricular EM. Specifically, we provide the mathematical formulation
and the numerical framework of the coupled 3D-0D model carefully inspecting the coupling
conditions of these heterogeneous models. We propose an effective boundary condition for
the mechanical problem that accounts for the neglected part of the domain located above
the biventricular basal plane and that fulfils the principles of momentum and energy con-
servation. We report the results of several electromechanical simulations in physiological
conditions using the proposed 3D-0D model. Our results match the experimental data of
relevant mechanical biomarkers available in the literature [16, 31, 61, 62, 93, 103, 104].
Furthermore, we study at which extent different configurations in cross-fibers active con-
traction, that surrogate the myofibers dispersion, affect the electromechanical simulations.

This paper is organized as follows. In Section 2 we briefly recall the fiber generation
methods used to model the cardiac muscle fiber architecture in biventricular geometries.
Moreover, we fully present the mathematical formulation for the closed-loop 3D-0D EM
model. Then, in Section 3 we present the numerical approximation of the 3D-0D model
along with the coupling strategy. In Section 4, we show the numerical results obtained with
the proposed model. Finally, in Section 5 we draw our conclusions.

2 Mathematical models

In this section we provide a brief overview of the fiber generation methods used to recon-
struct the cardiac muscle architecture in biventricular geometries (Section 2.1) and we fully
present the 3D cardiac EM model for the human heart function together with a 0D model of
the whole cardiovascular system (Section 2.2). Finally, we show the strategy to reconstruct
the unloaded (i.e. stress-free) configuration (Section 2.3).

We denote by Ω0 the computational domain in the reference configuration, see Fig-
ure 1(a), representing the region occupied by the left and right ventricles, whose boundary

∂Ω0 is partitioned into the epicardium Γepi
0 , the left Γendo,LV

0 and right Γendo,RV
0 endocardial

surfaces and the biventricular base Γbase
0 (namely an artificial basal plane located well below

the cardiac valves), so that we have ∂Ω0 = Γ
epi
0 ∪ Γ

endo,lv
0 ∪ Γ

endo,rv
0 ∪ Γ

base
0 .

2.1 Fibers generation

To prescribe the cardiac muscle fiber architecture in the biventricular computational domain
Ω0, we use a particular class of Rule-Based-Methods (RBMs), known as Laplace–Dirichlet-
Rule-Based-Methods (LDRBMs) [12, 13, 112]. Specifically, we consider three LDRBMs,
respectively proposed by Rossi et al. (R-RBM) [80], Bayer et al. (B-RBM) [13] and Doste
et al. (D-RBM) [28], that were recently reviewed in a communal mathematical description
and extended to embed specific fiber directions for the right ventricle (RV) in [75].

LDRBMs define the transmural φ (from epicardium to endocardium), the apico-basal
ψ (from apex to basal plane) and the inter-ventricular ξ (from the left to right endocardia)
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Figure 1: Top left (a): representation of a realistic biventricular computational domain Ω0

whose border is partitioned in Γepi
0 , Γbase

0 , Γendo,LV
0 and Γendo,RV

0 . Top Right (b): solutions
of the Laplace problem (1) defining φ the transmural, ψ the apico-basal and ξ the inter-
ventricular distances that are used to prescribe the myofiber orientations using LDRBM of
type D-RBM. Bottom left (c): fiber field f0 obtained using D-RBM. Bottom right (d): φfast

solution of the Laplace problem (1) used to build the fast endocardial layer φfast ≤ ε [56].

distances as the solutions of suitable Laplace boundary-value problems of the type
−∆χ = 0 in Ω0,

χ = χa on Γa
0,

χ = χb on Γb
0 ,

∇χ ·N = 0 on Γn
0 ,

(1)

where χ = φ, ψ, ξ denotes a generic unknown, χa, χb ∈ R are suitable boundary data set

on generic partitions of the boundary Γa
0, Γb

0 , Γn
0 , with Γ

a
0 ∪Γ

b
0 ∪Γ

n
0 = ∂Ω0 and N is defined

as the outer normal vector, see Figures 1(b). For each point of the biventricular domain,
the transmural and apico-basal distances are used to build an orthonormal local coordinate
axial system [ê`, ên, êt] owing to êt = ∇φ

‖∇φ‖ , ên = ∇ψ−(∇ψ·êt)êt

‖∇ψ−(∇ψ·êt)êt‖ and ê` = ên×êt, defined as
the unit transmural, longitudinal and normal directions, respectively. Finally, the reference
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frame [ê`, ên, êt] is properly rotated with the purpose of defining the myofiber orientations:

[ê`, ên, êt]
αi,βi−−−→ [f0,n0, s0], i = LV,RV,

where f0 is the fiber direction, n0 is the sheet-normal direction, s0 is the sheet direction,
i = LV,RV refers to LV or RV, and αi and βi are suitable helical and sheetlet angles following
linear relationships θi(di) = θepi,i(1−di)+θendo,idi, (with θ = α, β and i = LV,RV) in which
di ∈ [0, 1] is the transmural normalized distance and θendo,i, θepi,i are suitable prescribed
rotation angles on the endocardium and epicardium, see Figure 1(c). To prescribe different
myofiber orientations for LV and RV, we employ the inter-ventricular distance ξ in which
positive values of ξ identify the LV, whereas negative values refer to the RV [75]. Moreover,
we define the normalized inter-ventricular distance ξ̂ ∈ [0, 1] by rescaling ξ.

An example of LDRBM boundary-value solutions for the fiber generation procedure (of
D-RBM type) is sketched in Figure 1(b). For further details about LDRBMs we refer to
[75].

2.2 3D-0D closed-loop electromechanical model

We provide a detailed description of the multiphysics and multiscale 3D biventricular EM
model coupled with a 0D closed-loop (lumped parameters) hemodynamical model of the
whole cardiovascular system, including the heart blood flow. Our model features several
extensions and novel additions with respect to the work [86, 87], that is limited to the left
ventricle. Our 3D-0D model is composed of four core models supplemented by a suitable
coupling condition between the 3D and the 0D model. The core models are related to
the different interplaying physical processes (at the molecular, cellular, tissue and organ
levels) involved in the heart pumping function: cardiac electrophysiology (E ) [35, 36, 57,
67], cardiomyocytes active contraction (A ) [54, 66, 83, 84, 89, 90], tissue mechanics (M )
[46, 47, 50, 69] and blood circulation (C ) [7, 9, 17, 49, 52, 82, 86]. The coupling condition
is established by the volume conservation constraints (V ) [86].

The model unknowns are:

u : Ω0 × (0, T )]→ R, w : Ω0 × (0, T ]→ Rnw ,

s : Ω0 × (0, T ]→ Rns , d : Ω0 × (0, T ]→ R3, c : (0, T ]→ Rnc ,

pLV : (0, T ]→ R, pRV : (0, T ]→ R,

where u is the transmembrane action potential, w the ionic variables vector, s the state
variables of the active force generation model, d the tissue mechanical displacement, c
the state vector of the circulation model (including pressures, volumes and fluxes of the
different compartments composing the vascular network) and pLV and pRV are the left and
right ventricular pressures, respectively.

Given the computational domain Ω0 and the time interval t ∈ (0, T ], our complete
3D-0D model reads:
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Electrophysiology (E ) :
Jχm

[
Cm

∂u

∂t
+ Iion(u,w)

]
−∇ · (JF−1DF−T∇u) = JχmIapp in Ω0 × (0, T ],

∂w

∂t
−H(u,w) = 0 in Ω0 × (0, T ],(

JF−1DF−T∇u
)
·N = 0 on ∂Ω0 × (0, T ],

(2.1)

(2.2)

(2.3)

Activation (A ) :{
∂s

∂t
= K(s, [Ca2+]i, SL) in Ω0 × (0, T ], (2.4)

Mechanics (M ) :

ρs
∂2d

∂t2
−∇ ·P(d, Ta(s)) = 0 in Ω0 × (0, T ],

P(d, Ta(s))N = Kepid + Cepi∂d

∂t
on Γepi

0 × (0, T ],

P(d, Ta(s))N = −pLV(t) JF−TN on Γendo,LV
0 × (0, T ],

P(d, Ta(s))N = −pRV(t) JF−TN on Γendo,RV
0 × (0, T ],

P(d, Ta(s))N = |JF−TN|
[
pLV(t)vbase

LV + pRV(t)vbase
RV

]
on Γbase

0 × (0, T ],

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

Circulation (C ) :{
dc(t)

dt
= D(t, c(t), pLV(t), pRV(t)) for t ∈ (0, T ], (2.10)

Volume constraints (V ) :{
VLV(c(t)) = V 3D

LV (d(t)) for t ∈ (0, T ],

VRV(c(t)) = V 3D
RV (d(t)) for t ∈ (0, T ],

(2.11)

(2.12)

The definition of the vectors vbase
LV and vbase

RV , entering in the boundary conditions of the
mechanical model (M ) will be provided later. Finally, the model is closed by the initial
conditions in Ω0 × {0}:

u = u0, w = w0, s = s0, d = d0,
∂d

∂t
= ḋ0, c = c0.
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2.2.1 Electrophysiology (E )

We model the electric activity in the cardiac tissue by means of problem (E ), that is
the monodomain equation (2.1) endowed with a suitable ionic model (2.2) for the human
ventricular action potential [36, 57, 67]. In the electrophysiology core model (E ), the
unknowns are the transmembrane potential u and the ionic variables w. The vector w =
{w1, w2, ..., wnw} encodes the gating-variables (representing the fraction of open channels
per unit area across the cell membrane) and the concentration of specific ionic species
(among them the intracellular calcium ions concentration [Ca2+]i plays a key role in the
active force generation mechanism). The constant χm represents the surface area-to-volume
ratio of cardiomyocytes, Cm represents the trans-membrane capacitance per unit area. The
applied current Iapp mimics the effect of the Purkinje network [22, 55, 107] modelled in
this work by means of a surrogate fast endocardial conduction layer [56] represented by
φfast = φfast(φ) ≤ ε built as a function of the transmural distance defined in Section 2.1,
see also Figure 1(d). The reaction terms Iion and H (specified by the ionic model at hand)
couple together the action potential propagation and the cellular dynamics. Specifically, we
use the ventricular ten Tusscher-Panfilov ionic model (TTP06, nw = 18), which is able to
accurately describe ions dynamics across the cell membrane [105]. Furthermore, problem
(E ) is equipped with homogeneous Neumann boundary conditions (2.3).

The action potential propagation is driven by the diffusion term ∇ · (JF−1DF−T∇u)
where we introduced the deformation gradient tensor F = I + ∇d with J = det(F) > 0.
The diffusion tensor reads:

D = σ`(φfast)
Ff0 ⊗ Ff0

‖Ff0‖2
+ σt(φfast)

Fs0 ⊗ Fs0

‖Fs0‖2
+ σn(φfast)

Fn0 ⊗ Fn0

‖Fn0‖2
,

where σ`(φfast), σt(φfast) and σn(φfast) are the longitudinal, transversal and normal conduc-
tivities, respectively, defined as

σk(φfast) =

{
σk,fast if φfast ≤ ε, k = `, t,n,

σk,myo if φfast > ε, k = `, t,n,

where σk,fast and σk,myo (with k = `, t, n) are the prescribed conductivities inside and outside
the fast endocardial layer, respectively.

2.2.2 Activation (A )

Mechanical activation of cardiac tissue is modeled by means of equation (2.4), a system
of ODEs standing for an Artificial Neural Network (ANN) based model that surrogates
the so called RDQ18 high-fidelity model proposed in [84]. The RDQ18 model is based on
a biophysically detailed description of the microscopic active force generation mechanisms
taking place at the scale of sarcomeres [15, 83]. The RDQ18-ANN model has the great
advantage of strikingly reducing the computational burden associated to the numerical
solution of the RDQ18 model, yet reproducing its results with a very good accuracy [84].
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In the activation core model (A ) the unknown is the two-variable state vector s. The
input variables are the intracellular calcium ions concentration [Ca2+]i, provided by the

TTP06 ionic model, and the sarcomere length SL defined as SL = SL0

√
I4f (d), where

SL0 denotes the sarcomere length at rest and I4f = Ff0 · Ff0 is a measure of the tissue
stretch along the fibers direction. This creates a feedback between the mechanical model
(M ) and the force generation model (A ) [86].

The RDQ18-ANN output is the permissivity P ∈ [0, 1] which is obtained as a function
of s: P = G(s) where G is a linear function defined in [84]. Since P is the fraction of the
contractile units in the force-generation state, the active tension is given by Ta = Tmax

a P ,
where Tmax

a denotes the tension generated when all the contractile units are generating force
(i.e. for P = 1). Finally, to account for a different active tension between LV and RV we
define a spatial heterogeneous active tension

Ta(s) = Tmax
a G(s)

[
ξ̂ + Clrv(1− ξ̂)

]
,

where ξ̂ ∈ [0, 1] is the normalized inter-ventricular distance, defined in Section 2.1, and
Clrv ∈ (0, 1] represents the left-right ventricle contractility ratio.

2.2.3 Mechanics (M )

The mechanical response of the cardiac tissue is described by problem (M ) under the
hyperelasticity assumption and by adopting an active stress approach [46, 69]. The unknown
is the displacement d, whereas ρs is the density. The first Piola-Kirchhoff stress tensor
P = P(d, Ta) is additively decomposed according to

P(d, Ta) =
∂W(F)

∂F
+ Ta(s)

[
nf

Ff0 ⊗ f0√
I4f

+ ns
Fs0 ⊗ s0√
I4s

+ nn
Fn0 ⊗ n0√
I4n

]
, (3)

where the first term represents the passive mechanics with W : Lin+ → R being the strain
energy density function, whereas the second one stands for the orthotropic active stress, with
Ta(s) the active tension provided by the activation model (A ). Moreover, I4s = Fs0 · Fs0

and I4n = Fn0 · Fn0 are the tissue stretches along the sheet and sheet-normal directions,
respectively, and nf, ns and nn the prescribed proportion of active tension along the fiber,
sheet and sheet-normals directions, respectively. Notice that the orthotropic active stress
tensor (3) surrogates the contraction caused by dispersed myofibers [38, 44, 45, 91].

To model the passive behaviour of the cardiac tissue, we employ the orthotropic Guccione
constitutive law [47], according to which the strain energy function is defined as

W =
κ

2
(J − 1) log(J) +

a

2

(
eQ − 1

)
,

where the first term is the volumetric energy with the bulk modulus κ, which penalizes
large variation of volume to enforce a weakly incompressible behaviour [27, 73], and the
exponent Q reads

Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn + bfs

(
E2

fs + E2
sf

)
+ bfn

(
E2

fn + E2
nf

)
+ bsn

(
E2

sn + E2
ns

)
,

8



where a is the stiffness scaling parameter, Eij = Ei0 · j0, for i, j ∈ {f, s,n} and i0, j0 ∈
{f0, s0,n0}, are the entries of E = 1

2 (C− I), i.e the Green-Lagrange strain tensor, being

C = FTF the right Cauchy-Green deformation tensor.
To model the mechanical constraint provided by the pericardium [41, 74, 102], we impose

at the epicardial boundary Γepi
0 a generalized Robin boundary condition (2.6) by defining

the tensors Kepi = Kepi
‖ (N ⊗ N − I) − Kepi

⊥ (N ⊗ N) and Cepi = Cepi
‖ (N ⊗ N − I) −

Cepi
⊥ (N⊗N), where Kepi

⊥ , Kepi
‖ , Cepi

⊥ , Cepi
‖ ∈ R+ are the stiffness and viscosity parameters

of the epicardial tissue in the normal and tangential directions, respectively. Normal stress
boundary conditions (2.7)–(2.8) were imposed at the endocardia Γendo,LV

0 and Γendo,RV
0 of

both ventricles where pLV(t) and pRV(t) represent the pressure exerted by the blood in
the left and right ventricular chambers, respectively. To take into account the effect of
the neglected part, over the basal plane, on the biventricular domain, we set on Γbase

0 the
energy-consistent boundary condition (2.9) in weighted-stress-distribution form, where

vbase
LV (t, ξ̂) = ξ̂

∫
Γendo,LV

0
JF−TNdΓ0∫

Γbase
0

ξ̂ |JF−TN|dΓ0

, vbase
RV (t, ξ̂) = (1−ξ̂)

∫
Γendo,RV

0
JF−TNdΓ0∫

Γbase
0

(1− ξ̂) |JF−TN|dΓ0

. (4)

The energy-consistent boundary condition considered in this work is the extension to the
biventricular case of the energy-consistent boundary condition originally proposed in [84]
for LV. The complete derivation can be found in Appendix B.

2.2.4 Blood circulation (C ) and coupling conditions (V )

We model the blood circulation through the entire cardiovascular system (i.e. equation (2.10))
by means of a closed-loop model, inspired by [17, 49] and recently proposed in [86]. In the
0D closed-loop model, systemic and pulmonary circulations are modeled with RLC circuits,
heart chambers are described by time-varying elastance elements and non-ideal diodes stand
for the heart valves [86].

The circulation core model (C ) is represented by a system of ODEs expressed by equa-
tion (2.10), where D is a proper function (defined in [86]) and c(t) includes pressures,
volumes and fluxes of the different compartments composing the vascular network:

c(t) = (VLA(t), VLV(t), VRA(t), VRV(t), pSYS
AR (t), pSYS

VEN(t), pPUL
AR (t), pPUL

VEN(t),

QSYS
AR (t), QSYS

VEN(t), QPUL
AR (t), QPUL

VEN(t))T .

Here VLA, VRA, VLV and VRV refer to the volumes of left atrium, right atrium, LV and RV,
respectively; pSYS

AR , QSYS
AR , pSYS

VEN, QSYS
VEN, pPUL

AR , QPUL
AR , pPUL

VEN and QPUL
VEN express pressures and

flow rates of the systemic and pulmonary circulation (arterial and venous). For the complete
mathematical description of the 0D circulation lumped model we refer to [86]. To couple
the 0D circulation model (C ) with the 3D biventricular model, given by (E )–(A )–(M ), we
follow the strategy proposed in [86]: we replace the time-varying elastance elements repre-
senting LV and RV in the circulation model with its corresponding 3D electromechanical
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Figure 2: 3D-0D coupling between the biventricular 3D EM model and the 0D circulation
model.
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description, obtaining the coupled 3D-0D model depicted in Figure 2. With this aim, we
introduce the volume-consistency coupling conditions (V ) where

V 3D
i (d(t)) =

∫
Γendo,i

0

J(t) ((h⊗ h) (x + d(t)− bi)) · F−T (t)N dΓ0 i = LV,RV

wherein h is a vector orthogonal to LV/RV centreline (i.e. lying on the biventricular base)
and bi lays inside LV/RV [86].

In virtue of the introduced conditions (V ), in the 3D-0D coupled model (2) the left
pLV(t) and right pRV(t) ventricular pressures are not determined by the 0D circulation
model equation (2.10), but rather act as Lagrange multipliers associated to the constraint
(V ).

2.3 Reference configuration and initial tissue displacement

Cardiac geometries are acquired from in vivo medical images through imaging techniques.
These geometries are in principle not stress free, due to the blood pressure acting on the
endocardia. Therefore, we need to estimate the unloaded (i.e. stress-free) configuration
(also named reference configuration) to which the 3D-0D model (2) refers. To recover
the reference configuration Ω0, starting from a geometry Ω̃ acquired from medical images
(typically during the diastolic phase), we extend to the biventricular case the procedure
proposed for LV in [86].

We assume that the configuration Ω̃ is acquired during the diastole, when the biventricu-
lar geometry is loaded with pLV = p̃LV, pRV = p̃RV and a residual active tension Ta = T̃a > 0
is present. To recover the reference configuration Ω0 we solve the following inverse problem:
find the domain Ω0 such that, if we inflate Ω0 by d, solution of the differential problem1

∇ ·P(d, Ta) = 0 in Ω0,

P(d, Ta)N + Kepid = 0 on Γepi
0 ,

P(d, Ta)N = −pLV(t) JF−TN on Γendo,LV
0 ,

P(d, Ta)N = −pRV(t) JF−TN on Γendo,RV
0 ,

P(d, Ta)N = |JF−TN|
[
pLVvbase

LV + pRVvbase
RV

]
on Γbase

0 ,

(5)

obtained for pLV = p̃LV, pRV = p̃RV and Ta = T̃a, we get the domain Ω̃.
After recovering Ω0, we inflate the biventricular reference configuration Ω0 by solving

again problem (5), where we set the pressures pLV = pED
LV and pRV = pED

RV with the su-
perscript ED stands for the end-diastolic phase. The values pED

LV and pED
RV are chosen to

bring the biventricular domain to defined end diastolic volumes for the left V ED
LV and right

V ED
RV ventricles. In this way we obtain the end-diastolic configuration for the biventricular

geometry. Hence, the solution d of the problem (5) is set as initial condition d0 for d in
(M ). The above procedure is represented in step 4 of Figure 4.

1The problem (5) is derived from (M ) setting aside the time dependent terms.
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Figure 3: Segregated-intergrid-staggered numerical scheme: (a) nested meshes Th1 and
Th2 (with h1 < h2); (b) schematic representation of the numerical scheme; (c) graphical
representation of the time advancement scheme.

3 Numerical approximation

In this section we illustrate the numerical discretization of the different core models com-
posing the 3D-0D problem (2) along with the strategy that we adopt to reach a limit-cycle.

3.1 Space and time discretizations

For the numerical approximation of the 3D-0D coupled model (2) we follow the approach
proposed in [87], which is extended here to the biventricular case. The core models (E ) −
(A )−(M )−(C ) are solved sequentially in a segregated manner by using different resolutions
in space and time, to properly handle the different space and time scales of the core models
contributing to both cardiac EM and blood circulation [68, 79, 80]. For this reason we call
this numerical approach Segregated-Intergrid-Staggered (SIS).

12



For the space discretization, we use the Finite Element Method (FEM) with continuous
Finite Elements (FEs) of order 1 (Q1) and hexahedral meshes [78]. We consider two nested
meshes Th1 and Th2 of the computational domain Ω0 (h1 and h2, with h1 < h2, represent
the mesh sizes), where Th1 is built by uniformly refining Th2 [1, 19], see Figure 3(a). We
adopt the finer mesh Th1 for (E ), where it is essential to accurately capture the dynamics of
travelling waves, while the coarser one (Th2) is used for both (A ) and (M ) [10, 35, 87]. We
employ an efficient intergrid transfer operator between the nested grids Th1 and Th2 , which
allows to evaluate the feedback between (E ) and (A )− (M ) [87]. In [87], the displacement
field d is interpolated on Th1 and ∇d is assembled on the fine mesh directly. Here, we follow
the more effective strategy proposed in [92], where ∇d is recovered on Th2 thanks to an L2

projection [1]. Then, ∇d is interpolated on Th1 .
For the time discretization, we use Finite Difference schemes [81]. The cardiac electro-

physiology model is solved by means of the Backward Differentiation Formula of order 2
(BDF2). We adopt an implicit-explicit (IMEX) scheme, denoted by (EIMEX), where the
diffusion term is treated implicitly, whereas the ionic and reaction terms explicitly [65, 87].
For both mechanical activation and passive mechanics we employ the BDF1 scheme, where
(AE) is advanced in time with an explicit method, whereas a fully implicit scheme is used
for (MI)− (VI) [87]. Finally, we employ an explicit 4th order Runge-Kutta method (RK4)
for (CE) [87].

We use two different time steps, ∆t for (AE) − (MI) − (VI) − (CE) and τ = ∆t/Nsub

for (EIMEX), with Nsub ∈ N, see Figure 3(c). We first update the variables of (EIMEX), then
those of (AE) and finally, after updating the unknowns of (MI)− (VI), we update the ones
of (CE), see Figure 3(b).

The whole algorithm for the SIS numerical scheme is reported in Figure 3.

3.2 3D-0D coupled problem resolution

We couple the 3D mechanical model (M ) with the 0D closed-loop hemodynamical model
(C ) by means of the volume conservation constraints (V ), where the pressures of LV and
RV act as Lagrange multipliers [87]. In Figure 3(b) (steps 3-4) we obtain a saddle point
problem (MI)− (VI).

We introduce the discrete times tn = n∆t, n ≥ 0 and we denote by anh ' ah(tn) the
fully discretized FEM approximation of the generic (scalar, vectorial or tensorial) variable
a(t) (i.e. the vector collecting the DOFs defined over the computational mesh Th2 at time
tn). Then, at each time step tn+1, the fully discretized version of (MI)− (VI) reads:

(
ρs

1

(∆t)2
M+

1

∆t
F + G

)
dn+1

h + S(dn+1
h ,Tn+1

a,h )

= ρs
2

(∆t)2
Mdnh − ρs

1

(∆t)2
Mdn−1

h +
1

∆t
Fdnh

+pn+1
LV P LV(dnh ,d

n+1
h ) + pn+1

RV PRV(dnh ,d
n+1
h )

VLV(cn+1) = V 3D
LV (dn+1

h )

VRV(cn+1) = V 3D
RV (dn+1

h )

(6)
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where we introduced

Mij =

∫
Ω0

φj · φi dΩ0, Si =

∫
Ω0

P(dnh ,T
n
a,h) : ∇φi dΩ0,

Fij =

∫
Γepi

0

[
Cepi
‖ (Nh ⊗Nh − Ih)− Cepi

⊥ (Nh ⊗Nh)
]
φj · φi dΓ0,

Gij =

∫
Γepi

0

[
Kepi
‖ (Nh ⊗Nh − Ih)−Kepi

⊥ (Nh ⊗Nh)
]
φj · φi dΓ0,

P k,i =

∫
Γbase

0

|Jn+1
h (Fn+1

h )−TNh|vbase,n
k,h · φi dΓ0

−
∫

Γendo
0

Jn+1
h (Fn+1

h )−TNh · φi dΓ0, k=LV, RV.

Here Fn+1
h = Ih + ∇dn+1

h with Jn+1
h = det(Fn+1

h ), {φi}
Nd
i=1 represents the set of basis

functions for the finite dimensional space [X sh ]3 with X sh = {v ∈ C0(Ω̄0) : v|K ∈ Qs(K), s ≥
1, ∀K ∈ Th2}, where Qs(K) stands for the set of polynomials with degree smaller than or
equal to s over a mesh element K and Nd = dim([X sh ]3) is the numbers of DOFs for the
displacement.

Moving all the terms to the right hand side, equation (6) can be compactly written as:
rd(dn+1

h , pn+1
LV , pn+1

RV ) = 0

rpLV(dn+1
h ) = 0

rpRV(dn+1
h ) = 0

(7)

for suitable functions rpLV , rpRV and rd.
We solve the non-linear saddle-point problem (7) by means of the Newton algorithm

using, at the algebraic level, the Schur complement reduction [14]. More details about the
resolution of the problem (7) can be found in Appendix C.

3.3 Finding initial conditions for the multiphysics problem

The numerical results of the 3D-0D EM model typically feature a temporal transient, which
lasts for several heartbeats and converges to a periodic solution, known as limit cycle. The
outputs of clinical interest should be computed from the numerical solution that is associated
with the limit cycle. To reduce the computational overhead of reaching a periodic solution,
we follow the strategy proposed in [85], aimed at accelerating the convergence towards
the limit cycle. This strategy – named 3D-0D-3D V-cycle – comprises three stages (see
point 5 of Figure 4). In a first step, three heartbeats are simulated with the 3D-0D model.
Then, based on the PV-loops obtained from the previous 3D-0D model, a 0D emulator
of each ventricle is built with the aim of surrogating the pressure-volume relationships,
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Figure 4: Graphical display of the whole pipeline for the initialization of a numerical simu-
lation employing the 3D-0D EM model.

and substituted to the 3D model. These emulators, coupled with the 0D model of blood
circulation for the remaining compartments, allow to simulate the transient phase toward
a periodic solution in less than one minute of computational time on a standard laptop.
Finally, the state obtained with this fully 0D model is used to initialize the 3D-0D model,
and three additional heartbeats are simulated. Overall, the computational cost of reaching
the limit cycle amounts to that of simulating six heartbeats, regardless of the number of
cycles required to converge to a periodic solution. As a matter of fact, the computational
time required by the 0D surrogate model is negligible compared to that of the full-order
3D-0D model. More details on this pipeline are available in [85].

To find an initial guess for the remaining variables, we initialize the ionic model by
running a 1000-cycle long single-cell simulation. Similarly, we initialize the force generation
model by means of a single-cell simulation with a constant calcium input (corresponding to
the final calcium concentration of the single-cell ionic simulation) and a reference sarcomere
length SL = 2.2 µm.

The whole pipeline for the initialization of a numerical simulation employing the 3D-0D
biventricular EM model is sketched in Figure 4.
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4 Numerical results

In this section, we present several biventricular electromechanical simulations that employ
the 3D-0D model discussed in Sections 2 and 3.

We organize this section as follows. After a brief description regarding the setting of the
numerical simulations (Section 4.1), we compare the results of a physiological electrome-
chanical simulation with a comprehensive set of experimental data available in literature
(Section 4.2). Then, in Section 4.3 we investigate how different cross-fibers active contrac-
tion arrangements affect the electromechanical simulations, by setting different combina-
tions of nf, ns and nn, i.e. of the prescribed proportion of active tension along the myofibers.
Finally, in Section 4.4 we evaluate the impact of different myofiber architectures, obtained
by three types of LDRBMs, on the biventricular pumping function.

4.1 Setting of numerical simulations

All the simulations are performed on a realistic biventricular geometry processed from the
Zygote 3D heart [51], a CAD-model representing an average healthy human heart recon-
structed from high-resolution computer tomography scan. To build the computational mesh
associated with the biventricular Zygote model, we use the Vascular Modeling Toolkit soft-
ware [5] (http://www.vmtk.org) by exploiting the semi-automatic meshing tool recently
proposed in [34].

We employ two nested meshes where for the mechanical and activation problems we
adopt a mesh size of 3 mm, while for the electrophysiology problem we employ a mesh size
four time smaller [87]. As for the time steps, we use τ = 50µs for the electrophysiology
problem and ∆t = 500µs for the mechanical, activation and circulation problems [75, 87].

The parameters used for the 3D-0D model are listed in Tables 5 and 6. The settings
related to LDRBMs, adopted for prescribing the fiber architectures, will be specified for
each case reported in Sections. 4.2 – 4.4.

To approach the limit cycle, we initialize all the numerical simulations, for the coupled
3D-0D model, following the procedure illustrated in Section 3.3 (see also [85]). Then, we
perform three further heartbeats using the fully framework of the 3D-0D model presented
in Sections 2 and 3. We neglected the first two, so that all the reported results refer to the
last heartbeat.

In all the simulations we adopted the same pacing protocol in which five ventricular
endocardial areas are activated with spherical impulses: in the anterior para-septal wall,
in the left surface of inter-ventricular septum and in the bottom of postero-basal area, for
LV; in the septum and in the free endocardial wall, for RV [29, 75], see also Figure 5(c).
This, combined with the fast endocardial conduction layer (see Section 2.2.1), surrogates
the action of the Purkinje network [56, 107].

The numerical methods presented in Section 3 have been implemented within lifex

(https://lifex.gitlab.io/lifex), a new in-house high-performance C++ FE library, for
cardiac applications, based on the deal.II FE core [6] (https://www.dealii.org). All
the numerical simulations were executed using either the iHeart cluster (Lenovo SR950
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192-Core Intel Xeon Platinum 8160, 2100 MHz and 1.7TB RAM) at MOX, Dipartimento
di Matematica, Politecnico di Milano or the GALILEO supercomputer at Cineca (8 nodes
endowed with 36 Intel Xeon E5-2697 v4 2.30 GHz).

4.2 Baseline simulation

We present a human electromechanical simulation in physiological conditions related to
the Zygote biventricular geometry. For the fibers generation we adopted D-RBM [28, 75].
The input angle values (see Section 2.1) were chosen according to observations based on
histological studies in the human heart [4, 60]:

αepi,LV = −60◦, αendo,LV = +60◦, αepi,RV = −25◦, αendo,RV = +90◦;

βepi,LV = +20◦, βendo,LV = −20◦, βepi,RV = +20◦, βendo,RV = 0◦.
(8)

Moreover, to surrogate the effect of dispersed myofibers, we set in (3) nf = 0.7, ns = 0 and
nn = 0.3 for the proportion of active tension along the fiber, sheet and normal directions,
respectively [2, 44].

Figure 5 illustrates the time evolution of calcium ions concentration (a), the mechanical
deformation (b, e), the activation times (c), the PV-loop curves for both ventricles and the
time evolution of pressures and volumes of the four chambers (d). Specifically, in Figure 5(a)
we display the time evolution of the TTP06 ionic model calcium transient showing the
physiological wave propagation up to the complete depolarization of both ventricles (t =
0.12 s). In Figure 5(b) we report different snapshots of the biventricular geometry warped
by the displacement vector. As expected, at the beginning of the contraction the volumes of
both ventricles remain nearly constant while the pressure increases (t = 0.0−0.10 s); during
the ejection phase, the ventricular contraction is clearly visible, with the basal plane that
moves towards the bottom while the apex remains almost fixed. Moreover, a significant
thickening of the myocardium wall takes place (t = 0.35 s). Then, the ventricles start to
relax. This leads to a slow recovery of the initial volumes (t = 0.45 − 0.60 s). Finally, in
Figure 5(c) we display the simulated activation map in which both the total activation time
(120 ms) and the activation pattern are in accordance with the literature [29, 75].

In Table 1 we compare some relevant mechanical biomarkers obtained by our numerical
simulation with those provided by the data reported in the literature [16, 31, 61, 62, 93, 103,
104]. Notice that all the values in Table 1, related to the ventricular volumes, are expressed
with absolute values, in mL, estimated for an adult subject, as reported in the quoted
references. However, we are aware that in the clinical practice the ventricular volumes are
always indicated as ”indexed ventricular volumes”, by dividing the ventricular volume for
the Body Surface Area of the related patient. The chosen mechanical biomarkers were: i) left
and right end diastolic/systolic volumes (EDVLV, EDVRV, ESVLV, ESVRV), representing
the maximal and minimal left and right ventricular volumes achieved during the heartbeat,
computed as the maximal (EDVLV, EDVRV) and minimal (ESVLV, ESVRV) volumes in
the PV-loop curves, see Figure 5(d); ii) left and right ventricular ejection fractions (EFLV,
EFRV), which represent the amount of blood that is pumped by LV and RV during a cardiac
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Figure 5: Baseline electromechanical simulation; (a) calcium transient at five time instants
in the cardiac cycle; (b) mechanical displacement magnitude (with respect to the reference
configuration) at five time instants of the heartbeat where 0.35 s is the end of systole. (c)
activation map; (d, left) PV-loop LV (orange) and RV (blue); (d, right) pressures (top)
and volumes (bottom) transient during the cardiac cycle for the four chambers; (e) mid
ventricular slices at the end of systole, showing LFS on the left and WT on the right.
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Mechanical biomarkers Literature values Simulation results Description

EDVLV (mL) 142 ± 21 [61] 137 Left end diastolic volume
EDVRV (mL) 144 ± 23 [62] 138 Right end diastolic volume
ESVLV (mL) 47 ± 10 [61] 48 Left end systolic volume
ESVRV (mL) 50 ± 14 [62] 49 Right end systolic volume
EFLV (%) 67 ± 5 [61] 66 Left ventricular ejection fraction
EFRV (%) 67± 8 [104] 65 Right ventricular ejection fraction
PLV (mmHg) 119 ± 13 [103] 117 Left systolic pressure peak
PRV (mmHg) 35 ± 11 [16] 35 Right systolic pressure peak
LFS (%) 13-21 [31] 21 Longitudinal fractional shortening
WT (%) 18-100 [93] 41 Fractional wall thickening

Table 1: Comparison between the simulation results, employing the 3D-0D EM model,
and literature values of mechanical biomarkers in physiological conditions (references are
reported in the Table, see also [57, 109]).

cycle, computed as

EFi =
EDVi − ESVi

EDVi
100 i = LV,RV;

iii) left and right systolic pressure peaks (PLV, PRV), the maximal pressures reached in LV
and RV, computed as the maximal pressures in the PV-loop curves, see Figure 5(d); iv) the
systolic longitudinal fractional shortening (LFS), standing for the fractional displacement
between the endocardial apex and the base [57], evaluated as

LFS =
L0 − L

L0
100,

where L0 and L are the apico-basal distance measured at the beginning (t = 0.0 s) and
at the end of systole (t = 0.35 s), see Figure 5(e); v) the systolic wall thickening (WT),
representing the fractional cardiac wall thickening [57], measured as

WT =
T− T0

T
100,

where T0 and T are the cardiac wall thickening at the beginning (t = 0.0 s) and at the end
of systole (t = 0.35 s), see Figure 5(e).

All the above mechanical biomarkers, obtained by our numerical simulation, fall within
the physiological range (references in Table 1).

4.3 Cross-fibers active contraction

To surrogate the dispersion effect in the cardiac fibers, we analyse several cross-fibers active
contraction arrangements, by setting in (3) different combinations of nf, ns and nn, i.e. the
prescribed proportion of active tension along the myofibers. Five different sets were chosen:
i) nf = 0.7, ns = 0.3, nn = 0; ii) nf = 1, ns = 0.3, nn = 0; iii) nf = 1, ns = 0, nn = 0;
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Figure 6: Cross-fibers active contraction simulations; (a) PV-loops from several cross-fibers
active contraction arrangements built by setting in (3) different combinations of nf, ns and
nn; (b) mechanical displacements (top) and mid ventricular slices at the end of systole
(0.35 s), showing LFS (middle) and WT (bottom) for redistributed cross-fibers active con-
traction configurations: a pure fiber f (blue), a fiber-normal f -n (orange) and a fiber-sheet
f -s (green) contractions; (c) circumferential stress Sff (top-right) at the peak pressure time
instant (0.1 s) and the time trace of the average, minimum and maximum axial stresses Sff

(top-left), Sss (bottom-left) and Snn (bottom-right) for f , f -n and f -s configurations.
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Cross-fiber configuration EFLV EFRV SVLV SVRV

i) nf = 0.7, ns = 0.3, nn = 0 45 % 44 % 70.69 mL 71.04 mL
ii) nf = 1, ns = 0.3, nn = 0 54 % 53 % 79.40 mL 79.50 mL
iii) nf = 1, ns = 0, nn = 0 65 % 64 % 89.14 mL 89.08 mL
iv) nf = 0.7, ns = 0, nn = 0.3 66 % 65 % 89.27 mL 89.23 mL
v) nf = 1, ns = 0, nn = 0.3 69 % 67 % 91.14 mL 91.09 mL

Table 2: Ejection fraction (EFi) of the left (i = LV) and right (i = RV) ventricles for
the different cross-fibers active contraction cases i−v. The stroke volume (SVi) of the two
ventricles is also shown.

iv) nf = 0.7, ns = 0, nn = 0.3; v) nf = 1, ns = 0, nn = 0.3. Apart from the prescribed
proportion of active tension, the settings are the same as the baseline simulation2 presented
in Section 4.2.

Figure 6(a) shows the PV-loops from the five cases. An active tension along the sheet
direction (ns > 0, cases i and ii) produces a PV-loop with a reduced area compared to case
iii with no cross-fibers active contraction. Conversely, an active tension along the normal
direction (nn > 0, cases iv and v) yields a PV-loop with an increased area. Table 2 displays,
for all the cases, the ejection fraction (EFi) and the stroke volume (SVi = EDVi−ESVi) of
the left (i = LV) and right (i = RV) ventricles. The maximal cardiac work is achieved for
case v while the minimal for case i. The above analysis shows that the active tension along
the sheet direction (ns > 0) counteracts the myofiber contraction, while the one along the
normal direction (nn > 0) enhances the cardiac work, in accordance to [44, 45].

In order to better appreciate the differences among the cross-fibers active contraction
arrangements, we further compared cases i and iv with case iii. In these particular cases,
the proportion of active tension sums up to 1 (nf +ns +nn = 1), meaning that the myofibers
contraction is redistributed along the three directions: case iii (nf = 1, ns = 0, nn = 0) is a
pure fiber contraction, in the following denoted by f configuration; case i (nf = 0.7, ns = 0,
nn = 0.3) is a contraction in the fiber and normal directions, hereafter indicated by f -n
configuration; case iv (nf = 0.7, ns = 0.3, nn = 0) is a contraction along the fiber and sheet
directions, named f -s configuration.

Figure 6(b) illustrates the mechanical displacements at the end of systole (0.35 s) for the
three considered configurations (f , f -n and f -s). Both the apico-basal shortening and the
wall thickening is dramatically reduced for f -s configuration. Almost the same mechani-
cal contraction is achieved for f and f -n configurations with a slightly more pronounced
longitudinal shortening and wall thickening for f -n configuration. The LFS and WT are
reported in Table 3.

We also evaluate the components of the mechanical stress by means of the following

2Notice that case iv is the baseline simulation.
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Cross-fiber configuration LFS WT

iii) f 17 % 30 %
iv) f -n 21 % 41 %
i) f -s 7 % 8 %

Table 3: LFS and WT for the three configurations of redistributed myofibers active con-
traction (f , f -n and f -s)

indicators [87]:

Sff = (Pf0) · Ff0

|Ff0|
, Sss = (Ps0) · Fs0

|Fs0|
, Snn = (Pn0) · Fn0

|Fn0|
,

where f0, s0 and n0 are the myofiber directions, P is the first Piola-Kirchhoff stress tensor
and F is the deformation gradient tensor. The metric Saa (with a = f, s, n) measures
the axial stresses along the circumferential (a = f), radial (a = s) and longitudinal (a=n)
directions.

Figure 6(c) displays, for the three configurations f , f -n and f -s, the circumferential
stress (Sff) at the peak pressure time instant (0.1 s) and the time trace of the average,
minimum and maximum axial stresses Sff, Sss and Snn. The circumferential stress at the
peak pressure instant is much higher, especially on LV side, for f -s configuration with
respect to the other two. Conversely, f -n configuration produces the lowest circumferential
stress. Almost the same considerations hold for the time trace of the three axial stresses
during the complete cardiac cycle, see Figure 6(c).

The previous results reveal that the configuration f -n allows to obtain a more efficient
cardiac contraction with a much lower axial stress with respect to f configuration. On the
contrary, f -s configuration yields an unphysiological cardiac contraction with EF, LFS and
WT below the physiological range reported in literature (see Tables 1-3).

4.4 Impact of myofiber architecture on the electromechanical function

We investigate the effect of different myofibers architecture on the biventricular EM model,
by considering three types of LDRBMs: D-RBM, B-RBM and R-RBM (see Section 2.1).
Apart from the employed LDRBM, used to prescribe the myofibers architecture, all the
other settings, including the fiber input angles (8), are the same as the baseline simulation3

presented in Section 4.2.
Fiber orientations obtained for the three LDRBMs (D-RBM, B-RBM and R-RBM) in

the Zygote biventricular model are shown in Figure 7(a). For a detailed comparison among
the three LDRBMs we refer the reader to [75], where pure electrophysiological simulations
were considered. Here, we are instead interested in the effect on mechanical quantities
obtained by means of EM model. We recall that B-RBM produces a smooth change in

3Notice that the case with D-RBM is the baseline simulation.
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Figure 7: Results of the EM model employing different LDRBMs (R-RBM, B-RBM and
D-RBM) to generate the fiber architecture; (a) fiber orientations obtained for the three
LDRBMs in the Zygote biventricular model; (b) PV-loop curves, for LV (top) and RV
(bottom), obtained with the three LDRBMs: D-RBM (orange), B-RBM (blue) and R-
RBM (green); (c) mechanical displacements (top) and mid ventricular slices at the end of
systole (0.35 s), showing LFS (middle) and WT (bottom) obtained by D-RBM (orange),
B-RBM (blue) and R-RBM (green); (d) circumferential stress Sff (top-right) at the peak
pressure instant (0.1 s) and the time trace of the average, minimum and maximum axial
stresses Sff (top-left), Sss (bottom-left) and Snn (bottom-right) for the three LDRBMs.
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Mechanical biomarkers D-RBM B-RBM R-RBM

EDVLV (mL) 137 145 138
EDVRV (mL) 138 136 139
ESVLV (mL) 48 58 50
ESVRV (mL) 49 49 50
EFLV (%) 66 60 64
EFRV (%) 65 64 64
PLV (mmHg) 117 114 117
PRV (mmHg) 35 34 33
LFS (%) 21 25 20
WT (%) 41 36 38

Table 4: Comparison of relevant mechanical biomarkers among the electromechanical sim-
ulations by employing different LDRBMs (D-RBM,B-RBM and R-RBM) to prescribe the
myofiber architecture.

the fiber field in the transition across the two ventricles, while R-RBM and D-RBM a
strong discontinuity [75]. Moreover, R-RBM and D-RBM feature a linear transition passing
from the endocardium to the epicardium, while B-RBM employs a bidirectional spherical
interpolation bislerp (see [13, 28, 75, 80]).

In Figure 7(b) the PV-loop curves (for both ventricles) are displayed, while in Table 4
some relevant mechanical biomarkers are compared among the simulation results. The
left ventricular PV-loop area of B-RBM is shifted towards larger volumes with respect
to the ones of D-RBM and R-RBM that show almost a compatible PV-loop for LV, see
Figure 7(b, top). Moreover, the left systolic pressure peak decreases for B-RBM with
respect to D-RBM and R-RBM, see Figures 7(b, top) and Table 4. As a consequence, the
left ventricular ejection fraction obtained with B-RBM (60%) is smaller than those obtained
with D-RBM and R-RBM (66% and 65%, respectively), see Table 4. On the contrary, small
differences are observed for the right ventricular PV-loops with only a slightly larger ejection
fraction for D-RBM, see Figure 7(b, bottom) and Table 4.

Figure 7(d) shows the circumferential stress (Sff) at the peak pressure instant (0.1 s) and
the time trace of the average, minimum and maximum axial stresses Sff, Sss and Snn. The
patterns of Sff are very similar for the three methods, see Figure 7(d, top-right). Instead, the
time traces of the axial stresses present several discrepancies. Specifically, Sff reveals lower
values obtained by B-RBM with respect to D-RBM and R-RBM, see Figure 7(d, top-left).
This is associated to a lower cardiac work produced by B-RBM (EFLV = 60%) compared to
D-RBM and R-RBM (EFLV = 66%, 64%, respectively). On the contrary, the longitudinal
stress Snn presents an opposite trend, see Figure 7(d, bottom-right). This is ascribed to
a larger apico-basal shortening for B-RBM (LFS = 25%) with respect to D-RBM and R-
RBM (LFS = 21%, 20%, respectively). Meanwhile, larger values of the radial stress Sss are
observed for D-RBM with respect to B-RBM and R-RBM, see Figure 7(d,bottom-right),
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associated to a larger wall thickening of D-RBM (WT = 41%) against the ones of R-RBM
and B-RBM (WT = 38%, 36%, respectively).

The previous results highlight that there is a strong interaction on the cardiac pump
function between the LV and RV [71]. A different fibers architecture in the transmural wall
(from epicardium to endocardium) and a different septal fibers interconnection between the
two ventricles affect the ventricular cardiac pump work, in particular the LV one. Indeed, a
biventricular myofibers architecture has much more information (e.g. in the inter-ventricular
septum) compared to a stand-alone LV model.

5 Conclusions

In this work, we presented a 3D biventricular EM model coupled with a 0D closed-loop model
of the whole cardiovascular system. We provided a rigorous mathematical and numerical
formulation of the 3D-0D model by fully detailing our approach to couple the 3D and the 0D
models. We carried out several numerical simulations aimed at reproducing physiological
quantities like the PV-loops. Our results quantitatively match the experimental data of
relevant mechanical biomarkers available in literature [16, 31, 61, 62, 93, 103, 104], such as
the end systolic and diastolic volumes, the ejection fractions, the systolic pressure peaks,
the longitudinal fractional shortening and the fractional wall thickening.

We studied different configurations in cross-fibers active contraction proving that an
active tension along the sheet-normal direction enhances the cardiac work, whereas along
the sheet direction it has the opposite effect. Moreover, an active contraction in the sheet-
normal direction allows to obtain a more efficient cardiac pumping function with a much
lower axial stress with respect to a pure fiber configuration. Conversely, a sheet active
contraction yields unphysiological ejection fraction, longitudinal shortening and wall thick-
ening. These results put in evidence that the proportion of active tension along the sheet
direction should be avoided in the framework of an orthotropic active stress.

Finally, we evaluate the impact of different myofibers architecture on the biventricular
EM. Our results showed the importance of considering a biventricular model with respect
to a stand-alone LV model. A different fibers architecture in the transmural wall and in
the inter-ventricular septum influence the ventricular cardiac pump work, in particular the
LV one. This highlights the strong interaction on the cardiac pump function between the
LV and RV, highlighting the importance of considering the two chambers together during
the ventricular electromechanical simulation. The continuous interrelationships between
right and left ventricular functions are well known not only in physiological conditions, but
particularly in pathological situations, for which any pressure and/or volume overload of
a ventricle is instantaneously reflected in impairment of the function of the contralateral
ventricle.
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Appendices

A Model parameters

We provide the list of parameters adopted for the simulations in Sec. 4. In particular,
Table 5 contains the parameters of the 3D EM model (referred to E , A , M ) and Table 6
those of the 0D closed-loop hemodynamical model (C ). Moreover, for the TTP06 ionic
model, we use the parameters (for epicardium cells) reported in [105], while for the RDQ18
model, we employ those in [84].

B Energy-consistent boundary condition in biventricular ge-
ometries

The energy-consistent boundary condition (2.9) accounts for the effect of the neglected part
of the domain located above the biventricular base Γbase

0 (which is an artificial boundary),
consistently with the principles of momentum and energy conservation. It represents a
generalization of the boundary condition proposed in [84] for biventricular geometries. In

what follows, we denote by Ωfluid,L
t (respectively Ωfluid,R

t ) the volume occupied at time t,
within LV (respectively, RV), by the fluid located below the base. Moreover, we employ
the tilde symbol (∼) to refer to volumes and surfaces located above the ventricular base.

Specifically, we denote by Ω̃fluid,L
t and Ω̃fluid,R

t the fluid volumes in LV and RV, located above

the base. Similarly, we denote by Γ̃epi
t , Γ̃endo,L

t and Γ̃endo,R
t the epicardial, and endocardial

(left and right) surfaces located above the ventricular base. Finally, we denote by Γ̃base
t the

ventricular base surface itself, but endowed with outer normal vector directed towards the
apex, differently than for Γbase

t .
Following the derivation of [84] and by defining the Cauchy stress tensor as T = J−1PFT ,

with a quasi-static approximation the balance of momentum entails

0 =

∫
Ω̃t

∇ ·T dx =

∫
∂Ω̃t

Tn dΓt =

=

∫
Γ̃epi
t

Tn dΓt +

∫
Γ̃endo,L
t

Tn dΓt +

∫
Γ̃endo,R
t

Tn dΓt +

∫
Γ̃base
t

Tn dΓt.
(9)

The normal stress on the endocardium is given by Tn = −pLVn (on Γ̃endo,L
t ) and Tn = −pRVn

(on Γ̃endo,R
t ), while we assume negligible the load on the epicardium (i.e. Tn = 0 on Γ̃epi

t ).
Thanks to the divergence (Gauss) theorem, it is possible to write the endocardial terms of

the summation of Eq. (9) as integrals over Γendo,L
t and Γendo,R

t . Indeed, we have the identity:

0 =

∫
Ωfluid,L

t ∪Ω̃fluid,L
t

∇pLV dx =

∫
Γendo,L
t

pLVn dΓt +

∫
Γ̃endo,L
t

pLVn dΓt,
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Variable Value Unit Description

Electrophysiology
Thb 0.8 s Heartbeat duration

χm 1 µF/cm2 Surface-to-volume ratio

Cm 1400 cm−1 Transmembrane capacitance
ε 0.01 − Threshold of the fast conduction layer
(σ`,fast, σt,fast, σn,fast) (4.28, 1.96, 0.64) mS/cm Fast layer conductivities
(σ`,myo, σt,myo, σn,myo) (1.07, 0.49, 0.16) mS/cm Myocardial conductivities

Iapp 50 · 103 µA/cm3 Applied current value
tapp 3.0 ms Applied current duration

t0LV,app (0.0,0.0,0.0) ms Applied current LV initial times

t0RV,app (5.0,5.0) ms Applied current RV initial times

δapp 2.5 · 10−3 m Applied current radius

Mechanics

ρs 103 kg m−3 Tissue density

Kepi
‖ 2 · 104 Pa m−1 Normal stiffness of epicardium

Kepi
⊥ 2 · 105 Pa m−1 Tangential stiffness of epicardial tissue

Cepi
⊥ 2 · 104 Pa s m−1 Normal viscosity of epicardial tissue

Cepi
‖ 2 · 103 Pa s m−1 Tangential viscosity of epicardial tissue

a 0.88 · 103 Pa Material stiffness

k 50 · 103 Pa Bulk modulus
bff 8 − Fiber strain scaling
bss 6 − Radial strain scaling
bnn 3 − Cross-fiber in-plain strain scaling
bfs 12 − Shear strain in fiber-sheet plane scaling
bfn 3 − Shear strain in fiber-normal plane scaling
bsn 3 − Shear strain in sheet-normal plane scaling

Reference Configuration
p̃LV 600 Pa Residual left ventricular pressure
p̃RV 400 Pa Residual right ventricular pressure

T̃a 350 · 103 Pa Residual active tension
Clrv 1 − Residual contractility ratio

Activation
SL0 2 µm Reference sarcomere length

Tmax
a 840 · 103 Pa Maximum tension
Clrv 0.60 − Contractility ratio

Table 5: Input parameters of the 3D EM model.
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Variable Value Unit Description

Circulation

RSYS
AR 0.416 mmHg s mL−1 Resistance of systemic arterial system

RSYS
VEN 0.260 mmHg s mL−1 Resistance of systemic venous system

RPUL
AR 0.048 mmHg s mL−1 Resistance of pulmonary arterial system

RPUL
VEN 0.036 mmHg s mL−1 Resistance of pulmonary venous system

CSYS
AR 1.62 mL mmHg−1 Capacitance of systemic arterial system

CSYS
VEN 60.00 mL mmHg−1 Capacitance of systemic venous system

CPUL
AR 5.00 mL mmHg−1 Capacitance pulmonary arterial system

CPUL
VEN 16.00 mL mmHg−1 Capacitance of pulmonary venous system

LSYS
AR 5 · 10−3 mmHg s2 mL−1 Impedance of systemic arterial system

LSYS
VEN 5 · 10−4 mmHg s2 mL−1 Impedance of systemic venous system

LPUL
AR 5 · 10−4 mmHg s2 mL−1 Impedance pulmonary arterial system

LPUL
VEN 5 · 10−4 mmHg s2 mL−1 Impedance of pulmonary venous system

EA
LA 0.09 mmHg mL−1 Left atrium elastance amplitude

EA
RA 0.06 mmHg mL−1 Right atrium elastance amplitude

EB
LA 0.07 mmHg mL−1 Left atrium elastance baseline

EB
RA 0.07 mmHg mL−1 Right atrium elastance baseline

T ac
LA 0.17 − Duration of left atrium contraction (w.r.t. Thb)
T ac

RA 0.17 − Duration of right atrium contraction (w.r.t. Thb)
tac
LA 0.80 − Initial time of left atrium contraction (w.r.t. Thb)
tac
RA 0.80 − Initial time of right atrium contraction (w.r.t. Thb)
T ar

LA 0.17 − Duration of left atrium relaxation (w.r.t. Thb)
T ar

RA 0.17 − Duration of right atrium relaxation (w.r.t. Thb)
V0,LA 4.0 mL Left atrium resting volume
V0,RA 4.0 mL Right atrium resting volume

Rmin 75 · 10−4 mmHg s mL−1 Valves minimal resistance

Rmax 75 · 103 mmHg s mL−1 Valves maximum resistance

Table 6: Input parameters of the 0D closed-loop hemodynamical model.

and similarly for the RV we have
∫

Γ̃endo,L
t

pLVn dΓt = −
∫

Γendo,L
t

pRVn dΓt. Hence, we end up

with the following identity∫
Γbase
t

Tn dΓt = −
∫

Γ̃base
t

Tn dΓt = −
∫

Γ̃endo,L
t

pLVn dΓt −
∫

Γ̃endo,R
t

pRVn dΓt

=

∫
Γendo,L
t

pLVn dΓt +

∫
Γendo,R
t

pRVn dΓt,
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which entails, by considering the pull-back, to the reference configuration∫
Γbase
t

Tn dΓt =

∫
Γendo,L

0

pLV JF−Tn dΓ0 +

∫
Γendo,R

0

pRV JF−Tn dΓ0. (10)

Equation (10) provides the overall stress acting on the ventricular base. However, we
need some additional assumptions to define the point-wise distribution of stress, among
the infinitely many satisfying Eq. (10). In the original derivation of the energy-consistent
boundary condition [84], at this stage, a uniform stress distribution assumption is made.
However, while this assumption is reasonable in a single-ventricle geometry, it is unrealistic
when the ventricular base surrounds both ventricles. Indeed, the pressures acting in LV are
typically much larger than those in RV. For this reason, we propose to distribute stress over
the gamma surface not uniformly, but rather according to a weight function φ : Γbase

0 → [0, 1],
that indicates the fraction of stress attributable to the pressure acting on LV, relative RV,
at each base point. Hence, we assume that, on Γbase

0 , we have:

Tn = φ

∫
Γendo,L

0
pLV JF−Tn dΓ0∫
Γbase
t

φdΓ
+ (1− φ)

∫
Γendo,R

0
pRV JF−Tn dΓ0∫

Γbase
t

(1− φ) dΓ
, (11)

which reads, in the reference configuration:

Pn = |JF−Tn|

[
φ

∫
Γendo,L

0
pLV JF−Tn dΓ0∫

Γbase
0
|JF−Tn|φdΓ0

+ (1− φ)

∫
Γendo,R

0
pRV JF−Tn dΓ0∫

Γbase
0
|JF−Tn| (1− φ) dΓ0

]
. (12)

In what follows we consider three different choices for the weight function φ, corresponding
to as many boundary condition formulations.

� Uniform stress distribution. By setting φ ≡ 1
2 , we recover the case of stress

uniformly distributed on the whole Γbase
0 boundary:

Pn =
|JF−Tn|∫

Γbase
0
|JF−Tn|dΓ0

[∫
Γendo,L

0

pLV JF−Tn dΓ0+

+

∫
Γendo,R

0

pRV JF−Tn dΓ0

] (13)

� Uniform stress distribution over each base. Let us suppose to split the base
into two subsets Γbase,L

0 and Γbase,R
0 , respectively denoting the portion of ventricular

base surrounding LV and RV. Then, we define φ as the indicator function of the set
Γbase,L

0 (that is φ = 1 on Γbase,L
0 , while φ = 0 on Γbase,R

0 ). In this case, we get:
Pn =

|JF−Tn|∫
Γbase,L

0
|JF−Tn|dΓ0

∫
Γendo,L

0

pLV JF−Tn dΓ0 on Γbase,L
0

Pn =
|JF−Tn|∫

Γbase,R
0

|JF−Tn|dΓ0

∫
Γendo,R

0

pRV JF−Tn dΓ0 on Γbase,R
0

(14)
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� Weighted stress distribution. Finally, we consider the case in which we set φ = ξ̂
(as defined in Sec. 2.1). The function ξ̂ is defined such that we have ξ̂ ' 1 on Γbase,L

0 ,

ξ̂ ' 0 on Γbase,R
0 and we have a smooth transition on the septum. With this choice,

the energy-consistent boundary condition of Eq. (12) reads

Pn = |JF−TN|
[
pLV(t)vbase

LV (t, ξ̂) + pRV(t)vbase
RV (t, ξ̂)

]
, (15)

having defined the vectors vbase
LV and vbase

RV as in Eq. (4).

Based upon our experience, the uniform stress distribution approach does not typically
provide meaningful results. Indeed, since the stress is redistributed on the whole base
without accounting for the closeness to the two chambers, a net angular momentum results
on the elastic body, making it rotate during systole. Conversely, both the uniform stress
distribution approach over each base and the weighted stress distribution approach overcome
this issue, thanks to a more realistic distribution of the stress. While the two strategies
globally provide very similar results, the latter allows for a smoother solution close to the
interface between the left and right bases. For this reason, in this paper we focus on the
weighted stress distribution approach.

C 3D-0D saddle-point problem resolution

We solve the non-linear saddle-point problem (7) by means of the following Newton algo-
rithm (where the subscript n+ 1 is understood):

� We set d
(0)
h = dnh , p

(0)
LV = pnLV and p

(0)
RV = pnRV

� For j = 1, 2, . . . , until convergence, we solve the linear systemJ
(j−1)
d,d J

(j−1)
d,pLV

J
(j−1)
d,pRV

J
(j−1)
pLV,d

0 0

J
(j−1)
pRV,d

0 0


∆d

(j)
h

∆p
(j)
LV

∆p
(j)
RV

 =

r
(j−1)
d

r(j−1)
pLV

r(j−1)
pRV

 , (16)

where

J
(j−1)
d,d =

∂

∂d
rd(d

(j−1)
h , p

(j−1)
LV , p

(j−1)
RV ),

J
(j−1)
d,pLV

=
∂

∂pLV
rd(d

(j−1)
h , p

(j−1)
LV , p

(j−1)
RV ), J

(j−1)
d,pRV

=
∂

∂pRV
rd(d

(j−1)
h , p

(j−1)
LV , p

(j−1)
RV ),

J
(j−1)
pLV,d

=
∂

∂d
rpLV(d

(j−1)
h ), J

(j−1)
pRV,d

=
∂

∂d
rpRV(d

(j−1)
h ),

� We update

d
(j)
h = d

(j−1)
h + ∆d

(j)
h , p

(j)
LV = p

(j−1)
LV + ∆p

(j)
LV and p

(j)
RV = p

(j−1)
RV + ∆p

(j)
RV.
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� When the convergence criterion (based on the increment) is satisfied, we set

dn+1
h = d

(j)
h , pn+1

LV = p
(j)
LV and pn+1

RV = p
(j)
RV.

We solve the saddle-point problem (16) via Schur complement reduction [14]. Specifically,
system (7) can be written as

Jd,d∆dh + JpLV,d∆pLV + JpRV,d∆pRV = rd

JpLV,d∆dh = rpLV

JpRV,d∆dh = rpRV

(17)

where for simplicity we omit the superscript (j). Deriving ∆dh form the first equation
of (17) we have 

∆dh = v −wL∆pLV −wR∆pRV

αLL∆pLV + αLR∆pRV = bL

αRL∆pLV + αRR∆pRV = bR

(18)

where

αLL = JpLV,dwL, αLR = JpLV,dwR, αRL = JpRV,dwL, αRR = JpRV,dwR,

bL = JpLV,dv − rpLV , bR = JpRV,dv − rpRV ,

with
wL = J−1

d,dJpLV,d wR = J−1
d,dJpRV,d, v = J−1

d,drd. (19)

Solving equation (18) we obtain

∆dh = v −wL∆pLV −wR∆pRV,

∆pLV =
bLαRR + bRαLR

αLLαRR − αRLαLR
, ∆pRV =

bRαLL + bLαRL

αLLαRR − αRLαLR
. (20)

Notice that we have to the solve three linear systems (19) in order to obtain the solution
(20).
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[84] F. Regazzoni, L. Dedè, and A. Quarteroni. “Machine learning of multiscale active
force generation models for the efficient simulation of cardiac electromechanics”. In:
Computer Methods in Applied Mechanics and Engineering 370 (2020), p. 113268.

[85] F. Regazzoni and A. Quarteroni. “Accelerating the convergence to a limit cycle in
3D cardiac electromechanical simulations through a data-driven 0D emulator”. In:
Computers in Biology and Medicine (2021), p. 104641.

39



[86] F. Regazzoni, M. Salvador, P. C. Africa, M. Fedele, L. Dede’, and A. Quarteroni. A
cardiac electromechanics model coupled with a lumped parameters model for closed-
loop blood circulation. Part I: model derivation. 2020.

[87] F. Regazzoni, M. Salvador, P. C. Africa, M. Fedele, L. Dede’, and A. Quarteroni. A
cardiac electromechanics model coupled with a lumped parameters model for closed-
loop blood circulation. Part II: numerical approximation. 2020.

[88] D. E. Roberts, L. T. Hersh, and A. M. Scher. “Influence of cardiac fiber orientation
on wavefront voltage, conduction velocity, and tissue resistivity in the dog.” In:
Circulation Research 44.5 (1979), pp. 701–712.

[89] S. Rossi, T. Lassila, R. Ruiz-Baier, A. Sequeira, and A. Quarteroni. “Thermody-
namically consistent orthotropic activation model capturing ventricular systolic wall
thickening in cardiac electromechanics”. In: European Journal of Mechanics-A/Solids
48 (2014), pp. 129–142.

[90] R. Ruiz-Baier, A. Gizzi, S. Rossi, C. Cherubini, A. Laadhari, S. Filippi, and A. Quar-
teroni. “Mathematical modelling of active contraction in isolated cardiomyocytes”.
In: Mathematical Medicine and Biology: a Journal of the IMA 31 (2014), pp. 259–
283.

[91] K. Sack, E. Aliotta, D. Ennis, J. Choy, G. Kassab, J. Guccione, and T. Franz.
“Construction and validation of subject-specific biventricular finite-element models
of healthy and failing swine hearts from high-resolution DT-MRI”. In: Frontiers in
Physiology 9 (2018), p. 539.
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