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Abstract

We construct Schwarz domain decomposition preconditioners for plane wave discon-
tinuous Galerkin methods for Helmholtz boundary value problems. In particular, we
consider additive and multiplicative non-overlapping Schwarz methods. Numerical tests
show good performance of these preconditioners when solving the linear system of equa-
tions with GMRES.

1 Introduction

Over the last years, finite element methods based on non-polynomial shape functions for time
harmonic wave propagation problems have become increasingly popular. The idea behind
these methods is to incorporate information on the oscillatory behaviour of the solutions di-
rectly within the approximating spaces by using, instead of polynomial basis functions, Trefftz
basis functions, namely, local solutions to the differential operator. For the Helmholtz equa-
tion these functions can be, for instance, plane waves or circular/shperical waves, with the
same frequency as the original problem. Although these methods are not pollution-free, they
can deliver more accurate results, for a given number of degrees of freedom, than standard
polynomial finite element methods. The way of imposing continuity at interelement bound-
aries generates different Trefftz-type methods: ultra weak variational formulation/Trefftz-
discontinuous Galerkin methods [8,13,14,22,23], partition of unity [6,33], least squares meth-
ods [34] or Lagrange multiplier methods [1, 37]. These methods have been extended from
acoustic to electromagnetic [12, 24, 27] and elastic [28, 31] time-harmonic wave propagation
problems. Here, we consider plane wave discontinuous Galerkin (PWDG) methods, of which
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the ultra-weak variational formulation can be seen as a particular case, for the Helmholtz
equation, and we attack the problem of preconditioning the arising algebraic linear systems
by domain decomposition methods (for plane wave methods with Lagrange multipliers, do-
main decomposition preconditioners have been introduced in [20]).

The solution of algebraic linear systems arising from discretizations of the Helmholtz
equation is a difficult problem [19] (see also the references therein for a bibliography on this
topic). In case of Dirichlet or Neumann boundary conditions, classical discretization meth-
ods for the Helmholtz equation based on polynomial spaces result into real, symmetric and
indefinite linear systems of equations that can be preconditioned, for example, by overlapping
Schwarz, multigrid or substructuring type methods, see for example [9, 10, 18] and the refer-
ences therein. A complete theory generalizing the classical Schwarz analysis for symmetric,
positive definite problems to indefinite problems has been provided in [9,10] where, exploiting
GMRES converge bounds [16,35], it is proven that GMRES converges uniformly (with respect
to the meshsize and the number of subdomains) provided that i) the subdomain and coarse
partitions are sufficiently fine; ii) the low-order term of the differential operator is a relatively
compact perturbation of the second order term. For the Helmholtz problem, these methods
are in general not scalable with respect to the wavenumber and become less and less effective
as the wavenumber increases, unless a sufficient number of coarse points per wavelength is
employed. Such a requirement may become unfeasible for practical applications. Neverthe-
less, they are currently employed for large scale computations, although a comprehensive and
sharp theory is still missing (because it also relies on GMRES convergence bounds which are
not sharp).

Using PWDG leads to a different situation: the resulting linear system of equations is
complex (independently of the considered boundary conditions) and non-hermitian. Several
strategies have already beed studied to cope with the severe ill-conditioning; see [7, 29, 32].

The aim of this contribution is to preliminarily explore the performance of a class of
Schwarz methods to precondition the linear system of equations arising from PWDG ap-
proximation of the Helmholtz equation in a 2D cavity with impedance boundary condition.
To keep as low as possible the computational effort without loosing effectiveness, we take
advantage of the DG framework and consider the non-overlapping version of the classical
Schwarz preconditioners. Indeed, according to [2–4, 21], non-overlapping preconditioners for
DG methods converge as fast as overlapping solvers with minimal overlap for continuous
discretizations. Our numerical experiments indicate that our preconditioners work well in re-
ducing the computation effort in the solution of the resulting linear system of equations, and
that the PWDG method seems to be particularly well suited for the development of solvers
that are scalable with respect to the wavenumber.

2 The PWDG method for the Helmholtz problem

We consider the homogeneous Helmholtz problem in a bounded Lipschitz domain Ω ⊂ R
2,

with impedance boundary condition along ∂Ω. Given a wavenumber k (the corresponding
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wavelength is λ = 2π/k) such that k ≥ k0 > 0, the problem reads:
{
−∆u− k2u = 0 in Ω,

∇u · n+ ik u = g on ∂Ω,
(1)

where i is the imaginary unit, n is the outer normal unit vector to ∂Ω, and g ∈ L2(∂Ω) is
given. The variational formulation of the problem reads as follows: find u ∈ H1(Ω) such that,
for all v ∈ H1(Ω), it holds

∫

Ω
(∇u · ∇v − k2uv) dV + ik

∫

∂Ω
uv dS =

∫

∂Ω
gv dV. (2)

By Fredholm alternative, problem (2) is well posed, and stability estimates are given by [33,
Proposition 8.1.4].

In order to derive the PWDG method, we consider a shape-regular, quasi-uniform family
of finite element partitions {Th} of Ω, possibly featuring hanging nodes. We assume, for
simplicity, that the elements K of Th are convex polygons. We write h for the mesh width of
Th, i.e, h = maxK∈Th hK , with hK := diam(K). We define the mesh skeleton Fh =

⋃
K∈Th

∂K,

and set FI
h = Fh \ ∂Ω.

Given an element K ∈ Th, we denote by PWp(K) the plane wave space on K:

PWp(K) = {v ∈ L2(K) : v(x) =

p∑

j=1

αj exp(ik dj · (x− xK)), αj ∈ C},

where xK is the mass center of K, and dj , |dj | = 1, 1 ≤ j ≤ p, are p different directions.
We assume these directions to be uniformly spaced. We define the plane wave discontinuous
finite element spaces on Th as follows:

PWp(Th) = {vhp ∈ L2(Ω) : vhp|K ∈ PWpK (K) ∀K ∈ Th} .

The functions in PWp(Th) possess the local Trefftz property

−∆vhp − k2vhp = 0 ∀vhp ∈ PWpK (K) . (3)

In this paper, we assume uniform local resolution, i.e., pK = p for all K ∈ Th, and we use the
same directions dj , 1 ≤ j ≤ p, in every element.

We briefly recall the derivation of the PWDG methods following [26]. We multiply the first
equation of (1) by smooth test functions v and integrate by parts on each K ∈ Th obtaining

∫

K

(∇u · ∇v − k2uv) dV −
∫

∂K

∇u · nK v dS = 0.

Then, we integrate by parts a second time, and replace u and v by discrete functions uhp, vhp ∈
PWp(Th), and the traces of u and ∇u at ∂K by numerical fluxes to be defined (u → ûhp
∇u → ikσ̂hp). Taking into account the Trefftz property (3) of the test functions vhp, we
obtain the elemental formulation of the PWDG method:

∫

∂K

ûhp∇vhp · nK dS −
∫

∂K

ikσ̂hp · nK vhp dS = 0 .
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In order to complete the definition of the method, like in [23], we mimic the general form of
the fluxes defined in [11]. Using the standard DG notation [5] for averages {{·}} and normal
jumps [[·]]N across interelement boundaries, and denoting by ∇h the elementwise application
of ∇, we set

ikσ̂hp =

{
{{∇huhp}} − α ik [[uhp]]N on faces in FI

h ,

∇huhp − (1− δ) (∇huhp + ikuhpn− gRn) on faces on ∂Ω,

ûhp =

{
{{uhp}} − β (ik)−1[[∇huhp]]N on faces in FI

h ,

uhp − δ
(
(ik)−1∇huhp · n+ uhp − (ik)−1gR

)
on faces on ∂Ω,

where the so-called flux parameters α, β, δ > 0 here are assumed to be constant, with δ ≤ 1/2
(taking α = β = δ = 1/2 gives the ultra weak variational formulation [13]).

Remark 2.1. More general choices of flux parameters can be useful, for instance, for im-
proving some convergence properties in the h-version of the method [22], or when non quasi-
uniform meshes are used [25,26].

Adding over all elements (and multiplying by −i ), we obtain the following formulation of
the PWDG method: find uhp ∈ PWp(Th) such that, for all vhp ∈ PWp(Th),

Ah(uhp, vhp) := Bh(uhp, vhp) + Sh(uhp, vhp) = ℓh(vhp) , (4)

where

Bh(u, v) =i

[
−
∫

FI
h

{{u}}[[∇hv]]N dS +

∫

FI
h

{{∇hu}} · [[v]]N dS

−
∫

∂Ω
(1− δ)u∇hv · n dS +

∫

∂Ω
δ∇hu · n v dS

]
,

Sh(u, v) =

∫

FI
h

β k−1[[∇hu]]N [[∇hv]]N dS +

∫

FI
h

αk [[u]]N · [[v]]N dS

+

∫

∂Ω
δ k−1(∇hu · n) (∇hv · n) dS +

∫

∂Ω
(1− δ) k u v dS,

and

ℓh(v) =

∫

∂Ω
δ k−1g∇hv · n dS − i

∫

∂Ω
(1− δ) g v dS .

The PWDG method (4) is unconditionally well-posed and stable; see, e.g., [8,13,23,26], where
error estimates were also derived. We only recall here coercivity and continuity properties of
the sesquilinear form Ah(·, ·) from [23,26]. To this aim, on the mesh Th, we define the Trefftz
space

T (Th) :=
{
v ∈ L2(Ω) : ∃s > 0 s.t. v ∈ H

3

2
+s(Th) and ∆v + k2v = 0 in each K ∈ Th

}
,

where Hr(Th) is a shorthand notation for elementwise Hr-spaces on Th; the solution u of
problem (1) actually belongs to T (Th).

The mesh-dependent quantity

|||v|||2Ah
:= Re[Ah(v, v)] = Sh(v, v) (5)
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defines a norm in T (Th) (coercivity). Moreover, setting

|||v|||2
Ah

+ = |||v|||2Ah
+ k

∥∥∥β− 1

2 {{v}}
∥∥∥
2

0,FI
h

+ k−1
∥∥∥α− 1

2 {{∇hv}}
∥∥∥
2

0,FI
h

+ k
∥∥∥δ−

1

2 v
∥∥∥
2

0,∂Ω
,

for all v, w ∈ T (Th), we have (continuity)

|Ah(v, w)| ≤ 2 ‖v‖Ah
+ ‖w‖Ah

.

In order to give an idea of the error behavior, we report in Figure 1 the diagram of the L2-
error for increasing local number p of plane waves, for two different values of the wavenumber
k, for a test case with smooth analytical solution. After a preasymptotic region of amplitude
proportional to k, the convergence is exponential, until onset of numerical instability, which
due to the fact that, for high p, the local basis functions are close to be linearly dependent
(this region is delayed for high k).
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Figure 1: L2-error of PWDG method versus the local number p of plane waves (loglog scale).
Test problem: Ω = (0, 1)2, g such that the analytical solution is given, in polar coordinates
x = (r cos θ, r sin θ), by u(x) = J1(kr) cos θ, with wavenumber k = 10 (left) and k = 40
(right), on a uniform mesh of 16 squares.

Setting Nh := dim(PWp(Th)), the algebraic linear system associated with the PWDG
method (4) on the mesh Th is

Au = b, (6)

where A ∈ C
Nh×Nh is the matrix associated with the sesquilinear form Ah(·, ·), and b ∈ C

Nh

is the vector associated with the functional ℓh(·). The GMRES iteration counts to a given
tolerance, for a fixed mesh and local number of plane wave directions p, increases with k,
provided that the mesh is fine enough.

We consider the same test case as in the caption of Figure 1, fixing the mesh and varying
k. In each test, p is selected as the smallest value for which the L2-error of the PWDG
method (numerical solution computed by a direct solver) is < 10−3. We have accelerated the
GMRES choosing as preconditioner the incomplete LU factorization of A with no fill-in and
no pivoting (PGMRES). We report in Table 1 and in Table 2 the number of GMRES and
PGMRES iterations needed to achieve convergence up to a (relative) tolerance of 10−8. The
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k = 10 k = 20 k = 30 k = 40 k = 50
(p = 9) (p = 13) (p = 17) (p = 19) (p = 23)

syst size 144 208 272 304 368

nnz(A) 5119 10747 18379 23014 33677

GMRES 114 172 233 186 233

PGMRES 17 16 15 15 15

Table 1: GMRES and PGMRES iteration counts: uniform mesh of 16 squares.

k = 10 k = 20 k = 30 k = 40 k = 50
(p = 7) (p = 9) (p = 11) (p = 13) (p = 15)

syst size 448 576 704 832 960

nnz(A) 13861 23052 34461 48347 64342

GMRES 287 384 444 554 606

PGMRES 28 28 28 27 28

k = 60 k = 70 k = 80 k = 90 k = 100
(p = 17) (p = 17) (p = 19) (p = 21) (p = 23)

syst size 1088 1088 1216 1344 1472

nnz(A) 82643 82802 103561 126460 151561

GMRES 716 359 371 456 477

PGMRES 27 27 27 27 27

Table 2: GMRES and PGMRES iteration counts: uniform mesh of 64 squares.

6



number of GMRES iterations remains of the same order of magnitude and that of PGMRES
is constant, and much lower than that of GMRES.

While we leave the preconditioning of the p-version of PWDG to future investigation, we
develop in the following sections Schwarz domain decomposition preconditioners for the h-
version, addressing the issue of their scalability. Specific features of PWDG spaces (or of more
general Trefftz spaces) could also be considered in order to improve the condition number of
the linear systems. We refer to [29, 32] for results in this direction, but we do not elaborate
on that here.

3 Domain decomposition preconditioners

To solve efficiently (6), we consider two-level Schwarz domain decomposition preconditioners.
Let TS be a partition of Ω into NS non-overlapping subdomains: Ω = ∪NS

j=1Ωj , and let
{TH}H>0 and {Th}h>0 be two families of coarse and fine partitions, respectively. We assume
all the partitions to be shape-regular and quasi-uniform, and such that TS ⊆ TH ⊆ Th, i.e.,
each Ωj ∈ TS is union of elements D ∈ TH , and in turn each element D ∈ TH is union of
elements K ∈ Th. From here on, we omit the index p and set, for brevity, PWh = PWp(Th);
we recall that Nh = dim(PWh).

3.1 Local and coarse spaces, prolongation and restriction operators

We define, for each subdomain Ωj ∈ TS , the local PWDG space PW j
h defined as

PW j
h = {v ∈ L2(Ωj) : v|K ∈ PW (K) ∀K ∈ Th}, Nj := dim(PW j

h).

We denote by RT
j : PW j

h →֒ PWh the inclusion operator (prolongation operator) and by

RT
j ∈ R

Nh×Nj its matrix representation. The restriction operator Rj : PWh → PW j
h is

defined as the operator whose matrix representation is Rj ∈ R
Nj×Nh , the conjugate transpose

of RT
j . Clearly, R

T
j (r, s) = 1 whenever the r-th basis function of PWh coincides with the s-th

basis function of PW j
h , and RT

j (r, s) = 0 otherwise (and consequently Rj = Rj).

We define the local sesquilinear forms Aj
h(·, ·) : PW j

h × PW j
h → C by

Aj
h(uj , vj) = Ah(RT

j uj ,RT
j vj) ∀uj , vj ∈ PW j

h ; (7)

their associated matrices are
Aj = RjAR

T
j ∈ C

Nj×Nj ,

We observe that the restriction of the formulation to each subdomain coincides with the
PWDG formulation of the Helmholtz problem with impedance boundary condition on the
subdomain boundary. Therefore, in the present situation, exact local solvers [4,21] and inex-
act local solvers [2, 21] coincide.

Now the coarse mesh TH comes into play. We define the coarse PWDG space as

PW 0
h = PW (TH) = {v ∈ L2(Ω) : v|D ∈ PW (D) ∀D ∈ TD}, N0 := dim(PW 0

h ).

We also introduce the coarse space prolongation and restriction operators: RT
0 : PW 0

h →֒
PWh, with associated matrix RT

0 ∈ C
Nh×N0 , and R0 : PWh → PW0, which is the operator
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whose associated matrix is R0 ∈ C
N0×Nh . We also define

A0 = R0AR
T
0 ∈ C

N0×N0 ,

associated with the sesquilinear form

A0
h(u0, v0) = Ah(RT

0 u0,RT
0 v0) ∀u0, v0 ∈ PW 0

h . (8)

We show how the operator RT
0 is constructed. Let D ∈ TH be an element of the coarse

mesh, and let {Kr}ND

r=1 be the elements of the fine mesh Th contained in D. Consider one
of the p basis function of PW 0

h supported within D: Φℓ(x) = exp(ik dℓ · (x − xD)). Now,
we express Φℓ(x) as linear combination of the basis functions of PWh supported within the
elements {Kr}ND

r=1, i.e., we compute the coefficients αr
j ∈ C such that

Φℓ(x) =

ND∑

r=1

p∑

j=1

αr
jφ

j,r
h (x), (9)

where φj,r
h (x) = exp(ik dj · (x−xKr)) for x ∈ Kr, and φj,r

h (x) = 0 outside Kr. Clearly, α
r
j = 0

for every j 6= ℓ, i.e., the basis functions of PWh with direction different from dℓ do not enter
the expression (9); therefore

Φℓ(x) =

ND∑

r=1

αr
ℓφ

ℓ,r
h (x),

with
αr
ℓ = exp(ik dℓ · (xKr − xD)).

Requiring that R0,DR
T
0,D = I, where I is the N0 ×N0 identity matrix, assuming that the

unknowns are ordered by an external loop over all elements, and an internal loop over the p
directions, the elemental contribution RT

0,D ∈ C
(r∗p)×p to the matrix RT

0 is given by

RT
0,D((r − 1) ∗ p+ ℓ, ℓ) =

1√
ND

αr
ℓ , 1 ≤ ℓ ≤ p.

3.2 Schwarz operators

For j = 0, . . . , NS , we define P̃j : PWh → PW j
h as the (unique) solution of the following

problem

Aj
h(P̃ju, vj) = Ah(u,RT

j vj) ∀vj ∈ PW j
h .

Well-posedness of the local sesquilinear forms Aj
h(·, ·), 0 ≤ j ≤ NS , defined in (7) and (8)

follows from the fact that Re[Aj
h(v, v)] are norms in the spaces PW j

h . Therefore the projection

operators P̃j are well defined. We define the operators Pj = RT
j P̃j : PWh → PWh, j =

0, . . . , NS , denote by Pj their matrix representations, and observe that

Pj = RT
j A

−1
j RjA 0 ≤ j ≤ NS .

Since Aj = RjAR
T
j , 0 ≤ j ≤ NS , P

2
j = Pj , i.e., the Pj ’s are projectors.
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We define the additive and multiplicative Schwarz operators as

Qad :=

NS∑

j=0

Pj , Qmu := I − Emu,

where the error propagation operator Emu is defined as

Emu = (I − PNS
) · · · (I − P1)(I − P0).

From the algebraic point of view, the Schwarz operators can be seen as preconditioned opera-
tors for the original operator A, and can be written as the product of a suitable preconditioner
and A. For example, for the additive operator Qad we have

Qad = P−1
ad A, P−1

ad =

NS∑

j=0

RT
j A

−1
j Rj ;

analogously we can write Qmu as Qmu = P−1
muA.

Then, the preconditioned linear system of equations we are interested in solving is

Qu = g, (10)

where Q = P−1A and g = P−1b, with either P = Pad or P = Pmu.

4 Numerical results

We investigate the performance of our preconditioners when varying the fine and coarse grids,
the number of subdomains NS , as well as the wavenumber k and the number of directions p.
We use a uniform subdomain partition of Ω = (0, 1)2 consisting of NS = 4, 16, 64 square sub-
domains. We have solved our problem on a sequence of Cartesian grids with 1/h = 4, 8, 16, 32;
for the coarse grids we have also considered Cartesian partitions with 1/H = 2, 4, 8, 16, 32.

We choose the impedance datum g so that the analytical solution of problem (1) is given,
in polar coordinates x = (r cos θ, r sin θ), by u(x) = J1(kr) cos(θ), where J1(·) is the Bessel
function of the first type. The flux parameters have been chosen as α = β = δ = 1

2 , cf.
Section 2.

Throughout this section, the linear systems of equations have been solved by GMRES
with a (relative) tolerance set equal to 10−6.

We first investigate whether the additive and multiplicative Schwarz preconditioners are
scalable, i.e., the iteration counts needed to reduce the residual up to a (user defined) tol-
erance are independent of the number of subdomains. In Table 3 and Table 4 we report
the iteration counts for k = 30, p = 15 and NS = 4, 16, 64 computed with the additive and
multiplicative preconditioners, respectively. The proposed preconditioners seem to be asymp-
totically scalable, indeed for NS ≥ 16 the number of iterations seems to be quite independent
of the number of subdomains. Moreover, in all the cases the preconditioners are effective, as
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confirmed by a comparison with the iterations counts needed to solve the unpreconditioned
system, cf. last line of Table 3, and, as expected, the multiplicative preconditioner performs
much better than the additive one. In Tables 3 to 6, the symbol “-” refers to the case where
the hypothesis TS ⊆ TH ⊆ Th is not satisfied, and therefore the construction of the precondi-
tioner is meaningless. The lower diagonals reported in Table 3 (and also in the tables below)
correspond to the limit case h = H. In this case, the coarse component of the preconditioner

NS = 4 NS = 16 NS = 64

H−1
h−1

4 8 16 32 4 8 16 32 4 8 16 32

2 22 35 48 64 - - - - - - - -
4 13 29 41 56 15 34 46 63 - - - -
8 - 16 33 46 - 17 37 53 - 19 41 56
16 - - 16 39 - - 17 43 - - 17 46

iter(A) 134 670 1510 3552 134 670 1510 3552 134 670 1510 3552

Table 3: Additive preconditioner: GMRES iteration counts. Wavenumber k = 30, number of
directions p = 15.

NS = 4 NS = 16 NS = 64

H−1
h−1

4 8 16 32 4 8 16 32 4 8 16 32

2 12 19 25 34 - - - - - - - -
4 2 14 21 30 2 17 25 34 - - - -
8 - 2 16 24 - 2 17 26 - 2 21 29
16 - - 2 18 - - 2 20 - - 3 21

iter(A) 134 670 1510 3552 134 670 1510 3552 134 670 1510 3552

Table 4: Multiplicative preconditioner: GMRES iteration counts. Wavenumber k = 30,
number of directions p = 15.

is an exact solver for the original linear system (6), indeed, if A0 = A, then R0 = I and the
operator P0 becomes P0 = RT

0 A
−1R0A = I. Thus, in principle, we should obtain convergence

in one iteration, and the fact that this does not happen indicates that the local solutions
“spoil” the result (see also [2]). The results for h = H are reported in order to give an idea
of the performance of the preconditioners also in such limit case.

We have repeated the same set of experiments taking the wavenumber k = 50, cf. Table 5
and Table 6 for the additive and multiplicative preconditioners, respectively. We observe
that the iteration counts of the preconditioned system do not seem to vary significantly as
the wavenumber increases, whereas the iteration counts of the unpreconditioned one increase,
at least when 1/h becomes sufficiently large. Moreover, also in this case the multiplicative
preconditioner outperforms the additive one.

We next address the performance of our preconditioners when varying the number of
directions p, fixing, for the sake of simplicity, NS = 16 and 1/h = 16. In Table 7 and Table
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NS = 4 NS = 16 NS = 64

H−1
h−1

4 8 16 32 4 8 16 32 4 8 16 32

2 16 29 42 55 - - - - - - - -
4 10 27 42 57 15 37 52 70 - - - -
8 - 14 31 43 - 16 32 45 - 19 37 50
16 - - 17 37 - - 18 37 - - 19 40

iter(A) 33 508 1977 4461 33 508 1977 4461 33 508 1977 4461

Table 5: Additive preconditioner: GMRES iteration counts. Wavenumber k = 50, number of
directions p = 15.

NS = 4 NS = 16 NS = 64

H−1
h−1

4 8 16 32 4 8 16 32 4 8 16 32

2 8 15 23 30 - - - - - - - -
4 2 14 22 30 2 18 27 36 - - - -
8 - 2 15 22 - 2 16 24 - 2 20 37
16 - - 1 16 - - 2 17 - - 2 19

iter(A) 33 508 1977 4461 33 508 1977 4461 33 508 1977 4461

Table 6: Multiplicative preconditioner: GMRES iteration counts. Wavenumber k = 50,
number of directions p = 15.
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8 we report the GMRES iteration counts for p = 13, 15, 17, 19 and k = 30, 40, 50 computed
with the additive and multiplicative preconditioners, respectively. The last row of Table 7
and Table 8 shows the corresponding iteration counts needed to solve the unpreconditioned
systems. From the numerical results, we can observe that the iteration counts needed to solve

k = 30 k = 40 k = 50

H−1
p

13 15 17 19 13 15 17 19 13 15 17 19

4 47 46 47 49 50 48 48 47 49 52 52 50
8 35 37 39 41 33 35 36 37 32 32 34 34

iter(A) 1510 1510 1511 1511 1826 1825 1824 1825 1883 1977 1973 1973

Table 7: Additive preconditioner: GMRES iteration counts. Wavenumber k = 30, 40, 50,
number of directions p = 13, 15, 17, 19 (NS = 16 and 1/h = 16).

k = 30 k = 40 k = 50

H−1
p

13 15 17 19 13 15 17 19 13 15 17 19

4 25 25 26 26 25 25 26 26 27 27 27 27
8 17 17 19 20 16 17 18 19 16 16 17 18

iter(A)
1510 1510 1511 1511 1826 1825 1824 1825 1883 1977 1973 1973

Table 8: Multiplicative preconditioner: GMRES iteration counts. Wavenumber k = 30, 40, 50,
number of directions p = 13, 15, 17, 19 (NS = 16 and 1/h = 16).

the preconditioned systems, both with the additive and the multiplicative preconditioners,
seem to be fairly independent of k, and that these preconditioners seem to be very effective
in accelerating GMRES convergence.

5 The issue of GMRES convergence

In the following, we recall the GMRES convergence theory developed in [15, 17, 36] which
provides sufficient conditions for non-stagnation of GMRES, i.e., the iterative method makes
some progress in reducing the residual at each iteration step, and establishes upper bounds
on the residual norm.

Given the matrix Q ∈ C
Nh×Nh , we define its associated field of values as

F (Q) =

{
xTQx

xTx
, 0 6= x ∈ C

Nh

}
,

and denote by ν(F (Q)) the distance of F (Q) from the origin. The theory proposed by [15,36]
states that the κ-th residual rκ of GMRES satisfies

‖rκ‖
‖r0‖

≤
(
1− ν(F (Q)) ν(F (Q−1))

)κ/2
. (11)
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Denote byH(Q) the hermitian part ofQ, i.e.,H(Q) = Q+Q
T

2 . IfH(Q) is positive definite, then
ν(F (Q)) ≥ λ min(H(Q)), the minimum eigenvalue of H(Q). In our case, if A is the coefficient
matrix of the unpreconditioned system, H(A) is positive definite, since it is associated with
the bilinear form Sh(·, ·) (see (4)), which is a scalar product in PWp(Th). If we denote by

Q the left/right preconditioned matrix, i.e., Q = P−1/2A(P
T
)−1/2, with either P = Pad or

P = Pmu, then H(Q) is also positive definite. Moreover, one can bound ν(F (Q−1)) from
below by

ν(F (Q−1)) ≥ λ min(H(Q))

‖Q‖2
,

where ‖ · ‖ is the natural (complex) Euclidean matrix norm (see [30]), and write a weaker but
more practical version of the bound (11):

‖rκ‖
‖r0‖

≤
(
1− λ2

min(H(Q))

‖Q‖2
)κ/2

,

which was firstly derived in [16,17].

We have performed some experiments on the test problem described in Section 4 with
k = 30 and number of plane wave directions per element p = 11, 13, 15, on the grid with
1/h = 16. We have compared the values of λmin(H(R)) and λmin(H(R−1)) for the original

matrix (R = A) and for the left/right preconditioned matrix Q = P−1/2A(P
T
)−1/2 (R = Q),

with P = Pad constructed with NS = 4 subdomains and a coarse grid with 1/H = 2.
The results reported in Table 9 show that, while λmin(H(R−1)) (which is a lower bound for

ν(F (R−1))) is essentially the same for the unpreconditioned and the preconditioned matrices,
and for all the considered values of p, λmin(H(R)) (which is a lower bound for ν(F (R)))
is definitely larger for the preconditioned matrix (and it is almost uniform in p). A similar

p = 11 p = 13 p = 15

λmin(H(A)) 1.3338 · 10−5 1.0956 · 10−7 1.0079 · 10−9

λmin(H(A−1)) 1.7385 · 10−2 1.4711 · 10−2 1.2749 · 10−2

λmin(H(Q)) 5.8730 · 10−2 4.4976 · 10−2 3.5210 · 10−2

λmin(H(Q−1)) 3.1358 · 10−2 3.1919 · 10−2 3.1977 · 10−2

Table 9: Values of λmin(H(R)) and λmin(H(R−1)) (which are lower bound for ν(F (R))
and ν(F (R−1)), respectively) for R = A (unpreconditioned matrix) and R = Q =

P−1/2A(P
T
)−1/2 (preconditioned matrix). Wavenumber k = 30, Cartesian mesh with

1/h = 16; P = Pad constructed with NS = 4 subdomains and a coarse grid with 1/H = 2.

situation is observed when varying k (k = 30, 40, 50); the results for p = 15, 1/h = 16, NS = 4
subdomains and 1/H = 2 are reported in Table 10. Theoretical estimates of these quantities
are under investigation.
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k = 30 k = 40 k = 50

λmin(H(A)) 1.0079 · 10−9 7.0787 · 10−8 1.8717 · 10−6

λmin(H(A−1)) 1.2749 · 10−2 1.2495 · 10−2 1.3699 · 10−2

λmin(H(Q)) 3.5210 · 10−2 6.1622 · 10−2 3.6636 · 10−2

λmin(H(Q−1)) 3.1977 · 10−2 3.0694 · 10−2 2.9770 · 10−2

Table 10: Values of λmin(H(R)) and λmin(H(R−1)) (which are lower bound for ν(F (R))
and ν(F (R−1)), respectively) for R = A (unpreconditioned matrix) and R = Q =

P−1/2A(P
T
)−1/2 (preconditioned matrix). Cartesian mesh with 1/h = 16, number of plane

wave directions per element p = 15; P = Pad constructed with NS = 4 subdomains and a
coarse grid with 1/H = 2.
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