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Abstract

In this paper, we consider a compressed sensing problem in which both
the measurement and the sparsifying systems are assumed to be frames
(not necessarily tight) of the underlying Hilbert space of signals, which
may be finite or infinite dimensional. The main result gives explicit bounds
on the number of measurements in order to achieve stable recovery, which
depends on the mutual coherence of the two systems. As a simple corollary,
we prove the efficiency of non-uniform sampling strategies in cases when
the two systems are not incoherent, but only asymptotically incoherent,
as with the recovery of wavelet coefficients from Fourier samples. This
general framework finds applications to several inverse problems in partial
differential equations, in which the standard assumptions of compressed
sensing are not satisfied: several examples are discussed.
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1 Introduction

The problem of the recovery of a sparse signal from a small number of samples
is the fundamental question of compressed sensing (CS). A signal is said to
be sparse if it can be expressed as a linear combination of a small number
of known vectors. The seminal papers [23, 28] have triggered an impressive
amount of research in the last decade, from real world applications (MRI, X-
ray tomography, etc.) to theoretical generalizations in broader mathematical
frameworks.

In the finite dimensional case, the general CS problem can be stated as
follows. Given an unknown sparse vector x ∈ CN and a measurement operator
represented by a matrix U , we want to reconstruct x from samples of the form
(Ux)l, for l ∈ Ω ⊂ {1, . . . , N}. This is done by solving the following convex
optimization problem:

min
x̃∈CN

‖x̃‖`1 subject to PΩUx̃ = PΩUx, (1)

where PΩ is the projection matrix on the entries indexed by Ω. It is natural to
ask under what conditions the solution of the minimization problem (1) coincides
with x. These can be formulated as a lower bound on the number of measure-
ments m = |Ω|, which depends on the sparsity of the signal s = |supp(x)|, the
dimension N of the ambient space, and the matrix U . An interesting feature
is that the lower bound on m does not guarantee exact recovery for all set of
indices Ω ⊂ {1, . . . , N} with |Ω| = m, but only for most of them.

One of the first contributions [23], considered the case where U is the discrete
Fourier transform: exact recovery is guaranteed with high probability provided
that Ω ⊆ {1, . . . , N} is selected uniformly at random with m & s logN . If U is
a general orthonormal transformation, the problem has been addressed for the
first time in [19], introducing the coherence µ = maxi,j |Uij |. In this case, the
bound becomes m & sµ2N logN .

Similar results have been recently obtained in the infinite dimensional setting,
where one considers signals belonging to a separable Hilbert space H and the
measurement operator is represented as a bounded linear map U : H → `2(N).
(Note that U may be expressed by scalar products with a family of vectors
{ψl}l ⊆ H, namely (Uf)l = 〈f, ψl〉H.) The sparsity of a signal f ∈ H is char-
acterized by the sparsity of Df , where D : H → `2(N), f 7→ (〈f, ϕj〉H)j , is the
analysis operator associated to a family of vectors {ϕj}j ⊆ H. The first results in
this framework were presented in [4], in the case where both U and D are unitary
operators, i.e. correspond to orthonormal bases; this is the standard assumption
taken in virtually all works on CS with deterministic measurements. These re-
sults were further extended in [5], introducing the more advanced concepts of
asymptotic incoherence, local coherence, and local sparsity. An additional im-
provement was given in [60], which deals with the case where {ϕj}j is a Parseval
frame (see also [55, 44, 35]).
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In a large number of inverse problems, where one does not have complete
freedom in the measurement process, the assumption on U being unitary is not
verified, thereby preventing the application of CS to many domains. As a result,
two large research areas as inverse problems in partial differential equations
and sparse signal recovery have so far been almost completely separated. The
purpose of this paper is to provide a solid foundation that is expected to allow
a fruitful interaction between these two domains.

In order to do so, in this work we present a very general CS result that
deals with any bounded and injective linear operators U and D, defined on any
separable complex Hilbert space (finite or infinite dimensional). Equivalently,
the families {ψl}l and {ϕj}j are simply required to be frames of H (not neces-
sarily tight). Since we do not need the measurement operator U to be unitary,
our results cover the case of anisotropic measurements. These have been al-
ready studied in the finite dimensional case using random and not deterministic
measurements in [47]. As far as we know, our result is new also in the finite
dimensional case.

Another generalization is related to the sampling strategy. Recently, it has
been observed in several works [44, 5] that, when precise estimates for the mutual
coherence are available, uniform sampling strategies do not give sharp estimates
for the minimum number of measurements. Our techniques are also able to cover
this case, also known as structured sampling, just as a simple corollary of the
main result for the uniform sampling. To our knowledge, this is the first sharp
result under asymptotic incoherence assumptions, where there is no need to use
multi-level sampling strategies and local coherence. This represents only a first
step, and we believe that many other interesting estimates may be derived as
corollaries of our main general result.

As mentioned above, our main motivation in dealing with the infinite dimen-
sional anisotropic framework comes from inverse problems arising from partial
differential equations. These inverse problems are intrinsically infinite dimen-
sional, and often the measurement operator cannot be chosen as a unitary trans-
formation. Moreover, in order to obtain a solution to these problems, an infinite
number of measurements is often needed, even when the vector to be recovered
belongs to a known finite dimensional subspace. CS can thus provide a rigor-
ous, explicit and numerically viable way to find solutions to such problems when
only a finite number of measurements is available. In Section 4 we explore ap-
plications of our main result to the problems of (linearized) electrical impedance
tomography, nonuniform Fourier sampling and photoacoustic imaging. Many
other inverse problems can be tackled with a similar approach and will be the
subject of future work.

The plan of the paper is the following. In Section 2 we introduce the mathe-
matical framework of infinite dimensional CS using the language of frames. We
define the mutual coherence for general frames as well as the balancing property
in this case. The main result is presented in Section 3, which contains also the
main corollary about structured sampling and asymptotic incoherence. Section 4
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is devoted to the applications of the main results to three inverse problems, while
Section 5 contains the main technical propositions needed for the proof of the
main result, also included in the same section.

2 Main assumptions

Let N denote the set of all positive natural numbers. Let H be a separable
complex Hilbert space, representing our signal space, which may be either finite
or infinite dimensional. The problem we study in this paper is the recovery of
an unknown signal g0 ∈ H from partial measurements of the form (〈g0, ψl〉H)l,
under a sparsity assumption on g0 with respect to a suitable family of vectors
{ϕj}j . The main assumption of this paper is the following: these families of
vectors are required to be frames of H [24, 26, 27].

Hypothesis 1. Let L and J be two index sets1. Let {ψl}l∈L and {ϕj}j∈J be
two frames of H with frame constants AU , BU > 0 and AD, BD > 0, respectively,
namely

AU‖g‖2H ≤
∑
l∈L
|〈g, ψl〉H|2 ≤ BU‖g‖2H, AD‖g‖2H ≤

∑
j∈J
|〈g, ϕj〉H|2 ≤ BD‖g‖2H,

for every g ∈ H.

The measurements and the sparsity condition are expressed by the analysis
operators U : H → `2(L) and D : H → `2(J), defined by

(Ug)l = 〈g, ψl〉H, (Dg)j = 〈g, ϕj〉H.

By construction, the dual operators are given by U∗el = ψl andD∗ej = ϕj , where
{ei}i∈I is the canonical basis of `2(I). By Hypothesis 1, since

∑
l |〈g, ψl〉H|2 =

‖Ug‖22 and
∑

j |〈g, ϕj〉H|2 = ‖Dg‖22, we have that U and D are bounded and the
operator norms satisfy

‖U‖ = ‖U∗‖ ≤
√
BU , ‖D‖ = ‖D∗‖ ≤

√
BD. (2)

The recovery problem can then be stated as follows: given noisy partial
measurements of Ug0, namely ζ = PΩUg0 + η for some (finite) set Ω ⊆ L,
recover the signal g0 ∈ H, under the assumption that Dg0 is sparse. Here we
have used the notation PΩ for the orthogonal projection onto span{ej : j ∈ Ω}
(if Ω = {1, . . . ,M} we simply write PM ). The classical way to solve this problem
is via `1 minimization, namely

inf
g∈H

Dg∈`1(J)

‖Dg‖1 subject to ‖PΩUg − ζ‖2 ≤ ε, (3)

where ε = ‖η‖2 is the noise level.

1We say that I ⊆ N is an index set if I = N or I = {1, 2, . . . , n} for some n ∈ N.
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Remark. Equivalently, one may adapt a more abstract point of view, starting
from a bounded operator U : H → `2(L) with bounded inverse. It is immediate
to verify that ψl = U∗el gives rise to a frame, as in Hypothesis 1. The formulation
with U allows to consider any linear inverse problem of the form

U : H → `2(L), Ug = ζ.

The only requirement is that, with full data, the inverse problem should be
uniquely and stably solvable. In particular, any invertible operator U may be
considered, and not necessarily isometries as in the standard compressed sensing
setting. Many linear infinite dimensional inverse problems may be written in this
form; see §4.2 for an application to a linearized version of electrical impedance
tomography and §4.3 for an application to an inverse source problem for the
wave equation.

Remark. The formulation given in (3) of the `1 optimization problem is the anal-
ysis approach, because of the minimization of ‖Dg‖`1 , where D is the analysis
operator. This is in contrast with the much more popular synthesis formulation

inf
x∈`1(J)

‖x‖`1 subject to ‖PΩUD
∗x− ζ‖ ≤ ε. (4)

In general, the two approaches are not equivalent [29]. We have decided to
work with the analysis approach since there may be multiple minimizers of (4)
if D gives a redundant representation, which complicates the derivation of the
estimates.

Remark. When J is infinite, the above minimization problem cannot be imple-
mented numerically. When D and U are unitary operators, it was shown in [4]
that this issue may be solved by looking at a corresponding finite-dimensional
optimization problem. We expect that the same is true also in our context, and
leave this investigation to future work.

Given the generality of our setting, we need to consider the dual frames of
{ψl}l and {ϕj}j . By classical frame theory (see [27, Lemma 5.1.5]), the frame
operators U∗U and D∗D are invertible, and we can consider the dual frames

ψ̃l = (U∗U)−1ψl and ϕ̃j = (D∗D)−1ϕj ,

which have frame constants B−1
U , A−1

U and B−1
D , A−1

D , respectively. Equivalently,

we may write ψ̃l = U−1el and ϕ̃j = D−1ej , where U−1 and D−1 are the Moore–
Penrose pseudoinverses of U and D, respectively, defined as follows:

U−1 := (U∗U)−1U∗ and D−1 := (D∗D)−1D∗.

Note that they are left inverses of U and D, respectively. Therefore, (U−1)∗ and
(D−1)∗ are the analysis operators of the dual frames, and so arguing as in (2)
we obtain ∥∥U−1

∥∥ =
∥∥U−∗∥∥ ≤ A−1/2

U ,
∥∥D−1

∥∥ =
∥∥D−∗∥∥ ≤ A−1/2

D . (5)
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With an abuse of notation, we have denoted (U−1)∗ and (D−1)∗ by U−∗ and
D−∗, respectively. It can be immediately checked that they are right inverses
of U∗ and D∗, i.e. (U∗)−1 = U−∗ and (D∗)−1 = D−∗. For later use, set
κ1 := max(BU , A

−1
U ) and κ2 := max(A−1

D , 1), so that by (2) and (5) we obtain

‖U‖ = ‖U∗‖ ≤
√
κ1,

∥∥U−1
∥∥ =

∥∥U−∗∥∥ ≤ √κ1,
∥∥D−1

∥∥ =
∥∥D−∗∥∥ ≤ √κ2.

(6)

Remark. The frames {ψ̃l}l and {ϕ̃j}j are the canonical dual frames, but in
general many other choices are possible. These are in correspondence with all
possible bounded left inverses of U and D, and it is possible to give a charac-
terization of all dual frames. The reader is referred to [27, Section 6.3] for the
details.

We need to measure the incoherence between the sensing system {ψl}l and
the representation system {ϕj}j or, equivalently, between the measurement op-
erator U and the representation operator D.

Definition 1. The mutual coherence of U and D is given by

µ = sup
j∈J,l∈L

max{|〈ϕj , ψl〉H|, |〈ϕ̃j , ψl〉H|, |〈ϕj , ψ̃l〉H|, |〈ϕ̃j , ψ̃l〉H|}

= sup
j∈J,l∈L

max{|〈D∗ej , U∗el〉H|, |〈D−1ej , U∗el〉H|, |〈D∗ej , U−1el〉H|, |〈D−1ej , U−1el〉H|}.

Let us now discuss a particular case.

Example 1. The above construction simplifies considerably if {ψl}l and {ϕj}j
are Parseval frames, namely if AU = BU = AD = BD = 1, as studied in [60].
In this case the associated analysis operators U and D are isometries, their left
inverses simplify to U−1 = U∗, D−1 = D∗ and all the operator norms in (6) are
simply bounded by 1. The dual frames and the corresponding frames coincide,
and the coherence reduces to

µ = sup
j∈J,l∈L

|〈ϕj , ψl〉H| = sup
j∈J,l∈L

|〈D∗ej , U∗el〉H|, (7)

which simply involves scalar products between the elements of the two bases.
As an even more particular case, one may consider orthonormal bases {ψl}l

and {ϕj}j , which represents the usual assumption in the classical compressed
sensing framework, and in its extension to infinite dimension [4].

A relevant application of this general setting is with nonuniform discrete
Fourier sampling (see §4.1), which gives rise to a frame {ψl}l in the space of
square-integrable compactly supported functions; in this case, the operator U is
injective but may not be onto. On the other hand, allowing the system {ϕj}j to
be a frame, i.e. D is not necessarily invertible, is useful whenever we wish to use
a redundant representation to sparsify the signals in H (e.g. redundant wavelets
[32], curvelets [21], ridgelets [20] and shearlets [50, 49, 43]).
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The partial measurements (Ug)l = 〈g, ψl〉H are indexed by l ∈ Ω, where Ω is
chosen uniformly at random in {1, . . . , N}. Given the infinite dimensionality of
the problem, the upper bound N has to be chosen big enough, depending on the
sparsity assumptions. This is quantified by the balancing property, introduced
in [4] and generalized here to the non isometric setting.

Definition 2. (Balancing property) Let s,M ∈ N be such that s ≤M . We say
that N∈ L satisfies the balancing property with respect to M and s if for all
∆ ⊆ {1, . . . ,M} with |∆| = s we have

‖PWU∗P⊥N (U∗)−1 PW‖H→H ≤
1

4
√

2 log(sκ2)
, (8)

‖PWU−1P⊥NUPW‖H→H ≤
1

4
, (9)

and

‖P⊥∆DP⊥WU∗PN (U∗)−1 PW‖H→`∞(J) ≤
1

16
√
sκ2

, (10)

‖PWU−1PNUP
⊥
WD

−1P⊥∆‖`2(J)→H ≤ 1/2, (11)

where W := R(D∗P∆) +R(D−1P∆) = {D∗P∆x+D−1P∆y : x, y ∈ `2(J)}.

Remark 1. If L = {1, 2, . . . , |L|} is finite, it is enough to choose N = |L|, since
all the norms on the left hand side vanish. If L = N, the existence of a suitable
N satisfying the above conditions simply follows by the fact that PN → I and
P⊥N → 0 strongly (see [4, Proposition 5.2] for the details of the argument).

For s,M ∈ J , s ≤M , we use the notation

σs,M (x0) = inf{‖x− x0‖`1(J) : supp(x) ⊆ {1, . . . ,M}, |supp(x)| ≤ s},

which measures the compressibility of the signal x0 ∈ `1(J) by means of s-sparse
signals x. Following [60], for ∆ ⊆ {1, . . . ,M} we denote

B̃∆ = max
{
‖DP⊥WD−1‖`∞→`∞ , ‖D−∗P⊥WD∗‖`∞→`∞ , 1

}
,

B(s,M) = max{B̃∆ : ∆ ⊆ {1, . . . ,M}, 3 ≤ |∆| ≤ s},

where we have used the notation

‖T‖`∞→`∞ := sup
x∈`2(N)\{0}

‖Tx‖`∞(J)

‖x‖`∞(J)
,

for an operator T : `2(J)→ `2(J).

Remark 2. It is worth observing that when {ϕj}j is an orthonormal basis or,
equivalently, when D is a unitary operator, we simply have

B(s,M) = 1.
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Indeed, in view of the identity

DP⊥WD
∗x = DP⊥WD

∗(P∆x+ P⊥∆x) = DP⊥WD
∗P⊥∆x = DD∗P⊥∆x = P⊥∆x,

we obtain ‖DP⊥WD∗x‖`∞ =
∥∥P⊥∆x∥∥`∞ ≤ ‖x‖`∞ for every x ∈ `2(J), so that

B̃∆ = 1 for every ∆.

In the other extreme case, it may happen that B(s,M) = +∞, even in finite
dimension with a Parseval frame, as the following example shows.

Example 2. Consider H = R with the Parseval frame

ϕ1 = ϕ2 = ϕ3 = 0, ϕj+3 = fj , j ≥ 1,

where f : N→ (0,+∞) is a sequence such that
∑

j f
2
j = 1 and

∑
j fj = +∞ (here

J = N). For ∆ = {1, 2, 3} we have W = {0}, so that B̃∆ ≥ ‖DP⊥WD∗‖`∞→`∞ =
‖DD∗‖`∞→`∞ . Thus, setting xn = e1 + · · ·+ en+3 ∈ `2(N), by D∗xn =

∑n
j=1 fj

we have

B̃∆ ≥ |(DD∗xn)4| = |〈D∗xn, ϕ4〉R| = f1

n∑
j=1

fj −→
n→∞

+∞,

whence B(s,M) ≥ B̃∆ ≥ +∞ for any s and M .

For α ∈ (0, 1] let M̃(α) be the smallest integer such that M̃(α) ≥M and
√
κ1 max

δ=0,1

(
‖PNUD∗δej‖`2 +

√
κ1‖PW̃D

∗
δej‖H

)
< α, j ∈ J, j > M̃(α), (12)

where W̃ := R(D∗PM ) +R(D−1PM ), D0 := D and D1 := D−∗.

Remark 3. If J = {1, 2, . . . ,M} is finite, we simply have M̃(α) = M for every
α. If J = N, M̃(α) always exists since D∗δej tends to zero weakly and PN and
PW̃ are compact operators.

Remark 4. In the case when D is associated to an orthonormal basis, the con-
dition M̃(α) ≥ M is implicit, since κ1‖PW̃D

∗
0ej‖`2 = κ1‖D∗0ej‖`2 = κ1 ≥ 1 ≥ α

for j = 1, . . . ,M by definition of W̃. Furthermore, condition (12) reduces to
√
κ1‖PNUD∗ej‖`2 < α, j > M̃(α).

As a consequence, note that if supl∈L |〈ψl, ϕj〉H| ≤ C/
√
j for every j ∈ J, j > M

(which is the case in several concrete applications, see §3.3) one has

√
κ1‖PNUD∗ej‖`2 ≤

√
Nκ1‖PNUD∗ej‖`∞ ≤

√
Nκ1 sup

l∈L
|〈ψl, ϕj〉H| ≤ C

√
Nκ1/j,

and so

M̃(α) ≤ C2κ1N

α2
.

In the case where U is the Fourier transform and D a Wavelet transform in
dimension one, a more precise estimate has been derived in [5], namely M̃(α) =
O(M/α).
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3 Main results

3.1 Finite and infinite dimensional recovery

We now state the main result of this work. Recall thatH is any separable Hilbert
space: we deal with the finite and infinite dimensional case simultaneously.

Theorem 1. Assume that Hypothesis 1 holds true, and let U and D denote
the corresponding analysis operators, satisfying the bounds given in (6). Let
M, s ∈ J and ω ≥ 1 be such that M ≥ 5 and 3 ≤ s ≤ M . Let N∈ L satisfy the
balancing property with respect to M and s, and let Ω ⊆ {1, . . . , N} be chosen
uniformly at random with |Ω| = m. Assume that B(s,M) ≤ 2κ1κ2

√
s and that

m ≥ Cµ2sκ1κ2ω
2B(s,M)2N log

(
sκ2M̃

(
C′m
N
√
sκ2

))
,

where C,C ′ > 0 are universal constants.
Let g0 ∈ H and η ∈ `2(L) be such that ‖η‖2 ≤ ε for some ε ≥ 0. Let

ζ = PΩUg0 + η be the known noisy measurement. Let g ∈ H be a minimizer of
the minimization problem (3). Then, with probability exceeding 1−e−ω, we have

‖g − g0‖H ≤ 4(2 +
√
κ2)σs,M (Dg0) + C ′′ε

N
√
s

m

√
κ1κ2ω

where C ′′ is a universal constant.

Remark. The generality of our construction allows to treat the finite dimensional
and the infinite dimensional cases simultaneously. However, in finite dimension
the above estimate for m has a simpler form, which is worth to point out.
Suppose that L = {1, . . . , N} and J = {1, . . . ,M}. By Remarks 1 and 3, we
have that N satisfies the balancing property with respect to M and s and that
M̃
(

C′m
N
√
sκ2

)
= M . Thus, the lower bound for the number of measurements m

becomes
m ≥ Csκ1κ2ω

2B(s,M)2µ2N log (sκ2M) ,

which, when {ψl}l and {ϕj}j are both orthonormal bases of H = CN , by (6),
Example 1 and Remark 2 simply reduces to

m ≥ Csω2µ2N log (sN) .

Theorem 1 directly generalizes Theorems 6.1, 6.3 and 6.4 of [4] to the case
of anisotropic measurements. It also extends the results of [5, 60] to the case
of general frames D and U . Although we did not use the concepts of local
sparsity and local coherence we believe that our techniques can be extended also
in that setting, see §3.2. Our result can also be seen as an infinite dimensional
generalization of the finite dimentional result in [47] for anisotropic random
measurements. In fact, as far as we know, also the finite dimensional version of
Theorem 1 is new.
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3.2 Asymptotic incoherence and artificial frames

The above result shows that with random sampling one needs a number of
measurements proportional to the sparsity of the signal (up to logarithmic factors
and the quantity B(s,M)), provided that the coherence is small enough, namely,
µ = O(1/

√
N). While this happens in finite dimension (H = CN ) in some

particular situations, e.g. with signals that are sparse with respect to the Dirac
basis ϕj = ej and with Fourier measurements, in many cases of practical interest
the above result becomes almost meaningless since the coherence µ is of order
one. For instance, this happens when U is the discrete Fourier transform and D
the discrete wavelet transform. As it was shown in [5], this is always the case in
infinite dimension.

Since the early stages of compressed sensing, it was realized that this issue
may be solved by using variable density random sampling [65, 61, 45, 44, 14,
5, 60]. For instance, in the Fourier-Wavelet case, one needs to sample lower
frequencies with higher probability than the higher frequencies. We now give
a result that deals with this situation; in particular, it takes into account a
priori estimates on the coherence and non-uniform sampling. As it is clear
from the proof, it follows as a simple corollary of Theorem 1, thanks to the
flexibility of its assumptions. More precisely, Theorem 1 is applied to an artificial
frame {ψ̂l}l obtained from {ψl}l by artificially repeating its elements. More
complicated transformations, also involving {ϕj}j , may be considered (taking
into account, for instance, asymptotic sparsity [5]): we leave these investigations
to future work, and we limit ourselves to an example to show the potential of
this framework.

Corollary 1. Assume that Hypothesis 1 holds true, and let U and D denote
the corresponding analysis operators, satisfying the bounds given in (6). Assume
that there exist C1 > 0 and w ∈ RN+ such that

sup
j∈J

max{|〈ϕj , ψl〉H|, |〈ϕ̃j , ψl〉H|, |〈ϕj , ψ̃l〉H|, |〈ϕ̃j , ψ̃l〉H|} ≤ C1wl ∀l ≤ N, (13)

sup
L3l>N, j∈J

max{|〈ϕj , ψl〉H|, |〈ϕ̃j , ψl〉H|, |〈ϕj , ψ̃l〉H|, |〈ϕ̃j , ψ̃l〉H|} ≤
C1√
N
, (14)

where {ψ̃l}l and {ϕ̃j}j are the dual frames of {ψl}l and {ϕj}j, respectively. Let
M, s ∈ J and ω ≥ 1 be such that M ≥ 5 and 3 ≤ s ≤ M . Let N∈ L satisfy the
balancing property with respect to M and s. Assume that B(s,M) ≤ 2κ1κ2

√
s

and that

m ≥ CC2
1sκ1κ2ω

2B(s,M)2(‖w‖2CN + 1) log

(
sκ2M̃

(
C′m

N(‖w‖2
CN

+1)
√
sκ2

))
, (15)

where C,C ′ > 0 are universal constants. Sample m indices l1, . . . , lm indipen-
dently from {1, . . . , N} according to the probability distribution

νl = C̃NdNw2
l e, l = 1, . . . , N,

10



where C̃N =
(∑N

l=1dNw2
l e
)−1

, and set Ω = (l1, . . . , lm) (with possible repetitions

to be kept).

Take g0 ∈ H and η ∈ Cm such that ‖η‖w ≤ ε, where ‖η‖2w :=
∑m

i=1
|ηi|2
dNw2

li
e .

Set ζ = PΩUg0 + η, i.e. ζi = (Ug0)li + ηi. Let g ∈ H be a minimizer of

inf
g∈H

Dg∈`1(J)

‖Dg‖1 subject to ‖PΩUg − ζ‖w ≤ ε. (16)

Then, with probability exceeding 1− e−ω, we have

‖g − g0‖H ≤ 4(2 +
√
κ2)σs,M (Dg0) + C ′′ε

N(‖w‖2CN + 1)
√
s

m

√
κ1κ2ω.

Remark. This result can be seen as a generalization of [44, Corollary 2.9] to
infinite dimension and to the frame case, since νl = dNw2

l e/
∑N

l=1dNw2
l e ≈

w2
l

‖w‖2
CN

and (‖w‖2CN + 1) ≈ ‖w‖2CN .

Remark. Bounds (13) and (14) may be completed by the corresponding decays
with respect to the frame {ϕj}j , namely in the variable j. In this case, {ψl}l∈L
and {ϕj}j∈J are asymptotically incoherent [5]. Under this more restrictive as-
sumption, when D is an orthonormal basis an explicit bound on the factor M̃
may be derived using Remark 4 (see §3.3 for an example).

Proof. Let rl = dNw2
l e for l ≤ N . We want to apply Theorem 1 to {ψ̂l}l and

{ϕj}j , where {ψ̂l}, with associated operator Û , is given as follows. For l ≤ N
normalize ψl by

√
rl and repeat it rl times, and for l > N leave ψl unchanged,

namely{
ψ̂l

}
l

=

{
ψ1√
r1
, . . . ,

ψ1√
r1︸ ︷︷ ︸

r1 times

, . . . ,
ψN√
rN
, . . . ,

ψN√
rN︸ ︷︷ ︸

rN times

, ψN+1, ψN+2, . . .

}
. (17)

Note that {ψ̂l}l has the same frame bounds of {ψl}l, i.e. κ̂1 = κ1, by construc-
tion, since

rl∑
i=1

∣∣∣∣〈f, ψl√rl
〉∣∣∣∣2 =

rl∑
i=1

1

rl
|〈f, ψl〉|2 = |〈f, ψl〉|2. (18)

Then we want to prove that N̂ =
∑N

l=1 rl satisfies the balancing property

with respect to Û ,D,M and s. We first notice that Û∗Û = U∗U , since

Û∗Ûf = Û∗
( ∞∑
l=1

〈Ûf, el〉el
)

=

∞∑
l=1

〈Ûf, el〉ψ̂l =

∞∑
l=1

〈f, ψ̂l〉ψ̂l,

11



so that

Û∗Ûf =
∞∑
l=1

rl∑
i=1

〈
f,

ψl√
rl

〉
ψl√
rl

=
∞∑
l=1

〈f, ψl〉ψl = U∗Uf.

In passing, we remark that this identity tells us that the dual frame { ˜̂
ψl}l of the

artificial frame {ψ̂l}l coincides with the artificial frame of the dual frame { ˆ̃
ψl}l,

which is constructed as in (17). Arguing in the same way, and terminating the
above sums to Ñ and N , respectively, we readily derive

Û∗PN̂ Ûf =
N̂∑
l=1

〈f, ψ̂l〉ψ̂l =
N∑
l=1

rl∑
i=1

〈
f,

ψl√
rl

〉
ψl√
rl

=
N∑
l=1

〈f, ψl〉ψl = U∗PNUf.

This immediately yields properties (10) and (11), since (Û∗)−1 = Û(Û∗Û)−1 and
Û−1 = (Û∗Û)−1Û∗. Similarly, (8) and (9) follow from the identities

Û∗P⊥
N̂
Û = Û∗(I − PN̂ )Û = Û∗Û − Û∗PN̂ Û = U∗U − U∗PNU = U∗P⊥NU.

We have the following straightforward upper bound for N̂ :

N̂ =
N∑
l=1

dNw2
l e ≤

N∑
l=1

(Nw2
l + 1) = N

N∑
l=1

(w2
l + 1) = N(‖w‖2CN + 1).

The factor M̃ associated to Û and D, which we denote by ˆ̃M , verifies ˆ̃M(α) =
M̃(α). Indeed, from the definition of M̃ , we only need to check that ‖PN̂ Ûf‖

2
2 =

‖PNUf‖22, which follows by (18):

‖PN̂ Ûf‖
2
2 =

N̂∑
l=1

|〈Ûf, el〉|2 =

N̂∑
l=1

|〈f, ψ̂l〉|2 =
N∑
l=1

|〈f, ψl〉|2 = ‖PNUf‖22.

The factor B(s,m) does not change since it does not depend on U but only on
D, which is left unchanged.

Let us calculate the new coherence

µ̂ = sup
l,j

max{|〈ϕj , ψ̂l〉H|, |〈ϕ̃j , ψ̂l〉H|, |〈ϕj ,
˜̂
ψl〉H|, |〈ϕ̃j ,

˜̂
ψl〉H|}.

For l > N̂ there exists l′ > N such that ψ̂l = ψl′ . This implies
˜̂
ψl = ψ̃l′ , since

Û∗Û = U∗U , so that

max{|〈ϕj , ψ̂l〉H|, |〈ϕ̃j , ψ̂l〉H|, |〈ϕj ,
˜̂
ψl〉H|, |〈ϕ̃j ,

˜̂
ψl〉H|}

= max{|〈ϕj , ψl′〉H|, |〈ϕ̃j , ψl′〉H|, |〈ϕj , ψ̃l′〉H|, |〈ϕ̃j , ψ̃l′〉H|} ≤
C1√
N
,

12



by (13). For l ≤ N̂ there exists l′ ≤ N with ψ̂l = ψl′/
√
rl′ and

˜̂
ψl = ψ̃l′/

√
rl′ , so

that by (14) we obtain

max{|〈ϕj , ψ̂l〉H|, |〈ϕ̃j , ψ̂l〉H|, |〈ϕj ,
˜̂
ψl〉H|, |〈ϕ̃j ,

˜̂
ψl〉H|}

= max{|〈ϕj ,
ψl′√
rl′
〉H|, |〈ϕ̃j ,

ψl′√
rl′
〉H|, |〈ϕj ,

ψ̃l′√
rl′
〉H|, |〈ϕ̃j ,

ψ̃l′√
rl′
〉H|} ≤

C1wl′√
rl′
≤ C1√

N
,

since rl = dNw2
l e. Therefore µ̂ ≤ C1√

N
.

Now, the factor µ̂2N̂ in the estimate for m given in Theorem 1 applied to Û
and D becomes:

µ̂2N̂ ≤ C2
1

N
N(‖w‖2CN + 1) = C2

1 (‖w‖2CN + 1),

so that the estimate on m in Theorem 1 transforms into (15). Finally, note

that selecting m elements Ω̂ = {l̂1, . . . , l̂m} uniformly at random from {ψ̂l̂}
N̂
l̂=1

corresponds to the variable density sampling scheme of the statement (with
ψ̂l̂i = ψli/

√
rli). Further, setting ζ̂ = PΩ̂Ûg0 +

(
ηi/
√
rli
)
i
, we have∥∥∥PΩ̂Ûg − ζ̂

∥∥∥
2

=
∥∥(((g, ψli)− ζi) /√rli)i∥∥2

= ‖PΩUg − ζ‖w.

This concludes the proof.

3.3 Recovery of wavelet coefficients from Fourier samples

For d ∈ N, let H = L2([0, 2π]d) be the signal space. Let {ek}k∈Zd be the Fourier
basis of H, namely

ek(x) = (2π)−
d
2 eik·x, x ∈ [0, 2π]d.

Consider a nondecreasing ordering of Zd, namely a bijective map ρ : N → Zd,
l 7→ kl, such that

l1, l2 ∈ N, l1 ≤ l2 =⇒ ‖ρ(l1)‖ ≤ ‖ρ(l2)‖,

where ‖ ‖ is any norm of Rd. Set ψl = ekl for l ∈ N. Finally, let {ϕj}j∈N be
a separable wavelet basis of H (ordered according to the wavelet scales). Note
that both systems {ψl}l∈N and {ϕj}j∈N are orthonormal bases, so that ψ̃l = ψl
and ϕ̃j = ϕj . Under certain decay conditions on the scaling function (which may
be relaxed to a condition satisfied by all Daubechies wavelets if one considers a
different ordering of the frequencies k ∈ Zd), it was shown in [41] that

sup
l≥l0, j∈N

|〈ψl, ϕj〉H| ≤
C1√
l0
, sup

l∈N, j≥j0
|〈ψl, ϕj〉H| ≤

C1√
j0
, j0, l0 ∈ N

13



for some C1 > 0. In other words, the wavelet basis and the Fourier basis are
asymptotically incoherent. Thanks to the first of these inequalities, we have that
assumptions (13) and (14) of the corollary are satisfied with wl = 1√

l
, so that

‖w‖2CN +1 ≤ logN+2. Further, by the second of these inequalities and Remark 4
we have M̃(α) ≤ C2

1
N
α2 . As a consequence, estimate (15) of Corollary 1 for the

number of measurements m becomes

m ≥ Csω2 log2(Ns) (19)

for some constant C > 0 depending only on C1. Up to log factors, the number
of measurements required for the success of the recovery using `1 minimization
is directly proportional to the sparsity of the signals, provided that the measure-
ments are chosen at random from {1, . . . , N} with probabilities νl ∝ dN/le for
l = 1, . . . , N .

4 Applications

4.1 Nonuniform Fourier sampling

The most classical compressed sensing problem formulated in the continuous
setting is the recovery of a function g ∈ L2([0, 1]d) from Fourier samples

(Ug)(k) := ĝ(k) =

∫
[0,1]d

g(x)e−2πik·x dx = 〈g, e2πik·〉L2([0,1]d), k ∈ Ω,

where Ω ⊆ Zd is a finite set of frequencies where the measurements are taken.
Here U is the discrete Fourier transform given by scalar products with the si-
nusoids x 7→ e2πik·x, which form an orthonormal basis of L2([0, 1]d). If g is
sparse with respect to a suitable orthonormal basis with analysis operator D,
this reconstruction problem fits in the framework discussed in the previous sec-
tion, and g may be recovered by `1 minimization, provided that enough random
measurements Ω are taken. The standard theory of compressed sensing may be
applied in this case, since both U and D are unitary operators (see Example 1).

In several applications (such as Magnetic Resonance Imaging, Computed To-
mography, geophysical imaging, seismology and electron microscopy), nonuni-
form Fourier sampling arises naturally, i.e. the frequencies are not taken uni-
formly in Zd. In this case, the operator U fails to be an isometry, since the
corresponding family of sinusoids may be only a frame, and not an orthonormal
basis. The results discussed in the previous section may be directly applied to
this case too.

Let us now give a quick overview of nonuniform Fourier frames; we follow [3].
For additional details, the reader is referred to [26, 2] for the one-dimensional
case, and to [13, 11, 59, 3] for the multi-dimensional case.

Let H be the space of square-integrable functions with support contained in
a compact, convex and symmetric set E ⊆ Rd, i.e. H = L2(E). For g ∈ H, we

14



consider measurements of the form

ĝ(k) =

∫
E
g(x)e−2πik·x dx = 〈g, ek〉H, k ∈ Z ⊆ R̂d,

namely scalar products with the sinusoids

ek(x) = e2πik·x, x ∈ E.

Instead of considering the case when Z is a cartesian grid of R̂d, which gives rise
to uniform Fourier sampling, we wish to give more general conditions on the set
Z so that {ek}k∈Z is a frame of H.

The first of these conditions requires that the samples are fine enough to
capture all the frequency information in a given direction.

Definition 3 ([13]). We say that the sampling scheme Z ⊆ R̂d is δ-dense if

δ = sup
ŷ∈R̂d

inf
k∈Z
|k − ŷ|E◦ ,

where the norm | |E◦ is given by

|ŷ|E◦ = inf{a > 0 : x · ŷ ≤ a for every x ∈ E}.

The second condition limits the concentration of samples, in order to avoid
large energies in small frequency regions.

Definition 4. We say that the sampling scheme Z ⊆ R̂d is separated if there
exists a constant η > 0 such that

inf
k1,k2∈Z,k1 6=k2

|k1 − k2| ≥ η > 0.

We say that Z is relatively separated if it is a finite union of separated sets.

Under these conditions, the family of sinusoids ek with frequencies k in Z
forms a frame for L2(E).

Proposition 2 ([13, 11, 59]). Let E ⊆ Rd be a compact, convex and symmetric
set and take δ ∈ (0, 1/4). If Z ⊆ R̂d is relatively separated and δ-dense, then
{ek}k∈Z is a Fourier frame for L2(E), namely

A‖g‖2L2(E) ≤
∑
k∈Z
|〈g, ek〉L2(E)|2 ≤ B‖g‖2L2(E), g ∈ L2(E)

for some A,B > 0.

Now, assuming that {ϕj}j∈N is a frame for L2(E), we can apply Theorem 1
and Corollary 1 to this setting. This would provide, to our knowledge, the first
result about recovery of a sparse signal from nonuniform Fourier measurements
via `1 minimization. Even if the measurement frame is generally not tight, we
can provide explicit bounds for the recovery of the wavelet coefficients from
nonuniform Fourier samples.

Some numerical simulations related to this framework are presented in [34,
Example 5].
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4.2 Electrical impedance tomography

Electrical impedance tomography (EIT) is an imaging technique in which one
wants to determine the electrical conductivity σ(x) inside a body O from bound-
ary voltage and current measurements. It is a non-linear inverse boundary value
problem whose mathematical formulation was presented for the first time by
Calderón [18].

Let O ⊂ Rd, d ≥ 2, be an open bounded domain with Lipschitz boundary
and σ ∈ L∞(O), σ(x) ≥ σ0 > 0 for almost every x ∈ O, be the electrical
conductivity. Given a voltage f ∈ H1/2(∂O) on the boundary of the domain,
the associated potential u is the unique H1(O) solution of the following Dirichlet
problem for the conductivity equation:

div(σ∇u) = 0 in O, u = f on ∂O, (20)

where Hs, s > 0, are the classical Sobolev spaces. The boundary current asso-
ciated to the voltage f is represented by the trace of the normal derivative of
the potential u on ∂O. More precisely, we define the Dirichlet-to-Neumann map
Λσ : H1/2(∂O)→ H−1/2(∂O) as

Λσ(f) = σ
∂u

∂ν

∣∣∣∣
∂O
, (21)

where ν is the outer normal to ∂O and u is the unique solution of the Dirichlet
problem (20).

Calderón’s inverse conductivity problem asks if it is possible to determine a
conductivity σ from the knowledge of its associated Dirichlet-to-Neumann map
Λσ. Positive answers to this question have been given since 1987 [63, 58, 57].

If σ is sufficiently smooth, the problem can be reduced to the so-called
Gel’fand-Calderón problem for the Schrödinger equation,

(−∆ + q)ũ = 0, q =
∆
√
σ√
σ
, (22)

via the change of variables u = ũ/
√
σ in the conductivity equation (20). This

inverse problem consists in the reconstruction of the potential q from the knowl-
edge of the Dirichlet-to-Neumann map

Λq : ũ|∂O 7→
∂ũ

∂ν

∣∣∣∣
∂O
. (23)

One of the biggest open questions concerning inverse boundary value prob-
lems such as Calderón’s or Gel’fand-Calderón’s is the determination of a con-
ductivity/potential from a finite number of boundary measurements. A priori
assumptions on the unknown are needed in this case, and to the best of our
knowledge the only result concerns piecewise constant coefficients with disconti-
nuities on a single convex polygon [33]. Several works have studied the general
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piecewise constant case with infinitely many measurements [8, 12]. In what fol-
lows, we will consider finitely many measurements, and present a first result
in this direction for the linearized Gel’fand-Calderón problem, using the theory
developed in this paper. The main feature of the result is the fairly general
assumptions on the unknown potential to be recovered.

In order to linearize the problem, we assume that q = q0 + δq where q0 is
known and δq is small. Given two boundary voltages f, g ∈ H1/2(∂O) we have
Alessandrini’s identity [7]:

〈g, (Λq − Λq0)f〉
H

1
2 (∂O)×H−

1
2 (∂O)

=

∫
O
δq ugu

0
f dx,

where ug (resp. u0
f ) solves the Schrödinger equation (22) with potential q (resp.

q0) and Dirichlet data g (resp. f). The quantity on the left of this identity is
known since q0 is known and Λqf is the boundary measurement corresponding
to the chosen potential f (g should be seen as a test function). Since for δq ≈ 0
we have ug ≈ u0

g, the linearization consists in assuming that we can measure
the quantity

∫
O δq u

0
gu

0
f dx for given f, g. Focusing on the solutions themselves

instead of on their boundary values, this inverse problem may be rephrased as
follows.

Problem (Linearized Gel’fand-Calderón problem). Given a finite number of
scalar products of the form

∫
O δq u1u2 dx, where u1 and u2 are solutions of

(−∆ + q0)ui = 0 (24)

in O, find δq ∈ L2(O).

Without loss of generality, we can assume that O ⊆ Td, where T = [0, 2π].
Extend δq by zero to H := L2(Td) and assume that q0 ∈ Hs(Td) with s > d/2.
In the rest of this subsection, several positive constants depending only on d, s
and ‖q0‖Hs(Td) will be denoted by the letters c1, c2, . . . . In order to choose the
solutions ui, we make the additional assumption d ≥ 3, since we will make use
of a classical uniqueness result for the Calderón problem for this case. From [63]

we have that for every k ∈ Zd and t ≥ c1 we can construct solutions uk,ti of (24)
in Td of the form

uk,ti (x) = eζ
k,t
i ·x(1 + r(x, ζk,ti )), x ∈ Td

where ζi ∈ Cd are such that ζk,t1 + ζk,t2 = −ik and

‖r(x, ζk,ti )‖Hs(Td) ≤
c2

t
, i = 1, 2. (25)

These solutions uk,ti are known as exponentially growing solutions, Faddeev-type
solutions or complex geometrical optics (CGO) solutions.
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We need to consider an ordering of Zd, namely a bijective map ρ : N → Zd,
l 7→ kl. For each k ∈ Zd fix tk ≥ c1 and define the measurement operator
UGC : H → `2(N) by

UGC(δq) = (〈δq, ψl〉)l, ψl = u
kl,tkl
1 u

kl,tkl
2 . (26)

We now show that UGC is an invertible operator with bounded inverse, provided
that the tk’s are chosen big enough.

Lemma 3. There exists c3 > 0 such that if tk ≥ max(1, c1, c3|k|s) for every
k ∈ Zd then the operator UGC is bounded and invertible and

‖UGC‖H→`2(N) ≤
3

2
, ‖U−1

GC‖`2(N)→H ≤ 2.

Proof. Let F : H → `2(N) denote the discrete Fourier transform defined by

F (δq) = (〈δq, ekl(x)〉)l, where ek(x) = (2π)−
d
2 eik·x. Since ψl = e−ikl·x(1 +

r(x, ζ
kl,tkl
1 ))(1 + r(x, ζ

kl,tkl
2 )), setting rki = r( · , ζk,tki ) we have

‖ekl − ψl‖L2(Td) ≤ ‖r
kl
1 ‖L2(Td)+‖r

kl
2 ‖L2(Td)+‖r

kl
1 ‖L∞(Td)‖r

kl
2 ‖L2(Td) ≤

c4

|tkl |
≤ c4

c3|kl|s

where we used estimate (25) and the Sobolev embedding Hs(Td)→ L∞(Td) for
s > d/2. This implies |((UGC − F )δq)l| ≤ ‖δq‖L2(Td)

c4
|tkl |

, so that

‖(UGC − F )q‖2`2(N) ≤ c
2
4‖δq‖2L2(Td)

∑
k∈Zd

1

|tk|2
≤ c2

4

c2
3

‖δq‖2L2(Td)

(
1 +

∑
k∈Zd\{0}

1

|k|2s

)

which is finite since 2s > d. Moreover

‖UGC − F‖H→`2(N) ≤
c4

c3

(
1 +

∑
k∈Zd\{0}

1

|k|2s

) 1
2

≤ 1

2
,

provided that c3 is chosen big enough. From this estimate we immediately obtain
‖UGC‖ ≤ ‖UGC − F‖+ ‖F‖ ≤ 3

2 , since F is an isometry. Moreover, we have the
Neumann series expansion

U−1
GC = F−1

+∞∑
k=0

(−1)k
(
(UGC − F )F−1

)k
,

and so
∥∥U−1

GC

∥∥ ≤ 2, as desired.

Using Lemma 3, we can apply Theorem 1 and Corollary 1 to obtain a general
recipe to recover or approximate a sparse or compressible conductivity from a
small number of linearized EIT measurements. The main constraint here is
that the sparsifying frame {ϕj}j∈N and the measurement frame {ψl}l∈N must
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be incoherent or asymptotically incoherent in order to have a sharp bound on
the number of measurements. The study of the incoherence between the frame
{ψl}l∈N and a wavelet frame {ϕj}j∈N will be subject of future work. If that
holds, one could argue like in §3.3 to obtain the same explicit bounds on the
minimum number of measurements.

We have chosen the functions uk,t from [63] for the sake of simplicity. Other
families of functions with similar decay properties might be used as well, lead-
ing to similar results as Lemma 3, with lower regularity assumptions on the
coefficients to be recovered.

In two dimensions it is unclear if results such as Lemma 3 could hold: for the
linearized Calderón problem we cannot use complex geometrical optics solutions
to approximate the Fourier transform as in higher dimensions. For the linearized
Gel’fand-Calderón problem one could use the Bukhgeim approach [16] to recover
pointwise values of a potential via stationary phase type techniques.

More generally, the results of this subsection may be applied to a large class of
linearized inverse boundary value problems for which we have families of complex
geometrical optics solutions with good decay properties: inverse problems for the
Helmoltz equation, the elasticity system and Maxwell’s equations, for instance.

4.3 An inverse problem for the wave equation

Our main result can also be applied to another linear infinite dimensional inverse
problem, the observability problem for the wave equation [39, 54, 51, 30, 6]. This
is a classical inverse problem, and consists in the reconstruction of the initial
source of the wave equation from boundary measurements of the solution. In
addition to the direct link with control theory, this inverse problem appears in
the formulation of thermoacoustic and photoacoustic tomography in a bounded
domain [9, 48, 1, 40, 25] (for the free-space formulation, see [46]).

Let d ≥ 2 and O ⊆ Rd be a bounded smooth domain. We consider the
following initial value problem for the wave equation2

∂ttp−∆p = 0 in (0, T )×O,
p(0, ·) = f in O,
∂tp(0, ·) = 0 in O,
p = 0 in (0, T )× ∂O,

(27)

where T > 0 and f ∈ H1
0 (O):= {u ∈ H1(O) : u = 0 on ∂O} is the unknown ini-

tial condition. The above problem admits a unique weak solution p ∈ C([0, T ];H1
0 (O))

(see [31, Section 7.2] and [15, Theorem 10.14]). The inverse problem of interest
may be formulated as follows.

2For simplicity, we consider the case of constant sound speed (normalized to 1), but this
analysis may be generalized to the case of a spatially varying sound speed c. Similarly, consid-
ering a non-homogeneous initial condition for ∂tp would not add any substantial complications.

19



Problem (Observability of the wave equation). Supposing that the trace of the
normal derivative ∂νp is measured on an open subset Γ of ∂O for all t ∈ (0, T ),
where ν is the exterior unit normal to ∂Ω, find the initial condition f in O.

Observe that the forward problem is always well-posed: by an inequality of
Rellich’s, the measurement operator

V : H1
0 (O)→ L2((0, T )× Γ), f 7→ ∂νp,

where p is the solution of (27), is well-defined and bounded [54, (1.20)].
In order to apply our techniques to the inverse problem we need more than

continuity, namely injectivity and bounded invertibility of the map V . In this
case, f is uniquely and stably determined by the boundary data V f = ∂νp
on (0, T ) × Γ. This solves the above-mentioned inverse problem when we can
perfectly measure ∂νp on the whole (0, T )× Γ.

There is a wide literature concerning assumptions on Γ and T that guarantee
the invertibility of V (see [10] and references therein). Here we only mention
a sufficient condition by Ho [39] and J. L. Lions [54] (see also [30, §5.3.4] and
[6, Theorem 2.8]): if {x ∈ ∂O : (x − x0) · ν > 0} ⊆ Γ for some x0 ∈ Rd
and T > 2 supx∈O |x − x0|, then V is invertible with bounded inverse. In the
following, we shall assume that V is invertible with bounded inverse.

In order to let compressed sensing come into play, we will make use of the
following identity, which follows by a simple integration by parts. For every
v ∈ L2((0, T )× Γ), we have

(V f, v̄)L2((0,T )×Γ) =

∫
(0,T )×Γ

∂νp v dtdσ = 〈∂tUv(0, ·), f〉H−1(O),H1
0 (O), (28)

where Uv ∈ C
(
[0, T ];L2(O)

)
∩ C1

(
[0, T ];H−1(O)

)
is the solution of

∂ttUv −∆Uv = 0 in (0, T )×O,
Uv(T, ·) = 0 in O,
∂tUv(T, ·) = 0 in O,
Uv = χΓv in (0, T )× ∂O,

(29)

which is defined in the sense of transposition [53, 54], where χΓ is the character-
istic function of Γ and H−1(O) is the dual of H1

0 (O). Identity (28) shows that
we can use the dual solution Uv to probe the unknown f : we measure different
moments of f by varying v.

Since observability is equivalent to exact controllability [53, 54], we have that
for every h ∈ H−1(O) there exists vh ∈ L2 ((0, T )× Γ) such that ∂tUvh(0, ·) = h.
The control vh can be explicitly constructed via an optimization problem. By
(28) we obtain:

(V f, vh)L2((0,T )×Γ) = 〈h, f〉H−1(O),H1
0 (O).
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The Riesz representation theorem gives the anti-isomorphism R : H1
0 (O) →

H−1(O), defined by 〈Rψ, g〉H−1(O),H1
0 (O) = (g, ψ)H1

0 (O). Inserting this expres-
sion into the above identity yields

(V f, vRψ)L2((0,T )×Γ) = (f, ψ)H1
0 (O), ψ ∈ H1

0 (O). (30)

Let {ψl}l be a frame of H1
0 (O) and {vl}l be a family of L2((0, T )× Γ) such

that
vl = vRψl ⇐⇒ ψl = R−1∂tUvl(0, ·). (31)

These relations show that one may first choose the frame {ψl}l and then con-
struct the related family {vl}l, or viceversa. Define the measurement operator

Uobs : H1
0 (O)→ `2(N), f 7→

(
(f, ψl)H1

0 (O)

)
l
,

which can be measured, thanks to (30). Then, representing f in another frame
{ϕj}j of H1

0 (O) we can apply Theorem 1 (or Corollary 1) to this setting, pro-
vided that {ψl}l and {ϕj}j are incoherent (or asymptotically incoherent). There-
fore, via `1 minimization we can reconstruct f from the partial measurements
{(f, ψl)H1

0 (O)}l∈Ω, for some subsampling subset Ω ⊆ N, provided that f is sparse

with respect to {ϕj}j .
Note that, in order to measure (f, ψl)H1

0 (O) = (V f, vl)L2((0,T )×Γ), in principle

we might need to know V f on the whole (0, T )×Γ. The subsampling procedure
would then become useless. In order to overcome this issue, one has to choose
the functions vl in such a way that the computation of each (V f, vl)L2((0,T )×Γ)

only requires a partial knowledge of V f . For instance, one could choose com-
pactly supported functions vl’s in order to sample subsets of (0, T ) × Γ: this
would correspond to having sensors only on particular locations of the boundary
at specific times. Similarly, scalar products with slowly varying vl’s would cor-
respond to local averages of V f , which may be obtained with integrating area
and line detectors [17, 62, 38].

In summary, the challenge is to construct families {ϕj}j , {ψl}l ⊆ H1
0 (O) and

{vl}l ⊆ L2((0, T )× Γ) such that:

• {ψl}l and {ϕj}j are frames of H1
0 (O);

• {ψl}l and {vl}l are related via (31), which involves the solution of the PDE
(29);

• {ψl}l and {ϕj}j are incoherent (or asymptotically incoherent);

• and each scalar product (V f, vl)L2((0,T )×Γ) may be computed with partial
measurements of V f .

A detailed analysis of these issues goes beyond the scope of this paper, and is a
very interesting direction for future work, at the interface of applied harmonic
analysis and PDE theory.
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5 Proof of Theorem 1

The aim of this section is to prove Theorem 1.

5.1 Concentration inequalities

Certain large deviation bounds for sums of vector and matrix valued random
variables are required to prove some of the key results. Inspired by the paper of
Kueng and Gross [47] we use Bernstein inequalities instead of applying Talagrand
as done by Adcock and Hansen [4]. We give a particular vector-valued inequality
not depending on the dimension taken from [47] which originally appears in [52]
(Chapter 6.3, Eq. (6.12)) with a direct proof in [37].

Theorem 4 (Vector Bernstein inequality). Let {Xk} ∈ Cd be a finite sequence
of independent random vectors. Suppose that E[Xk] = 0, ‖Xk‖ ≤ B a.s. and

put σ2 ≥
∑
k

E
[
‖Xk‖2

]
. Then for all 0 ≤ t ≤ σ2

B

P

(∥∥∥∥∥∑
k

Xk

∥∥∥∥∥ > t

)
≤ exp

(
−t2

8σ2
+

1

4

)
. (32)

The matrix-valued deviation estimate that we use is due to Tropp [64] (The-
orem 1.6).

Theorem 5 (Matrix Bernstein inequality). Consider a finite sequence {Xk} ∈
Cd×d of independent random matrices. Assume that each random matrix satisfies
E[Xk] = 0 and ‖Xk‖ ≤ B a.s.. Define

σ2 := max

{∥∥∥∥∥∑
k

E (XkX
∗
k)

∥∥∥∥∥ ,
∥∥∥∥∥∑

k

E (X∗kXk)

∥∥∥∥∥
}
.

Then for all t ≥ 0

P

(∥∥∥∥∥∑
k

Xk

∥∥∥∥∥ ≥ t
)
≤ 2d exp

(
−t2/2

σ2 +Bt/3

)
. (33)

5.2 Four useful estimates

Our proofs rely on several estimates. We provide them below, following mostly
[4, 47, 60], and using a structure similar to [22]. In order to avoid repetitions
and enhance clarity, we summarise here the assumptions we make throughout
this subsection:

• Assume that Hypothesis 1 holds true, and let U and D denote the corre-
sponding analysis operators, satisfying the bounds given in (6);

• Let M ∈ J and ∆ ⊆ {1, . . . ,M}, and set W = R(D∗P∆) +R(D−1P∆);
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• Let N ∈ L satisfy the balancing property with respect to M and |∆|;

• For a fixed θ ∈ (0, 1), let {N, . . . , 1} ⊇ Ω ∼ Ber(θ);

• Set EΩ = U∗PΩ (U∗)−1;

The first estimate reads as follows.

Proposition 6 (Off-support incoherence). For g ∈ H and t ≥ 1

8
√
|∆|κ2

we have

P
(
‖θ−1P⊥∆DP

⊥
WEΩPWg‖`∞(J) > t‖g‖H

)
≤ 2M̃( tθ2 ) exp

 −t2θµ−2

8κ1B̃∆

(
B̃∆ +

√
2|∆|t
6

)
 .

Proof. Without loss of generality we may assume that ‖g‖H = 1. Let {δj}Nj=1

be Bernoulli variables with P(δj = 1) = θ and such that Ω = {j = 1, . . . , N :
δj = 1}. We shall need the following inequalities:

|〈UP⊥WD∗ei, ek〉| ≤ |〈ei, DP⊥WD−1DU∗ek〉| ≤ B̃∆‖DU∗ek‖`∞ ≤ B̃∆µ. (34)

|〈UP⊥WD−1ei, ek〉| ≤ |〈ei, D−∗P⊥WD∗D−∗U∗ek〉| ≤ B̃∆µ. (35)

Since
N∑
k=1

eke
∗
k = PN and

N∑
k=1

δkeke
∗
k = PΩ we have

θ−1P⊥∆DP
⊥
WEΩPWg =

N∑
k=1

Yk + P⊥∆DP
⊥
WU

∗PN (U∗)−1 PWg, (36)

where Yk = θ−1P⊥∆DP
⊥
WU

∗(δk − θ)eke∗k (U∗)−1 PWg. For i ∈ ∆c we define the
random variable Xi

k = 〈Yk, ei〉. By the balancing property (10) we need only to
bound

P

(∥∥∥∥∥
N∑
k=1

Yk

∥∥∥∥∥
`∞

>
t

2

)
.

Let us estimate this quantity by studying the random variables Xi
k via the

Bernstein inequality (33) for d = 1. In order to do that, first observe that since
E(δk) = θ, then E(Xi

k) = 0. We next study the upper bounds on E
(
|Xi

k|2
)

and
|Xi

k| for k = 1, . . . , N .
On the one hand, by (34) we have

|〈DP⊥WU∗eke∗k (U∗)−1 PWg, ei〉| = |〈(U∗)−1 PWg, ek〉||〈UP⊥WD∗ei, ek〉|
≤ µB̃∆|〈(U∗)−1 PWg, ek〉|,

(37)

so that E
[
(δk − θ)2

]
= θ(1− θ) implies for i ∈ ∆c

E
(
|Xi

k|2
)

= θ−2E
(

(δk − θ)2
∣∣∣〈P⊥∆DP⊥WU∗eke∗k (U∗)−1 PWg, ei〉

∣∣∣2)
≤ θ−1(1− θ)µ2B̃2

∆

∣∣∣〈(U∗)−1 PWg, ek〉
∣∣∣2 .
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Therefore, since ‖ (U∗)−1 ‖ ≤ √κ1, we deduce that

N∑
k=1

E
(
|Xi

k|2
)
≤ θ−1(1− θ)B̃2

∆µ
2‖ (U∗)−1 PWg‖2

≤ θ−1B̃2
∆µ

2κ1 =: σ2. (38)

On the other hand, since ‖g‖ = 1,

|〈DP⊥WU∗eke∗k (U∗)−1 PWg, ei〉| = |〈g, PWU−1ek〉||〈UP⊥WD∗ei, ek〉|
≤ µB̃∆‖PWU−1ek‖.

We estimate this last term using the identities for ε ∈ {0, 1}

PWε = PWεD
∗
εP∆D

−∗
ε , P∆DεPWε = P∆Dε, (39)

where we have set Wε := R(D∗εP∆). Hence, we deduce

‖PWεU
−1ek‖2 = 〈PWεD

∗
εP∆D

−∗
ε U−1ek, PWεU

−1ek〉
≤ ‖P∆D

−∗
ε U−1ek‖‖P∆DεPWεU

−1ek‖
= ‖P∆D1−εU

−1ek‖‖P∆DεU
−1ek‖

since D−∗ε = D1−ε, and we bound each term as follows

‖P∆DεU
−1ek‖2 =

∑
i∈∆

|〈ei, DεU
−1ek〉|2 ≤ |∆|µ2.

As a consequence, since W =W0 +W1 we have that

‖PWU−1ek‖2 ≤ ‖PW0U
−1ek‖2 + ‖PW1U

−1ek‖2 ≤ 2|∆|µ2. (40)

We have obtained that for i ∈ ∆c and k = 1, . . . , N∣∣Xi
k

∣∣ ≤ max{θ−1(1− θ), 1}B̃∆µ‖PWU−1ek‖

≤ θ−1µ2B̃∆

√
2|∆|κ1 =: B, (41)

where in the last inequality we used the fact that 1 ≤ κ1.
Now let Γ ⊆ J be a set such that

P

(
sup
i∈Γ

∣∣∣∣∣
N∑
k=1

Xi
k

∣∣∣∣∣ ≥ t

2

)
= 0. (42)

Assuming |Γc| ≤ M̃( tθ2 ), by the Bernstein inequality (33) with d = 1 we have

P

(
sup
i∈∆c

∣∣∣∣∣
N∑
k=1

Xi
k

∣∣∣∣∣ ≥ t

2

)
≤ P

(
sup
i∈Γc

∣∣∣∣∣
N∑
k=1

Xi
k

∣∣∣∣∣ ≥ t

2

)

≤ 2M̃( tθ2 ) exp

(
− t2θ

8κ1µ2B̃∆(B̃∆ +
√

2|∆|t/6)

)
,
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which is the final estimate.
To finish the proof, we need to show that such Γc exists. Note that, because

of assumptions (6) and ‖g‖ = 1 we have∣∣∣∣∣
N∑
k=1

Xi
k

∣∣∣∣∣ =

∣∣∣∣∣
N∑
k=1

〈θ−1P⊥∆DP
⊥
WU

∗(δk − θ)eke∗k (U∗)−1 PWg, ei〉

∣∣∣∣∣
= θ−1

∣∣∣〈g, PWU−1 (
∑

k(δk − θ)eke∗k)UP
⊥
WD

∗P⊥∆ ei〉
∣∣∣

≤ θ−1‖PWU−1 (
∑

k(δk − θ)eke∗k)UP
⊥
WD

∗ei‖H
≤ θ−1√κ1‖ (

∑
k(δk − θ)eke∗k)UP

⊥
WD

∗ei‖`2
≤ θ−1√κ1‖PNUP⊥WD∗ei‖`2
≤ θ−1√κ1

(
‖PNUD∗ei‖`2 +

√
κ1‖PW̃D

∗ei‖H
)
.

We then define

Γc =

{
i ∈ J : θ−1√κ1

(
‖PNUD∗ei‖`2 +

√
κ1‖PW̃D

∗ei‖H
)
≥ t

2

}
, (43)

which is a finite set and satisfies |Γc| ≤ M̃(tθ/2) by (12). The proof follows.

Remark. Observe that in the above proof we have used the full generality of
Definition 1: all four terms appear in the derivation.

Proposition 7. For g ∈ W and (2
√

2 log(|∆|k2))−1 ≤ t ≤ 2κ1 we have

P
(∥∥(θ−1PWEΩPW − PW

)
g
∥∥
H > t‖g‖H

)
≤ exp

(
−t2θ

64|∆|µ2κ1
+

1

4

)
.

Proof. Without loss of generality we assume that ‖g‖ = 1. Let {δj}Nj=1 be
random Bernoulli variables with P(δj = 1) = θ and such that Ω = {j = 1, . . . , N :
δj = 1}. For k ∈ L, let

ξk = (UPW)∗ ek, αk =
(

(U∗)−1 PW

)∗
ek.

We first make the following observations which will be useful along the proof.

‖ξk‖2 = ‖PWU∗ek‖2 ≤ 2µ2|∆|, (44)

‖αk‖2 = ‖PWU−1ek‖2 ≤ 2µ2|∆|, (45)

N∑
k=1

|〈αk, g〉|2 =
N∑
k=1

∣∣〈ek, U−∗PWg〉∣∣2 ≤ ‖U−∗PWg‖2 ≤ ‖U−∗‖2 ≤ κ1. (46)

Note that (45) was already proved in (40) and the derivation of (44) is analogous.
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For u, v ∈ W, let u ⊗ v denote the continuous operator W → W defined by
(u⊗ v)(w) = 〈w, v〉u for w ∈ W (note that u⊗ v is linear in u and antilinear in
v). We have that

N∑
k=1

ξk ⊗ αk = PWU
∗PNU

−∗PW ,
∑

k∈L\{1,...,N}

ξk ⊗ αk = PWU
∗P⊥NU

−∗PW ,

θ−1
N∑
k=1

δk(ξk ⊗ αk) = θ−1PWU
∗PΩU

−∗PW , PW =
∑
k∈L

ξk ⊗ αk.

Hence, we have∥∥∥(θ−1PWU
∗PΩ (U∗)−1 PW − PW

)
g
∥∥∥

=

∥∥∥∥∥∥
(

N∑
k=1

(θ−1δk − 1)(ξk ⊗ αk)

)
g −

∑
k∈L\{1,...,N}

(ξk ⊗ αk)g

∥∥∥∥∥∥
≤

∥∥∥∥∥
(

N∑
k=1

(θ−1δk − 1)(ξk ⊗ αk)

)
g

∥∥∥∥∥+
∥∥∥(PWU∗P⊥N (U∗)−1 PW

)
g
∥∥∥ .

Therefore, by the balancing property (8) it follows that

P
(∥∥∥(θ−1PWU

∗PΩ (U∗)−1 PW − PW
)
g
∥∥∥ > t

)
≤ P

(∥∥∥(θ−1PWU
∗PΩ (U∗)−1 PW − PW

)
g
∥∥∥ > t

2
+
∥∥∥PWU∗P⊥N (U∗)−1 PW

∥∥∥)
≤ P

(∥∥∥∥∥
N∑
k=1

(θ−1δk − 1)(ξk ⊗ αk)g

∥∥∥∥∥ > t

2

)

for t ≥ (2
√

2 log(|∆|k2))−1.
Let us estimate the above probability by using the vector Bernstein inequality

(32). For that, we define

Xk = (θ−1δk − 1)(ξk ⊗ αk)g ∈ W ∼= Cd

with d = dimW. First note that E(Xk) = 0. Next, observe that

‖Xk‖2 = (θ−1δk − 1)2|〈g, αk〉|2‖ξk‖2

≤ (θ−1δk − 1)2‖αk‖2‖ξk‖2.

Thus, by (44) and (45) it follows that

‖Xk‖ ≤ max{θ−1 − 1, 1}‖ξk‖‖αk‖
≤ 2θ−1|∆|µ2 =: B.
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In addition, since E(θ−1δk − 1)2 = θ−1 − 1, by (44) and (46) we obtain

N∑
k=1

E
(
‖Xk‖2

)
≤ 2(θ−1 − 1)|∆|µ2

N∑
k=1

|〈αk, g〉|2

≤ 2θ−1|∆|µ2κ1 =: σ2.

Therefore, applying the Vector Bernstein inequality (32) for (2
√

2 log(|∆|k2))−1 ≤
t ≤ 2κ1 we get the desired estimate.

The next result will play an important role in order to guarantee property (i)
of Proposition 10. Thus, instead of working with the operator U∗PΩ (U∗)−1 as
in the previous two results, now we will deal with a matrix operator containing
U−1PΩU .

Proposition 8 (Local isometry). We have

P
(∥∥(θ−1PWU

−1PΩUPW − PW
)∥∥
H→H >

1

2

)
≤ 4|∆| exp

(
−3θ

208|∆|µ2κ1

)
.

Proof. Let {δj}Nj=1 be the random Bernoulli variables with P(δj = 1) = θ and
such that Ω = {j = 1, . . . , N : δj = 1}. We consider ξk = (UPW)∗ ek, αk =(
(U∗)−1 PW

)∗
ek, and arguing as in Proposition 7, we arrive to

P
(∥∥(θ−1PWU

−1PΩUPW − PW
)∥∥ > 1

2

)
≤ P

(∥∥θ−1PWU
−1PΩUPW − PW

∥∥ > 1

4
+
∥∥∥PWU−1P⊥NUPW

∥∥∥)
≤ P

(∥∥∥∥∥
N∑
k=1

(θ−1δk − 1)(αk ⊗ ξk)

∥∥∥∥∥ > 1

4

)
,

where the last probability of the above inequality will be estimated by using the
matrix Bernstein inequality (33).

Let us define now

Xk = (θ−1δk − 1)(αk ⊗ ξk) : W →W.

Since W is finite dimensional, Xk may be identified with an element in Cd×d,
where d = dimW ≤ 2|∆|. We have E(Xk) = 0. Further, since 1 ≤ κ1 and by
(44), (45), it follows that

‖Xk‖ ≤ max{θ−1 − 1, 1}‖αk‖‖ξk‖
≤ 2θ−1µ2|∆|κ1 =: B.

We next study E(X∗kXk) and E(XkX
∗
k). Since X∗k = (θ−1δk−1)ξk⊗αk, we have

X∗kXk = (θ−1δk − 1)2(ξk ⊗ αk)(αk ⊗ ξk) = (θ−1δk − 1)2‖αk‖2ξk ⊗ ξk
XkX

∗
k = (θ−1δk − 1)2(αk ⊗ ξk)(ξk ⊗ αk) = (θ−1δk − 1)2‖ξk‖2αk ⊗ αk
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and since

N∑
k=1

ξk ⊗ ξk = PWU
∗PNUPW ,

N∑
k=1

αk ⊗ αk = PWU
−1PN (U∗)−1 PW ,

using that the norms of U,U∗, U−1 and (U∗)−1 are upper bounded by
√
κ1, we

obtain∥∥∥∥∥
N∑
k=1

E(X∗kXk)

∥∥∥∥∥ ≤ 2(θ−1 − 1)µ2|∆|‖PWδ
U∗PNUPWδ

‖ ≤ 2(θ−1 − 1)µ2|∆|κ1,∥∥∥∥∥
N∑
k=1

E(XkX
∗
k)

∥∥∥∥∥ ≤ 2(θ−1 − 1)µ2|∆|‖PWδ
U−1PN (U∗)−1 PWδ

‖ ≤ 2(θ−1 − 1)µ2|∆|κ1.

Hence we can choose
σ2 := 2θ−1µ2|∆|κ1

and applying the Bernstein inequality (33) for t = 1
4 , as well as the balancing

property, we deduce the wanted estimate. The proof follows.

We conclude this subsection with the following estimate.

Proposition 9 (Uniform off-support incoherence). If B̃∆ ≤ 2
√

2|∆|κ1κ2 then

P
(

max
j∈∆c

‖θ−1PWU
−1PΩUP

⊥
WD

−1ej‖ > 1

)
≤ M̃(θ) exp

(
−θ

64µ2|∆|κ1κ2
+

1

4

)
.

Proof. Fix j ∈ ∆c. We have

θ−1PWU
−1PΩUP

⊥
WD

−1ej =
N∑
k=1

Yk + PWU
−1PNUP

⊥
WD

−1ej ,

where Yk = θ−1PWU
−1(δk − θ)eke∗kUP⊥WD−1ej . Note that E(Yk) = 0. Since

‖θ−1PWU
−1PΩUP

⊥
WD

−1ej‖ ≤

∥∥∥∥∥
N∑
k=1

Yk

∥∥∥∥∥+ ‖PWU−1PNUP
⊥
WD

−1ej‖

≤

∥∥∥∥∥
N∑
k=1

Yk

∥∥∥∥∥+ ‖PWU−1PNUP
⊥
WD

−1P⊥∆‖`2(J)→H,

by the balancing property (11) we obtain

P
(
‖θ−1PWU

−1PΩUP
⊥
WD

−1ej‖ > 1
)

≤ P
(
‖θ−1PWU

−1PΩUP
⊥
WD

−1ej‖ >
1

2
+

1

2

)
≤ P

(
‖θ−1PWU

−1PΩUP
⊥
WD

−1ej‖ >
1

2
+ ‖PWU−1PNUP

⊥
WD

−1P⊥∆‖`2→H
)

≤ P

(∥∥∥∥∥
N∑
k=1

Yk

∥∥∥∥∥ > 1

2

)
.
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Next, by (35) and (40) we have

‖Yk‖ = θ−1|〈ek, UP⊥WD−1ej〉|‖PWU−1(δk − θ)ek‖

≤ max{1, (1− θ)/θ)}µ2B̃∆

√
2|∆|

≤ θ−1µ2B̃∆

√
2|∆| =: B.

In addition, using again (40) yields

N∑
k=1

E(‖Yk‖2) ≤ 2(θ−1 − 1)µ2|∆|
N∑
k=1

|〈ek, UP⊥WD−1ej〉|2

≤ 2(θ−1 − 1)µ2|∆|κ1κ2

≤ 2θ−1µ2|∆|κ1κ2 =: σ2.

Now assume that there exists a non-empty set Γ ⊆ J such that

P

(
sup
j∈Γ
‖θ−1PWU

−1PΩUP
⊥
WD

−1ej‖ > 1

)
= 0. (47)

Assuming |Γc| ≤ M̃(θ), using the Vector Bernstein inequality (32) for t = 1
2 and

the union bound, we obtain

P

(
sup
j∈∆c

‖θ−1PWU
−1PΩUP

⊥
WD

−1ej‖ > 1

)

= P

(
sup

j∈∆c∩Γc
‖θ−1PWU

−1PΩUP
⊥
WD

−1ej‖ > 1

)

≤ M̃(θ) exp

(
−θ

64µ2|∆|κ1κ2
+

1

4

)
,

which is our final estimate.
We only have to show the existence of Γ and provide a bound on |Γc|. Note

that

‖θ−1PWU
−1PΩUP

⊥
WD

−1ej‖ ≤ θ−1√κ1‖PNUP⊥WD−1ej‖`2
≤ θ−1√κ1

(
‖PNUD−1ej‖`2 +

√
κ1‖PW̃D

−1ej‖H
)
.

We then define as in Proposition 6

Γ =
{
j ∈ J : θ−1√κ1

(
‖PNUD−1ej‖`2 +

√
κ1‖PW̃D

−1ej‖H
)
≤ 1
}
, (48)

which satisfies |Γc| ≤ M̃(θ) by (12) (since D−1 = D∗1). The proof follows.
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5.3 The dual certificate

We now show how the existence of a dual certificate ρ satisfying certain proper-
ties guarantees exact recovery up to measurement noise. We follow closely [60,
Proposition 6.1].

Proposition 10. Assume that Hypothesis 1 holds true, and let U and D denote
the corresponding analysis operators, satisfying the bounds given in (6). Let
∆ ⊆ J and Ω be a finite subset of L. Let g0 ∈ H and η ∈ `2(L) be such that
‖η‖2 ≤ ε for some ε ≥ 0. Let ζ = PΩUg0 + η be the known noisy measurement.
Assume that there exist ρ = U∗PΩρ

′ for some ρ′ ∈ `2(L), Q > 0 and 0 < θ ≤ 1
with the following properties:

(i) ‖
(
θ−1PWU

−1PΩUPW
)−1 ‖W→W ≤ 2,

(ii) ‖PWρ−D∗sgn(P∆Dg0)‖H ≤ 1
8 ,

(iii) ‖P⊥∆D−∗P⊥Wρ‖l∞(J) ≤ 1
4 ,

(iv) maxj∈∆c ‖θ−1PWU
−1PΩUP

⊥
WD

−1ej‖H ≤ 1,

(v) ‖ρ′‖`2(L) ≤ Q
√
κ1κ2|∆|.

Let g ∈ H be a minimizer of the problem

inf
g̃ ∈ H

Dg̃ ∈ `1(J)

‖Dg̃‖`1 subject to ‖PΩUg̃ − ζ‖2 ≤ ε.

Then

‖g−g0‖H ≤ 4(2+
√
κ2)‖P⊥∆Dg0‖`1+ε

√
κ1

(
4θ−1 + (2 +

√
κ2)(θ−1 + 4L

√
κ2|∆|)

)
.

Proof. We start from the following identity, for any g̃ ∈ H:

P⊥W g̃ = P⊥WD
−1Dg̃ = P⊥WD

−1P⊥∆Dg̃. (49)

This follows from the fact that D−1D is the identity and that PW is the orthog-
onal projection on R(D−1P∆) + R(D∗P∆). From the estimates (6) we obtain,
for any g̃ ∈ H,

‖g̃‖H ≤ ‖PW g̃‖H + ‖P⊥W g̃‖H ≤ ‖PW g̃‖H +
√
κ2‖P⊥∆Dg̃‖`1 . (50)

From the last inequality applied to h = g−g0, we see that it is enough to bound
‖PWh‖H and ‖P⊥∆Dh‖`1 in order to finish the proof. Let us start from ‖PWh‖H.

First note that since g is a minimizer we have

‖PΩUh‖2 ≤ 2ε. (51)
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From this and (i) we find

‖PWh‖ = ‖(PWU−1PΩUPW)−1PWU
−1PΩUPWh‖

≤ 2θ−1‖PWU−1PΩU(h− P⊥Wh)‖
≤ 2(2ε

√
κ1θ
−1 + ‖θ−1PWU

−1PΩUP
⊥
Wh‖).

We bound the last term as follows:

‖θ−1PWU
−1PΩUP

⊥
Wh‖ = ‖θ−1PWU

−1PΩUP
⊥
WD

−1P⊥∆Dh‖
≤ max

j∈∆c
‖θ−1PWU

−1PΩUP
⊥
WD

−1ej‖‖P⊥∆Dh‖`1

≤ ‖P⊥∆Dh‖`1 ,

where we used identity (49) and (iv). Thus we have found

‖PWh‖ ≤ 2(2ε
√
κ1θ
−1 + ‖P⊥∆Dh‖`1). (52)

We now pass to the estimate of ‖P⊥∆Dh‖`1 . Note that

‖Dg‖`1 = ‖P⊥∆D(g0 + h)‖`1 + ‖P∆D(g0 + h)‖`1
≥ ‖P⊥∆Dh‖`1 − ‖P⊥∆Dg0‖`1 + ‖P∆Dg0‖`1

+ Re〈P∆Dh, sgn(P∆Dg0)〉
= ‖P⊥∆Dh‖`1 − 2‖P⊥∆Dg0‖`1 + ‖Dg0‖`1 − |〈P∆Dh, sgn(P∆Dg0)〉|.

Singe g is a minimizer, we find that

‖P⊥∆Dh‖`1 ≤ 2‖P⊥∆Dg0‖`1 + |〈P∆Dh, sgn(P∆Dg0)〉|. (53)

Now, since ρ = U∗PΩρ
′ and identity (49) we have

|〈P∆Dh, sgn(P∆Dg0)〉| = |〈h,D∗sgn(P∆Dg0)〉|
≤ |〈h,D∗sgn(P∆Dg0)− PWρ〉|+ |〈h, ρ〉|+ |〈h, P⊥Wρ〉|
≤ ‖PWh‖‖D∗sgn(P∆Dg0)− PWρ‖+ ‖PΩUh‖‖ρ′‖+ |〈D−1P⊥∆Dh,P

⊥
Wρ〉|

≤ 1

8
‖PWh‖+ 2εQ

√
κ1κ2|∆|+

1

4
‖P⊥∆Dh‖`1

≤ ε
√
κ1

(
θ−1

2
+ 2Q

√
κ2|∆|

)
+

1

2
‖P⊥∆Dh‖`1 ,

where we have used also (52). Thus we have obtained

‖P⊥∆Dh‖`1 ≤ 4‖P⊥∆Dg0‖+ ε
√
κ1

(
θ−1 + 4Q

√
κ2|∆|

)
, (54)

which yields the final estimate

‖h‖H ≤ ‖PWh‖+
√
κ2‖P⊥∆Dh‖`1 ≤ 4ε

√
κ1θ
−1 + (2 +

√
κ2)‖P⊥∆Dh‖`1

≤ 4(2 +
√
κ2)‖P⊥∆Dg0‖`1 + ε

√
κ1

(
4θ−1 + (2 +

√
κ2)(θ−1 + 4Q

√
κ2|∆|)

)
.

31



By using the results of §5.2, we now show that the dual certificate ρ can be
constructed. The proof is based on a golfing scheme [37, 36].

Proposition 11. Assume that Hypothesis 1 holds true, and let U and D denote
the corresponding analysis operators, satisfying the bounds given in (6). Let
M ∈ J and ω ≥ 1 be such that M ≥ 5. Let ∆ ⊆ {1, . . . ,M} be such that |∆| ≥ 3
and B̃∆ ≤ 2

√
2|∆|κ1κ2. Let N satisfy the balancing property with respect to M

and |∆|. Let Ω ⊆ N be chosen uniformly at random with |Ω| = m. Take g0 ∈ H.
If

m ≥ Cµ2|∆|κ1κ2ω
2B̃2

∆N log

(
|∆|κ2M̃

(
C′m

N
√
|∆|κ2

))
,

then, with probability exceeding 1 − e−ω, there exist ρ = U∗PΩρ
′ for some ρ′ ∈

`2(L) and Q ≤ C ′′ωNm satisfying the properties (i)-(v) of Proposition 10, with
θ = m/N , where C,C ′, C ′′ > 0 are universal constants.

Proof. The proof is based on a recursive procedure to construct a sequence of
vectors {Yi} converging to the dual certificate ρ with high probability.

The set Ω ⊆ {1, . . . , N} is chosen uniformly at random with |Ω| = m. It is
well known that we may, without loss of generality, replace this way of choosing
Ω with the model that {1, . . . , N} ⊃ Ω ∼ Ber(θ) for θ = m/N (θ will have this
value throughout the proof). This is equivalent to choosing Ω as

Ω = Ω1 ∪ . . . ∪ Ωl′

with Ωl′ following a Bernoulli distribution as explained below. The main differ-
ence with the golfing scheme in [4] is that the number l′ of sampled sets is greater
than l, the number of iterations in our recursive scheme (both to be determined
later). In fact, given qi for i = 1, . . . , l, we will sample l′ ≥ l sets distributed as
Ber(qi), for some i = 1, . . . , l and will keep only l of them for the construction
of the certificate.

To initialize the iterations, set

Y0 = 0,

and define
Zi = D∗sgn(P∆Dg0)− PWYi, 0 ≤ i ≤ l. (55)

Let us define the sequence {Yi}li=1 iteratively as follows. Given qi, for j =

1, 2, . . . we choose Ωj
i ⊆ {1, . . . , N} at random such that Ωj

i ∼ Ber(qi). Let
E

Ωji
= U∗P

Ωji
(U∗)−1. We repeat the choice for j = 1, 2, . . . until the conditions∥∥∥(PW − q−1

i PWEΩji
PW
)
Zi−1

∥∥∥ ≤ αi‖Zi−1‖, (56)∥∥∥q−1
i P⊥∆D

−∗P⊥WEΩji
Zi−1

∥∥∥
l∞
≤ βi‖Zi−1‖, (57)
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hold for some parameters αi, βi ∈ R that will be chosen later. We set

ri = min{j = 1, 2, · · · : (56) and (57) are satisfied},

namely ri denotes the number of repetitions of the i-th step. We also set

Ω =
l⋃

i=1

ri⋃
j=1

Ωj
i , Ωi = Ωri

i , Yi =
i∑

k=1

q−1
k EΩkZk−1,

and

ρ := Yl, ρ′ =
l∑

i=1

q−1
i PΩi(U

∗)−1Zi−1, (58)

so that ρ = U∗PΩρ
′.

The identities (55) and Yi = Yi−1 + q−1
i EΩiZi−1 yield

Zi = Zi−1 − q−1
i PWEΩiPWZi−1 = (PW − q−1

i PWEΩiPW)Zi−1.

Thus by (56) it follows that

‖Zi‖ ≤ αi‖Zi−1‖ ≤
i∏

j=1

αj‖Z0‖ ≤
√
κ2|∆|

i∏
j=1

αj ,

which together with Zl = D∗sgn(P∆Dg0)− PWρ gives

‖D∗sgn(P∆Dg0)− PWρ‖ ≤
√
κ2|∆|

l∏
i=1

αi. (59)

Moreover by (57) we have

‖P⊥∆D−∗P⊥Wρ‖l∞ ≤
l∑

i=1

∥∥∥q−1
i P⊥∆D

−∗P⊥WEΩiZi−1

∥∥∥
l∞
≤
√
|∆|κ2

l∑
i=1

βi

i−1∏
j=1

αj

and

‖ρ′‖ ≤
l∑

i=1

q−1
i

∥∥U−∗Zi−1

∥∥ ≤ √κ1

l∑
i=1

q−1
i ‖Zi−1‖ ≤

√
|∆|κ1κ2

l∑
i=1

q−1
i

i−1∏
j=1

αj .

(For i = 1 we take Πi−1
j=1αj = 1.) We next choose the parameters l, αi and βi

in a suitable way to show that (ii), (iii) and (v) in Proposition 10 are satisfied.
Letting

l =
⌈
log2(

√
|∆|κ2) + 2

⌉
, α1 = α2 =

1√
8 log |∆|κ2

, β1 = β2 =
1

7
√
|∆|κ2
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and for i ≥ 3

αi =
1

2
, βi =

log(|∆|κ2)

7
√
|∆|κ2

,

from the above estimates we readily derive

‖D∗sgn(P∆Dg0)− PWρ‖ ≤
1

8
, ‖P⊥∆D−∗P⊥Wρ‖l∞ ≤

1

4
, ‖ρ′‖ ≤

√
|∆|κ1κ2Q,

where Q =
∑l

i=1 q
−1
i

∏i−1
j=1 αj will be estimated at the end of the proof.

Next, we need to establish that the total number of sampled Ωj
i remains

small with high probability. More precisely, we will bound the probability

p3 = P

(
(r1 > 1) or (r2 > 1) or

l∑
i=1

ri > l′

)

for some l′ to be chosen later. To that end, denote p1(i) the probability that
(56) fails in the i-th step and p2(i) the probability of failure for (57). We want to
use Propositions 7 and 6 to bound these probabilities. Proposition 7 for t = αi
gives the estimate

p1(i) ≤ exp

(
−α2

i qi
64|∆|µ2κ1

+
1

4

)
.

Thus if

qi ≥
64µ2|∆|κ1

α2
i

(ω + log(γ) +
1

4
),

then p1(i) ≤ 1
γ e
−ω. Similarly, Proposition 6 for t = βi yields

p2(i) ≤ 2M̃(qiβi/2) exp

(
−β2

i qi

8κ1µ2B̃∆(B̃∆ +
√

2|∆|βi/6)

)
.

Thus if

qi ≥
8µ2κ1B̃∆(B̃∆ +

√
2|∆|βi/6)

β2
i

(ω + log(2M̃(qiβi/2)γ)),

then p2(i) ≤ 1
γ e
−ω.

Assume qi are chosen as follows:

q1 = q2 ≥ 512µ2κ1κ2|∆|B̃2
∆(ω + 2.05) log

(
|∆|κ2M̃(q1β1/2)

)
, (60)

qi ≥ 406µ2κ1κ2|∆|B̃2
∆(ω + 2.17)

log M̃(qiβi/2)

log(|∆|κ2)
, i ≥ 3. (61)
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Since B̃∆, κ2 ≥ 1, M ≥ 5 and |∆|κ2 ≥ 3, with this choice we have p1(i), p2(i) ≤
1
6e
−ω ≤ 1

16 for i ≥ 1, so that

P((56) and (57) are satisfied) ≥ 7/8, i ≥ 1.

As a consequence, since
∑l

i=1 ri > l′ if and only if fewer than l of the first l′

samplings satisfied both (56) and (57), we have

P

(
l∑

i=1

ri > l′

)
≤ P(X < l) = P(X ≤ l − 1), X ∼ Bin

(
l′,

7

8

)
,

(see equation (45) in [36]). Thus we need to bound the probability of obtaining
less than l outcomes in a binomial process with l′ repetitions and individual
success probability 7

8 . Following [37] and [47] we bound this quantity using a
standard concentration bound from [56]

P (Bin(n, p)− np ≤ −τ) ≤ e−2τ2/n,

which implies

P

(
l∑

i=1

ri > l′

)
≤ exp

(
−2
(

7
8 l
′ − l + 1

)2
l′

)
.

Therefore, choosing l′ = 16
7 (l − 1) + 32

49(ω + log 6), we get

P

(
l∑

i=1

ri > l′

)
≤ 1

6
e−ω,

and, as a consequence, we obtain

p3 ≤ p1(1) + p2(1) + p1(2) + p2(2) +
1

6
e−ω ≤ 5

6
e−ω.

Let us now consider property (i) of Proposition 10. Our aim is to show that

p4 = P
(∥∥θ−1PWU

−1PΩUPW − PW
∥∥ > 1

2

)
≤ 1

12
e−ω.

From Proposition 8 we immediately obtain that if θ satisfies

θ ≥ 70|∆|µ2κ1(ω + log |∆|+ log 48), (62)

then p4 ≤ 1
12e
−ω.

Now, let p5 be the probability that property (iv) of Proposition 10 fails. We
want to show that

p5 = P
(

max
j∈∆c

‖θ−1PWU
−1PΩUP

⊥
WD

−1ej‖ > 1

)
≤ 1

12
e−ω.
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By Proposition 9, if θ satisfies

θ ≥ 64|∆|µ2κ1κ2(ω + log M̃(θ) + 1/4 + log 12), (63)

we have p5 ≤ 1
12e
−ω.

In order to finish the proof we need to give a bound on m (or, equivalently
θ) and construct qi such that conditions (60), (61), (62) and (63) are satisfied.

Let θ satisfy

θ ≥ 10902µ2|∆|κ1κ2ω
2B̃2

∆ log

(
|∆|κ2M̃

(
643

10902ω
β1θ

))
. (64)

(We have made no attempt to optimize the constant.) Then conditions (62) and
(63) are clearly satisfied (using M̃( 643

10902ωβ1θ) ≥ M̃(θ)). Now recall that at each

iteration i we sampled ri sets Ωj
i ∼ Ber(qi) and we stopped after

∑l
i=1 ri≤l′

sampling. Since

Ω =

l⋃
i=1

ri⋃
j=1

Ωj
i , Ω ∼ Ber(θ), Ωj

i = Ber(qi),

we have the identity Πl
i=1(1− qi)ri = 1− θ, which yields the constraint

l∑
i=1

riqi ≥ θ. (65)

Define

q1 = q2 =
3.05 · 512

10902
θ, q = qi = 1−

(
1− θ

(1− q1)(1− q2)

) 1
r3+···+rl

, i ≥ 3.

By (64), condition (60) is satisfied (using also M̃( 643
10902ωβ1θ) = M̃( 643

3.05·256ωβ1q1/2) ≥
M̃(β1q1/2)). By (65), since r1 = r2 = 1 and assuming l′ ≥

∑
i ri, we have

(l′ − 2)q ≥
l∑

i=3

riqi ≥ θ(1− 2q1) =θ

(
1− 6.1 · 512

10902

)
.

As a consequence, since

l′ − 2 =
16

7
dlog2

√
|∆|κ2 + 1e+

32

49
(ω + log 6)− 2

≤ 16

7
log2

√
|∆|κ2 +

32

7
+

32

49
(ω + log 6)− 2

=
8

7
log2 e log |∆|κ2 +

18

7
+

32

49
(ω + log 6),

by using (64) it is straightforward to check that condition (61) is satisfied as
well. Here we have also used the fact that βiqi/2 ≥ 643

10902ωβ1θ for i ≥ 3.
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We can now estimate the constant Q =
∑l

i=1 q
−1
i

∏i−1
j=1 αj . We have:

Q = q−1
1 + q−1

2 α1 +
l∑

i=3

q−1α1α2

i−1∏
j=3

αj

= q−1
1

(
1 +

1√
8 log(|∆|κ2)

)
+

q−1

8 log(|∆|κ2)

l∑
i=3

1

2i−3

≤ q−1
1

(
1 +

1√
8 log(|∆|κ2)

)
+

q−1

4 log(|∆|κ2)

≤ q−1
1

(
1 +

1

2
√

2

)
+

q−1

8 log(|∆|κ2)

≤ C1θ
−1 + C2θ

−1 (l′ − 2)

log(|∆|κ2)

≤ C ′′θ−1ω,

where we have used the fact that |∆| ≥ 3, the definition of q1, q2 and the inequal-
ities above involving q, θ, l′ − 2 (here C1, C2 and C ′′ are universal constants).

Finally, the union bound gives p3 + p4 + p5 ≤ e−ω, which finishes the proof
of the proposition.

5.4 Proof of Theorem 1

The proof is now immediate. By Proposition 11, under our assumptions with
high probability there exists a dual certificate. Thus, by Proposition 10 we have

‖g − g0‖ ≤ 4(2 +
√
κ2)‖P⊥∆Dg0‖`1 + ε

√
κ1
N

m

(
4 + (2 +

√
κ2)(1 + C ′′ω

√
κ2s)

)
for every ∆ ⊆ {1, . . . ,M} such that |∆| = s. Observing that

σs,M (Dg) = inf{‖x−Dg‖`1 : supp(x) ⊆ {1, . . . ,M}, |supp(x)| ≤ s}
= inf{‖x−Dg‖`1 : supp(x) ⊆ ∆ ⊆ {1, . . . ,M}, |∆| = s}

= inf{‖x− P∆Dg‖`1 +
∥∥∥P⊥∆Dg∥∥∥

`1
: supp(x) ⊆ ∆ ⊆ {1, . . . ,M}, |∆| = s}

= inf{
∥∥∥P⊥∆Dg∥∥∥

`1
: ∆ ⊆ {1, . . . ,M}, |∆| = s},

and that
4 + (2 +

√
κ2)(1 + C ′′ω

√
κ2s) ≤ C ′′′

√
sκ2ω

for some absolute constant C ′′′ > 0, gives the desired estimate.
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