MODELLISTICA E CALCOLO SCIENTIFICO

MODELING AND SCIENTIFIC COMPUTING

MOX-Report No. 56/2015

Monotonicity, positivity and strong stability of the
TR-BDF2 method and of its SSP extensions

Bonaventura, L.; Della Rocca, A.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Monotonicity, positivity and strong stability of
the TR-BDF2 method and of its SSP

extensions

Luca Bonaventura”, Alessandro Della Rocca!) ()

October 14, 2015

(1) MOX — Modelling and Scientific Computing,
Dipartimento di Matematica, Politecnico di Milano
Via Bonardi 9, 20133 Milano, Italy
luca.bonaventura@polimi.it
alessandro.dellarocca@polimi.it

) Tenova S.p.A.,
Global R&D,
Via Albareto 31, 16153 Genova, Italy

alessandro.dellarocca@tenova.com

Keywords: TR-BDF2, Runge-Kutta, positivity preserving, TVD, SSP, ab-
solute monotonicity

AMS Subject Classification: 65105, 65106, 65120, 65M20



Abstract

We analyze the one-step method TR-BDF2 from the point of view
of monotonicity, strong stability and positivity. All these properties
are strongly related and reviewed in the common framework of abso-
lute monotonicity. The radius of absolute monotonicity is computed
and it is shown that the parameter value which makes the method
L-stable is also the value which maximizes the radius of monotonicity.
Two hybrid variants of TR-BDF2 are proposed, that reduce the for-
mal order of accuracy and maximize the absolute monotonicity radius,
while keeping the native L-stability useful in stiff problems. Numeri-
cal experiments compare these different hybridization strategies with
other methods commonly used in the presence of stiff and mildly stiff
source terms. The results show that both strategies provide a good
compromise between accuracy and robustness at high CFL numbers,
without suffering from the limitations of alternative approaches al-
ready available in literature.



1 Introduction

The classical error analysis of numerical methods for ordinary dif-
ferential equations (ODE) does not yield sufficient criteria for the con-
servation of special properties of the continuous solutions during time
integrations. In many applications, for instance, the solution is re-
quired to remain non negative or to take values in a certain range or
again to preserve the total variation as a function of the space vari-
able, in case a time and space dependent partial differential equation
is solved numerically. A number of different strategies have been pro-
posed to address each of these issues separately, see e.g. [5], [28], [35],
[36]. Especially in the ODE literature, many of these problems are em-
pirically resolved by step size adaptation strategies that complement
traditional ODE methods. However, in many applications, such as
numerical weather prediction, environmental fluid dynamics or tur-
bulent reactive flow simulations, the step size is usually kept fixed
and/or relatively large, in order to minimize the number of expensive
function evaluations required from the complex source terms involved.
While dynamic time step adaptation [17] and multirate approaches
[7] are able to overcome these problems, in this work we will study
a robust but accurate fixed time step approach that can guarantee a
good compromise between preservation of some relevant monotonicity
properties, accuracy and efficiency. Splitting approaches [40] are com-
monly used to couple complex source terms to the discretized fluid
dynamics in a relatively simple way, but we will restrict our attention
to methods that do not resort to operator splitting, which may entail
a loss of accuracy for advection-diffusion-reaction problems with space
dependent source terms.

We will focus on the analysis of the monotonicity properties of the
TR-BDF2 method, that was introduced in [1] and successively refor-
mulated and analyzed in [24]. This second order accurate, A-stable
and L-stable method has a number of interesting properties and it has
been recently used with success in [41] as the key ingredient of an ef-
ficient semi-implicit, semi-Lagrangian discretization of fluid dynamics
equations representative of many environmental models. It is there-
fore of interest to understand to which extent this method can also
guarantee positivity and monotonicity for the equations of advected
species. We will show that TR-BDF2 is conditionally monotone un-
der a time step restriction that allows for time steps more than double
with respect to those of explicit schemes. Our analysis relies on the
results in [9], [10], [15], [18], [31], [39], that allow to derive sufficient
conditions for properties like positivity, monotonicity and total vari-
ation preservation in a unified framework of an extended concept of



monotonicity. We then propose two different modifications of the TR-
BDF2 method, both based on a hybridization with the unconditionally
monotone implicit Euler method. In this way, accuracy is sacrificed
locally in space or time in order to preserve monotonicity, indepen-
dently of the time step and stiffness of the problem. Other approaches,
focusing specifically on the equations of chemical kinetics, have been
proposed under more restrictive assumptions in [4], [12], [43]. The
present approach represents an improvement over these results, since
it does not require source term splitting, it is not limited to non stiff
problems as [4], nor it requires a special form of the source term as
[12] and differently than [43] it is second order when critical solution
properties are not violated under the selected time step size.

In Section 2, the theory of monotone and SSP methods is reviewed.
The TR-BDF2 method is presented in detail in Section 3 where its ab-
solute monotonicity property is analyzed. Two strategies to improve
its monotonicity properties irrespective of time step size are described
in Section 4 stemming from the classical results of absolute monotonic-
ity. Other competitive time discretization approaches are introduced
in Section 5 and interpreted under the SSP theory whenever possible.
In Section 6 we present an empirical assessment of the properties of
all these time integration methods in a variety of relevant benchmark
problems. Conclusions, results and directions of further investigations
are summarized in Section 7.

2 Review of monotonicity and strong
stability results

We review the recent progresses in the field of strong stability preserv-
ing (SSP) methods introduced, among others, in [9], [15], [14], [18] and
[37]. In this work we consider an initial value problem for a system of
ordinary differential equations (ODEs) of type

<
~
~—~
o~
N—

I

f(t,u(t)) and te0,T], (2.1a)
u(0) = u°. (2.1Db)

We assume that u° € R™, f : R x R™ — R™ such that the problem
(2.1) has a unique solution. Moreover we assume also that ||-|| : R"™ —
R is a convex functional

[Av + (1 =X wl| < Ajof| + (1 = A) [|w]

for 0 < A <1 and v,w € R™. We shall deal with numerical methods
for finding a numerical approximation u” to the exact solution values
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u(n h), where h is a positive step size, assumed for simplicity to be
constant and equal to h = T'/N;, with T the final time of integration
andn=1,..., N,

Monotonicity of the total variation seminorm, discrete maximum
principle, positivity or range boundedness are all nonlinear properties
that can be seen as specific realizations of some form of monotonicity.
Even contractivity, a property relevant for the numerical stability of
time integration methods, can be reintepreted as a form of monotonic-
ity. The recent theory of SSP integration methods [14] shows that all
these concepts are strongly related. As a consequence, they can be
guaranteed during the numerical integration using the same funda-
mental approach. In this section we provide a synthetic presentation
of this framework, that is based on the classical results in [31]. We will
focus in particular on the properties of s-stages Runge-Kutta methods
(RK)

g =u"+hY ai; f(t"+cih,g’) (i=1,....5) (2.2a)
j=1

u =yt hz b f(t" + cih, g") (2.2b)
=1

where a;;, b; and ¢; are real parameters which characterize the method
S

and g are the intermediate stages. It is usually assumed that aj; =

=1
¢;. The method is explicit if a;; = 0 for j > ¢ and implicit ogherwise.
The parameters of the method are traditionally collected in compact
form in the Butcher tableau as an s x s matrix A = (a;;), a row
vector b = (by,...,bs)T and a column vector ¢ = (cy,...,cs). For
homogeneous initial value problems, the coefficients ¢; are not relevant,
so that each RK method is completely identified by its coefficients
(A,D).

Definition 2.1. Monotonicity. The RK method (2.2) is monotone
with respect to the functional ||| if |u™|| < |[u®|| under the assumption
that

lu+ hf(t,uw)| <|lu| for 0<h<m. (2.3)

Related definitions also commonly found in the literature are internal
monotonicity '
lg']l < [lu™] for 1<i<s (2.4)

and external monotonicity

™ < - (2.5)



Assumption (2.3), commonly found in many references, see e.g. [9],
[18], [20], [21], [26], [27], [29], [36] and [37], essentially amounts to
define 7y as the maximum time step under which the explicit Euler
method is monotone. In these studies the critical step size for mono-
tonicity is determined such that property 2.1 is verified for all

0<h<cm (2.6)

thus making the RK method conditionally monotone. If property 2.1 is
verified for any step size h, then the method is called unconditionally
monotone. In assessing monotonicity of different RK methods, the
interest lies usually in determining the mazimal step size coefficient c
such that a time integration method is conditionally monotone.

Frequently, the convex functional ||| is intended either as the supre-
mum norm ||z|| = ||z||c = sup; |z;| or as the total variation seminorm
l|z|| = ||lzll7v = >, |zi+1 — =], where x; are the components of the
vector z. We remind that ||z||7y is a seminorm since it may vanish for
x # 0 when z; = C'. Numerical methods statisfying 2.1 under the to-
tal variation seminorm are called total variation diminishing (TVD).
They are especially important in the numerical solution of hyperbolic
conservation laws, see e.g. [28], [33], [37].

For some classes of initial value problems, the properties of positiv-
ity and range boundedness play important roles in obtaining physically
meaningful numerical solutions. Furthermore, due to the strongly non-
linear form of such problems, the ability in maintaining such native
properties also in the numerical solutions is important in order to
guarantee numerical stability of time integrations.

Definition 2.2. Positivity. The RK method (2.2) is positive if
whenever u® > 0 it guarantees that u™' > 0 under the assumption
that

u+hf(t,u) >0 for 0<h<mp. (2.7)

Definition 2.3. Range boundedness. The RK method (2.2) is
range bounded in [x,v] if whenever x < u® < 4 it guarantees that
x < ut <@ under the assumption that

X <u+hf(t,u) <t for 0<h<mp. (2.8)

Both these properties are usually guaranteed if a time step limita-
tion of the form (2.6) is respected. Even though these properties are
formally different from the monotonicity property 2.1, they can be
equally derived from monotonicity after proper assumptions on the
function f. In this respect, the generalization of monotonicity to
arbitrary sublinear functionals |-|| becomes relevant. Following the



presentation in [25] and [39], it is useful to introduce two sublinear
functional, denoted respectively as floor and ceil functional

g = = min(x, ) (292)

iy = max(t), uy). (2.9b)

These functionals are not seminorms, since they both violate property
|Av]| = |A|||v]] for A= —1. Using both functionals the range bound-
edness property 2.3 naturally follows, while setting xy =0 in the floor
functional the positivity property 2.2 is recovered. As a consequence,
by introducing the floor and ceil functionals it possible to recast Defi-
nitions 2.2 and 2.3 in a form similar to Definition 2.1. Thus positivity
and range boundedness can just be interpreted as different forms of
monotonicity.

Alternatively, positivity and range boundedness can also be consid-
ered as two alternative realizations of the discrete maximum principle.

Definition 2.4. Discrete Maximum Principle. The RK method
(2.2) follows the discrete maximum principle if it guarantees that

min ug < u?“ < max u!

J i 7
under the assumption that for 0 < h < 19 and Yu € R™ with compo-
nents uy

i < < <p< . .
min g <+ oSyt ult) € max uy, (1<p<m). (210
Similarly to the other properties, range boundedness may be verified
under a step size restriction analogous to (2.6). Again following [25]
and [39], we introduce two relevant sublinear functionals, denoted as
maz and min functional

|lul|> = maxu; (2.11a)
J

Jull< = — minu; (2.11b)
J

which allow us to write the assumption (2.10) in the form (2.3). By

assuming the monotonicity property 2.1 under the functionals (2.11)

the discrete maximum principle 2.4 directly follows.

Contractivity of numerical approximation methods has been ex-
tensively studied. Relevant conclusions on step size conditions for
contractivity have been given in [38], while contractivity of RK for
nonlinear problems was thoroughly examined in [31].



Definition 2.5. Contractivity. The RK method (2.2) is contractive
if [|[an Tt — u Y| < ||a® — u|| under the assumption that

li—u+h(f(L@) — (L)l < i —ul for 0<h<m. (212)

Usually, Definition 2.5 is verified under a step size restriction in the
form of (2.6). For conditional contractivity, the circle condition that
was originally assumed in [31] is

1£(t, @) = f(tu) + pa —w)|| < plla — ull (2.13)

It was shown later in [20] that this condition can be considered as a
special form of (2.3). See also [39] for additional considerations on
these issues.

In the framework introduced above, all these properties appear as
different forms of monotonicity under a proper choice of the convex
functional ||.||. It is thus possible to extend the analytical results from
the preservation of a specific property to that of any other related
property. Every convex functional will be retained under convex com-
binations of single RK methods preserving it. Even though in principle
this approach may not lead to sharp bounds, experience shows that
the time step limits obtained from monotonicity are representative for
the preservation of the other properties as well [27]. The sharper re-
sults obtained in the context of inner product norms [19], for example,
did not lead to time step limits significantly different for the practical
use of conditionally monotone RK methods. It is to be noticed that
RK methods that are non-monotone under arbitrary functionals may
indeed be conditionally monotone under inner product norms, as in
[19]. For linear problems these conditions relax even further, see e.g.,
[38], [42].

As a consequence, it appears useful to extend the contractivity
results to the other properties. To this purpose, the absolute mono-
tonicity introduced in [31] allows to investigate necessary and sufficient
conditions for contractivity of RKs in dissipative problems under sub-
linear functionals, including the maximum norm. In [9] this approach
was extended to study monotonicity of general RK under arbitrary
seminorms. One of the relevant results is that the maximal step size
coefficient for monotonicity is equal to the maximal step size for con-
tractivity. Recently these conclusions were extended to the analysis
of general linear methods under arbitrary convex functionals in [39].

For our next discussion we will focus on irreducible RK methods,
which are the only ones practically relevant. For a definition of irre-
ducibility see [16]. Following [31], we introduce for real £ the quantities

A(€) = AT =€), bT(§) =0bT(1 - £A)7,

(€)= (I—eA) e, pl@) =1tarq-gate MY



Definition 2.6. Absolute monotonicity of RK. An irreducible s-
stage RK (A,b) is absolutely monotone at £ e R if A>0,b>0,e>0
and ¢ > 0 elementwise.

For the stability function ¢, this entails that %(5 ) > 0 for any k£ > 0,
since the rationale behind Definition 2.6 lies in the Taylor expansion of
some characteristic functions of a RK method, including the stability
function. The quantities (2.14) form the coefficients of such expan-
sions, see [22] and [31] for further details. These notations are useful
to introduce the radius of absolute monotonicity for a RK method.

Definition 2.7. Radius of absolute monotonicity. An s-stage
RK with scheme (A,b) and A > 0 and b > 0 is characterized by its
radius of absolute monotonicity defined for all & in —r < € <0 as

R(A,b) = sup{r :r >0,
A(§) 20, b7(§) = 0, e(§) 20, p(§) = 0}
In [31], two useful results are derived, that simplify the practical es-
timation of the absolute monotonicity radius. We introduce the inci-

dence matrix Inc(A) as the matrix containing 0 or 1 if the correspond-
ing element in the matrix A is a; ; = 0 or a; ; # 0 respectively.

(2.15)

Theorem 2.1 ([31], Theorem 4.2). For an irreducible RK R(A,b) >0
iff A>0,b>0 and Inc(A?) < Inc(A).

Lemma 2.1 ([31], Lemma 4.4). For an irreducible RK R(A,b) > r
iff A>0 and (A,b) is absolutely monotone at & = —r.

More compact definitions of the radius of absolute monotocity in-
volve the use of matrices derived from the Butcher tableau, see e.g.,
[30], but for the purpose of this work we found the use of the orig-
inal definition more convenient. Other classical results for the prac-
tical identification of RK properties from the corresponding Butcher
tableau stem from the stage order, that has practical relevance to
avoid the order reduction phenomenon during stiff transients.

Theorem 2.2 ([31], Theorem 8.5). Any RK with A > 0 has stage
order p < 2. If p = 2 then A must have a zero row.

Lemma 2.2 ([31], Lemma 8.6). Any RK with b > 0 has stage order
pz %

Theorem 2.3 ([31], Theorem 8.3). Unconditional contractivity.
The order barrier for R(A,b) = 0o in a RK is p < 1. Some first order

unconditionally contractive RKs are the implicit Euler, the RADAU
IA and the RADAU IIA methods.



Theorem 2.4 ([31], Corollary 8.7). Conditional contractivity.
The order barriers for R(A,b) > 0 under the circle condition (2.13)
are p < 4 for explicit RK and p < 6 for implicit RK.

As a consequence, step size restrictions on RK of formal order p >
1 are inevitable to preserve contractivity of the numerical solution.
The analysis was recently extended in [39] to a much larger class of
methods, including IMEX methods (see also [22]). This implies that
the order barriers above are inevitable for a very large class of time
discretization methods.

In recent literature [14], [15], methods satisfying condition (2.5)
for a general convex functional are called strong-stability preserving
(SSP), in order to specify their ability to preserve any convex func-
tional bound. Thus they generalize classical TVD methods specifically
developed for hyperbolic conservation laws.

Definition 2.8. Strong stability preserving (SSP). The RK method
(2.2) is SSP with respect to the functional ||-| if [|[u™|| < |[u®|| under
the assumption that

lu+hf(t,uw)] <|ul| for 0<h<m. (2.16)

The SSP coefficient s the largest constant ¢ > 0 such that this defini-
tion is verified for all 0 < h < cmy.

The definition above closely follows Definition 2.1 for monotonicity;
indeed, these definitions are equivalent. The SSP coefficient ¢ turns
out to be strongly related to the radius of absolute monotonicity in-
troduced in Definition 2.7.

Theorem 2.5 ([10], Theorem 3.4). For an irreducible RK, c = R(A,b).

Recent studies focused on the search of SSP-optimal RK methods hav-
ing large SSP coefficients. While explicit SSP RKs are known since
the seminal work in [37], a search for implicit SSP RKs started only
recently in [11] and [30], where it was found that the SSP-optimal
implicit RKs of order p = 2 and p = 3 are indeed SDIRK, while
the optimal methods for p = 4 are DIRK. In the quest for improved
monotonicity, the classes of two-step RKs [29] and diagonally split RK
2], [3], [34] have been investigated in the literature, with mixed suc-
cess. Starting from the framework introduced above in our following
analysis we will consider all these properties just as specific realiza-
tions of absolute monotonicity. As a consequence, in the next sections
they will be briefly referred to as monotonicity of the time integration
methods.
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3 Strong stability preservation for the
TR-BDF2 method

We analyze here the monotonicity properties of the TR-BDF2 method,
originally introduced in [1] and successively studied in [24] as a DIRK.
The same method was rediscovered in [6] and has been applied also
in [13] to treat the implicit terms in an additive Runge-Kutta (ARK).
A semi-implicit, semi-Lagrangian reinterpretation of this method has
recently been proposed in [41].

We rely on the monotonicity and contractivity results reviewed in
Section 2. In its original formulation, TR-BDF2 is defined as a one-
step method resulting from the composition of the trapezoidal rule in
the first substep, followed by BDF2 in the second substep. This com-
bination is empirically justified under the rationale of combining the
good accuracy of the trapezoidal rule with the stability and damping
of fast modes guaranteed by BDF2. The TR-BDF2 method is

u™t — %hf’”'y =u"+ %hf" (3.1a)
1—7) 1 (1—7)?

ut — (771]‘”Jrl =" - — 3.1b

(2—-7) (2 —7) ¥(2—7) (3.1b)

where v € (0,1) is a parameter whose value determines the stability
and monotonicity properties of the method. By requiring that both
stages have the same Jacobian, the value v = 2—+/2 was derived in [1].
This value is also the only one for which the method (3.1) is L-stable.
As outlined in [24], the TR-BDF2 method can be rewritten as a DIRK
method. However, instead of closely following this reference, we will
first derive the DIRK family associated to (3.1) before imposing the
condition on the Jacobian. The Butcher tableau for this DIRK family
is then

0
T3 3
1 1 1 1—7’7
22—y)  2(2—v)  2—v
1 1 1l
2(2—y)  2(2-7v) 2—v

We remark that, by imposing the condition ass = ass, the optimal
value for v able to guarantee L-stability is readily obtained. The
stability function associated to the above DIRK family is

() = det(I —EA+&ebT)  [14(1—7)%E+2(2—7)
YT T e g T 22— )1 - €3)(1 - €2)
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The rational polynomial defining the stability function of the DIRK

family has a single zero at £ = 13&:?)2, which is always negative
for all possible values of parameter ~, and two poles at & = % and
£ = % respectively, which are always positive. While in [1] it is

argued that there is a double pole at £ = %, this is true only for the
numerical value of « satisfying age = ags. As shown in [24], the TR-
BDF2 method is embedded in a (2,3) Runge-Kutta pair, thus allowing
an efficient estimation of the time discretization error, in case step size
adaptation is required. Additionally, it is immediate to find out that
the stage order of TR-BDF?2 is indeed p=2, thus making the method
resilient to order reduction in stiff problems (see e.g., [18], [34]).

We analyze the monotonicity properties of the DIRK family gen-
eralizing the TR-BDF2 by following [9], [10], [31]. Following the defi-
nition (2.15), we find

0 0 0
J J
A(€) = s e 0
1 1 1—v
22—7)(1-368 22-(1-3)8 (@-MB
B—€v/2 1
2(2—) 1+
() = | 5| el = I
(1-8 [1+(1—)%é+2(2—)
2—y 22-7)(1-€3)8

[1+1-7)?E+22-7)
22 -7)(1-£€3)8

where we have set 5=1—&(1—~)/(2—). The main conclusion is that

the radius of absolute monotonicity of TR-BDF2 is R(A,b)= li(a:?)Q

and that it is maximized for y=2—+/2, which is exactly the value that
makes the DIRK family L-stable. With this value of the parameter
7, the absolute monotonicity radius is R(A,b) ~2.414. From [9], we
conclude that this is also the step size coefficient ¢ for conditional
monotonicity of the method under arbitrary seminorms and sublinear
functionals for any nonlinear problem.

p(€) =

4 Two unconditionally monotone vari-
ants of TR-BDF2

The results reviewed in Section 2 lead to the conclusion that there are
no unconditionally monotone RK methods of order higher than one.
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For stiff initial value problems, this implies that even implicit higher
order RK methods will be always subject to a CFL-like condition for
monotonicity. Thus, the only RK method that does not need to com-
ply with a time step restriction and that can be safely used without
time step adaption is in practice the implicit Euler method. Due to
such limitation, which is particularly relevant for problems with chem-
ical kinetics, some solution methods found in literature rely exclusively
on it, sacrificing accuracy for improving stability and consistency [44].

We propose here two hybridization strategies of TR-BDF2 with
the implicit Euler method, that can be activated using a sensor de-
tecting violations of relevant functional bounds. These hybrid schemes
bring time integration back to a first order unconditionally monotone
method whenever the sensor detects a violation of a selected func-
tional bound during the current integration. Empirically, this local
loss in accuracy should not be too detrimental on solution accuracy
if time step is not too large. Our proposed methods apply this safe
mode whenever it is expected from SSP theory that TR-BDF2 may
produce non-monotone solutions.

The hybrid TR-BDF2 method is thus obtained by introducing
a weighting parameter a € [0, 1] in both stages of TR-BDF2

Y yh(1 - %)fnﬂ — "+ fyh%f" (4.1a)
nt+l (L=h  ny1 _
! ai—p+1
_ald-n+1 o (192,
al—~)+1" V_oz(l—'V)Jrl e @)

For a = 1 the first step is the trapezoidal rule and the second step is
the BDF2 formula, thus reconstructing the original TR-BDF2 (3.1).
For a = 0 each of the two steps above is equivalent to an implicit
Euler step, thus transforming the hybrid TR-BDF2 in succession of
two substeps of the implicit Euler method (IE-IE) of length vh and (1—
~)h, respectively, and making the method unconditionally monotone.

The hybrid TR-BDF2 method can be rewritten as a DIRK scheme
as done for (3.1). By injecting the first step in the second one, the
Butcher tableau of the hybrid TR-BDF2 method is found

0 0

Y| % v(1-3%)

1| eald=—)+y ( _ g) a(l- ’Y +’Y 1—y
2 a(l—v)+1 2/ a(l—y a(l—vy)+1
ao(l-y)+y ( _ g) 1—y
2 a(1—v)+1 2 a(l a(l—y)+1




For the unconditionally monotone method (a0 = 0), equivalent to a
double step of implicit Euler, the above above reduces to

010

710 v
110 v 1—v

.O v 1—v

The stability function of the DIRK family associated to the hybrid
TR-BDF2 method is thus

1+ [SE - 0-9)¢
- [+ (- 9] e+ (1 - 9) s

From this expression for the case @ = 1 we recover the stability func-
tion (3.2) and for the unconditionally monotone case a = 0 the sta-
bility function p(€) = 1/[1 — & + (1 — v)&2].

The DIRK family corresponding to the hybrid TR-BDF2 method
is thus entirely L-stable for every value of the parameter «, as evident
from Figure 1. Additonally for a=1 the value y=2 — v/2 correspond-
ing to TR-BDF2 maximizes the radius of absolute monotonicity, while
for y=2 — /2 starting from a=1 (TR-BDF2) the radius of absolute
monotonicity is progressively increased by decreasing «, while the or-
der is reduced to p=1 for a # 1, as evident from the absolute error
|p(2)—€?| in the asymptotic range (Re— 07, Im—0) in Figure 1. For-
mally, we have lim,_,g R(A, b) =00, thus recovering the unconditional
monotonicity of the implicit Euler method.

The hybrid TR-BDF2 method can be exploited through different
strategies, since by choosing values of the parameter 0 < a < 1 it
is possible to produce a continuous blend of the two main schemes
varying the radius of absolute monotonicity accordingly. In our work
we adopt a simpler approach and we investigate two alternative modes
for enforcing monotonicity under the selected step size.

p(£) = (4.2)

4.1 TR-BDF2 blended

In the hybrid in time mode the strategy is to switch from the de-
fault «=1 (TR-BDF2) to the unconditionally monotone mode av=0
(IE-IE) whenever a suitable sensor detects a violation of some global
functional bound on TR-BDF2 solution. After each detected violation
by the TR-BDF?2 solution, the time step integration is repeated in TE-
IE mode. We call this simple method TR-BDF2 blended, since

14
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Figure 1: Hybrid TR-BDF2 in comparison with implicit Euler: a) stability
functions along the negative real axis, b) modulus of the stability functions
along the imaginary axis, ¢) absolute error functions along the negative real
axis showing the asymptotic and non-asymptotic ranges, d) absolute error
functions along the positive imaginary axis.
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Figure 2: Stability regions (outside portions of the plane): a) stability bound-
aries for the hybrid TR-BDF2 and the implicit Euler methods, b) stability
region of the additive Runge-Kutta corresponding to the TR-BDF2 parti-
tioned method.
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it provides automatic adaption of the « value by enforcing uncondi-
tional monotonicity only during critical transients. To this purpose
we introduce the global sensor function

1 if utl < M

] (4.3)
0 otherwise.

o= Sg(unJrl) — {

that is able to determine if the generic functional bound M on ||-||
is violated by the numerical solution u"*!. For each time step the
algorithm of TR-BDF2 blended with y=2 — v/2 is:

1. Set =1 and perform the current integration by (4.1) to find
the tentative solution u*.

2. Apply the sensor o = s4(u*).

o If =1, set u"T! = u* and go to the next time step.

e If 0 =0, set @ = o, repeat the current integration by (4.1)
to find the solution «™*! and go to the next time step.

This basic method is A-stable, L-stable and unconditionally mono-
tone.

4.2 TR-BDF2 partitioned

In the hybrid in solution space mode the switch from the default TR-
BDF2 to the unconditionally monotone IE-IE mode is applied only
for those solution components which are likely to produce violations
of a relevant property under the assigned time step size. In order
to detect this behaviour we rely on SSP theory results by applying
Definition 2.1 together with the computed value of R(A,b)~2.414 for
TR-~-BDF2. Since this strategy exploits locality, we introduce the local
sensor function

(4.4)

pry_ fU <
0 otherwise.

that detects any componentwise violation of the functional bound M;
on [|-]|. In particular for each time step the algorithm is:

1. Perform a tentative step of forward Euler
u* =u"+ hgg f(t",u")

using a monotonicity-scaled time step hgg = h/R(A, D).

2. Apply the sensor o; = s;(u)) (i =1,...,m) on the tentative
solution to construct the partitioning matrix S=diag{o;}.
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3. Identifying with a;; and b; the coefficients corresponding to the
tableau for o = 1 and with a;; and b; the coefficients for a =0
in (4.1), construct the automatically partitioned RK method

g =u"+hY [aiyS+ay(I—S)] f(t" +¢jh,g’)  (4.5a)
Jj=1

S
W=t R[0S+ b= S) | f(t" + cihgh)  (45D)
=1

to find the solution u™! from stage values ¢* (i=1,...,s) with

y=2—/2.
Thus we have effectively transformed the hybrid TR-BDF2 (4.1) into
a partitioned Runge-Kutta method, in which the solution space is
automatically sorted into monotone and non-monotone components
by performing a tentative forward Euler step on a suitably scaled time
step. It may also be interpreted as an additive Runge-Kutta method
(see, e.g., [23]) from which the usual ARK stability region ¢(z,w) =
1+ (iwbT 4 2b7)(I — iwA — zA)~'e for the scalar test problem u/(t)=
Au(t) + ipu(t) with u(0) =u is represented in Figure 2. In this case
the unconditionally monotone component z is computed by the IE-IE
method while the conditionally monotone component w is integrated
using the original TR-BDF2. We call this second strategy TR-BDF2
partitioned. It introduces a small overhead in computational time
since it always performs an explicit tentative step, even in case of a
successful integration from TR-BDF2. Clearly, the overall order of
accuracy for both strategies will be limited to p = 1 whenever the
sensor functions are activated in the current time step and similarly
for the stage order p, but both strategies preserve L-stability and do
not spoil the linearity of the base methods, they also preserve any
linear invariant and as such they allow atomic mass conservation (see,

e.g., [35]).

5 Potential competitors of TR-BDF2

In order to compare the properties of TR-BDF2 to those of other
similar methods in numerical test problems, we introduce here some
second order methods with similar characteristics. We will make our
assessment by comparing the performance of TR-BDF2 and its two
hybrid variants from Section 4 against the following methods as well
as against other classic methods, such as implicit Euler (R(A, b) = o0)
and Crank-Nicolson (R(A,b) = 2).
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5.1 SSP-optimal SDIRK 2(2)

The 2-stage SSP-optimal Runge-Kutta method of second order, namely
the second order RK with the largest radius of absolute monotonicity,
was discovered in [11]. Later it was confirmed in [30] to be also the
optimal 2-stage second order implicit RK through extensive numerical
search. The Butcher tableau of DIRK 2(2) is

As apparent from the tableau, this method consist of two consecutive
applications of the implicit midpoint rule, that is characterized by
R(A,b) = 2, exactly as the Crank-Nicolson method. As a consequence
the radius of absolute monotonicity of the SSP-optimal SDIRK 2(2)
is R(A,b) = 4. Moreover the method inherits all the properties of the
implicit midpoint rule, being A-stable and symplectic, but it is not
L-stable as TR-BDF2.

5.2 ROS2

Among the potential competitors of TR-BDF2 we also include the
Rosenbrock method proposed in [8] and later applied in atmospheric
chemistry problems, see e.g. [35], [45]. The Butcher tableau is

00 ol
111 0| -2y v

‘;;
22‘

with v =1+ % In addition to L-stability, from numerical experi-

ments in [45] it was found that it also has interesting positivity prop-
erties. This was empirically justified by observing that the stability
function is positive along the entire negative real axis. In [35] this
observation was extended to the first two derivatives of the stability
function. However, from the framework in Section 2 it turns out that
R(A,b)= 0, since the third derivative of the stability function is nega-
tive along the negative portion of the real axis. In spite of this, the fact
that up to the second derivative we have positivity for any negative
real value can be interpreted as a sort of weak absolute monotonic-
ity. Even though small violations of arbitrary functionals cannot be a
priori excluded at any step size, from numerical experiments in Sec-
tion 6 we found an intrinsic resiliency against violations of the TVD
property, even from initial conditions of limited regularity.

18



5.3 Modified Patankar Runge-Kutta

A suitable second order method for stiff chemical problems is the Mod-
ified Patankar Runge-Kutta (MPRK) introduced in [5] and later ex-
tended to third order accuracy in [12]. The MPRK method achieves
unconditional positivity through proper weighting of production and
m
destruction terms and it conserves the quantity ) wj, which repre-
j=1
sents the total mass of the system if species a]reJ expressed as mass
concentrations.However, the mass of the atomic species is not con-
served. Additionally, due to the specific form required to the right
hand side, it can be used in a PDE framework only by introducing a
source term splitting.

6 Numerical experiments

A number of numerical experiments have been carried out, in order
to assess the performance of the TR-BDF2 method and its hybrid
variants introduced in Section 4 against the other methods described
in Section 5. The range of the test cases covers a reactive zero di-
mensional test problem, here adapted to the MPRK method, a one
dimensional advection problem, an advection diffusion reaction prob-
lem for a mixture of chemical species, as well as two typical nonlinear
conservation laws. For PDE tests, we have considered discontinous
initial conditions, in order to show the emergence of critical issues for
monotonicity. This provides the most stringent test, as we experi-
enced from other computations, not reported here, using more regular
initial conditions. In all test cases the nonlinear system associated to
implicit RKs was solved using MATLAB’s fsolve with a tolerance of
tol = 1079, except when otherwise stated. All computations were
performed on a single Intel® Core™i5-2540M (2.60 GHz) on a laptop
with 4 GB RAM running Linux kernel 3.13.0-24-generic. We dot
not claim that the error-workload curves reported here are immedi-
ately relevant for the selection of step sizes or numerical methods, but
we consider them as representative of the relative workload expected
from the methods assessed.

6.1 0-D chemical model problem: the Brusse-
lator

As a first tes,t we use a typical nonlinear chemical kinetics prob-
lem. The same issues are shared by all chemistry modelling problems,
which require positivity for each solution component. Consequently,
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we adopt both hybridization strategies from Section 4 with global and
local positivity sensors built from the floor norm (2.9) with x = 0. In
the zero dimensional chemical model problem we measure the maxi-
mum error during time integrations from the [*°-time absolute error
norm for the i-th species

n ~N
leillow =, max fuf | (6.1)
where N; is the number of time steps, u;' is the solution in the n-
th time step and @} is the reference solution at the same time step
obtained with MATLAB ode15s using absolute and relative error tol-
erance levels of AbsTol=10""% and Re1To1=10""3 respectively. In our
numerical results we will refer to the error on species ¢ =1, which is
assumed to be representative of the problem.
We consider thus the original Brusselator system in [32]:

u'l = szlul (62&)
uhy = —kougus (6.2b)
u/3 = k2U2U5 (6.20)
uﬁl = k4U5 (62(,1)
ug = kiu1 — kousgus + k3u§u6 — kyus (6.26)
ug = k‘QUgUE, — k’gU%U(} (6.2f)

since this form allows to write the right hand side in a form suitable
to MPRK. In particular we follow the procedure in [12], which in this
case can be applied, since the stoichiometric matrix has proper rank
([12], Assumption 2.1). We solve this problem for 0 < ¢ < 10 assuming
ki=ko=k3=ky=ks=kg=1 as in the reduced model and starting
from the initial condition u1; =wu9 =10, uz =114 =0 and us =ug=0.1.
The results in Figure 3 show that Crank-Nicolson, SDIRK 2(2) and
TR-BDF2 (clipped to avoid negative values) are almost equivalent
in performance, with a slight advantage for the SSP-optimal SDIRK.
MPRK shows similar accuracy at same step sizes, while it outperforms
all the other methods in terms of workload, being it the only explicit
method. ROS?2 offers intermediate performance. Blended and parti-
tioned TR-BDF2 are here equivalent to the clipped version, due to
limited size of the integration interval 7. Similar results, not shown
here, were obtained for the simple geobiochemical problem from [5].
Even though the results from MPRK are promising, in the next tests
we are forced to abandon it, since it would require a source splitting
to the advection diffusion reaction problem that is out of our scope.
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Figure 3: Original Brusselator problem: a) error-stepsize curves, b) error-
workload curves.

6.2 1-D advection problem

As a first PDE case we consider the advection equation
u+ovuy, =0, 0<z<l1 (6.3)

which we solve for 0 <¢ <1 and v =1 using periodic boundary con-
ditions. We discretize the interval (0,1] by introducing N, points
ri=iAx,i=1,..., N; with Ax=0.01 and we discretize the advective
term using a first order upwind scheme to yield a contractive right
hand side. We consider the non smooth initial condition

(0. 2) 1 if |x — 0.5/ < 0.25 (6.4)
u(0,z) = )
0 otherwise.

For this problem ,the explicit Euler method is stable under the well
known condition Cou = % < 1. In our assessment, we disregard
spatial discretization errors, since we compare the numerical solution
obtained with any method to the exact solution of the ODE system
(2.1), rather than to the exact solution of the original PDE. The exact
solution is approximated by an accurate numerical solution obtained
with the MATLAB ode45 solver, with absolute and relative error tol-
erances of AbsTol=10"'% and RelTol=10"'3, respectively. During
numerical tests we measured the [°°-space absolute error norm at fi-
nal time t=T

oo T ~
leillZ2r = j:rlr,l.E.L.},(Nx ’uz] - uzg’ (6.5)
where ug:j represents the solution at point j and time ¢t =T for the

single species ¢ = 1 in the one-dimensional advection problem (6.3)
and ﬁzj is the reference solution at the same point in space and time.
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Furthermore, in order to assess any violation of the TVD property, we
monitored also the T'V-space [*°-time seminorm for species ¢

Ng
| TVilloo = | max § |uf ;1 —afy| - (6.6)
EARAS) ]:1

Here, the TR-BDF2 blended from Section 4 relies on a global sensor
with the floor functional with y =0, while TR-BDF2 partitioned uses a
local sensor using both floor and ceil functionals with x =0 and ¢ =1.
The discontinuous initial condition (6.4) generates TVD violations for
all the conditionally monotone methods (i.e., not for implicit Euler and
TR-BDF2 blended). The critical steps sizes at which violations occur
closely follow the ratio between the radii of absolute monotonicity for
the different methods, as from Sections 3 and 5, see Figure 4 and Table
1. Additionally, ROS2 is never TVD, but the violations are always
limited for any step size and globally it does not show the typical
crisis of conditionally monotone methods. This can be interpreted in
light of Section 5. TR-BDF2 blended from Section 4 never violates
TVD property, while its clipped version shows the usual crisis at large
time steps. The possible explanation from Figure 5 is that the critical
step size for positivity is smaller than that for TVD property. As such
TR-BDF2 blended starts reverting to the unconditionally monotone
mode at relatively small step sizes, implicitly guaranteeing also the
TVD property. On the other hand, TR-BDF2 clipped activates the
clipping procedure for violations of positivity, but it is not able to
manage TVD violations. This example illustrates well the advantage
of using SSP theory to guarantee nonlinear solution properties. TR-
BDF2 partitioned is always TVD, except for a small violation at the
step size h=0.06.
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Figure 4: Advection problem with non smooth initial condition
lso-time seminorm for the single species.
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Figure 5: Advection problem with non smooth initial condition: a) error-
stepsize curves, b) error-workload curves.

The accuracy results in Figure 5 maintain the consistent ranking
from the zero dimensional problem. ROS2 now features a non uni-
form convergence and it achieves higher accuracy for 0.01 <h < 0.04
by sacrificing monotonicity, as evident when comparing Figures 4 and
5. TR-BDF2 blended shows a degradation in accuracy at larger step
sizes, due to the intervention of the IE-IE mode triggered by the pos-
itivity monitor, also evidenced from the order reduction. The TR-
BDEF2 partitioned is the only method able to obtain tighter accuracy
levels similar to SDIRK 2(2), while additionally mantaining the TVD
property with the exception of one step size. When repeating the same
advection test with a smooth initial condition, the results obtained,
not shown here, are similar to those in the chemical model problem
and they do not exhibit the order reduction and TVD violations re-
ported above.

6.3 1-D advection diffusion reaction problem

As a representative case for chemical transport of reacting species we
introduce the advection diffusion reaction problem of three species

up + vuy = Dugy + f(u), 0<z<1. (6.7)

with periodic boundary conditions. Here u = [ul,ug,ug]T and D =
diag{d;;} is the diffusivity matrix. The nonlinear source term f(u) is
taken from the simple geobiochemical model in [5]

uUiLUuU2

fu)r = g (6.8a)
Flu)s = qulfl ~ kus (6.8b)
f(u)s = kug (6.8¢)
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representing the interaction among three species identified as nutrients
u1, phytoplankton us and detritus us. Since the total mass of the
system must be conserved, there is an implicit linear invariant for this
problem which is uj 4+ ug +ug. We (6.7) for 0 <t < 1 with £=0.3, an
advection velocity of v = 0.1 and constant diffusivities for each species
given by di; =1073, doy =2x1073 and d33 =10"*. The grid and the
discrete advection operator are the same of the advection problem.
The diffusion term is approximated by central finite differencing and
it is naturally contractive. The initial conditions for the three species

are

998 if |z — 0.5 < 0.25

u1(0,z) = if |o - 0.5] (6.92)
0 otherwise.
2 if |l —0.4] <0.2

us(0,z) = 4 2 1 le =04 (6.9b)
0 otherwise.
1 if|lz—0.7 <0.25

us(0,2) = 4 - =01 (6.9¢)
0 otherwise.

In our assessment, we use a tolerance level to1=10"2 for the nonlinear
solver in implicit methods and the reference solution is obtained from
MATLAB’s ode15s with the same absolute and relative error toler-
ances from the advection test. The sensors for the hybrid TR-BDF2
variants are simply built from the floor functional with x=0.
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Figure 6: Advection diffusion reaction problem with non smooth initial con-
dition: a) error-stepsize curves, b) error-workload curves.

The accuracy curves in Figure 6 do not show the critical features of
the advection test, due to the presence of the additional diffusive term
that rapidly smooths out initial discontinuities. Again, RK methods
maintain their relative ranking in terms of accuracy and workload.
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TR-BDF2 clipped and the blended variant are almost indistinguish-
able, while the partitioned version features slightly larger computa-
tional times due to the partitioning step.
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Figure 7: Advection diffusion reaction problem with non smooth initial con-
dition: a) solution for u; (¢t = T') when using h = 0.100, b) close-up in the
region of positity violation from ROS2.

A sample solution for this problem is shown in Figure 7, where
a close-up shows the typical positivity violation on u; from ROS2.
Violations of the TVD property are reported in Figure 8 where it is
evident that all the methods are TVD, with the exceptions of Crank-
Nicolson for A = 0.100 and ROS2 that is never TVD nor positivity
preserving.
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Figure 8: Advection diffusion reaction problem with non smooth initial con-
dition: T'V-space l,-time seminorm for the species u;.

6.4 1-D conservation laws

We complete our assessment by considering two well known hyperbolic
conservation laws, see e.g. [33] for a more detailed discussion. The
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first is the Burgers equation

1
= —f(u)y = — (2u2> , 0<x<l1. (6.10)
which we solve for 0 <t < 1 with the smooth initial condition
1 1.
u(0,x) = 7t iszn(va). (6.11)

The second is the Buckley-Leverett equation

u2

ut:—f(u)x:—< u)Q) , 0<z<1. (6.12)

u? + 11—
which we solve for 0 <t < % with the discontinuous initial condition

1 if 2 <0.
umﬂg:{é =05 (6.13)

otherwise.

Both equations are here solved with periodic boundary conditions and
discretized by a high resolution finite volume method using flux lim-
iters, see e.g. [28], [33]. More specifically, for the Burgers equation we
adopt the van Leer limiter

0+ 0]

VO = 1 (6.14)

while for the Buckley-Leverett equation we select the Koren limiter

2 1
¥ (f) = max {O ; min {2 '3 + 59 ; 29}}. (6.15)

Due to the flux limiters, strictly speaking the the Jacobian is not
defined. Rather than approximating it by a finite difference discreti-
zation, we again exclude ROS2 from our assessment, since it is known
a priori that it performs poorly on hyperbolic conservation laws.

In the numerical tests, we measured the [°° norm in space (6.5)
as well as the TV seminorm in space (6.6). The reference numerical
solution is obtained here by the MATLAB solver ode45 using again
AbsTol=10"' and RelTol=10"!'3, while the implicit stages of the
RK methods are solved with a tolerance level of to1=10"1. While
the TR-BDF2 blended exploits a global sensor for the TV seminorm,
the TR-BDF2 partitioned relies on a local sensor for the floor and
ceil functionals (2.9) with x = 0.25 and ¢ = 0.75 for the Burgers
equation and x = 0 and ¥ = 0.5 for the Buckley-Leverett equation,
respectively. These choices follows from the initial conditions (6.11)
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and (6.13). Even though this local sensor is not properly a detector
of TVD violations, we use it as an approximate TV sensor due to the
known solution dynamics. This is not entirely correct, as we will see
from the tests, but it comes from the difficulty of using a local test for
a global property as TVD.
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Figure 9: Burgers equation with van Leer limiter and smooth initial condi-
tion: @) solution at final time ¢ = 1 when using h = 0.1, b) T'V-space l,-time
seminorm.

In Figure 9 we report the solution at the final time step for the
coarsest step size h = 0.1, corresponding to about Cou =7.5. While
implicit Euler is able to maintain the TVD property with a strong
smoothing of the developing leading shock, all conditionally mono-
tone methods develop visible oscillations downstream of this region. In
particular, TR-BDF2 (here positive clipping is never activated) shows
minor amplitudes with respect to SDIRK 2(2) and Crank-Nicolson.
TR-~-BDF2 blended obtains a smoothed solution after several integra-
tions in IE-IE mode. TR-BDF?2 partitioned is qualitatively very close
to the reference solution with the best approximation for the shock
amplitude, but it features also a reduction in the propagation speed,
probably due to the smoothing of the imaginary parts for the points
integrated in IE-IE mode (see Figure 1). Significantly, both variants
always remain TVD, even at Cou = 7.5. The other methods show
TVD violations with the usual critical step size progression, see Fig-
ure 9. The accuracy results for the Burgers equation are reported in
Figure 10. Interesting behaviour appears at coarse stepsizes where
all the methods collapse about at the same accuracy of implicit Eu-
ler. TR-BDF2 blended realizes a smooth adaption from the monotone
implicit Euler accuracy to the TR-BDF2 asymptotic curve. It pre-
serves always monotonicity, while Crank-Nicolson, SDIRK 2(2) and
TR-BDF2 clipped violate it, as evident from Figure 9. The error
curves from TR-BDF2 partitioned follows tha same behaviour even
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though the [*° error norm is penalized from the behaviour at the lead-
ing shock.
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Figure 10: Burgers equation with van Leer limiter and smooth initial condi-
tion: a) error-stepsize curves, b) error-workload curves.

The Buckley-Leverett test provides a more stringest test due to
its non-convex flux function. The solution at the final time step for
the step size h=0.025 is shown in Figure 11. Again all conditionally
monotone methods develop oscillation on the trailing shock, while only
SDIRK 2 (2) develops a stable rarefaction wave, where Crank-Nicolson
and TR-BDF2 (again without clipping) develop additional waves. Im-
plicit Euler and TR-BDF2 blended feature a strongly smoothed be-
haviour, while TR-BDF2 partitioned remains free of oscillations due
to the activation of the local sensor that allows to develop the shock
and rarefaction waves. Anyway it shows a reduction in the shock
speed, similarly as in the Burgers test, and some Imited violations of
the TVD property at the largest step sizes, see Figure 11.

The accuracy curves for the Buckley-Leverett equation in Figure
12 confirm our previous findings. Conditionally monotone methods
achieve worse results than implicit Euler at coarse step sizes, due
to the impact of the relevant TVD violations. TR-BDF2 blended
offers a seamless compromise between accuracy at fine time steps and
monotonicity at coarse time steps, while TR-BDF?2 partitioned obtains
qualitatively very good solutions, but it is penalized in the [°° norm
by the wrong prediction on the advection speed of the leading shock.

7 Conclusions

We have reviewed a general framework for the preservation of some
relevant solution properties during numerical integrations with RK
methods. The generality of the absolute monotonicity results proved
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Figure 12: Buckley Leverett equation with Koren limiter and non-smooth
initial condition. Left: Error-stepsize. Right: Error-workload.

to be of practical relevance for assessing contractivity, monotonicity,
positivity and strong stability of RK methods. In particular we an-
alyzed the monotonicity properties of the TR-BDF2 method, that
was introduced in [1] and successively reformulated and analyzed in
[24]. We derived the characteristic SSP coefficient of the DIRK fam-
ily associated to TR-BDF2, which expresses a CFL-like condition for
monotonicity properties. We proposed two modifications, the first one
based on a hybridization in time with the implicit Euler method and
the second one being an automatically partitioned RK method that
tries to separate monotone and non-monotone solution components
in each time step. Both strategies attempt to enforce monotonicity
properties in constant time step integrations, as commonly found in
meteorology, environmental fluid dynamics or turbulent reactive flow
simulations. Both monotone strategies make use of sensor functions
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able to detect local or global violations of suitable functional bounds,
thus triggering a robust integration procedure when necessary to main-
tain monotonicity. In this way accuracy, is sacrificed locally in order
to preserve monotonicity independently of the time step and stiffness
of the problem.

Both strategies were assessed empirically against other RK meth-
ods on a series of benchmark problems, ranging from zero dimensional
chemical rectors to advection diffusion reaction equations and nonlin-
ear conservation laws. The results show that the time hybridization
strategies are able to guarantee a seamless compromise between ac-
curacy at fine step sizes and monotonicity at coarse step sizes, while
the partitioned strategy obtains promising results penalized only by
a reduced shock advection speed at high CFL. Further research may
be useful to identify more appropriate sensors for triggering the parti-
tioning method, as well as to extend the two strategies to SSP-optimal
RK methods such as SDIRK 2(2).

8 Appendix

8.1 Relevant properties for chemical kinetics
problems

Ordinary differential equations in the form (2.1) arise in the context
of chemical kinetics when the reaction term is modeled by the mass
action law. By ignoring the presence of additional terms in advection-
diffusion-reaction PDESs, we briefly review here the reaction term.
Considering a chemical system having Ny species interacting in N,

chemical reactions
N, & Ng
P
Z lpguqg — Z T'pqUq
q=1 q=1

the evolution of the molar concentrations is described by the mass
action law:

d
e =@ and t> 19 (8.1a)
u(t®) = u°. (8.1b)

The source term is w = Qw(u) where @ is the matrix of stoichiometric
coeflicients

Q=R—LeRY N with: R=[ry] L=l
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and w € RN represents the vector of reaction rates that are usually
expressed following the exponential form of the Arrhenius law

N,
wp(u) =ky [J(ug)'rs for p=1,...,N,.
q=1

The relevant physical properties for the solution to (8.1) are:

e Conservation of atomic mass: the mass of single atomic species
such as C, O and N forming the chemical species remains con-
stant, since atomic species are conserved during chemical reac-
tions. Algebraically this means that if e € Ker(QT) is a linear
invariant of (8.1) and from rank(Q)= N —n we know that there
are n linear invariants, then it is possible to collect the vec-
tors defining the null space of QT in the columns of the matrix
A € RNs*n_ Ag a consequence the solution of (8.1) must satisfy

ATu(t) = ATu® = const  for t>1°. (8.2)

e Positivity: the concentrations are physical quantities that are
bounded in the range of significant values 0 <u<1. By splitting
the production and destruction terms in (8.1)

%u(t) P(u) — D(u)u and t> t°, (8.3a)

u(t®) = u®. (8.3b)

where the production and destruction terms are

P(u) = Rw(u) and D(u) = diag [W]

This form ensures that D;;(u) are polynomials due to the func-

tional form of the reaction rates. This implies that if all concen-
trations are nonnegative except u, =0 then

%up(t) =Py(u) >0 = u(t) >0 whenever u(0)>0.

While conservation of linear invariants is automatic in general linear
methods, positivity is more difficult to achieve. In practical appli-
cations positivity is usually enforced by a clipping step, in which all
negative solution components are explicitly set to zero. Clipping al-
ters the conservation of mass, since the error is introduced in a single
direction only, namely adding mass to the system. While for short
term computations under tight tolerances this is generally acceptable,
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for long time integrations the mass added may be detrimental to so-
lution accuracy. Moreover, as evident from Section 2, positivity is
more than a constraint for physical significance of a numerical solu-
tion, since it is strongly related to nonlinear stability properties of
numerical methods.

8.2 Tables of TV seminorm in numerical ex-
periments
Here below we report the tables of the TV seminorm measured in

numerical experiments to show that TV violations closely follow the
expected behaviour from the absolute monotonicity radius.

h Cou ref 1E CN TR-BDF2(clip)
0.0025 0.25 2.00000000  2.00000000 2.00000000 2.00000000
0.0050  0.50 2.00000000  2.00000000 2.00000000 2.00000000
0.0100  1.00  2.00000000  2.00000000 2.00000000 2.00000000
0.0200 2.00  2.00000000  2.00000000 2.00000000 2.00000000
0.0241 2.41  2.00000000  2.00000000 2.37516991 2.00000000
0.0400  4.00 2.00000000  2.00000000 3.33333333 2.27858017
0.0600 6.00 2.00000000  2.00000000 4.06243821 2.39070772
0.1000 10.00  2.00000000  2.00000000 5.21857423 2.47739160

SDIRK?2(2) ROS2 TR-BDF2(blend) TR-BDF2(part.)
0.0025 2.00000000  2.00877086 2.00000000 2.00000000
0.0050 2.00000000  2.02925347 2.00000000 2.00000000
0.0100 2.00000000  2.07630970 2.00000000 2.00000000
0.0200 2.00000000  2.14215613 2.00000000 2.00000000
0.0241 2.00000000  2.14775690 2.00000000 2.00000000
0.0400 2.00000000  2.12378933 2.00000000 2.00000000
0.0600 2.76800000  2.07354078 2.00000000 2.00114309
0.1000 3.73260435  2.01991743 2.00000000 2.00000000

Table 1: || TV ||« for the advection problem with non smooth initial condition.
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Cou

ref

IE

CN

TR-BDF2(clip)

0.0025
0.0050
0.0100
0.0250
0.0500
0.1000

0.025
0.050
0.100
0.200
0.241
1.000

19.96000000
19.96000000
19.96000000
19.96000000
19.96000000
19.96000000

19.96000000
19.96000000
19.96000000
19.96000000
19.96000000
19.96000000

19.96000000
19.96000000
19.96000000
19.96000000
19.96000000
21.26167041

19.96000000
19.96000000
19.96000000
19.96000000
19.96000000
19.96000000

SDIRK2(2)

ROS2

TR-BDF2(blend)

TR-BDF2(part.)

0.0025
0.0050
0.0100
0.0250
0.0500
0.1000

19.96000000
19.96000000
19.96000000
19.96000000
19.96000000
19.96000000

19.96178624
19.96634023
19.97806568
20.01749991
20.07270798
20.11087432

19.96000000
19.96000000
19.96000000
19.96000000
19.96000000
19.96000000

19.96000000
19.96000000
19.96000000
19.96000000
19.96000000
19.96000000

Table 2:

|TV || for the advection diffusion reaction problem with non

smooth initial condition.

h Cotmaz ref IE CN TR-BDF2(clip)
0.0025 0.188 1.00000000  1.00000000 1.00000000 1.00000000
0.0050 0.375 1.00000000  1.00000000 1.00000000 1.00000000
0.0100 0.750 1.00000000 1.00000000 1.00000000 1.00000000
0.0200 1.500 1.00000000 1.00000000 1.06702208 1.00000000
0.0400 3.000 1.00000000  1.00000000 1.36710392 1.10154954
0.0600 4.500 1.00000000  1.00000000 1.33460354 1.18618300
0.1000 7.500 1.00000000  1.00000000 1.20438152 1.17675243

EE SDIRK2(2) TR-BDF2(blend) TR-BDF2(part.)
0.0025 1.00000000 1.00000000 1.00000000 1.00000000
0.0050 1.00000000  1.00000000 1.00000000 1.00000000
0.0100 3.47978819  1.00000000 1.00000000 1.00000000
0.0200 00 1.00000000 1.00000000 1.00000000
0.0400 00 1.02205723 1.00000000 1.00000000
0.0600 00 1.39639398 1.00000000 1.00000000
0.1000 0 1.85272884 1.00000000 1.00000000

Table 3: | TV ||« for the Burgers equation with van Leer limiter and smooth

initial condition.
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h Cotmaz ref IE CN TR-BDF2(clip)
0.0010  0.2206 1.00000000 1.00000000 1.00000000 1.00000000
0.0025 0.5514 1.00000000 1.00000000 1.00000000 1.00000000
0.0050  1.1007 1.00000000 1.00000001 1.00000000 1.00000000
0.0075 1.6543 1.00000000 1.00000000 1.27084161 1.04519501
0.0100 2.2007 1.00000000 1.00000000 1.40310073 1.18671375
0.0150  3.3010 1.00000000 1.00000000 8.09702136 1.32271889
0.0250  5.5037 1.00000000 1.00000000 16.39900045 12.48391471

EFE SDIRK?2(2) TR-BDF2(blend) TR-BDF2(part.)
0.0010 1.00000000 1.00000000 1.00000000 1.00000000
0.0025 1.00000000 1.00000000 1.00000000 1.00000000
0.0050 1.87710600 1.00000000 1.00000000 1.00000000
0.0075 6.74722895 1.00000000 1.00000000 1.00000000
0.0100 21.35210300  1.00000000 1.00000001 1.00495631
0.0150 21.10782320  1.28222058 1.00000000 1.03092403
0.0250 19.65284356 1.57372343 1.00000000 1.00663983

Table 4: ||TV||« for the Buckley-Leverett equation with Koren limiter and

non smooth initial condition.
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