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Abstract

In this paper we design and analyze a uniform preconditioner for a class of high order

Discontinuous Galerkin schemes. The preconditioner is based on a space splitting involving the

high order conforming subspace and results from the interpretation of the problem as a nearly-

singular problem. We show that the proposed preconditioner exhibits spectral bounds that

are uniform with respect to the discretization parameters, i.e., the mesh size, the polynomial

degree and the penalization coefficient. The theoretical estimates obtained are supported by

several numerical simulations.

1 Introduction

In the last years, the design of efficient solution techniques for the system of equations arising from
Discontinuous Galerkin (DG) discretizations of elliptic partial differential equations has become
an increasingly active field of research. On the one hand, DG methods are characterized by a
great versatility in treating a variety of problems and handling, for instance, non-conforming grids
and hp-adaptive strategies. On the other hand, the main drawback of DG methods is the larger
number of degrees of freedom compared to (standard) conforming discretizations. In this respect,
the case of high order DG schemes is particularly representative, since the corresponding linear
system of equations is very ill-conditioned: it can be proved that, for elliptic problems, the spectral
condition number of the resulting stiffness matrix grows like h−2p4, h and p being the granularity
of the underlying mesh and the polynomial approximation degree, respectively, cf. [AH11]. As a
consequence, the design of effective tools for the solution of the linear system of equations arising
from high order DG discretizations becomes particularly challenging.
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In the context of elliptic problems, Schwarz methods for low order DG schemes have been stud-
ied in [FK01], where overlapping and non-overlapping domain decomposition preconditioners are
considered, and bounds of O(H/δ) and O(H/h), respectively, are obtained for the condition number
of the preconditioned operator. Here H, h and δ stand for the granularity of the coarse and fine
grids and the size of the overlap, respectively. Further extensions including inexact local solvers,
and the extension of two-level Schwarz methods to advection-diffusion and fourth-order problems
can be found in [LT03, FK05, AA07, AA08, AA09, DS10, BBS11, AABS12]. In the field of Balanc-
ing Domain Decomposition (BDD) methods, a number of results exist in literature: exploiting a
Neumann-Neumann type method, in [DGS07, DGS08] a conforming discretization is used on each
subdomain combined with interior penalty method on non-conforming boundaries, thus obtaining
a bound for the condition number of the resulting preconditioner of O((1− log(H/h))2). In [DD12],
using the unified framework of [ABCM02] a BDDC method is designed and analyzed for a wide
range of DG methods. The auxiliary space method (ASM) (see e.g., [Nep92, GO95b, Xu96, HX07])
is employed in the context of h-version DG methods to develop, for instance, the two-level pre-
conditioners of [DLVZ06] and the multilevel method of [BPD08]. In both cases a stable splitting
for the linear DG space is provided by a decomposition consisting of a conforming subspace and a
correction, thus obtaining uniformly bounded preconditioners with respect to the mesh size.

All the previous results focus on low order (i.e., linear) DG methods. In the context of precon-
ditioning high order DG methods we mention [AH11], where a class of non-overlapping Schwarz
preconditioners is introduced, and [AABP14], where a quasi-optimal (with respect to h and p)
preconditioner is designed in the framework of substructuring methods for hp-Nitsche-type dis-
cretizations. A study of a BDDC scheme in the case of hp-spectral DG methods is addressed in
[CPP14], where the DG framework is reduced to the conforming one via the ASM. The ASM frame-
work is employed also in [BCPCD], where the high order conforming space is employed as auxiliary
subspace, and a uniform multilevel preconditioner is designed for hp-DG spectral element methods
in the case of locally varying polynomial degree. To the best of our knowledge, this preconditioner
is the only uniform preconditioner designed for high order DG discretizations. We note that, in the
framework of high order methods, the decomposition involving a conforming subspace was already
employed in the case of a-posteriori error analysis, see for example [HSW07, BE07, ZGHS11]. In
this paper, we address the issue of preconditioning high order DG methods by exploiting this kind
of space splitting based on a high order conforming space and a correction. However, in our case
the space decomposition is suggested by the interpretation of the high order DG scheme in terms
of a nearly-singular problem, cf. [LWXZ07]. Even though the space decomposition is similar to
that of [BCPCD], the preconditioner and the analysis we present differs considerably since here we
employ the abstract framework of subspace correction methods provided by [XZ02]. More precisely,
we are able to show that a simple pointwise Jacobi method paired with an overlapping additive
Schwarz method for the conforming subspace, gives uniform convergence with respect to all the
discretization parameters, i.e., the mesh size, the polynomial order and the penalization coefficient
appearing in the DG bilinear form.

The rest of the paper is organized as follows. In Section 2, we introduce the model problem and
the corresponding discretization through a class of symmetric DG schemes. Section 3 is devoted
to few auxiliary results regarding the Gauss-Legendre-Lobatto nodes, whose properties are funda-
mental to prove the stability of the space decomposition proposed in Section 4. The analysis of the
preconditioner is presented in Section 5 and the theoretical results are supported by the numerical
simulations of Section 6.
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2 Model problem and hp-DG discretization

In this section we introduce the model problem and its discretization through several Discontinuous
Galerkin schemes, see also [ABCM02].

Throughout the paper, we will employ the notation x . y and x & y to denote the inequalities
x ≤ Cy and x ≥ Cy, respectively, C being a positive constant independent of the discretiza-
tion parameters. Moreover, x ≈ y will mean that there exist constants C1, C2 > 0 such that
C1y ≤ x ≤ C2y. When needed, the constants will be written explicitly.

Given a convex polygonal/polyhedral domain Ω ∈ Rd, d = 2, 3, and f ∈ L2(Ω), we consider the
following weak formulation of the Poisson problem with homogeneous Dirichlet boundary condi-
tions: find u ∈ V := H1

0 (Ω), such that

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V.

Let Th denote a conforming quasi-uniform partition of Ω into shape-regular elements κ of diameter
hκ, and set h := maxκ∈Th

hκ. We also assume that each element κ ∈ Th results from the mapping,
through an affine operator Fκ, of a reference element κ̂, which is the open, unit d-hypercube in Rd,
d = 2, 3.

We denote by FI
h and FB

h the set of internal and boundary faces (for d = 2 “face” means
“edge”) of Th, respectively, and define Fh := FI

h ∪ FB
h . We associate to any F ∈ Fh a unit vector

nF orthogonal to the face itself and also denote by nF,κ the outward normal vector to F ⊂ ∂κ with
respect to κ. We observe that for any F ∈ FB

h , nF,κ = nF , since F belongs to a unique element.

For any F ∈ FI
h , we assume F = ∂κ+ ∩ ∂κ−, where

κ+ := {κ ∈ Th : F ⊂ ∂κ, nF · nF,κ > 0},

κ− := {κ ∈ Th : F ⊂ ∂κ, nF · nF,κ < 0}.

For regular enough vector-valued and scalar functions τ and v, we denote by τ± and v± the
corresponding traces taken from the interior of κ±, respectively, and define the jumps and averages
across the face F ∈ FI

h as follows

Jτ K := τ+ · nF,κ+ + τ− · nF,κ− , {{τ}} :=
τ+ + τ−

2
,

JvK := v+nF,κ+ + v−nF,κ− , {{v}} :=
v+ + v−

2
,

For F ∈ FB
h , the previous definitions reduce to JvK := vnF and {{τ}} := τ .

We now associate to the partition Th, the hp-Discontinuous Galerkin finite element space Vhp
defined as

Vhp := {v ∈ L2(Ω) : v ◦ Fκ ∈ Qp(κ̂) ∀κ ∈ Th},

with Qp denoting the space of all tensor-product polynomials on κ̂ of degree p > 1 in each coordinate
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direction. We define the lifting operators R(τ ) :=
∑

F∈Fh
rF (τ ) and L(v) :=

∑
F∈FI

h
lF (v), where

rF : [L2(F )]d → [Vhp]
d,

∫

Ω

rF (τ ) · η dx := −

∫

F

τ · {{η}} ds ∀F ∈ Fh.

lF : L2(F ) → [Vhp]
d,

∫

Ω

lF (v) · η dx := −

∫

F

vJηK ds ∀F ∈ FI
h ,

for any η ∈ [Vhp]
d.

We then introduce the DG finite element formulation: find u ∈ Vhp such that

A(u, v) =

∫

Ω

fv dx ∀v ∈ Vhp, (1)

with A(·, ·) : Vhp × Vhp → R defined as

A(u, v) :=
∑

κ∈Th

∫

κ

∇u · ∇v dx+
∑

κ∈Th

∫

κ

∇u · (R(JvK) + L(β · JvK)) dx

+
∑

κ∈Th

∫

κ

(R(JuK) + L(β · JuK)) · ∇v dx+
∑

F∈Fh

∫

F

σJuK · JvKds

+ θ

∫

Ω

(R(JuK) + L(β · JuK)) · (R(JvK) + L(β · JvK)) dx,

where θ = 0 for the SIPG method of [Arn82] and θ = 1 for the LDG method of [CS98]. With
regard to the vector function β, we have β = 0 for the SIPG method, while β ∈ Rd is a uniformly
bounded (and possibly null) vector for the LDG method. The penalization function σ ∈ L∞(Fh)
is defined as

σ|F := α
p2

min(hκ+ , hκ−)
, F ∈ FI

h , σ|F := α
p2

hκ
F ∈ FB

h ,

being α ≥ 1 and hκ± the diameters of the neighboring elements κ± ∈ Th sharing the face F ∈ FI
h .

We endow the DG space Vhp with the following norm

‖v‖2DG :=
∑

κ∈Th

‖∇v‖2L2(κ) +
∑

F∈Fh

‖σ1/2JvK‖2L2(F ),

and state the following result, cf. [HSS02, PS02, AH11, SW10].

Lemma 1. The following results hold

A(u, v) . ‖u‖DG‖v‖DG ∀u, v ∈ Vhp,

A(u, u) & ‖u‖2DG ∀u ∈ Vhp. (2)

For the SIPG formulation coercivity holds provided the penalization coefficient α is chosen large
enough.

From Lemma 1 and using the Poincarè inequality for piecewise H1 functions of [Bre03], the
following spectral bounds hold, cf. [AH11].

Lemma 2. For any u ∈ Vhp it holds that

∑

κ∈Th

‖u‖2L2(κ) . A(u, u) .
∑

κ∈Th

α
p4

h2κ
‖u‖2L2(κ). (3)
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3 Gauss-Legendre-Lobatto nodes and quadrature rule

In this section we provide some details regarding the choice of the basis functions spanning the space
Vhp and the corresponding degrees of freedom. On the reference d-hypercube [−1, 1]d, we choose the
basis obtained by the tensor product of the one-dimensional Lagrange polynomials on the reference
interval [−1, 1], based on Gauss-Legendre-Lobatto (GLL) nodes. We denote by NI(κ̂) (NB(κ̂)) the
set of interior (boundary) nodes of κ̂, and define N (κ̂) := NI(κ̂) ∪ NB(κ̂). The analogous sets in
the physical frame are denoted by NI(κ), NB(κ) and N (κ), where any ξp ∈ N (κ) is obtained by

applying the linear mapping Fκ : κ̂→ κ to the corresponding ξ̂p ∈ N (κ̂). The choice of GLL points
as degrees of freedom allow us to exploit the properties of the associated quadrature rule. We recall
that, given (p+ 1)d GLL quadrature nodes {ξ̂p} and weights {ŵξp}, we have

∑

ξ̂p∈N (κ̂)

v(ξ̂p)ŵξp =

∫

κ̂

v dx ∀v ∈ Q2p−1(κ̂),

which implies that ∑

ξ̂p∈N (κ̂)

v(ξ̂p)
2ŵξp 6=

∫

κ̂

v2 dx ∀v ∈ Qp(κ̂).

However, by defining, for v ∈ Qp(κ̂), the following norm

‖v‖20,p,κ̂ :=
∑

ξp∈N (κ̂)

v(ξ̂p)
2ŵξp ,

it can be proved that
‖v‖20,p,κ̂ ≈ ‖v‖2L2(κ̂), (4)

cf. [CHQZ06, Section 5.3]. The same result holds for the physical frame κ, i.e., ‖v‖20,p,κ ≈ ‖v‖2L2(κ).

Considering the Lagrange basis {φξp}, ξp ∈
⋃

κ∈Th
N (κ), we can write any v ∈ Vhp as

v =
∑

κ∈Th

∑

ξp∈N (κ)

v(ξp)φξp =
∑

κ∈Th

∑

ξp∈N (κ)

vξp , (5)

where we note that vξp = v(ξp)φξp .

Lemma 3. For any v ∈ Vhp, given the decomposition (5), the following equivalence holds

‖v‖2L2(Ω) ≈
∑

κ∈Th

∑

ξp∈N (κ)

‖vξp‖2L2(κ).

Proof. The proof can be restricted to the case of a single element κ ∈ Th. We write v ∈ Vhp as in
(5), and observe that

‖vξp‖20,p,κ =
∑

ξ′p∈N (κ)

vξp(ξ′p)
2wξp = vξp(ξp)

2wξp ,

hence, by (4),

‖v‖2L2(κ) ≈
∑

ξp∈N (κ)

v(ξp)
2wξp =

∑

ξp∈N (κ)

vξp(ξp)
2wξp

=
∑

ξp∈N (κ)

‖vξp‖20,p,κ ≈
∑

ξp∈N (κ)

‖vξp‖2L2(κ),
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and the thesis follows summing over all κ ∈ Th.

4 Space decomposition for hp-DG methods

The design of our preconditioner is based on a two-stage space decomposition: we first split the
high order DG space as Vhp = V B

hp+V
C
hp, with V

B
hp denoting a proper subspace of Vhp, to be defined

later, and V C
hp denoting the high order conforming subspace. As a second step, both spaces are

further decomposed to build two corresponding additive Schwarz methods in each of the subspaces.
The final preconditioner on Vhp is then obtained by combining the two subspace preconditioners.
The first space splitting is suggested by the interpretation of the hp-DG formulation (1) as a nearly-
singular problem. To present the motivation behind this choice, we briefly introduce the theoretical
framework of [LWXZ07] regarding space decomposition methods for this class of equations. Given
a finite dimensional Hilbert space V , we consider the following problem: find u ∈ V such that

Au = (A0 + ǫA1)u = f, (6)

where A0 is symmetric and positive semi-definite and A1 is symmetric and positive definite. As
a consequence, if ǫ = 0, the problem is singular, but here we are interested in the case ǫ > 0
(with ǫ small), i.e., (6) is nearly-singular. In general, the conditioning of problem (6) degenerates
for decreasing ǫ, and this affects the performance of standard preconditioned iterative methods,
unless proper initial guess are chosen. In the framework of space decomposition methods, in order
to obtain a ǫ-uniform preconditioner, a key assumption on the space splitting Vhp =

∑N
i=1 Vi is

needed.

Assumption 4 ([LWXZ07]). The decomposition Vhp =
∑N

i=1 Vi satisfies

ker(A0) =

N∑

i=1

(Vi ∩ ker(A0)),

where ker(A0) is the kernel of A0.

We now turn to our DG framework, and show that a high order DG formulation can be indeed
read as a nearly-singular problem with a suitable choice of ǫ. For the sake of simplicity, and without
any loss of generality, we retrieve equation (6) working directly on a bilinear form that is spectrally

equivalent to A(·, ·). To this aim, let the bilinear forms A∇(·, ·), AJ(·, ·) and Ã(·, ·) be defined as

A∇(u, v) :=
∑

κ∈Th

∫

κ

∇u · ∇v dx,

AJ(u, v) :=
∑

F∈Fh

∫

F

JuK · JvK ds,

Ã(u, v) := A∇(u, v) + α
p2

h
AJ(u, v),

and let A∇, AJ , and Ã be their corresponding operators. Clearly, A∇ and AJ are both symmetric
and positive semi-definite, and Ã is symmetric and positive definite. Moreover, thanks to Lemma 1,
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and the quasi-uniformity of the partition, the following spectral equivalence result holds

A(u, u) ≈ ‖u‖2DG ≈ Ã(u, u).

We can then replace formulation (1) with the following equivalent problem

Ãu = (A∇ +
1

ǫ
AJ)u = f̃ , (7)

with ǫ := h/(αp2) < 1. After some simple calculations, we can write (7) as

[ǫ(A∇ +AJ) + (1− ǫ)AJ ]u = ǫf̃ ,

which corresponds to (6) with A1 = A∇ + AJ and A0 = (1 − ǫ)AJ . In order to obtain a suitable
space splitting satisfying Assumption 4, we observe that, according to the definition above, the
kernel of A0 is given by the space of continuous polynomial functions of degree p vanishing on the
boundary ∂Ω. We then derive the first space decomposition

Vhp = V B
hp + V C

hp, (8)

with

V B
hp := {v ∈ Vhp : v(ξp) = 0 ∀ξp ∈

⋃

κ∈Th

NI(κ)},

V C
hp := {v ∈ C0(Ω) : v ◦ Fκ ∈ Qp(κ̂) ∀κ ∈ Th, v|∂Ω = 0} ⊆ H1

0 (Ω),

i.e., V B
hp consists of the functions in Vhp that are null in any degree of freedom in the interior of

any κ ∈ Th. Moreover, we observe that V B
hp ⊂ Vhp, and V

B
hp ∩ V C

hp ⊂ V C
hp, hence Assumption 4 is

satisfied by decomposition (8), which will be the basis to develop the analysis of our preconditioner
for problem (1).

4.1 Technical results

In this subsection we present several results, which will be fundamental for the forthcoming analysis.
We introduce a suitable interpolation operator Qh : Vhp → V C

hp, consisting of the Oswald operator,
cf. [HW96, KP03, EAE04, Bur05, BE07]. For any v ∈ Vhp, we can define on each κ ∈ Th the action
of the operator Qh, by prescribing the value of Qhv in any ξp ∈ N (κ):

Qhv(ξp) :=





0 if ξp ∈ ∂Ω,

1

card(Tξp)

∑

κ∈Tξp

v|κ(ξp) otherwise, (9)

with Tξp := {κ′ ∈ Th : ξp ∈ κ′}. Note that from the above definition it follows that v − Qhv ∈ V B
hp,

for any v ∈ Vhp.

In addition to the space of polynomials Qp(κ), we define Q
p
0(κ) as

Q
p
0(κ) := {v ∈ Qp(κ) : v(ξp) = 0 ∀ξp ∈ NI(κ)},

and state the following trace and inverse trace inequalities.
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Lemma 5 ([BE07, Lemma 3.1]). The following trace and inverse trace inequalities hold

‖v‖2L2(∂κ) .
p2

hκ
‖v‖2L2(κ) ∀v ∈ Qp(κ), (10)

‖v‖2L2(κ) .
hκ
p2

‖v‖2L2(∂κ) ∀v ∈ Q
p
0(κ). (11)

The next result is a keypoint for the forthcoming analysis, and can be found in [BE07, Lemma 3.2];
for the sake of completeness the proof is reported in the Appendix.

Lemma 6. For any v ∈ Vhp, the following estimate holds

‖v − Qhv‖
2
L2(κ) .

hκ
p2

∑

F∈Fh(κ)

‖JvK‖2L2(F ), (12)

with Fh(κ) := {F ∈ Fh : F ∩ κ 6= ∅}.

Thanks to Lemma 6 we can prove the following theorem.

Theorem 7. For any v ∈ Vhp, it holds that

A(v − Qhv, v − Qhv) +A(Qhv,Qhv) . A(v, v), (13)

where Qhv ∈ V C
hp is defined as in (9). Then the space decomposition defined in (8) is stable.

Proof. We observe that, from (3), the quasi-uniformity of the mesh and Lemma 6, we obtain

A(v − Qhv, v − Qhv) .
∑

κ∈Th

α
p4

h2κ
‖v − Qhv‖

2
L2(κ) . α

∑

κ∈Th

p4

h2κ

hκ
p2

∑

F∈Fh(κ)

‖JvK‖2L2(F )

.
∑

F∈Fh

‖σ1/2JvK‖2L2(F ) . A(v, v).

The upper bound (13) follows from the triangle inequality and the above estimate

A(Qhv,Qhv) ≤ A(v − Qhv, v − Qhv) +A(v, v) . A(v, v).

For any v ∈ Vhp, we recall that v − Qhv ∈ V B
hp, which implies

inf
vB∈V B

hp,v
C∈V C

hp

vB+vC=v

A(vB , vB) +A(vC , vC) ≤ A(v − Qhv, v − Qhv) +A(Qhv,Qhv) . A(v, v).

5 Construction and analysis of the preconditioner

In this section we introduce our preconditioner and analyze the condition number of the precondi-
tioned system. Employing the nomencalture of [Xu92], the preconditioner is a parallel subspace cor-
rection method (also known as additive Schwarz preconditioner, see. e.g., [Lio88, Wid88, DW90]).
Our construction uses a decomposition in two subspaces, cf. (8) below, and inexact subspace
solvers. Each of the subspace solvers is a parallel subspace correction method itself.
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5.1 Canonical representation of a parallel subspace correction method

The main ingredients needed for the analysis of the parallel subspace correction (PSC) precon-
ditioners are suitable space splittings and the corresponding subspace solvers (see [Lio88, Wid88,
DW90, Xu92, GO95a, XZ02, TW04]). In our analysis we will use the notation and the general
setting from [XZ02]. We have the following abstract result.

Lemma 8 ([XZ02, Lemma 2.4]). Let V be a Hilbert space which is decomposed as V =
∑N

i=1 Vi,
Vi ⊂ V , i = 1, . . . , N , and Ti : V → Vi, i = 1, . . . , N be operators whose restrictions on Vi are
symmetric and positive definite. For T :=

∑N
i=1 Ti the following identity holds

A(T−1v, v) = inf
vi∈Vi∑
vi=v

N∑

i=1

A(T−1
i vi, vi). (14)

According to the above lemma, to show a bound on the condition number of the preconditioned
system we need to show that there exist positive constants c and C such that

cA(v, v) ≤ A(T−1v, v) ≤ CA(v, v).

Remark 9. In many cases we have Ti = Pi, i = 1, . . . , N , where Pi : V → Vi are the elliptic
projections defined as follows: for v ∈ V , its projection Piv is the unique element of Vi satisfying
A(Piv, vi) := A(v, vi), for all vi ∈ Vi. Note that by definition, Pi is the identity on Vi, namely,

Pivi = vi = P−1
i vi, for all vi ∈ Vi. Hence, for T =

∑N
i=1 Pi, the relation (14) gives

A(T−1v, v) = inf
vi∈Vi∑
vi=v

N∑

i=1

A(vi, vi). (15)

5.2 Space splitting and subspace solvers

To fix the notation, let us point out that in what follows we use T (with subscript when necessary)
to denote (sub)space solvers and preconditioners. Accordingly, P with subscript or superscript will
denote elliptic projection on the corresponding subspace, which will be clear from the context.

We now define the space splitting and the corresponding subspace solvers. We recall the space
decomposition from Section 4, Vhp = V B

hp + V C
hp, where V

B
hp are all functions in Vhp for which the

degrees of freedom in the interior of any κ ∈ Th vanish, and V C
hp is the space of high order continuous

polynomials vanishing on ∂Ω. Note that V B
hp ∩ V

C
hp 6= {0}, and that V B

hp contains non-smooth and

oscillatory functions, while V C
hp contains the smooth part of the space Vhp. Next, on each of these

subspaces we define approximate solvers TB : Vhp → V B
hp and TC : Vhp → V C

hp.

First, we decompose V B
hp as follows

V B
hp =

∑

κ∈Th

∑

ξp∈NB(κ)

V ξp , (16)

where

V ξp :=

{
v ∈ V B

hp : v(ξp
′) = 0 for any ξp

′ ∈

(
⋃

κ∈Th

NB(κ)

)
\ {ξp}

}
.

9



The approximate solver on VB then is a simple Jacobi method, defined as

TB : Vhp → V B
hp, TB :=



∑

κ∈Th

∑

ξp∈NB(κ)

P ξp


PB .

where PB and P ξp are the elliptic projections on V B
hp and V ξp , respectively. Note that TB is defined

on all of Vhp and is also an isomorphism when restricted to V B
hp, because the elliptic projection PB

and P ξp are the identity on V B
hp and V ξp , respectively. In addition, the splitting is a direct sum,

and, hence, any v ∈ V B
hp is uniquely represented as v =

∑
κ∈Th

∑
ξp∈NB(κ) v

ξp , vξp ∈ V ξp . Then,

taking Pi = P ξpPB : Vhp → V ξp , from (15), we have

A(T−1
B vB , vB) =

∑

κ∈Th

∑

ξp∈NB(κ)

A(vξp , vξp), ∀ vB ∈ V B
hp. (17)

Next, we introduce the preconditioner TC on V C
hp. This is the two-level overlapping additive

Schwarz method introduced in [Pav92] for high order conforming discretizations. If we denote by
NV the number of interior vertices of Th, then this preconditioner corresponds to the following
decomposition of V C

hp:

V C
hp =

NV∑

i=0

V C
i . (18)

Here V C
0 is the (coarse) space of continuous piecewise linear functions on Th, and for i = 1, . . . , NV ,

V C
i := V C

hp ∩H
1
0 (Ωi), where Ωi is the union of the elements sharing the i-th vertex (see Fig. 1 for a

two-dimensional example). We recall that, in the case of Neumann and mixed boundary conditions,
in order to obtain a uniform preconditioner, the decomposition (18) should be enriched with the
subdomains associated to those vertices not lying on a Dirichlet boundary, see [Pav92] for details.

Ωi

Ωi

Figure 1: Examples of subdomains in a two-dimensional setting.

Then, for any V C
i , i = 0, . . . , NV , we denote by PC

i : V C
hp → V C

i the elliptic projections on V C
i

and define the two-level overlapping additive Schwarz operator as

TC : Vhp → V C
hp, TC :=

[
PC
0 +

NV∑

i=1

PC
i

]
PC = (P0 + PV )PC , (19)
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where PC is the elliptic projection on V C
hp. As in the case of VB , we have that the restriction of TC

on V C
hp is an isomorphism. In addition, from (15) with Pi = PC

i PC : Vhp → V C
i , we have

A(T−1
C v, v) = inf

vi∈V C
i∑

vi=v

NV∑

i=0

A(vi, vi). (20)

5.3 Definition of the global preconditioner

Finally, we define the global preconditioner on Vhp by setting

TDG : Vhp → Vhp, TDG := TB + TC , (21)

We remark that from Lemma 8, with N = 2, T1 = TB , V1 = V B
hp, T2 = TC , V2 = V C

hp, we have

A(T−1
DGv, v) = inf

vB∈V B
hp,v

C∈V C
hp

vB+vC=v

[
A(T−1

B vB , vB) +A(T−1
C vC , vC)

]
. (22)

5.4 Condition number estimates: subspace solvers

We now show the estimates on the conditioning of the subspace solvers needed to bound the
condition number of TDG. The first result that we prove is on the conditioning of TB .

Lemma 10. Let TB denote the Jacobi preconditioner defined in (5.2). Then there exist two positive
constants CJ

1 and CJ
2 , independent of the granularity of the mesh h, the polynomial approximation

degree p and the penalization coefficient α, such that

A(T−1
B vB , vB) ≥ CJ

1A(vB , vB) ∀vB ∈ V B
hp (23)

A(T−1
B (v − Qhv), v − Qhv) ≤ CJ

2A(v − Qhv, v − Qhv) ∀v ∈ Vhp, (24)

with Qhv defined in (9).

Proof. We refer to the space decomposition (16) and write

vB =
∑

κ∈Th

∑

ξp∈NB(κ)

vξp .

For the lower bound (23), we employ the eigenvalue estimate (3) and Lemma 3, thus obtaining

A(vB , vB) .
∑

κ∈Th

α
p4

h2κ
‖vB‖2L2(κ) .

∑

κ∈Th

α
p4

h2κ

∑

ξp∈NB(κ)

‖vξp‖2L2(κ).

We now observe that for any ξp ∈ NB(κ), v
ξp ∈ Q

p
0(κ), and we can thus apply the inverse trace

inequality (11) to obtain

A(vB , vB) .
∑

κ∈Th

α
p4

h2κ

∑

ξp∈NB(κ)

‖vξp‖2L2(κ) .
∑

κ∈Th

α
p2

hκ

∑

ξp∈NB(κ)

‖vξp‖2L2(∂κ).

11



Noting that ‖vξp‖2L2(∂κ) = ‖JvξpK‖2L2(∂κ), it follows that

A(vB , vB) .
∑

κ∈Th

α
p2

hκ

∑

ξp∈NB(κ)

‖vξp‖2L2(∂κ) .
∑

κ∈Th

∑

ξp∈NB(κ)

‖σ1/2JvξpK‖2L2(∂κ)

.
∑

κ∈Th

∑

ξp∈NB(κ)

‖vξp‖2DG,

and the thesis follows from the coercivity bound (2) and (17).
With regard to the upper bound (24), for the sake of simplicity we denote w = (I − Qh)v, and

observe that w = (I − Qh)w. Since w ∈ V B
hp, we write

w =
∑

κ∈Th

∑

ξp∈NB(κ)

wξp ,

and, from (17),

A(T−1
B w,w) =

∑

κ∈Th

∑

ξp∈NB(κ)

A(wξp , wξp).

Applying again the estimate (3) and Lemma 3, we obtain

∑

κ∈Th

∑

ξp∈NB(κ)

A(wξp , wξp) .
∑

κ∈Th

∑

ξp∈NB(κ)

α
p4

h2κ
‖wξp‖2L2(κ) .

∑

κ∈Th

α
p4

h2κ
‖w‖2L2(κ)

.
∑

κ∈Th

α
p4

h2κ
‖(I − Qh)w‖

2
L2(κ) . A(w,w),

where the last steps follows from Lemma 6 and the quasi-uniformity of the mesh.

For the analysis of the additive preconditioner TC given in (19), we need several preliminary
results (see [Pav92] for additional details). First of all, given the decomposition

v = v0 +

NV∑

i=1

vi ∀v ∈ V C
hp, v0 ∈ V C

0 , vi ∈ V C
i , (25)

we define the coarse function v0 as the L2-projection on the space V C
0 , i.e., v0 := I0v with I0v

satisfying

‖v − I0v‖
2
L2(Ω) . h2|v|2H1(Ω), (26)

|I0v|
2
H1(Ω) . |v|2H1(Ω), (27)

for any v ∈ H1
0 (Ω). For any i = 1, . . . , NV , the functions vi appearing in (25) are defined as

vi := Ip(θi(v − v0)),

where θi is a proper partition of unity and Ip is an interpolation operator, described in the following.

12



For any Ωi, i = 1, . . . , NV , the partition of unity θi is such that θi ∈ V C
h1 and it can be defined

by prescribing its values at the vertices {v} belonging to Ωi, and imposing it to be zero on Ω \ Ωi,
see Fig. 2 for d = 2. More precisely,

θi(v) =

{
1 if v is the internal vertex or Fv ⊂ FB

h ,

0 otherwise,

with Fv := {F ∈ Fh, F ⊆ ∂Ωi : v ∈ F}.

1

0

0

0

00

0 0

0

0

0

0

0

1

1

0

0

0

∂Ω
1

1

0
0

0

1

0

1

0
∂Ω

Figure 2: Values of the partition of unity θi for d = 2.

It follows that:

supp(θi) = Ωi, 0 ≤ θi ≤ 1,

NV∑

i=1

θi = 1, |∇θi| .
1

h
. (28)

As interpolation operator Ip, we make use of the operator defined in [Pav92]: setting z := v − v0,
we define

Ip(θiz)(ξp) = (θiz)(ξp) ∀ξp ∈ N (κ), ∀κ ∈ Ωi. (29)

Notice that, despite defined locally, Ip(θiz) belongs to V C
i since the interelement continuity is

guaranteed by the fact that the (p + 1)d−1 GLL points on a face uniquely determine a tensor
product polynomial of degree p defined on that face. The following result holds.

Lemma 11 ([Pav92, Lemma 3.1, Lemma 3.3]). The interpolation operator
Ip : Qp+1(κ̂) → Qp(κ̂), defined in (29), is bounded uniformly in the H1 seminorm, i.e.,

|Ip(u)|H1(κ̂) . |u|H1(κ̂) ∀u ∈ Qp+1(κ̂). (30)

Once the partition of unity and the interpolation operator are defined, we are able to complete
the analysis of TC . In analogy to Lemma 10, which is based on (17), we now use (20) and the above
auxiliary results to show the following lemma.

Lemma 12. Let TC denote the two-level overlapping additive Schwarz preconditioner defined in
(19). Then there exist two positive constants CC

1 and CC
2 , independent of the discretization param-

eters, i.e., the granularity of the mesh h and the polynomial approximation degree p, such that

A(T−1
C v, v) ≥ CC

1 A(v, v) (31)

A(T−1
C v, v) ≤ CC

2 A(v, v), (32)

for any v ∈ V C
hp.

13



Proof. We first prove the lower bound (31), and given the decomposition (25), we can write

A(v, v) =

NV∑

i,j=0

A(vi, vj) . A(v0, v0) +

NV∑

i,j=1

A(vi, vj).

We now note that A(vi, vj) 6= 0 only if i = j and Ωi ∩ Ωj 6= ∅, and since each Ωi is overlapped by
a limited number of neighboring subdomains, we conclude that

A(v, v) . A(v0, v0) +

NV∑

i,j=1

A(vi, vj) . A(v0, v0) +

NV∑

i=1

A(vi, vi).

Inequality (31) follows from the bound above and (20), denoting with CC
1 the hidden constant.

Note that, from (20), the upper bound (32) is proved provided the following inequality holds

NV∑

i=0

A(vi, vi) ≤ CC
2 A(v, v) ∀v ∈ V C

hp. (33)

We recall that v0 = I0v, and from (27) it follows that

A(v0, v0) = A(I0v, I0v) . A(v, v). (34)

For i = 1, . . . , NV , we have vi = Ip(θiz), with z = v − v0, and by (30), we obtain

|vi|
2
H1(κ′) . |θiz|

2
H1(κ′) .

d∑

j=1

∥∥∥∥
∂θi
∂xj

z + θi
∂z

∂xj

∥∥∥∥
2

L2(κ′)

,

for any κ′ ∈ Ωi. By (28) it holds that

|∇θi| .
1

h
, ‖θi‖L∞ ≤ 1,

hence,

|vi|
2
H1(κ′) .

1

h2
‖z‖2L2(κ′) +

d∑

j=1

‖
∂z

∂xj
‖2L2(κ′) .

1

h2
‖v − v0‖

2
L2(κ′) + |v − v0|

2
H1(κ′).

On any element κ′, a limited number of components vi are different from zero (at most four for
d = 2, and eight for d = 3), which implies that we can sum over all the components vi, i = 1, . . . , NV ,
and then over all the elements, thus obtaining

NV∑

i=1

|vi|
2
H1(Ω) .

1

h2
‖v − v0‖

2
L2(Ω) + |v − v0|

2
H1(Ω) . |v|2H1(Ω),

where the last step follows from (26) and (27). The addition of the above result and (34), gives
(33), denoting with CC

2 the resulting hidden constant.
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5.5 Condition number estimates: global preconditioner

We are now ready to prove the main result of the paper regarding the condition number of the
preconditioned problem.

Theorem 13. Let TDG be defined as in (21). Then, for any v ∈ Vhp, it holds that

A(v, v) . A(T−1
DGv, v) . A(v, v), (35)

where the hidden constants are independent of the discretization parameters, i.e., the mesh size h,
the polynomial approximation degree p, and the penalization coefficient α.

Proof. To prove the upper bound, we first consider the identity (22). Recalling that, by definition
(9), v − Qhv ∈ V B

hp, for any v ∈ Vhp, we obtain

A(T−1
DGv, v) = inf

vB∈V B
hp,v

C∈V C
hp

vB+vC=v

[
A(T−1

B vB , vB) +A(T−1
C vC , vC)

]

≤ A(T−1
B (v − Qhv), v − Qhv) +A(T−1

C Qhv,Qhv).

From the bounds (24) and (32) for Qhv, it follows that

A(T−1
DGv, v) ≤ A(T−1

B (v − Qhv), v − Qhv) +A(T−1
C Qhv,Qhv)

. A(v − Qhv, v − Qhv) +A(Qhv,Qhv) . A(v, v),

where the last step follows from (13). The lower bound follows from (22), the bounds (23) and
(31), and a triangle inequality

A(T−1
DGv, v) = inf

vB∈V B
hp,v

C∈V C
hp

vB+vC=v

[
A(T−1

B vB , vB) +A(T−1
C vC , vC)

]

& inf
vC∈V C

hp

[
A(vB , vB) +A(vC , vC)

]
& A(v, v).

6 Numerical experiments

In this section we present some numerical tests to verify the theoretical estimates provided in
Lemma 10, Lemma 12 and Theorem 13. We consider problem (1) in the two dimensional case with
Ω = (−1, 1)2 and SIPG and LDG discretizations. For the first experiment, we set h = 0.0625,
the penalization parameter α = 10 and β = 1 for the LDG method. In Table 1, we show the
numerical evaluation of the constants CJ

1 and CJ
2 of Lemma 10 and CC

1 and CC
2 of Lemma 12, as a

function of the polynomial order employed in the discretization: the constants are independent of
p, as expected from theory. With regard to the constants CC

1 and CC
2 , we observe that the values

are the same for both the SIPG and LDG methods, since the preconditioner on the conforming
subspace reduces to the same operator regardless of the DG scheme employed.
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Table 1: Left and middle: numerical evaluation of the constants CJ
1 and CJ

2 of Lemma 10 as a
function of p for the SIPG and LDG methods; right: numerical evaluation of the constants CC

1 and
CC
2 of Lemma 12 as a function of p

SIPG (α = 10, β = 0) LDG (α = 10, β = 1)

CJ
1 CJ

2 CJ
1 CJ

2 CC
1 CC

2

p = 2 0.4036 3.0084 0.3844 3.6393 0.2500 1.1606
p = 3 0.4343 2.9133 0.4129 3.3232 0.2500 1.0742
p = 4 0.4502 2.8304 0.4298 3.1487 0.2500 1.0934
p = 5 0.4605 2.7633 0.4410 3.0321 0.2500 1.0820
p = 6 0.4674 2.7088 0.4489 2.9467 0.2500 1.0854

Table 2 shows a comparison of the spectral condition number of the original system (K(A))
and of the preconditioned one (K(TDG)). While the former grows as p4, cf. [AH11], the latter is
constant with p, as stated in (35). The theoretical results are further confirmed by the number of
iterations NPCG

iter and NCG
iter of the Preconditioned Conjugate Gradient (PCG) and the Conjugate

Gradient (CG), respectively, needed to reduce the initial relative residual of a factor of 10−8.

Table 2: Condition number of the unpreconditioned (K(A)) and preconditioned (K(TDG)) linear
systems of equations and corresponding CG (NCG

iter) and PCG (NPCG
iter ) iteration counts as a function

of p for the SIPG and LDG methods

SIPG (α = 10, β = 0) LDG (α = 10, β = 1)

K(A) NCG
iter K(TDG) NPCG

iter K(A) NCG
iter K(TDG) NPCG

iter

p = 2 5.26 · 103 284 14.26 27 8.88 · 103 392 35.02 36
p = 3 1.52 · 104 450 14.22 25 2.29 · 104 556 38.29 31
p = 4 3.38 · 104 684 14.72 26 4.89 · 104 851 37.74 33
p = 5 6.27 · 104 919 15.35 24 8.83 · 104 1137 38.37 30
p = 6 1.05 · 105 1200 15.98 25 1.45 · 105 1482 42.65 32

The second numerical experiment aims at verifying the uniformity of the proposed precondi-
tioner with respect to the penalization coefficient α. In this case, we consider the same test case
presented above, but we now fix the polynomial approximation degree p = 2 and increase α. The
numerical data obtained are reported in Table 3: as done before, we compare the spectral condition
numbers of the unpreconditioned and preconditioned systems and the iteration counts of the CG
and PCG methods. As predicted from theory, while K(A) grows like α, the values of K(TDG) are
constant.
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Table 3: Condition number of the unpreconditioned (K(A)) and preconditioned (K(TDG)) linear
systems of equations and corresponding CG (NCG

iter) and PCG (NPCG
iter ) iteration counts as a function

of α for the SIPG and LDG methods

SIPG (p = 2, β = 0) LDG (p = 2, β = 1)

K(A) NCG
iter K(TDG) NPCG

iter K(A) NCG
iter K(TDG) NPCG

iter

α = 2 1.04 · 103 137 12.66 28 4.55 · 103 297 62.54 47
α = 5 2.62 · 103 205 13.02 28 6.17 · 103 338 41.94 39
α = 10 5.26 · 103 284 14.26 27 8.88 · 103 392 35.02 36
α = 102 5.41 · 104 690 15.73 28 5.78 · 104 717 29.32 31
α = 103 5.44 · 105 1116 15.90 28 5.47 · 105 1142 28.92 30
α = 104 5.44 · 106 1509 15.91 28 5.44 · 106 1518 28.89 30

A Proof of Lemma 6

We first introduce some additional notation. For any κ ∈ Th, we define ∂κd−1 as the set of (d− 1)-
dimensional affine varieties in ∂κ, and ∂ℓκ, ℓ ∈ {d−2, . . . , 0}, as the set obtained as the intersection
of two distinct elements in ∂ℓ+1κ. We observe that ∂κd−1 ⊂ Fh for any κ ∈ Th. The set of nodes
of each element κ can be further decomposed as

N (κ) = NI(κ) ∪NB(κ) = NI(κ) ∪
d−1⋃

ℓ=0

Vℓ, (36)

with Vℓ, ℓ ∈ {d− 1, . . . , 0}, representing the set of interior nodes of ∂κℓ (see Fig. 3).

κ ξ ∈ NI(κ)

ξ ∈ V1

ξ ∈ V0

Figure 3: Distribution of the nodes ξp ∈ N (κ) for p = 4, d = 2.

In analogy to Q
p
0(κ), we define Q

p
0(∂κℓ), ℓ ∈ {d− 1, . . . , 1}, as

Q
p
0(∂κℓ) := {v ∈ Qp(∂κℓ) : v(ξp) = 0 ∀ξp ∈ Vℓ},

and remark that a corresponding form of the trace and inverse trace inequalities of Lemma 5 can
be obtained on Qp(κℓ) and Q

p
0(∂κℓ).

The proof of Lemma 6 can be found in [BE07, Lemma 3.2]. Here we reproduce the same steps,
with only minor changes, mainly regarding the notation.
We denote w = (v − Qhv)|κ and observe that, according to (9), it holds

w(ξp) = 0 ∀ξp ∈ NI(κ).
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Given the set of nodes ξp ∈ N (κ) and the associated Lagrangian nodal basis functions {φξp}, we
can write

w =
∑

ξp∈NB(κ)

w(ξp)φξp ,

cf. (5). From the decomposition (36), it follows that

w =
∑

ξp∈Vd−1

w(ξp)φξp +

d−2∑

ℓ=0

∑

ξp∈Vℓ

w(ξp)φξp =
∑

ξp∈Vd−1

w(ξp)φξp +

d−2∑

ℓ=0

rℓ, (37)

where for any ℓ ∈ {0, . . . , d− 2} we have

rℓ ∈ Q
p
0(κ), rℓ ∈ Q

p
0(∂κl) ∀l ∈ {ℓ+ 1, . . . , d− 1}.

Let us introduce Vd−1,F as the set of interior nodes of F ⊂ ∂κ. For any ξp ∈ Vd−1,F , by (9), we
have that

w(ξp) = γF · JvK(ξp), γF :=





nF,κ if F ⊂ ∂Ω,

1

2
nF,κ otherwise.

We the above notation, we have

∑

ξp∈Vd−1

w(ξp)φξp =
∑

F⊂∂κ

ψF , where ψF := γF ·
∑

ξp∈Vd−1,F

JvK(ξp)φξp

We next observe that ψF (ξp) = 0 for any ξp ∈ NI(κ), i.e., ψF ∈ Q
p
0(κ), and ψF (ξp) = 0 also for

any ξp ∈ ∂κ \ F . We can then apply the inverse trace inequality (11), thus obtaining

‖ψF ‖
2
L2(κ) .

hκ
p2

‖ψF ‖
2
L2(∂κ) .

hκ
p2

‖ψF ‖L2(F ).

Recalling (37), it follows

‖w‖2L2(κ) .
∑

F⊂∂κ

hκ
p2

‖ψF ‖
2
L2(F ) +

d−2∑

ℓ=0

‖rℓ‖
2
L2(κ). (38)

In order to bound the terms on the right hand side of (38), we proceed by considering d = 1, 2, 3
as separate cases. For d = 1, inequality (38) reduces to

‖w‖2L2(κ) .
∑

F⊂∂κ

hκ
p2

‖ψF ‖
2
L2(F ), (39)

and we observe that by the definition of ψF it holds that ψF |F = γF · JvK. As a consequence, (39)
implies (12). For d = 2, (38) reduces to

‖w‖2L2(κ) .
∑

F⊂∂κ

hκ
p2

‖ψF ‖
2
L2(F ) + ‖r0‖

2
L2(κ).
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First of all, we recall that the function ψF is equal to zero on ∂F and coincides with γF · JvK on any
ξp ∈ Vd−1,F , which means that ψF − γF · JvK ∈ Q

p
0(F ). By applying the inverse trace inequality

(11) and the trace inequality (10) , we get

‖ψF − γF · JvK‖2L2(F ) .
hF
p2

‖JvK‖2L2(∂F ) .
hF
p2

p2

hF
‖JvK‖2L2(F ) . ‖JvK‖2L2(F ). (40)

From (40) and the triangle inequality, it follows

‖ψF ‖
2
L2(F ) . ‖JvK‖2L2(F ). (41)

We next estimate the term ‖r0‖L2(2). To this aim, we recall that r0 ∈ Q
p
0(κ) and r0 ∈ Q

p
0(F ). This

allows us to apply the inverse trace inequality (11) twice, thus obtaining

‖r0‖
2
L2(κ) .

hκ
p2

∑

F⊂∂κ

‖r0‖
2
L2(F ) .

hκ
p2

∑

F⊂∂κ

hF
p2

‖r0‖
2
L2(∂F ).

Moreover, we note that, for d = 2, ∂F is given only by two nodes and for ξp ∈ ∂F , a simple
calculation leads to

r0(ξp) =
∑

F ′∈Fξp

ηF,F ′(ξp) · JvK(ξp), (42)

where Fξp := {F ′ ∈ Fh : ξp ∈ F ′} and

ηF,F ′(ξp) :=





±
1

2
nF ′ if ξp ∈ ∂Ω,

±
3

8
nF ′ if F ′ ⊂ ∂κ \ ∂Ω and ξp 6∈ ∂Ω,

±
1

8
nF ′ otherwise.

We then have

‖r0‖
2
L2(∂F ) =

∑

ξp∈∂F

∑

F ′∈Fξp

|ηF,F ′(ξp) · JvK(ξp)|
2 .

∑

ξp∈∂F

∑

F ′∈Fξp

|JvK(ξp)|
2

.
∑

ξp∈∂F

∑

F ′∈Fξp

p2

hF ′

‖JvK‖2L2(F ′) .
∑

F ′:F∩F ′ 6=∅

p2

hF ′

‖JvK‖2L2(F ′),

where the second step follows by the trace inequality (10). Finally we obtain

‖r0‖
2
L2(κ) .

hκ
p2

∑

F⊂∂κ

hF
p2

∑

F ′:F∩F ′ 6=∅

p2

hF ′

‖JvK‖2L2(F ′) (43)

.
hκ
p2

∑

F∈Fh(κ)

‖JvK‖2L2(F ).

By combining (41) and (43) the desired result follows. Finally, for d = 3, inequality (38) reduces to

‖w‖2L2(κ) .
∑

F⊂∂κ

hκ
p2

‖ψF ‖
2
L2(F ) + ‖r0‖

2
L2(κ) + ‖r1‖

2
L2(κ).
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The first two terms on the right hand side can be bounded reasoning as before. To estimate the
last term on the right hand side, we first observe that r1 ∈ Q

p
0(κ) and r1 ∈ Q

p
0(F ), and therefore

we can apply again (11) twice and obtain

‖r1‖
2
L2(κ) .

hκ
p2

∑

F⊂∂κ

‖r1‖
2
L2(F ) .

hκ
p2

∑

F⊂∂κ

hF
p2

∑

E⊂∂F

‖r1‖
2
L2(E). (44)

In analogy to the estimate regarding r0, cf. (42), the following result can be proved

r1|E =
∑

ξp∈V1,E

w(ξp)φξp =
∑

ξp∈V1,E

∑

F ′∈Fξp

ηF,F ′(ξp)JvK(ξp)φξp ,

being V1,E the set of interior nodes of the edge E ⊂ ∂F and FE := {F ∈ Fh : E ⊂ F}. We then
write

‖r1‖
2
L2(E) .

∑

F ′∈FE

∥∥∥
∑

ξp∈V1,E

JvK(ξp)φξp

∥∥∥
2

L2(E)

.
∑

F ′∈FE

‖JvK‖2L2(E) +
∥∥∥
∑

ξp∈V1,E

JvK(ξp)φξp − JvK
∥∥∥
2

L2(E)
,

and observe that

∑

ξp∈V1,E

JvK(ξp)φξp − JvK ∈ Q
p
0(E),

∑

ξp∈V1,E

JvK(ξp)φξp = 0 on ∂E,

which implies by (11) and (10)

∥∥∥
∑

ξp∈V1,E

JvK(ξp)φξp − JvK
∥∥∥
2

L2(E)
.
hE
p2

∑

ξp∈∂E

|JvK(ξp)|
2 . ‖JvK‖2L2(E),

hence,

‖r1‖
2
L2(E) .

∑

F ′∈FE

‖JvK‖2L2(E). (45)

From (44), (45) and (10), we finally obtain

‖r1‖
2
L2(κ) .

hκ
p2

∑

F⊂∂κ

hF
p2

∑

E⊂∂F

‖r1‖
2
L2(E)

.
hκ
p2

∑

F⊂∂κ

hF
p2

∑

E⊂∂F

∑

F ′∈FE

‖JvK‖2L2(E)

.
hκ
p2

∑

F∈Fh(κ)

‖JvK‖2L2(F ).

which combined with the analogous result for r0 and the bound on the norm of ψF , gives the thesis.
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