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Abstract: Personalized medicine is the future of medical practice. In oncology, tumor het-
erogeneity assessment represents a pivotal step for effective treatment planning and prog-
nosis prediction. Despite new procedures for DNA sequencing and analysis, non-invasive
methods for tumor characterization are needed to impact on daily routine. On purpose,
imaging texture analysis is rapidly scaling, holding the promise to surrogate histopatho-
logical assessment of tumor lesions. In this work, we propose a tree-based representation
strategy for describing intra-tumor heterogeneity of patients affected by metastatic cancer.
We leverage radiomics information extracted from PET/CT imaging and we provide an ex-
haustive and easily readable summary of the disease spreading. We exploit this novel patient
representation to perform cancer subtyping according to hierarchical clustering technique.
To this purpose, a new heterogeneity-based distance between trees is defined and applied to
a case study of Prostate Cancer (PCa). Clusters interpretation is explored in terms of concor-
dance with severity status, tumor burden and biological characteristics. Results are promis-
ing, as the proposed method outperforms current literature approaches. Ultimately, the pro-
posed methods draws a general analysis framework that would allow to extract knowledge
from daily acquired imaging data of patients and provide insights for effective treatment
planning. © 2022 The Author(s)

1. Introduction

The current paradigm shifting of modern medical practice sinks its root in providing personalized treatments and
improving therapy outcomes. Huge strides have been made in oncology with the uprising of quantitative imaging
techniques and new procedures for DNA sequencing and analysis that allow an extensive characterization of
cancer subtypes. In particular, recent research has investigated the main causes of cancer progression, resistance to
therapy and late recurrence. Among these, tumor heterogeneity has gained special interest and has been recognized
to play a crucial role [1]: defined as complex genetic, epigenetic and protein modifications that can be found
within the same patient’s disease, tumor heterogeneity behaves as a driver for phenotypic selection. According
to Stanta and Bonin and y Cajal et al. [2, 3], different types of tumor manifestation may exist as a response to
microenvironmental and external changing, differing between primary tumor and proximal and distant metastases.
As a result, certain tumor phenotypes properly respond to therapies and others become resistant clones, leading to
treatments ineffectiveness and cancer progression. Pertinently, detecting at baseline which phenotype will respond
and which will not - known as prognostic cancer subtyping - represents a pivotal step in personalized medicine.

Although recent findings about heterogeneity suggest that therapy would be improved if guided by the analysis
of both primary and metastatic tissues - such as lymph nodes [4] -, clinical practice usually relies on primary
tumor biomarkers for prognosis definition and treatment planning. Thus, baseline assessment emerges altered by
the understimation of intra-tumor heterogeneity which behaves as confounding factor in pre-treatment clinical-
pathological prognosis, leading to poor survival rates [5]. This misalignment between research evidence and clin-
ical practice seems mostly due to the lack of non-invasive methods for heterogeneity quantification. Accordingly,
current prognostic cancer subtyping cannot be translated into daily clinical practice and therapeutic guidelines.

Over the last two decades, the texture analysis of digital images - such as Magnetic Resonance Imaging (MRI)
and Positron Emission Tomography / Computer Tomography (PET/CT) - has arisen as a valuable non-invasive
proxy for biological assessment of tumors, eventually growing in a discipline of its own, namely radiomics [6].
Broadly speaking, image texture analysis consists of extracting descriptors of spatial variation of voxel grey-scale
and intensity within the image Volumes Of Interest (VOI), i.e., the tumor lesions. Under the name of radiomic



features, such textural descriptors form a high dimensional vector embedding of the VOI and may provide a non-
invasive assessment of tumor appearance from routinely acquired imaging studies [7]. These features are indeed
supposed to supply additional predictive and prognostic information, ready to use to postulate the underlying
biological mechanisms of disease progression in clinical routine [8].

Despite the increasing interest in tumor heterogeneity, imaging-guided therapy currently employs biomarkers
for tumor burden that stem from the characterization of the primary tumor, the bigger lesion (often coinciding
with the hottest lesion) or the mean lesions’ profile. Only recently few radiomics-based approaches have been
suggested - for prognosis, treatment outcome and survival prediction - which consider the multi-lesion disease in
a comprehensive way. In particular, several researchers [9, 10, 11] proposed different segmentation strategies for
feature extraction from patient level VOIs, while Cottereau et al. [12] evaluated the predictive power of several
indicators reflecting the spatial distributions of malignant foci spread throughout the whole body. A number of
dissemination features have been explored and reviewed: the number of lesions, the euclidean distance between
crucial or predominant bulks, the largest value of the pairwise sum of the physical distances between lesions, etc.
Stemming from a similar idea, Cavinato et al. [13] proposed a similarity metric for comparing lesions’ texture
descriptions, defining intra-patient heterogeneity as the normalized average of pairwise distances between lesions’
radiomic vectors. This similarity over patient’s lesions description has thus been suggested as functional, rather
than spatial, dispersion index for tumor burden and disease severeness, with promising results in Hodgkin Lym-
phoma [14] and Prostate Cancer [15]. Preliminary results represent an insightful starting point in the debate around
the proper definition of heterogeneous disease.

In this work, motivated by the need to embed tumor heterogeneity quantification into patients’ clinical pathway
planning, we propose a novel way for modeling intra-patient tumor heterogeneity in a non-invasive way, leverag-
ing the radiomic framework. Specifically, we perform dimensionality reduction on radiomic vectors, as to remove
redundancy and collinearity while preserving the multi-view nature of the texture description. Reduced vectors
of peer lesions within the same tumor are then compared via pairwise distances. Representing the patient via the
pairwise distance matrix of its lesions makes it laborious to compare patients with different numbers of lesions.
For this reason, upon lesions’ distance matrix, we build a dendrogram, which hierarchically aggregates peer le-
sions in a unique combinatorial object. This object-oriented representation summarizes the multi-lesion disease
and highlights the evolutionary relationship among lesions, basing on similarities in their imaging characteristics.
In fact, lesions are not independent as they are statistically and semantically connected to the patient they belong
to. Accordingly, such relationship shapes and influences the structure of the dendrogram associated to the patient.
We then exploit the tree-based patient representation to cluster cancer subtypes according to their imaging het-
erogeneity. To do so, we define a new ad hoc distance between trees. To validate the method, we test the whole
pipeline on a dataset of patients affected by metastatic Prostate Cancer (PCa), evaluating the descriptive and strat-
ification performance in terms of disease severeness and outcomes. We associate imaging subtypes to clinically
relevant information within and beyond clinical surrogates, with the goal of eventually supporting therapy deci-
sions wherein actions regarding active surveillance, mild treatment or intensified therapy are devised and taken
[1].

2. Results

2.1. Case study: Prostate Cancer

Within the personalized medicine framework, Prostate cancer (PCa) is a striking example of the need to exploit
an insightful prognostic cancer subtyping for treatment planning. In fact, even if recent studies have reported a
decreasing pattern of overall PCa incidence, Culp et al. [16] and Siegel et al. [17] recorded an alarming mortality
rate due to an increasing trend of distant stage metastatic disease, even in developed countries. Moreover, the role
of imaging-guided therapy for PCa has revealed to be very promising and is consistently spreading in daily prac-
tice [18]. Despite these facts, clinical guidelines still relies on primary tumor biomarkers. Besides, very limited
methods have been proposed for reliably assessing and quantifying multi-lesion heterogeneity information within
the same patient from an imaging point of view. This misalignment between research evidence and clinical rou-
tine results in poor disease free survival rates, mostly due to the lack of non-invasive methods for heterogeneity
quantification.

The case study analyzed in this work is composed by a set of N = 333 lesions belonging to fifty-five patients
of Azienda Ospedaliero-Universitaria Pisana with multi-site, multi-lesion, recurrent Prostate Cancer confirmed
with a positive PET/CT study. The study was performed in accordance with the Declaration of Helsinki and
approved by the local ethics committee. The signature of a specific informed consent and the legal requirements
of clinical trials were waived given the observational retrospective study design. During the observational trial,
patients showed evidence of biochemical recurrence after first-line treatments, exhibiting metastatic disease. Every
patient manifested a different number of tumor lesions ni, according to the spreading burden of the metastatic
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Fig. 1: Patient representation pipeline: lesions’ radiomic vectors of each patient are dimensionally reduced ac-
cording to view-aware Principal Component Analysis. [Step 1] Features are grouped according to the six seman-
tic group, or view, they are semantically divided into. As to preserve a balanced importance between views, two
principal components are kept from the scores of each PCA, leading to different percentages of explained vari-
ability. A total of twelve principal components results from the process, which include six orthogonal pairs of
linear combinations of original features. [Step 2] Accordingly, patients are represented as finite sets of ni points in
R12, that is the reduced radiomic space according to view-aware strategy implementation. In the example, ni = 7.
[Step 3] Pairwise (Euclidean) distance is compute among patients’ lesions and [Step 4] hierarchical clustering
with average linkage is applied to distance matrices, resulting in a dendrogram T representing each patient.

tumor. Information about age, sex, lesion site, total tumor volume, Gleason Score [19], Prostate Specific Antigen
[20] and therapy treatment was collected per each patient. Personal information and qualitative tumor data are
displayed in Table 2 and Table 3. Additionally, from PET/CT, volumes of interest were segmented by experienced
nuclear medicine physicians and texture features were extracted over VOIs according to the radiomic framework,
resulting in forty radiomic features (p = 40).

We fed Prostate Cancer imaging data into the pipeline described in Fig. 1, obtaining a tree-based representa-
tion T for each of the patients. The pruned edit distance dµ

P , as defined in the Methods, was implemented and
leveraged to compute the patient-to-patient distance matrix. Clustering of patients was thus completed according
to hierarchical clustering algorithm with the proposed ad hoc distance and ward linkage. The number of clusters
was selected in the range [2,5], as a trade off between performance and interpretability, according to silhouette
coefficient maximization. The resulting classes could then be intended as groups of patients with similar represen-
tations in terms of heterogeneous disease, to be characterized according to exogenous clinical variables and risk
assessment.

2.2. Clusters characterization

As to profile the clustering, we describe how the stratification procedure captures the differentiation of tumor
heterogeneities and provide a clinical/biological interpretation.

Upon pipeline implementation, hierarchical clustering identified three groups: groups 0, 1 and 2 hosted 39, 10
and 6 patients respectively. In Fig. 3 the curves of the heights of the trees’ vertices over the three groups can be
appreciated: branches present different average heights according to the group their dendrograms belong (see Fig.
3). Groups are shown to entail different heterogeneity extent, following an ANOVA functional approach [21] [22].

Beside the group-wise characterization of tree conformation as manifestation of tumor heterogeneity, clinical
variables were used as exogenous factors to characterize and interpret the groups. We used appropriate tests ac-
cording to the variable type, normality of data and sample size. Normality was tested according to the Shapiro test.



We thus employed Mann-Whitney non-parametric tests for comparing distributions of continuous (non-normal)
variables; parametric t-tests for testing the difference of means in continuous (normal) variables; Levene non-
parametric tests for comparing variances of continuous (non-normal) variable; Bartlett parametric tests for contin-
uous (normal) variable ratio of variances; Chi− squared tests for independence of categorical variable. P-values
are indicated respectively as pm/d for tests on means/distributions, pvar for tests on variance and pind for tests on
independence. Pairwise one-sided comparison between groups rather than multivariate analysis was investigated
as to provide a group-wise characterization. As to avoid potential Type II errors due to small sample size, value of
α = 0.1 was considered for significance.

We evaluated the differences between the obtained groups in terms of number of oligo/multi-metastatic pa-
tients (as classified with two different clinical cut-offs of 3 and 5 lesions), number of patients with bone disease,
total tumor volume and number of tumor lesions. Also, the implementation of combined therapy (such as joint
radiotherapy and chemotherapy with respect to only chemotherapy) and response to therapy were evaluated in pa-
tients of different groups. Additionally, among clinical prognostic tools, tumor aggressiveness is usually assessed
with Gleason Grading System (or Gleason Score) [23]. A Gleason Score (GS) is given to Prostate Cancer based
upon its microscopic appearance with respect to cell differentiation. Pathological scores represent the sum of the
primary and secondary patterns (each ranging from 1 - well differentiated, like normal cells - and 5 - poorly dif-
ferentiated, i.e., abnormal cells) and range from 2 to 10. Higher numbers indicate more aggressive disease, worse
prognosis and higher mortality [19]. In particular, patients with Gleason Score exceeding the value of 7 experience
extraprostatic extension and biochemical recurrence more frequently than others [24]. Accordingly, clusters were
also analyzed in terms of mean Gleason Score and number of patients exceeding GS of 7.

Besides, Prostate Specific Antigen (PSA) has been proposed for screening, assessment of future risk of prostate
cancer development, detection of recurrent disease after local therapy and treatment planning of advanced disease.
Often employed as criteria in combination of stage and GS, its role in early stage assessments is still debated due to
instability of measurements and the presence of confounding factors. However, PSA is still considered a valid tool
for prognosis and treatments in advanced stages of metastatic prostate cancer [25]. Moreover, PSA values after
cytotoxic regimens has been shown to predict survival. Particularly, the decrease in PSA levels is associated to
therapy response in soft tissue lesions and thus could be intended as a proxy of therapy outcome [26]. Accordingly,
we recorded PSA levels before the therapy (PSA0), right after the first line of therapy (PSA1) and at the end of the
follow up (PSA2). Delta-PSA levels were computed between PSA1-PSA0 and PSA2-PSA0 as proxies of cancer
evolution. In the following, they will be referred as PSA, ∆PSA1,0 and ∆PSA2,0.

Table 1 and Fig. 2 elucidate the results. The profile of the blue and green groups are very similar for what PSA
(pm/d = 0.3787, pvar = 0.4714) and ∆PSA1,0 (pm/d = 0.3477, pvar = 0.4533) are concerned, with a very lim-
ited range of values concentrated around zero. Different trends are exhibited by the blue and green curves of the
∆PSA2,0 (pm/d = 0.0591), where the difference could support the hypothesis of different cancer evolution starting
from similar baseline assessments. Yet, they present similar variance (pvar = 0.2159). The orange group, on the
other hand, presents wider ranges and higher intra-group heterogeneity. In particular, orange PSA is significantly
higher than the blue group with a much more spread distribution (pm/d = 0.0116; pvar = 0.0013) yet no statistical
difference with the green groups is confirmed (pm/d = 0.3089; pvar = 0.1845); orange ∆PSA1,0 is significantly
lower than the blue group (pm/d = 0.0019) but not than the green one (pm/d = 0.1810), however its distribu-
tion appears more spread and inhomogeneous, covering both the negative and the positive axis, in both cases
(pvar = 0.0003; pvar = 0.0995). The ∆PSA2,0 of the orange group does not vary from the one of the blue group
(pm/d = 0.3689). However, it shows a higher variance than the other, suggesting a heterogeneous long-term tumor
prognosis (pvar = 0.0066). Also, the orange group and the green group do not differ significantly in their average
(pm/d = 0.1855) but their variances reveal a mild divergence in terms of distribution kurtosis (pvar = 0.1085).

Regarding the number of lesions, the orange group displays a higher number of metastases than the blue one
(pm/d = 0.0081). The green group exhibits a behavior very similar to the blue group (pm/d = 0.4162), diverging
from the orange group with respect to which it presents fewer lesions (pm/d = 0.0722). Moreover, total volume
of the tumor is related to the number of lesions. In fact, the blue group displays a reduced spreading of the tumor
over the body with respect to the orange group (pm/d = 0.0002) but not to the green group (pm/d = 0.4917). The
orange and the green groups also exhibit a statistical difference in terms of tumor volume (pm/d = 0.0306). Of
note, despite the number of metastases in the blue and green groups are very similar, it should be noticed that their
tumor spreading appears shifted in the figure, entailing unrelated tumor burden information. Similarly, the orange
group, while presenting a greater number of lesions, shows an extension of the tumor visually analogous to the
green group. Such discrepancy is imputable to the difference of variances the distributions display.

From these consideration, it appears clear how the green group shows phenotypic similarities and dissimilarities
with respect to both blue group and orange group, presenting an in-between behavior. However, the detach of green
patients from the rest of the population is mostly driven by the different distribution of GS levels. In fact, the blue
and orange groups do not show peculiar differences (pm/d = 0.2967), although both differ from the green group,
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Fig. 2: Results of clustering characterization: first three rows draw the distributions of the numerical clinical
variables in the three groups, namely the PSA values, the ∆PSA1,0, the ∆PSA2,0, the number of lesions, Gleason
Scores and the total tumor volume; last row shows the proportions of the categorical clinical variables in the three
groups, that are the combination of therapy and the response to treatment. For the proportion of skeleton disease
and of the oligo/multi-metastatic status as devised by the two clinical cut-offs (3 and 5 lesions) see Appendix G.

compared to which they have a higher GS (pm/d = 0.0419; pm/d = 0.0601). As it will be further discussed in
discussion, prognostic power of GS values should be taken with the grain of salt due to their qualitative and
aggregated nature.

As for the clinical assessment of patients, the blue and green groups present similar to each other yet opposite
characterizations with respect to the orange group. They display a lower percentage of patient with bone disease
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Fig. 3: a) Curves displaying the filtered heights of the trees’ vertices for the three groups. Operationally, curves
were built as follows: for any fixed height (x-axis), for any tree in the selected group, we count the number of nodes
whose height value is greater than the fixed one (y-axis). The curves in the plot represent the pointwise within-
group means of such counts, and the shaded regions cover an area of 1 standard deviation around the means.
The values of such counting process result in a monotonically non-increasing function detecting information
about trees’ heterogeneity. In fact, higher values of such function, especially as the height threshold becomes
bigger and bigger, correspond to a greater number of heterogeneous lesions in the patients. Patients of group
0 (blue line) are characterized by a very homogeneous disease where trees branches are on average less and
very short compared to the other groups; patients of group 1 (orange line) tend to exhibit more lesions than
patients belonging to group 0, lesions which are intermediately heterogeneous, as their representation trees display
both short branches and longer branches than group 0; patients in group 2 (green line) are associated to very
heterogeneous diseases, displaying a similar number of lesions to group 0, but with the associated branches being
much longer. A synthetic example of tree per each group is displayed in Fig. 7, elucidating the differences with a
graphical support. b) Functional comparison between curves: in order to test the hypothesis that curves belonging
to different groups are different, we use the ANOVA procedure proposed in [21]. It outputs an interval-wise
adjusted p-value function. Depending on the sort and level α of Type-I error control, significant intervals can be
selected. Here, we highlighted in grey the region of significance. Of note, the curves appear different for what
homogeneity-heterogeneity balance is concerned; they loose significance as they approach very big height values.

(pind = 0.0769; pind = 0.1729), therefore fewer people who have undergone an invasive combination of therapies
(pind = 0.0517; pind = 0.0863). Moreover, although the results on the response to therapy are not significant due
to the limited data available, they reveal a certain trend. In fact, both blue and green groups of patients are admin-
istered a milder therapy with respect to orange group. On one hand, such treatment results effective for the blue
group, which shows the highest percentage of responders; while, on the other hand, this is not the case for the
green group, which manifests the highest percentage of non-responders. Group 2 thus exhibit a clinical charac-
terization comparable to group 0, whereas tree conformation analysis and prognostic assessment, i.e., response to
therapy, agree in granting it a higher score of risk. Finally, the orange group presents the highest number of multi-
metastatic patients, followed by the blue group and finally the green group, which hosts mostly oligo-metastatic
patients.

From Fig. 4, some extent of stratification is appreciable, although the groups’ survival curves separation is not
neat and statistically significant (p = 0.12). All patients of group 0 gradually respond since they feature mild
disease, both from a structural, i.e., tree conformation, and clinical point of view. The green group host patients
who the clinic would treat as not severe (in terms of number of lesions, GS and PSA baseline information), but our
radiomics investigation has put in an at risk group, to be properly monitored, in terms of tree structure and tumor
extension. In line with the results of our policy, these patients do not respond to therapy during the study period.
Finally, the orange group carries severe patients from both a structural and a clinical point of view.

Since unsupervised approaches are thoroughly dataset dependent, hierarchical clustering grouped in the same
clusters very heterogeneous patients, due to the limited data available. In fact, clinical variable variance of or-
ange patients was consistently larger than other groups - despite not being the largest cluster. Interestingly, we
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Fig. 4: Group-wise Kaplan Meier curves of time to therapy response: it visually shows the probability of the
response to treatment in a certain time interval. The blue line, the orange line and the green line correspond to group
0, 1 and 2 arising from clustering performed on patients’ dendrograms. Groups have a different time to response.
In particular, green group does not respond to therapy along the study period. Orange group shows indeterminate
results due to the lack of and heterogeneity of clinical data. Blue group gradually responds throughout the study
period.

fit a DBSCAN (Density Based Spatial Clustering of Applications with Noise) algorithm [27] on the pruned-edit
distance matrix which lead to the same clustering policy of patients. In this setting, while blue and green groups
were confirmed to be clusters with similar density, the orange group was classified as noise, i.e., observations
that display inconsistent density characterization. Accordingly, a couple of patients responded to therapy while
the majority did not respond and entered more invasive treatments. For these reasons, the orange survival curve is
hardly interpretable and is left out the discussion. For sure, the high variability of this group testifies that a larger
testing cohort would allow to identify further separations within this group, leading to clearer prognostic results.

2.2.1. Comparison with State-of-the-Art methods

The established radiomics frameworks contemplate the extraction of texture features from a single lesion, often
located on the prostate where the bigger lesion or the primary tumor are found. Such features are usually fed into
a classification or stratification model as to predict cancer diagnosis, staging and prognosis.

As a comparison with the state of the art, we investigated the stratification resulting from the analysis of the
biggest lesions’ textural description. We selected the bigger lesion of each patient, we reduced the texture vector
dimensionality according to view-aware PCA dimensionality reduction procedures and we performed hierarchical
clustering on the patient-to-patient Euclidean distance matrix with ward linkage. The clustering procedure lead
to the stratification of patients into two groups, namely group 0 and group 1. It is worth noting that this clus-
tering approach - based only on the bigger lesion and/or primary tumor - share some extent of the stratification
underpinnings of the tree-based clustering. For the sake of clarity, we refer to one-lesion clustering as tumor clus-
tering and to tree-based clustering as heterogeneity clustering. In particular, tumor clustering resulted to have a
mild concordance with heterogeneity clustering (Rand Index = 0.43 [28]). Coherently, the tumor-based stratifi-
cation leads to clinical significance. Tumor clustering pipeline discriminated between patients with different GS
(pm/d = 0.0259), number of lesions (pm/d = 0.0001), oligo/multi-metastatic disease proportions (pind = 0.0191),
PSA (pm/d = 0.0339), ongoing therapy (pind = 0.0847) and total volume (pm/d < 0.0001). However, ∆PSA1,0
(pm/d = 0.2942), ∆PSA2,0 (pm/d = 0.2920), proportion of patients exhibiting bone disease (pm/d = 0.5220), com-
bination of therapy (pind = 0.3698) and response to therapy (pind = 0.2170) did not result significant in tumor
clustering pipeline. These findings were somehow expected. In fact, therapeutic guidelines are mainly taken on
the basis of the characterization of the primary tumor. Accordingly, these results confirm the role of the primary
tumor in acting as a driver for tumor heterogeneity and enforce radiomics role in the clinical treatment plan-
ning. Nevertheless, despite the coherence with qualitative clinical investigation, tumor-based stratification does
not translate into a risk assessment and prediction. In fact, the Kaplan Meier curve, describing the probability of
response to treatment of the two groups, appear almost superimposed (p = 0.85) and do not reveal any prognostic
mechanism of the clustering.



Variable Test on 0 vs 1 0 vs 2 1 vs 2
(p-values) (p-values) (p-values)

GS Mean 0.2967 0.0419 0.0601
Variance 0.8368 0.5433 0.7093

Gleason Category Independence 0.5129 0.5056 0.3077
Oligo or Multi (> 3) Independence 0.0601 0.9260 0.1729
Oligo or Multi (> 5) Independence 0.0848 0.6868 0.3339
3 <Lesions≤ 5 Independence 0.1969 0.9022 0.3950
N lesions Mean 0.0081 0.4162 0.0722

Variance 0.3871 0.4357 0.1469
Skeleton Independence 0.0769 0.9622 0.1729
Total Volume (ml) Mean 0.0002 0.4917 0.0306

Variance 0.0000 0.0047 0.2009
PSA Mean 0.0116 0.3787 0.3089

Variance 0.0013 0.4714 0.1845
∆PSA1,0 Mean 0.0019 0.3477 0.1810

Variance 0.0003 0.4533 0.0995
∆PSA2,0 Mean 0.3689 0.0591 0.1855

Variance 0.0066 0.2159 0.1085
Ongoing Therapy Independence 0.0601 0.5875 0.3339
Combined Therapy Independence 0.0517 0.6091 0.0863
Therapy Response Independence 0.6856 0.127 0.2907

Table 1: Significance in terms of p-values of the statistical tests between cluster 0 and cluster 1, cluster 0 and cluster
2, cluster 1 and cluster 2 in the proposed pipeline: non-parametric/parametric tests on difference of averages and
variances were performed for (non-normal/normal) numerical variables while tests on category independence were
performed for categorical variables.

As a step forward from one-lesion strategy, radiomics literature suggests to average radiomic descriptions of
peer lesions belonging to a patient, as to obtain one single vector. Such vector-based representation plays for the
mean imaging phenotype of all lesions expressed by a patient, taking into account the variability of the imaging
profiles. Such method provide an information-complexity trade-off between one-lesion strategy and the tree-based
patient representation we propose. Under these considerations, we performed patient-wise weighting of lesions’
vectors, implemented the view-aware PCA dimensionality reduction methods and computed vector-based repre-
sentation of each patient. The pipeline grouped all the patients in one cluster, although one patient with higher
PSA was clustered separately from the rest of the cohort population as to meet hyperparameter criteria (e.g. mini-
mum number of clusters at least equal to 2). Clear stratification was indeed not achieved in this setting, however a
particularly bad-prognosis patient detached from the main group. From these findings, it follows that vector-based
representation model did not lead to clear and solid results in our dataset, suggesting the non robustness of the
lesions’ weighting procedures.

3. Discussion

Current radiomic framework presents some limitations, including the inter-operator variability in imaging acqui-
sition settings, the relatively small sample sizes bounding the performance of supervised approaches, the lack
of standardization, the high dimensionality and the collinearity of radiomics variables as well as the absence
of a clinical interpretation for features [29]. For these reasons, intra-patient tumor heterogeneity quantification
has long been attempted with poorer results, hampering its embedding into daily practice. In this work, we pro-
pose a patient representation for agnostic multi-lesion cancer description, able to overcome intrisinc limitations
of radiomics. The method exploits the texture analysis of lesions’ imaging according to the radiomic workflow,
overcoming features redundancy with PCA-based dimensionality reduction strategies. The proposed dendrogram
representation results agnostic with respect to acquisition settings and operator variability as it is built upon evo-
lutionary and statistical relationship within peer lesions’ descriptions. Moreover, the small sample size issue is
tackled by the employment of unsupervised methods. As to leverage the complex representation for stratification
purposes, a suitable distance between dendrograms was required. Indeed, the pruned tree edit distance was specif-
ically designed for heterogeneity-based hierarchical dendrograms and was the keystone to deliver a stratification
policy based on agnostic disease conformations.



Compared to state-of-the-art disease representation, our approach shapes an exhaustive representation of intra-
patient heterogeneity and devises an informed patient stratification. In fact, it leads to a more complex yet low-
processed modelling of cancer disease, underlining interactions and relationships between lesions of individuals
from which to infer prognostic knowledge. Clearly, one-lesion strategy did not provide a quantification of lesions’
diverse phenotypes within a patient, as it only relies on the primary tumor. Nevertheless, tumor clustering lead to
a coherent stratification with respect to the current clinical biomarkers, i.e., PSA, GS and oligo/multi-metastatic
status. However, such clinically-informed stratification did not reach a significance in terms of prognostic power,
bringing out the limitation of current clinical and radiomic-based biomarkers for treatment and prognosis. Inter-
estingly, the proposed representation brings out a comprehensive way to capture tumor biology and heterogeneity,
revealing a deeper appreciation of the disease than a single lesion or the primary tumor alone. On the other hand,
the vector-based representation was confirmed insufficient to properly embed the patient’s complexity of infor-
mation. In fact, mean radiomic profile seems not to properly capture intra-tumor variability while it overlooks the
primary tumor information entailing clinical information. In both cases - when only the primary tumor is consid-
ered and when the mean radiomic profile of lesions is computed - state of the art methods failed in perspectively
stratifying patients.

Beside descriptive and prognostic purposes, the proposed tree-based representation and stratification of tumor
heterogeneity permits an exhaustive comparison between the role played by the primary lesion and its involvement
into phenotypic selection mechanism. This is worth to be drawn and further investigated from a tumor heterogene-
ity and prognostic point of view. In fact, tumor clustering showed a latent agreement with heterogeneity clustering,
suggesting the reliability of the current clinical practice in assessing intra-tumor characterization from primary le-
sions. Accordingly, primary tumor information seems to be more informative than intra-patient mean lesions’
profiles. If used in combination with dissemination indexes - such as number of metastases, dispersion of intra-
patient lesions’ radiomic profiles and number of involved organs -, primary tumor characterization could provide
enough information to support therapeutic decisions when an exhaustive assessment of tumor metastases results
too expensive.

On note, heterogeneity clustering highlighted milder significance for what GS biomarkers is concerned with
respect to tumor clustering. Pertinently, although GS is a solid clinical prognostic factor driving therapy planning,
it represents the histo-pathological analysis for characterizing primary and secondary tumor biology at molecular
level. Accordingly, the aggregated value, that is the sum of primary differentiation pattern and secondary differ-
entiation pattern, do not entail heterogeneity information. For instance, studies using surrogate PCa end points
have suggested that outcomes for GS 7 cancers vary according to the predominance of pattern 4. PCa mortality,
biochemical progression and development of metastases differ for 3 + 4 and 4 + 3 tumors [30]. This means that,
according to tree-based representation, patients tagged with a GS 7 may still be clustered in different prognostic
groups and alter the tests on averages. For these reasons, GS should not be considered as a solid ground truth for a
perspective model, rather it conveys only a association between radiomic-based heterogeneity assessment and its
biological counterpart, that is tumor microscopic appearance. On the other hand, PSA and ∆PSA values signifi-
cantly supported the predictive power of imaging-based representation in terms of cancer progression and disease
free survival. Consistently, a decrease in PSA levels after treatment regimens was associated to therapy response.
In this sense, exhaustive lesions’ texture assessment and imaging-based heterogeneity quantification devise cancer
subtypes that correlates with prognosis beyond clinical surrogates, eventually supporting treatment planning.

Basing on our and literature findings, the systematic digital tissue collection and its analysis should be enforced
in the translational research of tumor disease and in the developing of targeted therapies. The debate around the
therapeutic exploitation of imaging biomarkers for intra-tumor heterogeneity is nowadays on the cutting edge of
medicine literature and it interlaces with other science field such as mathematics and geometry. This dynamic
interplay between disciplines may provide a propitious route to ultimately attempt to limit tumor progression
and treatment resistance. Stemming from this work, future research could consider longitudinal evolution of
heterogeneity-based representation objects and, accordingly, investigate the course of the disease over time in
a non invasive way.

4. Methods

In this section we outline the steps involved in the proposed methodological pipeline. In particular, methods
for radiomics-based representation of patients’ heterogeneity and its stratification are discussed. We present the
challenges of analyzing a general radiomic dataset proposing an insightful dimensionality reduction approach
(M1). Representation strategy is then deduced and described (M2). We then introduce an existing edit distance
for comparing tree objects, on which we build the proposed metrics. It follows the derivation of an ad hoc metric
(M3) for capturing intra-tumor heterogeneity variability and computing the similarity matrix between patients on
which to perform the stratification according to hierarchical clustering.



4.1. M1: Dimensionality reduction

When managing a radiomic dataset, several challenges come across, above all high dimensionality and collinearity
between features. Thus, prior to pairwise distance computation, lesions’ radiomic vectors need to be properly
reduced as to selectively bring out relevant information.

According to Nioche et al.[31], radiomic features divide into six semantic groups of different methodological
levels of texture analysis. First order statistics are the statistical moments of the grey level distribution extracted
from the VOI under analysis. Shape features describe morphological characteristics of the tumor. The Grey Level
Co-occurrence matrix (GLCM) describes the co-occurrence of pairs of grey values in the VOI at a given distance
δ (offset), usually set to 1, towards thirteen different directions. The Grey Level Run Length matrix (GLRLM) de-
scribes the length of homogeneous runs for each grey level, averaged across thirteen directions. Similarly, the Grey
Level Zone Length matrix (GLZLM) provides information on the size of homogeneous zones for each grey level,
averaged across three dimensions. Finally, the Neighbour Grey Level Difference matrix (NGLDM) corresponds
to the difference of grey levels between one voxel and its twenty-six neighbors in three dimensions. From each
of these groups, several indices are extracted, exhibiting a multi-view intrinsic structure that induces intra- and
inter-group correlation patterns. Accordingly, such vectors disclose high collinearity between their elements that
needs to be properly managed. To overcome this, we propose to separately apply the PCA to each of the radiomic
groups, as to exploit the multi-view nature of the radiomic vectors. In this way, we may keep the information
carried by each group well discerned, as it is methodologically extracted in different ways. A more interpretable
dimensionality reduction comes from the process.

Upon pre-processing, namely missing values imputation and Z-transform normalization of radiomic variables,
we thus perform this novel dimensionality reduction, namely view-aware PCA. We build the patient representation
upon the such reduced radiomic vectors of peer lesions.

4.2. M2: Tree-based patient representation

To exhaustively represent patients’ disease in terms of tumor heterogeneity, relationships between lesions needs to
be learnt from data. Distance between texture descriptors could be an appropriate surrogate. Specifically, radiomic
variables of a lesion - possibly after dimensionality reduction as in M1 - define a lesion-specific point in an
Euclidean space. All lesions belonging to the same patient form a point cloud in Rp, with a number of points ni
equal to the number of patient’s tumor lesions and p being the number of radiomic variables.

Although some frameworks are available to compare point clouds via discrete transport [32] [33], interpretabil-
ity is often limited by the high dimensionality of the embedding space. Also, model based approaches, which
capture the variability of cloud-generating processes by means of interpretable parameters, require a high number
of observations in each point cloud to produce reliable estimations [34].

A more insightful approach would be to transform the point cloud into a proper summary, i.e., a representation,
equally informative and easily readable. Pertinently, hierarchical clustering dendrograms have been extensively
studied in the last decades as they unveil the intrinsic relationship among points of a point cloud (for a review
on hierarchical clustering dendrograms see [35]). In our setting, the rationale behind hierarchical clustering stems
from the need to quantify to which extent lesions, i.e., their radiomic vectors, are similar within patients and how
they get agglomerated, hierarchically, one to each other. A dendrogram is obtained in such a way that lesions are
linked in terms of evolutionary relationship, based on similarities in their imaging characteristics. Fig. 5 graphi-
cally describes the process while Appendix C formalizes the mathematical steps involved. Dendrograms’ structure
reflects the homogeneity between points of the point cloud. For instance, Fig. 7 presents three dendrograms: the
blue one describes a condensed point cloud, the green one presents a scattered point cloud while the orange tree
denotes a hybrid situation.

To build hierarchical clustering dendrograms, a similarity measure is needed together with an agglomerative
criterion - also known as linkage - that best suit the structure of the data and the aim of the analysis. In our setting,
an appropriate similarity measure is the Euclidean distance between lesions’ radiomic vectors, as suggested by
Cavinato et al. [13].

4.3. M3: A novel Heterogeneity-based distance

After having obtained patient representation, we proceed to defining a distance between dendrograms, which
can properly reflect the affinity between patients in terms of tree conformations as manifestation of intra-tumor
heterogeneity. A suitable metric should meet some requirements in order to produce effective results: (1) the
comparison between dendrograms should reflect the properties of the point cloud they stem from: if two point
clouds are close in terms of sparsity and conformation, we require the associated dendrograms to be close as well.
In other words, any metric between dendrograms must hold some continuity properties with respect to the original
point clouds comparison; (2) the metrics should weight differently the homogeneous part of the tree structures



Lesion 

Point cloud 
(Patient)

Merging step 1 Merging step 2 Merging step 3

Fig. 5: Tree-based patient representation via agglomerative hierarchical clustering: from the bottom up to the
root, leaves get agglomerated and merged into bigger and bigger clusters, to finally converge in a single set.
As a consequence, tree branches reflect pairwise similarity between lesions and the tree structure surrogates the
overall dispersion among peer lesions. In the final dendrogram representation, leaves are the lesions of the patient
and edges illustrate the similarity-connection between them. Leaves that are close to each other are intended by
construction to be similar and exhibit a comparable radiomic profile (homogeneous) while distant leaves can be
thought as lesions expressing different imaging phenotypes (heterogeneous). In this sense, dendrogram structure
entails the heterogeneity quantification within the tumor, which needs to be exploited for heterogeneity-based
stratification of patients. For mathematical formulation see Appendix C.

and the heterogeneous ones. This means that distance has to be evaluated as a trade-off between the extents of
homogeneity and heterogeneity exhibited by the lesions of different patients.

4.3.1. Edit distance

Dendrograms are unlabelled object which, in our context, may have a different number of leaves and do not hold
any a-priori correspondence between the leaves in different objects.

The literature dealing with the comparison of dendrograms is reviewed in Appendix B.2, where we detail the
limitations that prevent us from employing existing distances in our context. Recently, Pegoraro et al. [36, 37]
proposed a novel distance for merge trees. Following the authors, we call this metric edit distance for merge trees
and indicate it with dE . The metric dE is defined for weighted, rooted, unlabelled trees. As most of the metrics
for unlabelled trees, its computational complexity has been shown to scale poorly with the number of leaves in
the trees. However, it is particularly efficient for small-scale trees with respect to other metrics. In our setting,
trees present a number of leaves less or equal to the number of tumor lesions in a patient, that is a few dozens
at most. Thus, we can run the comptuation of dE on general purpose machines, like personal computers. Unlike
other metrics, continuity properties are easily proven. Moreover, dE is interpretable, easy to understand and to
communicate.

As depicted in Fig. 6b), one tree T can be modified and transformed into a different tree T ′ by performing
different sets of allowed modifications, each coming with its own cost (for details see Pegoraro et al. [36]). The
set of consequent edit operations which comes at the minimum cost is named the optimal edit path and represents
the core of the edit distance between the two trees. The distance dE is thus the total cost of the optimal edit path
and is defined as:

dE(T,T ′) = inf
γ∈Γ(T,T ′)

cost(γ) (1)

where Γ(T,T ′) indicates all the possible edit paths which start in T and ends in T ′. The algorithm for dE com-
putation is exhaustively detailed in [36]. Through combinatorial objects called mappings, it is shown that dE is a
metric in the space of merge trees and that it can be computed with a Linear Integer Programming approach [36].

Upon these premises, we proceed to verify the two aforementioned conditions. Specifically, we prove the conti-
nuity property of dE (1) and propose a modification of dE as to meet the homogeneity-heterogeneity requirement
(2).
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Fig. 6: Continuity among metrics. a) Housdorff distance between two point clouds: the point clouds get overlapped
and dH is defined as the maximum distance between the two maximally distant points; Hausdorff-closeness reflects
the similarity in the spreading of points of two point clouds throughout the space. Specifically in the radiomic
space, such spreading entails the quantification of inter-patient heterogeneity. This means that Hausdorff-close
point clouds, i.e., patients’ sets of lesions, have similar intra-patient heterogeneity characterization and thus should
be regarded as similar by the metric we employ for dendrograms; b) Tree edit distance between hierarchical
clustering dendrograms: the distance is given by the sum of the costs of the minimum number of modifications
needed for transforming a tree into the other. Modifications include positive/negative shrinking, deletion/insertion
and ghosting/splitting. The shrinking edit multiplies the weight value of an edge with a positive factor, which can
either lengthen (positive shrinking) of shorten (negative shrinking) the original edge weight. The cost of shrinking
an edge is equal to the absolute value of the difference between the initial and the final weights. Deleting or
inserting an edge (v1,v2) removes or introduces a branch at a given height, altering the children-father structure
of the tree. For any deletion/insertion, the cost is equal to the weight of the edge deleted/inserted. Finally, the
ghosting edit eliminates a vertex v that connects only two adjacent edges (order 2 vertex) such as one new edge
results from the sum of the two former edges. The opposite edit is the splitting. Ghosting and splitting have no
cost, therefore order 2 vertices are de facto irrelevant when computing the cost of an edit path; c) Pruned tree
edit distance between pruned dendrograms: pruning removes leaves with weights ≤ ε , eventually aggregating
homogeneous phenotypes. The operator Pε thus gradually discard intra-patient homogeneity, disclosing only the
heterogeneous - independent - tumor phenotypes. Of note, dµ

P is different from dE since the pruning modulates the
effect of cardinality on the distance computation by removing redundant edges of the tree and compressing tree
dimensionality.

4.3.2. Continuity property of dE

As previously stated, the distance between dendrograms must hold continuity results with respect to the original
point clouds comparison: under certain hypotheses, if two clouds are pointwise close, also their merge trees should
be close with respect to dE . In Fig. 6a), we introduce the Hausdorff metric between point clouds (for formal
definition see Appendix D). It can be interpreted as a measure of the pointwise proximity between two point
clouds and provide a comparison between the heterogeneity of two patients’ diseases. In Appendix D, we prove
that Hausdorff-closeness for point clouds implies Edit-closeness for the associated dendrogram objects, i.e., multi-
lesion patients representation.

4.3.3. Homogeneity-heterogeneity trade-off

In the edit distance dE , the distance values are strongly dependent on the clouds cardinalities, meaning that pairs of
point clouds with higher cardinalities tend to be farther apart from pairs of point clouds with smaller cardinalities.



At first sight, such assumption sounds reasonable for stratification purposes. In fact, patients with multiple lesions
are known to exhibit a more severe disease than patients with fewer lesions, as the spreading of the tumor entails
prognostic power. Still, the mere counting of lesions lacks of robustness in perspective studies and, in this context,
may overshadow the variability between hierarchical dendrograms induced by intra-patient heterogeneity. For this
reason, we propose a modification of the metric dE as to mitigate cardinality issue.

4.3.4. Pruned edit distance

The kind of variability we are interested in is the one induced by patient-wise heterogeneity between lesions.
By construction of the dendrogram representation, two lesions of a patient are heterogeneous - in terms of ra-
diomic/imaging description - according to the length of the dendrogram branches connecting them. The longer the
branches, the higher the inter-lesions heterogeneity and, viceversa, the shorter the branches the more homogeneous
the patient’s disease phenotypes. Accordingly, we may want to modulate the extent to which we consider edit costs
according to branch length. In particular, we may want to induce edits applied on small edges to contribute less to
the final distance than bigger edges, which we deem more relevant for stratification purposes.

a) Synthetic patient dendrograms and vertices height densities b) All patient vertices height density
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Fig. 7: Choice of µ: a) costruction of qualitative densities of the vertices heights in three example dendrograms:
the velocity with which leaves get merged in a dendrogram, i.e., edges length variability, reflects the heterogeneity
characterization of lesions. Per every dendrogram, branches heights (rescaled on [0,1] dividing by the highest
value) are annoted on the left and their associated density is inspected. The vertices heights of a patient exhibiting
homogeneous lesions concentrates in a small real interval [0,a] - with a > 0 (blue tree); the vertices heights of a
patient exhibiting heterogeneous lesions spread in a range of values far from zero [a,b], with a,b > 0 (green tree);
a patient showing groups of homogeneous lesions, the one heterogeneous to the others, is associated to a den-
drogram with an explicit clustering structure with clusters with multiple close leaves (orange tree). The vertices
heights distribution displays two components, reflecting both the homogeneity of similar lesions - with values
close to 0 - and the heterogeneity of dissimilar clusters - with values far from 0; b) µ provides the coefficients
with which to weight the different pruning cutoffs ε , to neglect the homogeneity within clusters of similar lesions’
phenotypes and bring out the informative heterogeneity between different phenotypes. To efficient the computa-
tion, a parametric shape of µ is used and empirical heights distributions of all patients (black line) is exploited to
model the distribution. In the population heights distribution, we discern both homogeneous and heterogeneous
phenotypes. The two components are demarked with a saddle point on 0.15. Accordingly, low weights of µ should
be associated to ε ≪ 0.15 and ε ≫ 0.15 and high weights to ε ≃ 0.15. In fact, low ε values entail pure homogene-
ity information while high ε values would lead to discarding useful heterogeneity information. We thus infer to
model µ as an asymmetric bell-shaped density function with one peak centered in the saddle point of the heights
distribution. The Beta family of distributions, supported in [0,1], well meets the requirements; it simplifies both
the numeric integration procedure and the results’ interpretation. The Beta-shaped µ is centered on 0.15 (grey
line), properly tuning α and β shape parameters (α = 2.5,β = 15).

We introduce the pruning operator Pε as regularization strategy, which deletes leaves associated with edges
whose weights are so small that one may want to neglect them in the analysis of heterogeneity. Given a threshold
ε , we consider for deletion all leaves whose father-child edge has weight ≤ ε . However, when two or more of
candidate leaves share the same father, i.e. they are siblings, we delete all the leaves but the one with the bigger
weight. Moreover, if the weights of the siblings are equal, as it is often the case in clustering dendrograms, we
randomly choose to keep one of them, delete the other(s) and, eventually, ghost their father (see Fig. 6 for meaning
of ghosting). This pruning operation is recursively iterated until no leaves with small edges can be found. To note,



removing only one leaf in case of two small-weight siblings is equivalent to considering the two leaves as clustered
together from the “beginning” in the hierarchical clustering procedure. Accordingly, siblings leaves (lesions) entail
phenotype expressions so similar to be considered as one single imaging phenotype. In this way, the pruned tree
displays the number of different phenotypes coexisting in the patient instead of the mere number of lesions. Fig.
6c) displays the edits needed for transforming a pruned tree into another, whose costs determine the pruned edit
distance.

Operationally speaking, the “correct” value of ε is a-priori unknown and needs to be tuned with a complexity-
information trade-off. To enhance the robustness of this parameter choice, we take the weighted average of the
distances between two trees pruned with all the possible values of ε . Accordingly, the definition of pruned edit
distance for general merge trees develops as follows. Given two merge trees T and T ′, the pruned edit distance is:

dµ

P (T,T
′) :=

∫
R

dE(Pε(T ),Pε(T ′))dµ(ε) = Eε∼µ [dE(Pε(T ),Pε(T ′)] (2)

where µ is a finite measure on R which provides the weighting strategy across different values of ε in order to
compute a weighted average among trees distances. The higher the mass µ associated to an interval [a,b], the
bigger the contribution to the final result of the tree distance according to ε ∈ [a,b]. In other words, the measure
µ allows to control the contribution to the final distance of branches with weight below ε , which are indeed
homogeneous enough to be removed. Fig. 7 elucidates the choice of µ tuned on case study data. Note that if we
have a sequence of weakly converging probability measures µn ⇀ µ , then dµn

P (T,T ′)→ dµ

P (T,T
′). This implies

that the proposed distance is robust with respect to the choice of µ: similar measures µ (in the sense of weak
convergence) would give similar distances.

To assess the different behaviours between dE and dµ

P and the extent to which dµ

P is suitable for our purposes,
in Appendix F we present a detailed simulation study. Moreover, we can prove that, under general conditions on
µ , dµ

P is still a metric (for proof see Appendix E).



APPENDIX

A. Patients’ personal information summary

Tables 2 and 3 summarize the patients’ population.

Variable Mean Std. dev. Median Range

Age 72.09 7.03 71.68 54.88 – 85.24
Total volume 16.41 34.72 3.16 0.22 – 207.70
Gleason Score 7.73 1.03 7.00 5.00 – 9.00
PSA 18.16 70.96 2.66 0.09 – 591.00

Table 2: Statistical summary of patients’ personal information (continuous variables).

Variable Number of patients (%)

Number of metastases Oligo (<3) 38 (41.3%)
Multi (≥3) 54 (58.7%)
Oligo (<5) 60 (65.22%)
Multi (≥5) 32 (34.78%)
Intermediate (3≤n<5) 22 (23.92%)

Gleason Score (dichotomous) <7 8 (8.7%)
=7 45 (48.91%)
>7 31 (33.69%)
missing 8 (8.7%)

Ongoing therapy Y 33 (35.87%)
N 59 (64.13%)

Initial therapy RP 23 (25%)
RP+RT 52 (56.52%)
RT 9 (9.78%)
missing 8 (8.7%)

PSA (dichotomous) ≤ 1.93 33 (35.87%)
>1.93 48 (52.17%)
missing 11 (11.96%)

Table 3: Statistical summary of patients’ personal information (categorical variables).

B. Distance metrics for trees: literature review

B.1. Different Kinds of Trees

Before reviewing the existing metrics for distances among tree objects, it is worth to list the different kinds of tree
that have been defined throughout the years. We integrate the different definitions and approaches presented in
literature under the light of this work’s objectives, by adopting the most appropriate definition for our purposes.

We start from the general definition of a tree structure found in [36] and [37].

Definition 1. A tree structure T is given by a set of vertices VT and a set of edges ET ⊂ VT ×VT which form a
connected rooted acyclic graph. We indicate the root of the tree with rT . We say that T is finite if VT is finite. The
order of a vertex of T is the number of edges which have that vertex as one of the extremes. Any vertex with an
edge connecting it to the root is its child and the root is its father: this is the first step of a recursion which defines
the father-children relationship for all vertices in VT . The vertices with no children are called leaves or taxa. The
set of leaves is called LT . Vertices which are not leaves are called internal and they are collected in the set IT .
The relation f ather > child induces a partial order on VT . The edges in ET are identified in the form of ordered
couples (a,b) with a < b. A subtree of a vertex v is the tree structure whose set of vertices is {x ∈VT |x ≤ v}.

On top of this definition, tree structures primarily divide into unlabelled trees - also called tree-shapes - and
labelled trees, depending on whether the set-related information contained in the leaves - also called labels - is
considered or discarded. When dealing with unlabelled trees we want to work up to the following set of maps.



Definition 2. Two tree structures T and T ′ are isomorphic if there exists a monotone bijection η : VT → VT ′

inducing a bijection between the edges sets ET and ET ′ : (v,v′) 7→ (η(v),η(v′)). Such η is an isomorphism of tree
structures.

On the other hand, labelled trees are of interest in many applications, where are used to infer information about
labels’ description. Thus, the comparison between trees has to be driven with regard to the labeled structure.

Definition 3. A label-preserving isomorphism between the tree structures T and T ′ is an isomoprhism of trees
η : VT →VT ′ such that ηLT = idLT . The term idA is the identity map on a set A.

Accordingly, we provide the following definitions.

Definition 4. An unlabelled tree or, equivalently, a tree shape, is the isomorphism class of a tree structure. A
labeled tree is the label-preserving isomorphism class of a tree structure. Labelled phylogenetic trees and labelled
hierarchical clustering dendrograms are names which are used instead of labeled trees in some precise scientific
contexts.

Beside unlabelled and labelled trees, there are some in-between structures which posses some additional order-
ing properties on the vertices. In particular:

Definition 5. A ranked tree shape is a tree shape T with a complete ordering of the internal vertices IT . Similarly
we may have ranked labeled trees.

A step forward in the analysis of tree objects is represented by weighted trees (or clustering dendrograms). Such
structures entail information about both the tree structure and the length of the branches, which may carry some
relevant insights for many applications.

Definition 6. A weighted tree shape is a tree shape T along with a weight function wT : ET → R>0. The weight
value of a branch/edge is sometimes called length of the branch, due to its positive value. In some contexts such
trees are also called genealogies.

Unlabelled clustering dendrograms are a particular case of weighted tree shapes. To introduce them we need to
formalize the following notation. Given a tree structure T ad a vertex v ∈VT , we call ζv the set ζv = {v′ ∈VT |v ≤
v′ ≤ rT}. That is, ζv contains all the points between v and the root rT .

Definition 7. A weighted tree shape T is isochronously sampled - or, equivalently, is a clustering dendrogram -
if for any couple of leaves (l, l′) we have ∑v∈ζl

wT (v) = ∑v′∈ζl′
wT (v′). This means that the leaves are all at the

same distance from the root. If this does not happen, the tree shape is said to be heterochronously sampled.

In this paper we focus our interest on isochronously sampled weighted tree shapes, since dendrograms obtained
from hierarchical clustering are indeed isochronously sampled. For this reason, we use the word (hierarchical
clustering) dendrogram as to identify an isochronously sampled weighted tree shape. Nevertheless, the result in
Section E holds also for heterochronously sampled trees.

B.2. Distance Metrics between Trees

As previously stated, dendrograms are unlabelled object which, in our context, may have a different number of
leaves and do not hold any a-priori correspondence between the leaves in different objects. The literature dealing
with the comparison of dendrograms divide in two macro-areas, including (1) metrics defined for clustering den-
drograms and (2) metrics designed for merge trees. The first family of metrics mainly deals with labeled trees as
byproducts of a hierarchical clustering algorithm. We refer to Flesia et al. [38] for an exhaustive review of distance
definitions. This kind of metrics are known to be heavily dependent on the graph structure of the dendrograms,
leading to some limitations when comparing dendrograms with a different number of leaves. Moreover, theoretical
continuity results with respect to dendrogram-associated point clouds are often lacking. On the other hand, within
topological data analysis, dendrograms are ofen referred as a particular case of merge trees, obtained when all the
leaves of a merge tree lie at height 0. This allows to transfer merge tree literature, the second family of metrics, to
dendrogram analysis. In this Section we review the first family of metrics, detailing definitions and limitations of
employing those distances in our context. Most of the metrics belonging to the second family, instead, shares one
main drawback, namely the out of reach computational cost [39, 40, 41], which makes them unsuitable for our
application. Besides, the metrics with more performing algorithms [42, 43] still lack the theoretical investigation
to assess some practical properties, making them less worthy than others.



LAB

One of the main points of interest in comparing trees is to interpret them as explaining the evolution of a fixed
set of labels under some “agglomerative” criterion, being it a clustering criterion or a genetic evolution summary.
For this reason, a lot of research focused on comparing labelled trees. The most notable examples of metrics for
weighted labelled trees are the Robinson-Foulds metric [44] and the BHV metric [45]. A number of limitations of
these metrics has been pointed out by [46] and [47]. In particular, severe shortcomings prevent researchers from
comparing weighted tree shapes with a variable number of leaves.

SHAPE

Recently [48] proposed a distance to compare tree shapes. Such metric is based on a numeric representation of
tree shapes, obtained with a labeling related to the tree isomorphism algorithm. Then it produces vectors enriching
this numeric information with indices based on frequencies of subtrees shape and other statistical summaries
of the tree, including length-related information like spectral differences, Sackin or Colless imbalance, etc. The
metric between trees is obtained as the Euclidean metric between these vectors. A key point for us is that the
contributions of the part of the vector depending on the tree shape and the one obtained from the length of the
edges are independent. Accordingly, although this metrics shows good linearity and convexity properties, it reveals
too sensitive to the underlying tree structure.

MAT

[49] produces a metric to compare ranked tree shapes and ranked genealogies based on a matrix representation of
ranked tree shapes. The dimension of such matrix is determined by the number of leaves possessed by the tree and
thus to be coherently compared, two trees must possess the same number of leaves. In fact, the metric between
trees is defined as some Euclidean metric between the corresponding matrices. This limitation makes this metric
unsuitable for our purposes.

LAP

A graph-oriented approach is pursued by [50]: the authors represents a tree shape (possibly weighted and hete-
rochronously sampled) by means of its graph laplacian matrix. From such matrix the sequence of eigenvalues is
extracted: eigenvalues are know to be heavily dependent on the graph connectivity and, in particular, on shortest-
path lengths between vertices. Specifically, high eigenvalues arise from areas of the graph which have sparse
nodes with long branches, low eigenvalues correspond to very dense regions of the graph (many nodes connected
by short edges). To get a more versatile summary of the tree, this sequence is then smoothed and normalized, to
obtain a spectral density profile. In order to compare tree shapes, such densities are compared. One drawback of
this representation is that the “operator” which maps a tree shape into a density, has no guarantees to be injective.
Moreover, any information about the rooted nature of the tree and the ordering structure of leaves is discarded,
leading to poor results.

KER

[51] presented a kernel approach to measure similarities between tree shapes. The comparison proceeds as follows:
the kernel looks for all possible subset trees - contiguous portions of (unweighted) subtrees - which are shared
between the trees the kernel and adds up positive contributions for every shared subset tree, weighted by similarity
between lengths. As a result, higher scores will be assigned to trees which share, locally, similar structures and
with similar weights. However, it is to be noted that this is just a measure of similarity and does not provide
a proper distance between trees. Moreover, the authors do not present a comparison with other tree metrics or
similarities, nor enough information to grasp for which purpose their similarity measure is best suited, which kind
of variability between trees it tends to capture and which possible pathologies presents. The authors state that
their “approach is similar to the Robinson-Foulds metric” and thus it may suffer some of the severe shortcomings
pointed out for such metric [46, 47].

An immediate observation that we can make is that most of the aforementioned metrics are not suitable for
our purpose: we need to compare weighted tree shapes with possibly a different number of leaves. Apart from
[SHAPE], [LAP] and [KER] all the others are discarded. Note that any kind of metric defined for labelled trees
can be extended to work with (weighted) tree shapes by trying all possible permutations of labels; but this approach
is clearly computationally out of reach even for small trees.

There are also some reasons for which we discard the metric [LAP]. First, clustering dendrograms are intrinsi-
cally rooted objects, thus there is a well defined height where all the objects are clustered together. From another
points of view, clusters enjoy a partial order relationship given by inclusion which is reflected by the rooted nature



of hierarchical dendrograms. The [LAP] approach, on top of not being a proper distance, completely throws away
this information.

The metrics [KER] and [SHAPE], in addition to the shortcomings already pointed out in the previous lines,
share the following drawback: they are very sensitive to the underlying tree-shapes. For instance, the value of the
metric [SHAPE] cannot be arbitrarily close to zero if two tree shapes are different.

C. Dendrograms construction

In this section we present few technical definition that we need in order to describe the dendrogram representation
we employ. We describe the procedure in the general case of having a finite metric space (X ,d) i.e. a finite set
{x1, . . . ,xn} with a metric d : X ×X →R≥0 which is reflexive, symmetric and satisfies the triangular inequality. In
our case we work with {x1, . . . ,xn} ⊂ Rn and the Euclidean norm.

Definition 8. A tree structure T is given by a finite set of vertices VT and set of edges ET ⊂ VT ×VT which form
a connected rooted acyclic graph. The order of a vertex is the number of edges which have that vertex as one of
the extremes. Any vertex with an edge connecting it to the root is its child and the root is its father. In this way we
recursively define father and children (possibly none) relationships for any vertex on the tree. The vertices with
no children are called leaves and are collected in the set LT , while the set of children of a vertex x ∈VT is called
child(x). Similarly, the vertex f ather(x) is the father of the vertex x.

The relationship f ather > child induces a partial order on VT . The edges ET are given in the form of ordered
couples (a,b) with a < b. For any vertex v ∈ VT , subT (v) is the subtree of T rooted in v, that is the tree structure
given by the set of vertices v′ ≤ v. If clear from the context we might omit the subscript T .

Now, to obtain a dendrogram we need to add some kind of length measure to a tree structure.

Definition 9. A merge tree (T, f ) is a finite tree structure T coupled with a monotone increasing function (with
respect to partial ordering on VT ) f : VT → R. If f (l) = 0 for all l ∈ LT , then we say that the merge tree is a
dendrogram. The function f also defines a weight value for every edge e= (v, f ather(v)): wT (e) = f ( f ather(v))−
f (v).

To build a hierarchical clustering dendrogram TC from a finite metric space (C,dC) we proceed as follows. With
K we indicate the set of clusters we are considering:

(S0) at the beginning K = {{c} | c ∈C}, and every c ∈C is associated to a leaf vc ∈VTC with f (vc) = 0;

(S1) consider all the couples of clusters k1,k2 ∈ K and we measure the distance d(k1,k2) according so some
linkage;

(S2) pick k,k′ ∈K such that d(k,k′) =minki∈K;k1 ̸=k2 d(k1,k2) and add the vertex vkk′ to VTC with f (vkk′) = d(k,k′).
Then remove k and k′ from K and add k∪ k′ to K;

(S3) start again from (S1) unless K =C.

The linkage determines the distance d(k1,k2) between k1,k2 ⊂C and the most common examples are:

• single linkage: d(k1,k2) = minci∈ki dC(c1,c2)

• complete linkage: d(k1,k2) = maxci∈ki dC(c1,c2)

• average linkage: d(k1,k2) = (#k1 ·#k2)
−1 ·∑ci∈ki dC(c1,c2), where #ki is the cardinality of the finite set ki.

• ward linkage: see [52]

It is well known that single linkage is very sensitive to outliers, while complete linkage is the most conservative
choice in term of clustering points together. Average linkage displays a kind of in-between behaviour. For this
reason we resorted to average linkage.

D. Continuity Proposition

The distance between dendrograms must hold continuity results with respect to the original point clouds compari-
son. To prove so, we introduce the definition of the Hausdorff metric between point clouds. Given C = {x1, . . . ,xn}
and C′ = {y1, . . . ,ym} two point clouds a metric space (X ,d), we can build at least a function γ : C →C′ such that
γ(xi) is (one of) the closest point(s) to xi, belonging to the cloud C′. Similarly, we can build ϕ : C′ → C so that



ϕ(y j) is (one of) the closest point(s) to y j, belonging to the cloud C. The Hausdorff distance between C and C′ is
given by:

dH(C,C′) = max{maxx∈Cd(x,γ(x)), maxy∈C′d(y,ϕ(y))} (3)

The distance dH has been proven to be a metric for the space of all compact subsets of X [53]. Translating the
Hausdorff concept from point clouds to dendrograms, we consider the same two point clouds in the metric space
(X ,d), C = {x1, . . . ,xn} and C′ = {y1, . . . ,ym} and we consider TC and TC′ the single linkage hierarchical clustering
dendrograms obtained from C and C′ respectively. In the following, we prove the following result:

Proposition 1. Given C = {x1, . . . ,xn} and C′ = {y1, . . . ,ym} point clouds in a metric space (X ,d) and given
TC and TC′ single linkage hierarchical clustering dendrograms obtained from C and C′ respectively, there is a
simplicial complex S and two functions f : S → R and g : S → R such that the merge tree associated to f (via
sublevel set filtration) is isomorphic to TC, the merge tree associated to g is isomorphic to TC′ , and ∥ f − g ∥∞≤
2dH(C,C′).

Proof. Let γ : C →C′ and ϕ : C′ →C be the two operators which map a point of a point cloud C′ to (one of) the
closest point(s) of the other cloud C and viceversa.

Consider the following simplicial complex S. Its 0 simplices are x1, . . . ,xn,y1, . . . ,ym and its 1 simplices are all
possible edges between 0 simplices, forming a complete graph.

Now we define two functions f : S → R and g : S → R such that the merge trees Tf and Tg obtained with the
lower star filtration from f and g (see [37], Section 2) are isomorphic to TC and TC′ .

Define: f (s) = 0 for every 0 simplex s. Then for a 1 simplex of the form ei j = (xi,x j), we have f (ei j) = d(xi,x j).
For 1 simplices of the form e′i j = (yi,x j) we have f (e′i j) = d(ϕ(yi),x j). Lastly, for 1 simplices of the form e′′i j =
(yi,y j) we have f (e′′i j) = d(ϕ(yi),ϕ(y j)). Note that t ∈ Im( f ) iff t = d(xi,x j) for some i and j. Clearly, f is a finite
set and we can order it: t0 = 0 < t1 < .. ..

Similarly we define g(e′′i j) = d(yi,y j), g(e′i j) = (yi,γ(x j)) and f (e′′i j) = (yi,y j).

Consider now the connected components of the graph S f
t := {s ∈ S| f (s)≤ t} for t ∈ R. If t < 0, S f

t is empty. If
t = t0 = 0, then all 0 simplices are in S f

0 , plus the 1 simplices of the form (xi,y j) such that ϕ(y j) = xi and (yi,y j)
such that ϕ(yi) = ϕ(y j). This means that every vertex yi is connected with exactly one point x j and with all other
yk such that ϕ(yk) = x j. That is, there are n path connected components, one for each xi. Call such components
[xi].

Consider the value t = t1 = d(xi,x j). For every y ∈ ϕ−1(xi) and y′ ∈ ϕ−1(x j), we have f ((y,y′)) = f ((xi,y′)) =
f ((y,x j)) = f ((xi,x j)) = d(xi,x j) and so all these 1 simplices get added, when passing from S f

0 to S f
t1 . Moreover,

these are the only ones which get added. Which means that we get all possible edges between [xi] and [x j] but
all others components are left unchanged. And this happens whenever we hit a level tk = d(xi,x j): we add to the
simplicial complexes S f

tk all possible edges between [xi] and [x j].
Now, we build the single linkage hierarchical dendogram TC associated to C, with labels given by

{{x1}, . . . ,{xn}}, and the merge tree Tf associated to f : S → R with labels {[x1], . . . , [xn]}. An internal ver-
tices of TC indicating the merging of two leaves {xi} and {x j} will be called {xi,x j}, and similarly a vertex called
{xi,x j,xk} indicates that the leaves of the subtree rooted in that vertex are {xi}, {x j} and {xk}. In the same fashion,
an internal vertex of Tf where to components [xi] and [x j] merge is named [xi]

⋃
[x j]. A vertex called [xi]

⋃
[x j]

⋃
[xk]

is associated to the origin of the connected component [xi]
⋃
[x j]

⋃
[xk]. Thus, we can define a map η : VTC → VTf

induced by η(xi) = [xi] and η({xi,x j,xk}) = [xi]
⋃
[x j]

⋃
[xk] which is an isomorphism of merge trees. An analogous

proof yields the isomorphism between TC′ and Tg.
To conclude the proof it is enough to notice that: || f − g||∞ ≤ 2ε with ε = dH(C,C′). In fact, for vertices s:

f (s) = g(s) = 0. For an edge e, we have the following possibilities:

• e = (xi,x j): | f (e) − g(e)| = |d(xi,x j) − d(γ(xi),γ(x j))|. We have d(xi,γ(xi)) ≤ ε , d(xi,x j) ≤
d(γ(xi),γ(x j))+2ε and d(γ(xi),γ(x j))≤ d(xi,x j)+2ε; which, together, give | f (e)−g(e)| ≤ 2ε .

• e = (yi,y j): | f (e)−g(e)|= |d(ϕ(yi),ϕ(y j))−d(yi,y j)|; reasoning as above we obtain | f (e)−g(e)| ≤ 2ε

• e = (xi,y j): | f (e)−g(e)|= |d(xi,ϕ(y j))−d(γ(xi),x j)|. Again in the same fashion we have: d(xi,ϕ(y j))≤
d(xi,y j)+d(y j,ϕ(y j))≤ d(xi,γ(xi))+d(γ(xi),x j)+d(y j,ϕ(y j))≤ d(γ(xi),x j)+2ε . Which entails | f (e)−
g(e)| ≤ 2ε

Corollary 1. Given C = {x1, . . . ,xn} and C′ = {y1, . . . ,ym} point clouds in (X ,d) metric space, and given TC
and TC′ the single linkage hierarchical clustering dendrograms obtained from C and C′ respectively, we have
dE(TC,TC′)≤ 6(n+m)dH(C,C′).



(a) Density of vertices heights from trees in the simula-
tion data, along with the chosen Beta distribution, which
has parameters a = 2 and b = 8. (b) Matrix of pairwise distances obtained with dE .

(c) Matrix of pairwise distances obtained with dP
µ . (d) Absolute differences between the matrix obtained

with dE and dP
µ .

Fig. 8: The plot in the left upper corner is used to fix µ in the case study of Section F, according to the procedure
detailed in Figure 7 of the manuscript; the other figures show the pairwise distance matrices obtained in the case
study of Section F.

Proof. We apply Proposition 1 and then we are in the position to use Theorem 1 in [37] to obtain that dE(Tf ,Tg)≤
3(2dH(C,C′)) · (n+m).

Actually, with the above results, we can prove a more general corollary involving the Gromov-Hausdorff dis-
tance between compact metric spaces.

Corollary 2. Given two compact metric spaces X and Y we define the Gromov-Hausdorff metric as dG−H(X ,Y ) :=
infdH(γ(X),ϕ(Y )) where γ and ϕ vary over all possible isometries of (respectively) X and Y into another (com-
mon) metric space Z.

Then, given two finite metric spaces C = {x1, . . . ,xn} and C′ = {y1, . . . ,ym} and given TC and TC′ the single
linkage hierarchical clustering dendrograms obtained from C and C′ respectively, we have dE(TC,TC′) ≤ 6(n+
m)dG−H(C,C′).

Proof. We apply Proposition 1 and Corollary 1 on the images γ(X) and ϕ(Y ) for every γ : X → Z, ϕ : Y → Z
isometries, and for every Z metric space.

E. Proof about dµ

P being a metric

We prove the following proposition.



(a) Hierarchical Clustering with average linkage of the pairwise distance matrices respectively obtained from
dE , dP

µ and dP
µ but without the outlier represented by vertex 53 in the central dendrogram.

(b) The outlier identified by the hierarchical clustering
with average linkage of the matrix induced by dP

µ .

(c) A randomly chosen dendrogram belonging to group
2. The difference in terms of heteogeneity between
leaves and number of leaves, with the dendrogram in
Fig. 9b is evident.

Fig. 9: Cluster analysis of pairwise distance matrices obtained in the case study of Section F.

Proposition 2. If there is M > 0 such that for every m ≤ M, µ([0,m])> 0 the dP
µ is a metric.

Proof.

• suppose dµ

P (T,T
′) = 0. Let m = min{mine∈ET wT (e), mine′∈ET ′

wT ′(e′)}; then for any ε ∈ [0,m), Pε(T ) = T
and Pε(T ′) = T ′. If dE(T,T ′)> 0, since µ([0,m))> 0, then:

0 <
∫
[0,m)

dE(Pε(T ),Pε(T ′))dµ(ε)≤ dµ

P (T,T
′) = 0

which is absurd. But then dE(T,T ′) = 0 and so T = T ′.

• symmetry is obvious

• the triangle inequality holds for dE and so

dE(Pε(T ),Pε(T ′))≤ dE(Pε(T ),Pε(T ′′))+dE(Pε(T ′′),Pε(T ′))

The linearity of the integral then entails dµ

P (T,T
′)≤ dµ

P (T,T
′′)+dµ

P (
′′T,T ′).



(a) Estimated density of the first component of the data
in the first cluster identified by dP

µ , versus the densities
generating the samples two groups.

(b) Estimated density of the second component of the
data in the first cluster identified by dP

µ , versus the den-
sities generating the samples two groups.

(c) Estimated density of the first component of the data
in the second cluster identified by dP

µ , versus the densi-
ties generating the samples two groups.

(d) Estimated density of the second component of the
data in the second cluster identified by dP

µ , versus the
densities generating the samples two groups.

Fig. 10: Densities estimated through the aggregation of the data collected in the two clusters identified by dP
µ .

F. Heterogeneity-based Simulation for dP
µ

In this section, we test the metric dP
µ and the whole pipeline employed in the case study of the main manuscript

in a supervised - in a broad sense - and easier setting. In particular, the aim of this simulation is to showcase the
differences between dE and dP

µ and to which extent dP
µ captures heterogeneity in a point cloud.

We generate point clouds in R2 according to two generating processes. The size ni
1 of the i-th point cloud of

the first group is sampled uniformly from [2,20]
⋂
Z and then a sample of size (ni

1,2) is taken from a normal
distribution N (0,σ1), with σ1 = 1. Similarly, the j-th point cloud of the second group has cardinality n j

2 sam-
pled uniformly from [2,10]

⋂
Z, and the cloud itself is taken as a sample of size (n j

2,2) distributed according to
N (0,σ2), with σ2 = 2. The data set of point clouds contains 50 clouds of the first group and 50 of the second
group.

From the data-generating processes it is clear that the sources of variability between the two groups arise
potentially from the different cardinalities of the point clouds and variance within each cloud. We want to show
that, while the metric dE is susceptible to both kind of variability, dP

µ , with an appropriately chosen measure µ ,
can mitigate the variability coming from higher cardinalities in the clouds sampled according to the first process.
In particular, group 1 is expected to display a lower level of heterogeneity within each point cloud and thus those
trees, for our purposes, should be regarded as more similar between each other compared to the other trees. The
second group instead may not display a clear clustering structure, in fact, despite exhibiting a common level of
heterogeneity, the different number of leaves and the different merging structure at the level of very heterogeneous
leaves could prevent all such dendrograms to form a recognizable cluster - or, equivalently, could give birth to a
cluster with higher dispersion.

Following the pipeline presented in the main manuscript, we extract average linkage hierarchical clustering den-
drograms from the set of point clouds and take pairwise distances both with dE and dP

µ . Examples of dendrograms



Proportion of Skeleton Disease Proportion of Oligo/Multi-metastatic Status (>3)

Proportion of Oligo/Multi-metastatic Status (>5) Proportion of Oligo/Multi-metastatic Status
Multi Oligo Multi Oligo

Multi Oligo Intermediate OligoMulti

Fig. 11: Results of clustering characterization: the proportion of skeleton disease and of the oligo/multi-metastatic
status as devised by the two clinical cut-offs (3 and 5 lesions) are plotter per each of the three group.

belonging to the first and second groups can be found, respectively, in Fig. S9b and S9c. We select µ as in the
main manuscript, Section 4.3.2, with the final choice being a Beta distribution with parameters a = 2, b = 8, as
shown in Fig. S8a. The two matrices are reported in Fig. S8, with data being ordered according to the two groups:
the first 50 point clouds belong to the first group, and the following 50 to the second. By visual inspection of Fig.
S8b and S8c we can clearly see that dE sees very little structure in the data, because of the two sources of vari-
ability (cardinality and variance) mixing up and preventing dE to discriminate between group 1 and 2. Instead dP

µ

recognizes a clear and pronounced cluster made by point clouds from group 1 plus, potentially, some other point
clouds belonging to group 2. The rest of the point clouds of group 2 still show some agglomerative structure, but
less evident. The matrix in Fig. S8d shows the pointwise differences between the values obtained with dE and dP

µ ,
highlighting how the different behaviour of the two metrics concentrates on the data belonging to the first group.

To get more insights into the clustering structures expressed by dE and dP
µ we extract the hierarchical cluster-

ing dendrograms with average linkage from the two matrices. These dendrograms are reported in Fig. S9a. The
leftmost tree is obtained from dE and the central from dP

µ . To better compare the clustering structures we remove
from this last dendrogram the outlier (v53), obtaining the rightmost tree.

Visual inspection of the dendrograms in Fig. S9a reveals a two-clusters structure in both metric spaces, with this
structure being much more recognizable in the metric space induced by dP

µ . In particular, the rightmost dendrogram
shows a very cohesive and compact cluster, with very low internal variability, which is absent in the leftmost tree.
The other cluster of the same tree, instead, displays a much higher level of variability.

Now we show that this clustering structure reflects the group structure that generated our data. We cut the
rightmost tree to obtain two clusters. Then, for each cluster, we aggregate the points contained in the data of such
cluster and we estimate the marginal densities from the obtained samples. The results of this estimation pipeline
is showcased in Fig. S10. We see that we retrieve the two distributions which we used to generate the components
of the point clouds of the two groups.

This is precisely the behaviour we aimed to achieve: being insensitive to the cardinality of small homogeneous
features, while still being sensitive to cardinalities and merging structures characterized by high heterogeneity.

G. Additional plots for clustering interpretation

Fig. 11 integrates the results, in terms of cluster characterization.
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