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ANALYSIS OF A GREEDY RECONSTRUCTION ALGORITHM1

S. BUCHWALD∗, G. CIARAMELLA† , AND J. SALOMON‡2

Abstract. A novel and detailed convergence analysis is presented for a greedy algorithm that3
was introduced in [14] for operator reconstruction problems in the field of quantum mechanics.4
This algorithm is based on an offline/online decomposition of the reconstruction process and on5
an ansatz for the unknown operator obtained by an a priori chosen set of linearly independent6
matrices. The presented convergence analysis focuses on linear-quadratic (optimization) problems7
governed by linear differential systems and reveals the strong dependence of the performance of8
the greedy algorithm on the observability properties of the system and on the ansatz of the basis9
elements. Moreover, the analysis allows us to use a precise (and in some sense optimal) choice of10
basis elements for the linear case and led to the introduction of a new and more robust optimized11
greedy reconstruction algorithm. This optimized approach also applies to nonlinear Hamiltonian12
reconstruction problems, and its efficiency is demonstrated by numerical experiments.13

Key words. Hamiltonian identification, operator reconstruction, optimal control problems,14
inverse problems, quantum control problems, greedy reconstruction algorithm.15
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1. Introduction. The identification of Hamiltonian operators plays a funda-17

mental role in the fields of quantum physics and quantum chemistry; see, e.g., [7, 9–18

11,19,21–25] and references therein. Even though the overall literature about Hamil-19

tonian identification problems is quite extensive, the mathematical contribution to20

this area is rather limited. Important mathematical theoretical contributions can be21

found in [2, 4] and in [8, 13], where uniqueness results for quantum inverse problems22

are proved by exploiting controllability arguments. Other techniques, based on the23

so-called Carleman’s estimate, are used in [2] to deduce uniqueness results for in-24

verse problems governed by Schrödinger-type equations in presence of discontinuous25

coefficients. Excluding these few theoretical results, the literature rather focuses on26

numerical algorithms.27

The term Hamiltonian identification often refers to two distinct problems. On the28

one hand, it sometimes indicates the inverse problem associated with the identification29

of a Hamiltonian operator obtained by a numerical fitting of simulated and given30

experimental data. On the other hand, it occasionally refers to both the problem of31

designing experimental parameters (allowing an optimized production of experimental32

data) and the subsequent inverse identification problem. In general, the design of33

experimental parameters includes the computation of control functions allowing an34

efficient numerical solving of the inverse problem.35

In the latter problem, the algorithms proposed in the literature often combine36

the computation of control functions with the production of new synthetic (simu-37

lated) data or experimental data. Mathematically, this framework has given rise to38

two different approaches. The first one [13] consists in a procedure that alternately39

updates a (shrinking) set of admissible Hamiltonian operators and the trial control40

field used to generate new data. The second approach [14] is based on a full of-41

fline/online decomposition and is inspired by the greedy strategy emerged in the field42

of approximation theory in the 2000s; see, e.g., [1] and references therein. Even though43

some mathematical investigations of the first approach can be found in the literature44
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2 BUCHWALD, CIARAMELLA, SALOMON

(see [8,13]), much less is known about the second strategy, for which only preliminary45

numerical results were presented in [14].46

The goal of the present work is to provide a first detailed convergence analysis of47

the Hamiltonian reconstruction strategy defined in [14]. As a by-product, this analy-48

sis allows us to introduce a new more efficient and robust numerical reconstruction49

algorithm.50

The numerical strategy presented in [14] is based on the ansatz that the unknown51

operator can be written as a linear combination of a priori given linearly independent52

matrices. The set of these matrices is denoted by Bµ. The reconstruction process53

is then decomposed in offline phase and online phase. In the offline phase, a family54

of control functions is built iteratively in a greedy manner in order to maximize the55

distinguishability of the system. This phase exploits only the quantum model, without56

any use of laboratory information. The algorithm proposed in [14] for the offline phase,57

that we call in this paper greedy reconstruction (GR) algorithm, consists of a sweep58

over the elements of Bµ. At every iteration of the GR algorithm, one new element of59

Bµ is considered and a new control function is computed with the goal of splitting the60

states generated by the new element and the ones already considered in the previous61

iterations. The computed control functions are experimentally implemented in the62

online phase to produce laboratory data. These are in turn used to define and solve63

an identification inverse problem, aiming at fitting the numerical simulations with the64

corresponding experimental data.65

In [14] the heuristic motivation for the offline phase is that this attempts to66

produce a set of control functions that make the online identification problem uniquely67

solvable (and easier to be solved) in a neighborhood of the true solution. Starting68

from this idea we develop a detailed convergence analysis for linear problems (linear-69

quadratic in the least-squares sense). The analysis of the algorithm for linear problems70

corresponds to a local analysis performed on linearized equations and provides a71

first fundamental step toward the study of full non-linear problems. Our analysis72

relates very clearly the iterations of the offline phase, and the corresponding computed73

control functions, to the solvability of the online identification problem. Moreover, the74

obtained theoretical results will reveal the strong dependence of the performance of75

the greedy reconstruction algorithm on the observability properties of the system and76

on the ansatz of the basis elements used to reconstruct the unknown operator. These77

observations allow us to improve the GR algorithm and introduce a new optimized78

greedy reconstruction (OGR) algorithm which shows a very robust behavior not only79

for the linear-quadratic reconstruction problems, but also for nonlinear Hamiltonian80

reconstruction problems.81

The paper is organized as follows. In Section 2, the notation used throughout82

this paper is fixed. Section 3 describes the Hamiltonian reconstruction problem and83

the original GR algorithm introduced in [14]. The GR algorithm is then adapted to84

linear-quadratic problems in Section 4 and the corresponding convergence analysis is85

presented in Section 5. In Section 6, we introduce some improvements of the GR86

algorithm that lead to an optimized greedy reconstruction algorithm. The OGR al-87

gorithm is presented first for linear-quadratic problems and then extend to nonlinear88

Hamiltonian reconstruction problems. Within Section 6, results of numerical exper-89

iments are shown to demonstrate the efficiency and the improved robustness of the90

new proposed algorithm. Finally, we present our conclusions in Section 7.91

2. Notation. Consider a positive natural number N . We denote by
〈
v,w

〉
:=92

v>w, for any v,w ∈ CN the usual complex scalar product on CN , and by ‖ · ‖293

This manuscript is for review purposes only.



A GREEDY RECONSTRUCTION ALGORITHM 3

the corresponding norm. Further, | z | is the modulus of a complex number z and94

i is the imaginary unit. The space of Hermitian matrices in CN×N is denoted by95

Her(N).1 For any A ∈ CN×N , [A]j,k denotes the j, k (with j, k ≤ N) entry of A and96

the notation A[1:k,1:j] indicates the upper left submatrix of A of size k × j, namely97

[A[1:k,1:j]]`,m := [A]`,m for ` = 1, . . . , k and m = 1, . . . , j. Similarly, A[1:k,j] denotes98

the column vector in Ck corresponding to the first k elements of the column j of99

A, namely [A[1:k,j]]` := [A]`,j for ` = 1, . . . , k. Finally, the usual inner product of100

L2(0, T ;CN ) is denoted by
〈
·, ·
〉
L2 , and L2 := L2(0, T ;R).101

3. Hamiltonian reconstruction and a greedy reconstruction algorithm.102

Consider the finite-dimensional Schrödinger equation103

iψ̇ψψ(t) = [H + ε(t)µ?]ψψψ(t), t ∈ (0, T ], ψψψ(0) = ψψψ0,(3.1)104

governing the time evolution of the state of a quantum system ψψψ ∈ CN , N ∈ N+.105

The internal Hamiltonian H is assumed to be known and the goal is to identify the106

unknown dipole moment operator µ? that couples the quantum system to a time-107

dependent external laser field ε ∈ L2, which acts as a control function on the system.108

Both internal Hamiltonian H and dipole operator µ? belong to Her(N), and ψψψ(t) lies109

in CN . The initial condition is ψψψ0 ∈ CN which satisfies ‖ψψψ0‖2 = 1.110

The true dipole operator µ? is unknown and assumed to lie in a space spanned by111

K linearly independent matrices µ1, . . . , µK , forming the set Bµ = (µj)
K
j=1 ⊂ Her(N),112

where K ∈ N+ satisfies 1 ≤ K ≤ dim Her(N) = N2. Hence, we write µ? = µ(ααα?),113

with µ(ααα) :=
∑K
j=1αααjµj for any ααα ∈ RK .114

To identify the true operator µ? one uses a set of control fields (εm)Km=1 ⊂ L2 to115

perform K laboratory experiments and obtain the experimental data116

(3.2) ϕ(µ?, ε
m) :=

〈
ψψψ1,ψψψT (µ?, ε

m)
〉
, for m = 1, . . . ,K.117

Here, ψψψT (µ?, ε) denotes the solution to (3.1) at time T > 0, corresponding to the118

dipole operator µ? and a laser field ε. The value ψψψ1 ∈ CN is a fixed state with119

‖ψψψ1‖2 = 1 and acts on a state of the quantum system as an observer operator. The120

measurements are assumed not to be affected by any type of noise.121

Using the set of control fields (εm)Km=1 and the corresponding experimental data122

(ϕ(µ?, ε
m))Km=1 ⊂ C, one solves the nonlinear least-squares problem123

min
ααα∈RK

K∑
m=1

|ϕ(µ?, ε
m)− ϕ(µ(ααα), εm)|2,(3.3)124

125

where ϕ(µ(ααα), εm) :=
〈
ψψψ1,ψψψT (µ(ααα), εm)

〉
, with ψψψT (µ(ααα), εm) the solution to (3.1)126

evaluated at time T corresponding to the dipole operator µ(ααα) and the laser field εm.127

Clearly ααα? is a global solution to (3.3).128

In the presented reconstruction problem, several variables are used. Let us clarify129

their roles in plain words:130

• The elements of the basis Bµ can be arbitrarily chosen as data.131

• Given a basis Bµ, the true unknown of the problem is ααα? (or equivalently µ?).132

1Notice that the set of Hermitian matrices forms a (real) vector space if the scalar multiplication
is defined with respect to scalars belonging to R. In fact, if A ∈ Her(N), then cA ∈ Her(N) for
any c ∈ R. However, this is not true for c ∈ C, since choosing, e.g., c = i, the imaginary unit, the
transpose conjugate of iA is −iA.

This manuscript is for review purposes only.



4 BUCHWALD, CIARAMELLA, SALOMON

• The control functions are needed to produce the laboratory data (3.2), which133

are necessary to assemble the (final) inverse problem (3.3). These control134

functions are computed (optimized) by the numerical strategy discussed below135

with the goal of optimizing the conditioning of problem (3.3).136

If the control functions (εm)Km=1 and the data (ϕ(µ?, ε
m))Km=1 are given, problem137

(3.3) is a standard parameter-identification inverse problem written in a minimization138

form. The choice of the laser fields (εm)Km=1 can affect significantly the properties of139

(3.3) and the corresponding solutions. To design an optimized set of control functions,140

in particular with the goal of improving local convexity properties of (3.3), Maday and141

Salomon introduced in [14] a numerical strategy which separates the reconstruction142

process of µ? in offline and online phases. In the offline phase, a greedy reconstruction143

(GR) algorithm computes a set of optimized laser fields (εm)Km=1 by exploiting only the144

quantum model (3.3) and without using any laboratory data. In the online phase, the145

computed control fields (εm)Km=1 are used experimentally to produce the laboratory146

data ϕ(µ?, ε
m) :=

〈
ψψψ1,ψψψT (µ?, ε

m)
〉

and to define the nonlinear problem (3.3).147

While the online phase consists (mathematically) in solving a classical parameter-148

identification inverse problem, the offline phase requires the GR algorithm introduced149

in [14]. The ideal goal of this offline/online framework is to find a good approxima-150

tion of the unknown operator for which the difference at time T between observed151

experimental data and numerically computed data is the smallest for any control. In152

other words, one aims at finding a matrix µ that solves153

min
µ∈spanBµ

sup
ε∈L2

|ϕ(µ?, ε)− ϕ(µ, ε)|2,(3.4)154

155

or equivalently an ααα that solves156

min
ααα∈RK

sup
ε∈L2

|ϕ(µ(ααα?), ε)− ϕ(µ(ααα), ε)|2.(3.5)157

158

Therefore, the goal of the GR algorithm is to generate a set of K control functions159

such that a computed solution to (3.3) is also a solution to (3.4)-(3.5). To do so, the160

heuristic argument used in [14] is that the GR algorithm must attempt to distinguish161

numerical data for any two µ(α̃αα), µ(α̂αα) ∈ spanBµ, µ(α̃αα) 6= µ(α̂αα), without perform-162

ing any laboratory experiment. Following this idea, Maday and Salomon defined163

the GR algorithm as an iterative procedure that performs a sweep over the linearly164

independent matrices (µk)Kk=1 and computes a new control field εk+1 at each itera-165

tion. Suppose that the control fields ε1, . . . , εk are already computed, the new control166

function εk+1 is obtained by two sub-steps: one first solves the identification problem167

(3.6) min
ααα1,...,αααk

k∑
m=1

∣∣∣ϕ(

k∑
j=1

αααjµj , ε
m)− ϕ(µk+1, ε

m)
∣∣∣2,168

which gives the coefficients αααk1 , . . . ,ααα
k
k, and then computes the new field as169

(3.7) εk+1 ∈ argmaxε∈L2

∣∣∣ϕ(µk+1, ε)− ϕ
( k∑
j=1

αααkjµj , ε
)∣∣∣2.170

The step of solving Problem (3.6) is called fitting step, since one attempts to compute a171

vector αααk := [αααk1 , . . . ,ααα
k
k]> that fits the quantities ϕ(

∑k
j=1ααα

k
jµj , ε

m) and ϕ(µk+1, ε
m).172

In other words, the new basis element µk+1 is considered and one identifies an element173
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A GREEDY RECONSTRUCTION ALGORITHM 5

Algorithm 3.1 Greedy Reconstruction Algorithm

Require: A set of K linearly independent matrices Bµ = (µ1, . . . , µK).
1: Solve the initialization problem

(3.8) max
εεε∈L2

|ϕ(µ1, ε)− ϕ(0, 0)|2,

which gives the field ε1 and set k = 1.
2: while k ≤ K − 1 do
3: Fitting step: Find (αααkj )j=1,...,k that solve the problem

(3.9) min
ααα∈Rk

k∑
m=1

|ϕ(µk+1, ε
m)− ϕ(µ(k)(ααα), εm)|2.

4: Discriminatory step: Find εk+1 that solves the problem

(3.10) max
ε∈L2

|ϕ(µk+1, ε)− ϕ(µ(k)(αααk), ε)|2.

5: Update k ← k + 1.
6: end while

µ(k)(αααk) :=
∑k
j=1ααα

k
jµj such that none of the already computed control functions174

ε1, . . . , εk is capable of distinguishing the observations ϕ(µ(k)(αααk), ε) and ϕ(µk+1, ε)175

(namely ϕ(µ(k)(αααk), εm) 6= ϕ(µk+1, ε
m) for m = 1, . . . , k). The step of solving problem176

(3.7) is called discriminatory step, because one computes a control function εk+1 that177

is capable of distinguishing (discriminating) ϕ(µ(k)(αααk), εk+1) from ϕ(µk+1, ε
k+1).178

The full GR algorithm is stated in Algorithm 3.1.2 Notice how the algorithm179

is obtained by a sequence of minimization and maximization problems, mimicking180

exactly the structure of the min-max problem (3.4)-(3.5).181

Notice also that, since the goal of the GR algorithm is to compute control func-182

tions that allow one to distinguish between the states of the system corresponding to183

any possible dipole matrix, the algorithm implicitly attempts to compute control func-184

tions that make the online identification problem (3.3) locally strictly convex (hence185

uniquely solvable). This is an important observation that we will use to begin our186

convergence analysis.187

A general analysis of the greedy reconstruction algorithm in a full nonlinear set-188

ting is a very complicated task. As a first step in this direction, we propose in the next189

section to focus on a linear model. On the one hand, this choice allows us to provide190

a first detailed analysis of the algorithm. On the other hand, this study corresponds191

to a local analysis performed on linearized models. Note that linearizing (3.1) around192

εεε = 0 gives193

i ˙δψψψ(t) = Hδψψψ(t) + [δε(t)µ?]ψψψ(t), t ∈ (0, T ], δψψψ(0) = 0,(3.11)194

where ψ is a solution of (3.1). Focusing on the case where ψψψ(0) is an eigenvector of195

H, i.e. Hψψψ(0) = λψψψ(0). We obtain ψψψ(t) = e−iλtψψψ(0) so that the control term reads196

as [δε(t)µ?]ψψψ(t) = [λµ?ψψψ(0)]e−iλtδε(t). It follows that this framework corresponds to197

2Notice that the initialization problem (3.8) is different from the one considered in [14], which
was stated anyway to be arbitrary. The reason for our choice is that (as we will see in the next
sections) this slightly modified initialization problem (3.8) will be essential to obtain convergence.
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6 BUCHWALD, CIARAMELLA, SALOMON

a linear model of the form ẏyy(t) = Ayyy(t) + Bεεε(t) (as (4.1) in Section 4) with yyy = δψψψ,198

A = H, B = λµ?ψψψ(0), yyy0 = 0 and εεε(t) = e−iλtδε(t). Let us also remark that199

this setting is often used to study theoretically the controllability of Schrödinger-type200

equations, see e.g. [3], and the references therein. Furtermore, we wish to remark201

that it is always possible to rewrite a system of complex differential equations (like202

(3.11) and (3.1)) into a real (but augmented) system by separating real and imaginary203

components. For this reason, the analysis presented in Section 4 focuses, without loss204

of generality, on systems of real differential equations.205

We conclude this section with a final remark about the laboratory measurements.206

Throughout this paper, these are assumed to be not affected by any type of noise,207

even though noise is a significant factor that has to be dealt with; see [13, Remark 1]208

and references therein. However, the main goal of the present work is the numerical209

and convergence analysis of the computational framework and the GR algorithm210

introduced in [14], where noisy effects in taking measurements are also neglected.211

4. Linear-quadratic reconstruction problems. Consider a state yyy whose212

time evolution is governed by the (real) ordinary differential equation213

ẏyy(t) = Ayyy(t) +B?εεε(t), t ∈ (0, T ], yyy(0) = yyy0,(4.1)214

where A ∈ RN×N is a given matrix for N ∈ N+, the initial condition is yyy0 ∈ RN , and215

εεε ∈ Ead denotes a control function belonging to Ead, a non-empty and weakly compact216

subset of L2(0, T ;RM ) (e.g., a closed, convex and bounded subset of L2(0, T ;RM )).217

The control matrix B? ∈ RN×M , for M ∈ N+, is unknown and assumed to lie in the218

space spanned by a set of linearly independent matrices B = {B1, . . . , BK} ⊂ RN×M ,219

1 ≤ K ≤ NM , and we write B? =
∑K
j=1ααα?,jBj =: B(ααα?).220

As in the case of the Hamiltonian reconstruction problem, to identify the un-221

known matrix B? one can consider a set of control functions (εεεm)Km=1 ⊂ Ead and use222

it experimentally to obtain the data CyyyT (B?, εεε
m), m = 1, . . . ,K. Here, yyyT (B?, εεε)223

denotes the solution of (4.1) at time T and corresponding to a control function εεε and224

to the control matrix B?. Further, C ∈ RP×N is a given observer matrix.225

As in Section 3, the reconstruction process is split into online and offline phases.226

In the offline phase, the GR algorithm computes the control functions (εεεm)Km=1. These227

are then used in the online phase, in which the laboratory data228

(4.2) CyyyT (B?, εεε
m), m = 1, . . . ,K229

are obtained and one solves the identification problem230

min
ααα∈RK

K∑
m=1

‖CyyyT (B?, εεε
m)− CyyyT (B(ααα), εεεm)‖22 .(4.3)231

232

As in Section 3, several variables are used in the presented reconstruction problem:233

• The elements of the basis B can be arbitrarily chosen as data.234

• Given a basis B, the true unknown of the problem is ααα? (or equivalently B?).235

• The control functions are needed to produce the laboratory data (4.2), which236

are necessary to assemble the (final) inverse problem (4.3).237

As for the Hamiltonian reconstruction problem, the ideal goal of the offline/online238

framework is to find a good approximation of the unknown operator for which the239

norm difference at time T between observed experimental data and numerically com-240

puted data is the smallest for any control function. In other words, we wish to find a241
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A GREEDY RECONSTRUCTION ALGORITHM 7

Algorithm 4.1 Greedy Reconstruction Algorithm (linear-quadratic case)

Require: A set of K linearly independent matrices B = (B1, . . . , BK).
1: Solve the initialization problem

(4.5) max
εεε∈Ead

‖CyyyT (B1, εεε)− CyyyT (0, 0)‖22 ,

which gives the field εεε1, and set k = 1.
2: while k ≤ K − 1 do
3: Fitting step: Find (αααkj )j=1,...,k that solve the problem

(4.6) min
ααα∈Rk

k∑
m=1

∥∥∥CyyyT (Bk+1, εεε
m)− CyyyT (B(k)(ααα), εεεm)

∥∥∥2
2
,

where B(k)(ααα) :=
∑k
j=1αααjBj .

4: Discriminatory step: Find εεεk+1 that solves the problem

(4.7) max
εεε∈Ead

∥∥∥CyyyT (Bk+1, εεε)− CyyyT (B(k)(αααk), εεε)
∥∥∥2
2
.

5: Update k ← k + 1.
6: end while

matrix B of the form B(ααα) :=
∑K
j=1αααjBj that solves242

min
ααα∈RK

max
εεε∈Ead

‖CyyyT (B?, εεε)− CyyyT (B(ααα), εεε)‖22 .(4.4)243
244

The GR algorithm generates a set of K controls that attempt to distinguish245

numerical data for any two B(α̂αα) 6= B(α̃αα), without performing any laboratory exper-246

iment. The GR algorithm for linear-quadratic reconstruction problems is given in247

Algorithm 4.1.248

Since the convergence analysis performed in the next sections focuses on Al-249

gorithm 4.1, we wish to explain it in more details. The idea is to generate con-250

trols that separate the observations of system (4.1) at time T for the different ele-251

ments B1, . . . , BK , making possible the identification of their respective coefficients252

ααα?1, . . . ,ααα
?
K when solving (4.3). The initialization is performed by solving the optimal253

control problem (4.5), which aims at maximizing the distance (at time T ) between the254

observed state of the uncontrolled system (namely yyyT (0, 0) corresponding to εεε = 0)255

and the observed state of the system256

ẏyy(t) = Ayyy(t) +B1εεε(t), yyy(0) = yyy0.257

The numerical solution of this maximization problem provides the first control func-258

tion εεε1.259

Assume now that the control functions εεε1, . . . , εεεk are computed. The new element260

εεεk+1 is obtained by performing a fitting step (namely solving problem (4.6)) and a261

discriminatory step (namely solving problem (4.7)). In the fitting step, one compares262

the two systems263 {
ẏyy(t) = Ayyy(t) +Bk+1εεε

m(t),

yyy(0) = yyy0,

ẏyy(t) = Ayyy(t) +

(∑k
j=1αααjBj

)
εεεm(t),

yyy(0) = yyy0,
264
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8 BUCHWALD, CIARAMELLA, SALOMON

with B(k)(ααα) :=
∑k
j=1αααjBj and for m ∈ {1, . . . , k}, and looks for an ααα ∈ Rk for which265

their observed solutions at time T are as similar as possible (ideally the same, hence266

indistinguishable). We denote by αααk = [αααk1 , . . . ,ααα
k
k]> the vector computed by solving267

(4.6). This vector is used in the subsequent discriminatory step, which consists in268

solving the optimal control problem (4.7). Here, we compute a control function εεεk+1269

that maximizes the distance (at time T ) between the solutions of the two systems270 {
ẏyy(t) = Ayyy(t) +Bk+1εεε(t),

yyy(0) = yyy0,

{
ẏyy(t) = Ayyy(t) +

∑k
j=1ααα

k
jBjεεε(t),

yyy(0) = yyy0,
271

where now αααkj are fixed coefficients and the optimization variable is the control func-272

tion εεε. Notice that this maximization problem is well posed, as we will discuss in273

Lemma 5.2 in Section 5.274

We wish to remark again that, since the goal of the GR algorithm is to compute275

control functions that permit to distinguish between the states of the system corre-276

sponding to any possible control matrix, the algorithm implicitly attempts to compute277

control functions that make the online identification problem locally uniquely solvable.278

With these preparations, we are ready to present our convergence analysis.279

5. Convergence Analysis. Our analysis is based on a reformulation of the280

algorithm that highlights the link between convergence and observability. We present281

the reformulation of the algorithm in a matrix-vector form in Section 5.1, where the282

main idea of our convergence analysis and its relation with the observability properties283

of the system are first presented. Detailed analyses for fully observable and non-fully284

observable systems are provided in Section 5.2 and Section 5.3, respectively.285

5.1. Matrix-vector formulation and convergence of the algorithm. The286

convergence analysis presented in this section begins by recalling that one of the goals287

of the GR algorithm is to compute a set of control functions that makes the online288

identification problem (4.3) strictly convex in a neighborhood of the solution ααα? (and289

hence locally uniquely solvable). It is then natural to begin with problem (4.3) and290

prove the following lemma, which gives us an equivalent matrix-vector formulation.291

Lemma 5.1 (Online identification problem in matrix form). Problem (4.3) is292

equivalent to293

min
ααα∈RK

〈
ααα? −ααα, Ŵ (ααα? −ααα)

〉
,(5.1)294

295

where Ŵ ∈ RK×K is defined as296

(5.2) Ŵ :=

K∑
m=1

W (εεεm),297

with W (εεεm) ∈ RK×K given by298

(5.3) [W (εεεm)]`,j :=
〈
γγγ`(εεε

m), γγγj(εεε
m)
〉
, for `, j = 1, . . . ,K,299

300

(5.4) γγγ`(εεε
m) :=

∫ T

0

Ce(T−s)AB`εεε
m(s)ds, for m, ` = 1, . . . ,K.301
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Proof. Define J(ααα) :=
∑K
m=1 ‖CyyyT (B?, εεε

m)− CyyyT (B(ααα), εεεm)‖22 and notice that302

yyyT (B?, εεε
m) = eTAyyy0 +

∫ T

0

e(T−s)AB(ααα?)εεε
m(s)ds,

yyyT (B(ααα), εεεm) = eTAyyy0 +

∫ T

0

e(T−s)AB(ααα)εεεm(s)ds.

303

Recalling that B(ααα) =
∑K
j=1αααjBj , the function J(ααα) can be written as304

J(ααα) =

K∑
m=1

∥∥∥∥∥∥
∫ T

0

Ce(T−s)A
( K∑
j=1

(ααα?,j −αααj)B`
)
εεεm(s)ds

∥∥∥∥∥∥
2

2

305

=

K∑
m=1

K∑
`=1

K∑
j=1

(ααα?,` −ααα`)(ααα?,j −αααj)
〈
γγγ`(εεε

m), γγγj(εεε
m)
〉
,306

307

where the vectors γγγ`(εεε
m) are defined in (5.4). We can now write308

J(ααα) =

K∑
`=1

K∑
j=1

(ααα?,` −ααα`)(ααα?,j −αααj)
K∑
m=1

〈
γγγ`(εεε

m), γγγj(εεε
m)
〉

309

=
〈
ααα? −ααα,

K∑
m=1

W (εεεm)(ααα? −ααα)
〉

=
〈
ααα? −ααα, Ŵ (ααα? −ααα)

〉
,310

311

and the result follows.312

Notice that, the matrices W (εεεm) defined in (5.3) can be written as W (εεεm) =313

Γ(εεεm)>Γ(εεεm), where Γ(εεεm) = [γγγ1(εεεm) · · · γγγK(εεεm)]. Hence, W (εεεm) are Hermitian and314

positive semi-definite. This guarantees that Ŵ is also Hermitian and positive semi-315

definite. Therefore, problem (5.1) is uniquely solved by ααα = ααα? if and only if Ŵ is316

positive definite, meaning that the GR algorithm actually aims at computing a set317

of control functions (εεεm)Km=1 that makes Ŵ positive definite. We then need to study318

how the positivity of Ŵ evolves during the iteration of the algorithm. To do so, the319

first step is to rewrite the problems (4.5), (4.6) and (4.7) also in a matrix form.320

Lemma 5.2 (The GR Algorithm 4.1 in matrix form). Consider Algorithm 4.1.321

It holds that:322

• The initialization problem (4.5) is equivalent to323

(5.5) max
εεε∈Ead

[W (εεε)]1,1.324

• The fitting-step problem (4.6) is equivalent to325

(5.6) min
ααα∈Rk

〈
ααα, Ŵ k

[1:k,1:k]ααα
〉
− 2
〈
Ŵ k

[1:k,k+1],ααα
〉
,326

where Ŵ k =
∑k
m=1W (εεεm), and (recalling Section 2) Ŵ k

[1:k,1:k] ∈ Rk×k denotes327

the k × k upper-left block of Ŵ k and Ŵ k
[1:k,k+1] ∈ Rk is a vector containing the328

first k components of the k + 1-th column of Ŵ k.329
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10 BUCHWALD, CIARAMELLA, SALOMON

• The discriminatory-step problem (4.7) is equivalent to330

(5.7) max
εεε∈Ead

〈
vvv, [W (εεε)][1:k+1,1:k+1]vvv

〉
,331

where W (εεε) is defined in (5.3) and vvv := [(αααk)>, −1]>.332

Moreover, problems (4.5)-(5.5), (4.6)-(5.6), and (4.7)-(5.7) are well posed.333

Proof. The equivalences between (4.5), (4.6), (4.7) and (5.5), (5.6), and (5.7),334

respectively, can be proved by similar calculations to the one used in the proof of335

Lemma 5.1. We omit them for brevity.336

Problem (4.6)-(5.6) is a quadratic minimization problem with quadratic function337

bounded from below by zero. Hence the existence of a minimizer follows.338

Problems (4.5)-(5.5) and (4.7)-(5.7) are two classical optimal control problems.339

Since the admissible set Ead is a weakly compact subset of L2(0, T ;RM ), the existence340

of a maximizer follows by standard arguments based on maximizing sequences and341

weak compactness; see, e.g., [5] and references therein.342

Using the matrix representation given in Lemma 5.2, we can now sketch the math-343

ematical meaning of the iterations of the GR algorithm. Assume that at the k-th344

iteration the submatrix Ŵ k
[1:k,1:k] is positive definite, but Ŵ k

[1:k+1,1:k+1] has a non-345

trivial (one-dimensional) kernel. The GR algorithm first tries to identify (by solving346

problem (5.6)) the kernel of Ŵ k
[1:k+1,1:k+1], and then attempts to compute (by solving347

problem (5.7)) a new control function εεεk+1 such that the matrix W[1:k+1,1:k+1](εεε
k+1)348

is positive on the kernel Ŵ k
[1:k+1,1:k+1]. If these happen, then the new updated matrix349

Ŵ k+1 = Ŵ k +W (εεεk+1) has a positive definite upper-left block Ŵ k+1
[1:k+1,1:k+1]. More-350

over, if these two steps hold for any k, then the convergence follows since after the351

(K − 1)-th iteration the matrix Ŵ = ŴK results to be positive definite. Hence, two352

questions clearly arise:353

1. Does the fitting step of the algorithm always compute the non-trivial kernel354

of Ŵ k
[1:k+1,1:k+1] (in case it is truly non trivial)?355

2. Does the discriminatory step of the algorithm always compute a control func-356

tion εεεk+1 that makes Ŵ k+1
[1:k+1,1:k+1] positive definite?357

The first question can be answered with the help of the following technical lemma.358

Lemma 5.3 (On the kernel of Hermitian positive semi-definite matrices). Con-359

sider a symmetric positive semi-definite matrix G̃ ∈ Rn×n of the form360

G̃ =

[
G bbb
bbb> c

]
,361

where G ∈ R(n−1)×(n−1) is symmetric and positive definite, and bbb ∈ Rn−1 and c ∈ R362

are such that the kernel of G̃ is non-trivial. Then363

ker(G̃) = span

{[
G−1bbb
−1

]}
.364

Proof. Since the kernel of G̃ is non-trivial, there exists a non-zero vector365

uuu =

[
vvv
d

]
∈ Rn \ {0} (with vvv ∈ Rn−1 and d ∈ R) such that G̃uuu = 0. Moreover,366

since G is positive definite, the kernel of G̃ must be one-dimensional and equal to the367
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span of {uuu}. Using the structure of uuu, we write G̃uuu = 0 as368

(5.8)

{
Gvvv + d bbb = 0,

bbb>vvv + dc = 0,

G invertible⇐⇒

{
vvv = −dG−1bbb,
−d bbb>G−1bbb+ dc = 0.

369

Now, suppose that d = 0. This implies that vvv = −dG−1bbb = 0, which in turn implies370

that uuu = 0. However, this is a contradiction to the fact that uuu 6= 0. Hence d 6= 0. The371

result follows by the right equations in (5.8) (divided by −d).372

Recalling the equivalent form (5.6) of the fitting-step problem (4.6), one can373

clearly see that, if Ŵ k
[1:k,1:k] is positive definite, then the unique solution to (5.6) is374

given by αααk = (Ŵ k
[1:k,1:k])

−1Ŵ k
[1:k,k+1]. On the other hand, if we set375

G̃ = Ŵ k
[1:k+1,1:k+1], G = Ŵ k

[1:k,1:k], bbb = Ŵ k
[1:k,k+1], c = Ŵ k

[k+1,k+1],376

then Lemma 5.3 guarantees that the vector vvv := [(αααk)>, −1]> spans the kernel of377

Ŵ k
[1:k+1,1:k+1], if this is non-trivial. Therefore, we have378

ker(Ŵ k
[1:k+1,1:k+1]) = span

{[
(Ŵ k

[1:k,1:k])
−1Ŵ k

[1:k,k+1]

−1

]}
= span

{
vvv :=

[
αααk

−1

]}
.379

380

This means that, if Ŵ k
[1:k+1,1:k+1] has a rank defect, then the GR algorithm finds this381

defect by the fitting step.382

The answer to the second question posed above is more complicated. In order to383

formulate it properly, we need to recall the definition of observability of an input/out-384

put dynamical system of the form385

ẏyy(t) = Ayyy(t) +Bεεε(t), yyy(0) = yyy0,

zzz(t) = Cyyy(t),
(5.9)386

with A ∈ RN×N , B ∈ RN×M , C ∈ RP×N ; see, e.g., [18].387

Definition 5.4 (Observable input-output linear systems). The input-output lin-388

ear system (5.9) is said to be observable if the initial state yyy(0) = yyy0 can be uniquely389

determined from input/output measurements. Equivalently, (5.9) is observable if and390

only if the observability matrix391

(5.10) ON (C,A) :=


C
CA

...
CAN−1

392

has full column rank.393

Notice that the matrix B does not affect the observability of system (5.9).394

We now analyze the convergence of the algorithm in the case of fully observ-395

able systems (namely rank ON (C,A) = N) in Section 5.2 and in case of non-fully396

observable systems (namely rank ON (C,A) < N) in Section 5.3.397
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12 BUCHWALD, CIARAMELLA, SALOMON

5.2. The case of fully observable systems. Let us assume that the system398

is observable, namely that rank ON (C,A) = N . We show in this section that this is a399

sufficient condition for the GR algorithm to make the matrix Ŵ positive definite. To400

do so, we first prove the following lemma regarding the discriminatory step. Notice401

that the proof of this result is inspired by classical Kalmann controllability theory;402

see, e.g., [6].403

Lemma 5.5 (Discriminatory-step problem for fully observable systems). Assume404

that the matrices A ∈ RN×N and C ∈ RP×N are such that rank ON (C,A) = N . Let405

Ŵ k
[1:k,1:k] be positive definite, αααk the solution to the fitting-step problem (4.6), and406

vvv = [(αααk)>,−1]>. Then any solution εεεk+1 of the discriminatory-step problem (4.7)407

satisfies408

〈
vvv,W[1:k+1,1:k+1](εεε

k+1)vvv
〉

=

∥∥∥∥∥∥
∫ T

0

Ce(T−s)A
(
Bk+1 −

k∑
j=1

αααkjBj

)
εεεk+1(s)ds

∥∥∥∥∥∥
2

2

> 0,409

for k = 0, 1, . . . ,K − 1.410

Proof. Let us define B̃ := Bk+1 −
∑k
j=1ααα

k
jBj . Since the matrices B1, . . . , Bk+1411

are assumed to be linearly independent, B̃ is non-zero.412

Now, we consider an arbitrary δ ∈ (0, T ) and define a control function ε̃εε ∈ Ead as413

ε̃εε(s) :=

{
0, 0 ≤ s < δ,

eeei, δ ≤ s ≤ T,
414

where eeei ∈ RM is the i-th canonical vector for some index 1 ≤ i ≤ M . Further, we415

denote by b̃bbi the i-th column of B̃. Since B̃ is non-zero, we can choose the index i416

such that b̃bbi 6= 0. Now, we compute417 ∫ T

0

Ce(T−s)AB̃ε̃εε(s)ds =

∫ T

δ

Ce(T−s)Ab̃bbids =

∫ T

δ

C
[ ∞∑
j=0

(T − s)jAj

j!

]
b̃bbids418

(?)
=
[ ∞∑
j=0

∫ T

δ

(T − s)j

j!
ds CAj

]
b̃bbi =

[ ∞∑
j=0

(T − δ)j+1

(j + 1)!
CAj

]
b̃bbi419

=

∞∑
j=0

βj(δ)CA
jb̃bbi,420

421

where βj(δ) := (T−δ)j+1

(j+1)! and we used the dominated convergence theorem (see, e.g.,422

[16, Theorem 1.34]) to interchange integral and infinite sum and obtain the equality423

(?). Since the observability matrix ON (C,A) has full rank and b̃bbi 6= 0, there exists424

an index 0 ≤ j ≤ N − 1 such that CAjb̃bbi 6= 0. Hence, f(δ) :=
∑∞
j=0 βj(δ)CA

jb̃bbi425

is an analytic function for δ ∈ (0, T ) and such that f 6= 0.3 We also know that426

3To see it, recall that βj(δ) =
(T−δ)j+1

(j+1)!
, consider a function g(x) =

∑∞
j=0

xj+1

(j+1)!
γj , and assume

that there exists at least one integer k such that γk 6= 0. Now, if we pick the minimum integer k̂ such

that γ
k̂
6= 0, we have that g(x) = xk̂+1

(k̂+1)!
γ
k̂

+
∑∞
j=k̂+1

xj+1

(j+1)!
γj . For x→ 0, the first term behaves as

O(xk̂+1), while the second term as O(xk̂+2). Hence, there exists a point y > 0 such that g(y) 6= 0.
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(non-constant) analytic functions have isolated roots; see, e.g., [16, Theorem 10.18].427

Therefore we can find a δ ∈ (0, T ) such that
∑∞
j=0 βj(δ)CA

jb̃bbi 6= 0, and obtain the428

existence of an ε̃εε ∈ Ead such that429 ∫ T

0

Ce(T−s)AB̃ε̃εε(s)ds 6= 0.430

This implies that431

〈
vvv,W[1:k+1,1:k+1](εεε

k+1)vvv
〉

=

∥∥∥∥∥
∫ T

0

Ce(T−s)A
(
Bk+1 −

k∑
`=1

αααk`B`

)
εεεk+1(s)ds

∥∥∥∥∥
2

2

≥

∥∥∥∥∥
∫ T

0

Ce(T−s)A
(
Bk+1 −

k∑
`=1

αααk`B`

)
ε̃εε(s)ds

∥∥∥∥∥
2

2

=

∥∥∥∥∥
∫ T

0

Ce(T−s)AB̃ε̃εε(s)ds

∥∥∥∥∥
2

2

> 0,

432

where we have used that εεεk+1 is a maximizer for problem (4.7).433

Now, we can prove our first main convergence result.434

Theorem 5.6 (Convergence of the GR algorithm for fully observable systems).435

Assume that the matrices A ∈ RN×N and C ∈ RP×N are such that rank ON (C,A) =436

N . Let K ∈ {1, . . . ,MN} be arbitrary and let {εεε1, . . . , εεεK} ⊂ Ead be a family of437

controls generated by the GR Algorithm 4.1. Then the matrix Ŵ defined in (5.2) is438

positive definite and online identification problem (4.3) is uniquely solvable by ααα = ααα?.439

Proof. By Lemma 5.1 it is sufficient to show that the matrix Ŵ corresponding to440

the controls εεε1, . . . , εεεK generated by the algorithm is positive definite. The proof of441

this claim proceeds by induction.442

Lemma 5.5 guarantees that there exists an εεε1 such that [W (εεε1)]1,1 > 0. Now, we443

assume that Ŵ k
[1:k,1:k] is positive definite, and we show that Ŵ k+1

[1:k+1,1:k+1] is positive444

definite as well.445

If Ŵ k
[1:k+1,1:k+1] is positive definite, then

Ŵ k+1
[1:k+1,1:k+1] = Ŵ k

[1:k+1,1:k+1] +W (εεεk)[1:k+1,1:k+1]

is positive definite as well, since W (εεεk)[1:k+1,1:k+1] is positive semi-definite.446

Assume now that the submatrix Ŵ k
[1:k+1,1:k+1] has a non-trivial kernel. Since447

Ŵ k
[1:k,1:k] is positive definite (induction hypothesis), problem (5.6) is uniquely solvable448

with solution αααk. Then, by Lemma 5.3 the (one-dimensional) kernel of Ŵ k
[1:k+1,1:k+1]449

is the span of the the vector vvv = [(αααk)>, −1]>. Finally, using Lemma 5.5 we obtain450

that the solution εεεk+1 to the discriminatory-step problem satisfies451

0 <
〈
vvv, [W (εεεk+1)][1:k+1,1:k+1]vvv

〉
.452

Hence, the matrix [W (εεεk+1)][1:k+1,1:k+1] is positive definite on the span of vvv. Therefore453

Ŵ k+1
[1:k+1,1:k+1] = Ŵ k

[1:k+1,1:k+1] + [W (εεεk+1)][1:k+1,1:k+1] is positive definite.454
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Remark 5.7 (Uniqueness of solution of the min-max problem (4.4)). Under the455

assumption that the system is fully observable, the min-max problem (4.4) is also456

uniquely solvable with ααα = ααα?. To see this, we first note that (4.4) can be written in457

terms of W (εεε):458

‖CyyyT (B?, εεε)− CyyyT (B(ααα), εεε)‖2 =

∥∥∥∥∥∥
∫ T

0

Ce(T−s)A
( K∑
j=1

(αααj −ααα?,j)Bj
)
εεε(s)ds

∥∥∥∥∥∥
2

2

459

=
〈
(ααα−ααα?),W (εεε)(ααα−ααα?)

〉
.460461

Now, similarly as in the proof of Lemma 5.5 and using the full observability of the462

system, one can show that for any α̂αα ∈ RNM with α̂αα 6= ααα? there exists a control εεε(α̂αα)463

such that
〈
(α̂αα−ααα?),W (εεε(α̂αα))(α̂αα−ααα?)

〉
> 0. Therefore the unique solution to (4.4) is464

ααα = ααα?.465

Notice that, Theorem 5.6 does not require any particular assumption on the ma-466

trices B1, . . . , BK , which can be arbitrarily chosen with the only constraint to be467

linearly independent. Moreover, the number K ∈ {1, . . . ,MN} can be fixed arbi-468

trarily and the GR algorithm will compute control functions that permit the exact469

reconstruction of the coefficients of the linear combination of the first K components470

of B? in a basis {B1, . . . , BMN}. To be more precise, if the unknown B? belongs to471

the span of K the linearly independent matrices B1, . . . , BK used by the algorithm,472

then, using the control functions generated by the GR algorithm, the unknown B?473

can be fully reconstructed. If B? lies in the span of K̃ ∈ {K + 1,K + 2, . . . ,MN}474

linearly independent matrices B1, . . . , BK̃ , but only the first K of these are used by475

the algorithm (and in the online identification problem), then one reconstructs ex-476

actly the K coefficients corresponding to the first elements B1, . . . , BK . Furthermore,477

the ordering of the K considered matrices does not affect the convergence result of478

Theorem 5.6.479

5.3. The case of non-fully observable systems. The observations and re-480

sults of Section 5.2 are no longer true if the system is non-fully observable, that is481

rankON (C,A) = R < N . In this case, the choice of the linearly independent matrices482

B1, . . . , BK and their ordering become crucial for the algorithm. In particular, we are483

going to show that the method can recover at most K = RM components of the484

unknown vector ααα?, if appropriate matrices B1, . . . , BK are chosen. Moreover, we will485

see that an inappropriate choice of matrices B1, . . . , BK can lead to completely wrong486

results corresponding to an arbitrarily large error.487

For our analysis, we begin by choosing a set of K = NM matrices by exploiting488

the kernel of the observability matrix. In particular, recalling that rankON (C,A) =489

R < N , the rank-nullity theorem allows us to consider a basis {vvvj}Nj=1 ⊂ RN of RN ,490

such that491

vvvj /∈ ker ON (C,A), j = 1, . . . ,R,(5.11)492

vvvj ∈ ker ON (C,A), j = R+ 1, . . . , N,(5.12)493494
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where span{vvvj}Nj=R+1 = ker ON (C,A). We now define a basis {BOk }NMk=1 of RN×M as495

BO1 = vvv1eee
>
1 , B

O
2 = vvv1eee

>
2 , · · · , BOM = vvv1eee

>
M ,

BOM+1 = vvv2eee
>
1 , B

O
M+2 = vvv2eee

>
2 , · · · , BO2M = vvv2eee

>
M ,

...
...

...

BO(N−1)M+1 = vvvNeee
>
1 , B

O
(N−1)M+2 = vvvNeee

>
2 , · · · , BONM = vvvNeee

>
M ,

(5.13)496

where eee` ∈ RM , for ` = 1, . . . ,M , are the canonical vectors in RM . Notice that, since497

the vectors (vvvj)
N
j=1 are linearly independent, the set {BOk }NMk=1 is a basis of RN×M .498

From a computational point of view, the vectors vvvj can be obtained by a singular499

value decomposition (SVD) of the observability matrix ON (C,A) = UΣV >, where500

the columns of V form a basis of RN and the last N − R columns of V span the501

kernel of ON (C,A); see, e.g., [20, Theorem 5.2]. Therefore, one can set vvvj = V[:,j],502

j = 1, . . . , N .503

Our first result for non-fully observable systems says that, if the basis {BOk }NMk=1504

is considered, then we can reduce the reconstruction of B? =
∑MN
j=1 ααα?,jB

O
j only to505

the first RM coefficients ααα1, . . . ,αααRM . This is proved in the next lemma, where we506

use the notation507

(5.14) BR(ααα?) :=

RM∑
j=1

ααα?,jB
O
j .508

Lemma 5.8 (Online identification problem for non-fully observable systems).509

Consider the basis {BOk }NMk=1 constructed as in (5.13) (with vectors vvvj, j = 1, . . . , N ,510

as in (5.11)-(5.12)). The online least-squares problem (4.3) (with K = MN) is equiv-511

alent to512

min
ααα∈RRM

NM∑
m=1

‖CyyyT (B?, εεε
m)− CyyyT (BR(ααα), εεεm)‖22 .513

Proof. Notice that, for any ` ∈ {1, 2, . . . , NM} and s ∈ [0, T ], there exist N514

functions β̃j such that515

Ce(T−s)ABO` = C

∞∑
j=0

(T − s)j

j!
AjBO`

(?)
= C

[N−1∑
j=0

β̃j(s)A
j
]
BO`516

=
[
β̃0(s)IN , β̃1(s)IN , . . . , β̃N−1(s)IN

]
ON (C,A)BO` ,517

518

where we have used the Cayley-Hamilton theorem (see, e.g., [12, p.109]) to obtain the519

equality (?). If ` ∈ {RM + 1, . . . , NM}, then BO` = vvvjeee
>
i with j ≥ R + 1, hence520

vvvj ∈ ker ON (C,A) and therefore521

ON (C,A)BO` = ON (C,A)vvvj︸ ︷︷ ︸
=0

eee>i = 0.522

Hence, Ce(T−s)ABO` = 0 for all ` ∈ {RM + 1, . . . , NM} and s ∈ [0, T ]. Thus523 ∫ T

0

Ce(T−s)ABO` εεε(s)ds = 0,524
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for any control function εεε ∈ Ead. Now, recalling the definition of J(ααα) from the proof525

of Lemma 5.1, our claim follows by writing the least-squares problem (4.3) as526

J(ααα) =

NM∑
m=1

∥∥∥∥∥∥
NM∑
j=1

(ααα?,j −αααj)
∫ T

0

Ce(T−s)ABOj εεε
m(s)ds

∥∥∥∥∥∥
2

2

527

=

NM∑
m=1

∥∥∥∥∥∥
RM∑
j=1

(ααα?,j −αααj)
∫ T

0

Ce(T−s)ABOj εεε
m(s)ds

∥∥∥∥∥∥
2

2

.528

529

Lemma 5.8 implies that the coefficients αααRM+1, . . . ,αααMN do not affect the cost
function to be minimized. Therefore, as shown in Corollary 5.11, any vector ααα ∈ RMN

of the form
ααα = [ααα?1, · · · ,ααα?RM , γRM+1, · · · , γMN ]>

is a global solution to (4.3), for any γj ∈ R, j = RM + 1, . . . ,MN . This means that,530

one uses really only the first RM elements of the basis. In fact, as we are going to531

show in Lemma 5.9 and Theorem 5.10, only their corresponding coefficients can be532

reconstructed, while no information can be obtained for the remaining ones. It is533

therefore natural, for rankON (C,A) = R < N , to use the GR algorithm with only534

the first RM basis elements BO1 , . . . , B
O
RM . In this case, the proof of convergence for535

the GR algorithm is analogous to what we have done to obtain Theorem 5.6. We first536

prove a version of Lemma 5.5 adapted to non-fully observable systems.537

Lemma 5.9 (Discriminatory-step problem for non-fully observable systems). As-538

sume that rankON (C,A) = R < N and that the GR algorithm is run until the k-th539

iteration, with k < RM , using the linearly independent matrices BO1 , . . . , B
O
RM de-540

fined in (5.13). Let Ŵ k
[1:k,1:k] be positive definite, and let αααk be the solution to the541

fitting-step problem (4.6). Then any solution εεεk+1 of the discriminatory-step problem542

(4.7) satisfies for k = 1, . . .RM − 1543

〈
vvv,W[1:k+1,1:k+1](εεε

k+1)vvv
〉

=

∥∥∥∥∥∥
∫ T

0

Ce(T−s)A
(
BOk+1 −

k∑
j=1

αααkjB
O
j

)
εεεk+1(s)ds

∥∥∥∥∥∥
2

2

> 0,544

where vvv := [(αααk)>, −1]>, for k = 0, 1, . . . ,K − 1.545

Proof. Notice that, since the matrices BO1 , . . . , B
O
RM are linearly independent and546

defined as in (5.13), we have that ON (C,A)
(
BOk+1 −

∑k
j=1ααα

k
jB
O
j

)
6= 0.547

With this observation, the result can be proved exactly as Lemma 5.5.548

Using Lemma 5.9, we can prove convergence for the GR Algorithm 4.1 in case549

the matrices BO1 , . . . , B
O
RM defined in (5.13) are used.550

Theorem 5.10 (Convergence of the GR alg. for non-fully observable systems).551

Let (εεεm)RMm=1 ⊂ Ead be a family of controls generated by the GR Algorithm 4.1552

with K = RM and using the matrices BO1 , . . . , B
O
RM defined in (5.13). Then the553

least-squares problem554

(5.15) min
ααα∈RRM

RM∑
m=1

‖CyyyT (B?, εεε
m)− CyyyT (BR(ααα), εεεm)‖22 ,555

where BR(ααα) is defined in (5.14), is uniquely solvable with αααj = ααα?,j, j = 1, . . . ,RM .556
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Proof. The proof is the same as that of Theorem 5.6, where one should use Lemma557

5.9 instead of Lemma 5.5.558

Theorem 5.10 allows us to prove the next corollary, which characterizes the result559

of the GR algorithm when more than RM basis elements of (5.13) are used.560

Corollary 5.11 (More on the convergence for non-fully observable systems).561

Let (εεεm)Km=1 ⊂ Ead, with K > RM , be a family of controls generated by the GR562

Algorithm 4.1 using the matrices BO1 , . . . , B
O
K defined in (5.13). Then the set of all563

global minimum points for the least-squares problem564

min
ααα∈RK

K∑
m=1

∥∥∥CyyyT (B?, εεε
m)− CyyyT (B(K)(ααα), εεεm)

∥∥∥2
2
,565

is given by {ααα ∈ RK : αααj = ααα?,j , j = 1, . . . ,RM}.566

Proof. Theorem 5.10 (and Theorem 5.6) and its proof allow us to obtain that,567

using the first RM controls generated by the GR algorithm, the matrix ŴRM ∈568

RK×K has a positive definite upper-left submatrix ŴRM[1:RM,1:RM ] and all the other569

entries [ŴRM ]`,j are zero. Indeed, recalling the vectors γγγk(εεεm) defined in (5.4), for570

any BOk with k ≥ RM + 1, we have that ON (C,A)BOk = 0 and thus571

γγγk(εεεm) =

∫ T

0

Ce(T−s)ABOk εεε
m(s)ds = 0,572

for any T > 0 and any m = 1, . . . ,RM . Similarly, the matrices W (εεεm) for m > RM573

have the same structure, namely that their only nonzero components can be the574

upper-left submatrices [W (εεεm)][1:RM,1:RM ]. Therefore, the matrix Ŵ = ŴK has a575

positive definite upper-left submatrix Ŵ[1:RM,1:RM ], while all its other entries are576

zero. Therefore, the result follows by Lemma 5.1.577

Remark 5.12 (More about the kernel of ON (C,A) and identifiability). Corollary578

5.11 guarantees that, if the basis (BOj )Kj=1 is used with K > RM , then one can579

reconstruct exactly RM coefficients, while nothing can be said about the coefficients580

αj for j > RM . This is due to the structure of the matrix ŴRM , which has a positive581

definite submatrix ŴRM[1:RM,1:RM ] and is zero elsewhere (as discussed in the proof of582

Corollary 5.11).583

Remark 5.13 (A priori error estimate). Let αααapprox be the solution to (5.15).584

Then we get the a priori error estimate585

B? −BR(αααapprox) =

NM∑
j=RM+1

ααα?,jB
O
j .586

Remark 5.14 (Min-max problem). Following the same arguments of the proof of587

Lemma 5.8, one can show that the min-max problem (4.4) is equivalent to588

(5.16) min
ααα∈RRM

max
εεε∈Ead

‖CyyyT (B?, εεε)− CyyyT (BR(ααα), εεε)‖22 .589

Analogously to Remark 5.7, we can conclude that, using the matrices BO1 , . . . , B
O
RM590

defined in (5.13), problem (5.16) is uniquely solvable with αααj = ααα?,j , j = 1, . . . ,RM .591
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18 BUCHWALD, CIARAMELLA, SALOMON

The results proved so far for a non-fully observable system are obtained for the592

special basis (Bj)
MN
j=1 constructed in (5.13). However, it is natural to ask:593

• Is there any basis that permits to reconstruct more than RM coefficients?594

• Can one reconstruct at least RM coefficients for any arbitrarily chosen basis?595

The answers to both questions are negative. The first one is given by Theorem 5.15.596

Theorem 5.15 (Maximal number of identifiable elements). Let the observability597

matrix ON (C,A) be such that rankON (C,A) = R < N . There exists no basis of598

RN×M for which one can exactly recover more than RM coefficients.599

Proof. Consider the basis B = {BOk }NMk=1 ⊂ RN×M constructed as in (5.13) and600

another arbitrarily chosen basis B̂ = {B̂k}NMk=1 ⊂ RN×M . Any element B̂ ∈ B̂ can be601

written as a linear combination of the elements of B, that is B̂ =
∑NM
j=1 λjB

O
j , for602

appropriate λj ∈ R, j = 1, . . . ,MN . Multiplying B̂ with ON (C,A), we get603

ON (C,A)B̂ = ON (C,A)

[NM∑
j=1

λjB
O
j

]
=

NM∑
j=1

λjON (C,A)BOj =

RM∑
j=1

λjON (C,A)BOj ,604

605

where we used that ON (C,A)BOj = 0, for j ∈ {R + 1, . . . , N}, to obtain the last606

equality. Now define the set D = {Dk}NMk=1 as Dk := ON (C,A)B̂k, k = 1, . . . , NM .607

Hence, we can conclude that at most RM elements of D are linearly independent.608

Recalling the proof of Lemma 5.5 and Remark 5.12, this means that for NM −RM609

elements of B̂ there exists a linear combination of the other RM elements, such that610

the observation at final time T is identical for any control εεε. Therefore one can611

reconstruct at most RM coefficients for the basis B̂.612

Let us now explain why the answer to the second question is also negative. To613

do so, we provide the following examples, which show that a wrong choice of a basis614

leads to inconclusive results.615

Example 5.16 (Wrong bases lead to inconclusive results). Consider a simple616

system with617

A =

[
1 0
0 1

]
, B? =

[
1 1
1 1

]
, C =

[
1 0
0 0

]
,618

and the basis of R2×2 B̂1 =

[
1 0
0 0

]
, B̂2 =

[
1 0
1 0

]
, B̂3 =

[
0 1
0 0

]
, B̂4 =

[
0 1
0 1

]
. Notice619

that in this case the observability condition does not hold, since one can compute that620

R = rankON (C,A) = rank

[
1 0 1 0
0 0 0 0

]>
= 1. Clearly we have that621

B? = 0 ·B1 + 1 ·B2 + 0 ·B3 + 1 ·B4, (hence ααα? = [0 1 0 1]>).622
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We can now compute for an arbitrarily chosen control εεε ∈ Ead that623

CyyyT (B?, εεε)−CyyyT (B(ααα), εεε) = C

∫ T

0

e(T−s)AB?εεε(s)ds− C
∫ T

0

e(T−s)AB(ααα)εεε(s)ds624

=

∫ T

0

Ce(T−s)A
([1 1

1 1

]
−
[
ααα1 +ααα2 ααα3 +ααα4

ααα2 ααα4

])
εεε(s)ds625

=

∫ T

0

[
1 0
0 0

] [
eT−s 0

0 eT−s

] [
1− (ααα1 +ααα2) 1− (ααα3 +ααα4)

1−ααα2 1−ααα4

]
εεε(s)ds626

=

∫ T

0

[
eT−s(1− (ααα1 +ααα2)) eT−s(1− (ααα3 +ααα4))

0 0

]
εεε(s)ds,627

628

which is zero for any ααα = [ααα1 ααα2 ααα3 ααα4]> ∈ R4 with ααα1 + ααα2 = 1 and ααα3 + ααα4 = 1629

(for any control εεε). This means that any ααα = [ααα1 ααα2 ααα3 ααα4] with ααα1 + ααα2 = 1 and630

ααα3 + ααα4 = 1 solves the least-squares problem (4.3), independently on the control631

functions εεε1, . . . , εεε4. Since the online least-square problem has then infinitely many632

solutions,4 one cannot conclude anything about the quality of a computed solution,633

which has the form B̂approx =

[
1 1
ααα2 ααα4

]
, leading to the error634

‖B? −BR(αααapprox)‖2F = (1−ααα2)2 + (1−ααα4)2,635

which can be arbitrarily large (here ‖ · ‖F denotes the Frobenius norm). Even if one636

would by chance guess the right coefficients (in this case ααα2 = 1,ααα4 = 1), there would637

be no way to verify them, since their effect is not observable. Notice also that, even638

if the entries B̂approx1,1 and B̂approx1,2 are correct, it is not possible to certify this or639

to associate these correct entries to some precise elements of the chosen basis. This640

example shows that for an arbitrarily chosen basis, one can not conclude anything641

about the quality of the computed coefficients or the difference between B(ααα) and642

B?.643

Example 5.17 (Good bases lead to certified results). Consider the same system of644

Example 5.16, but now let us use the SVD of the observability matrix,645

O2(C,A) =

1 0
0 0
1 0
0 0

 =


√
2
2

0 −
√
2
2

0
0 1 0 0√
2
2

0
√
2

2
0

0 0 0 1



√

2 0
0 0
0 0
0 0

[1 0
0 1

]
= UΣV >,646

which gives vvv1 =

[
1
0

]
/∈ kerON (C,A), vvv2 =

[
0
1

]
∈ kerON (C,A), leading to the basis647

B1 =

[
1 0
0 0

]
, B2 =

[
0 1
0 0

]
, B3 =

[
0 0
1 0

]
, B4 =

[
0 0
0 1

]
,648

constructed as in (5.13). In this case, we have ααα? = [1 1 1 1]>. Since the GR algorithm649

considers only the first two basis elements, one gets the final result Bapprox =

[
1 1
0 0

]
.650

Similarly to Example 5.16, the two entries B̂approx1,1 and B̂approx1,2 are correct, but now651

this is guaranteed by Theorem 5.10. Therefore, in this case, the results obtained are652

accompanied by precise information on their correctness.653

4Notice that these solutions are also solution to the min-max problem (4.4).
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These examples show clearly that without an a priori knowledge about the observ-654

ability of the system (and hence about the “quality” of the basis), the GR algorithm655

leads to inconclusive results. Even though we have presented in this section a way656

to construct a basis which permits a precise analysis of the obtained results, this657

is generally not possible for nonlinear problems, like the Hamiltonian reconstruction658

problem described in Section 3. Is it then possible to modify the GR algorithm in659

order to distinguish automatically between “good” and “bad” elements of a given set660

of matrices? The answer is given in Section 6, where we first introduce an improved661

GR algorithm for linear-quadratic problems and then extend it to nonlinear problems.662

6. Improvements of the algorithm. The previous section ended with two ex-663

amples showing clearly that a wrong choice of the basis elements and their ordering664

can lead to inconclusive results. Even though this issue can be avoided for linear665

problems by using the observability matrix (and constructing a basis as in (5.13)),666

this strategy does generally not apply to nonlinear problems. For this reason, we in-667

troduce an optimized GR (OGR) algorithm, in which the basis elements are selected668

during the iterations (in a greedy fashion) as the ones that maximize the discrimi-669

nation functions. In particular, we introduce in Section 6.1 the OGR algorithm for670

linear-quadratic problems and show by numerical experiments that this leads to an671

automatic appropriate selection of the basis elements, even though the observability672

matrix is not considered at all. Once the new algorithm is introduced for linear sys-673

tems, it is then natural to extend it to nonlinear problems. We consider this extension674

in Section 6.2 for Hamiltonian reconstruction problems and show the efficiency of our675

new OGR algorithm by direct numerical experiments.676

6.1. Optimized greedy reconstruction for linear-quadratic problems.677

Consider an arbitrary set of linearly independent matrices (Bj)
K
j=1 ⊂ RN×M . We wish678

to modify the GR Algorithm 4.1 in order to choose at every iteration one element679

Bj which leads to a control function capable of improving the rank of the matrix680

Ŵ k
[1:k+1,1:k+1]. The idea is to replace the sweeping process of the GR Algorithm681

4.1 with a more robust and parallel testing of all the matrices. At each iteration, the682

element associated with the maximal discriminating value is chosen and removed from683

the set (Bj)
K
j=1, while the corresponding control function is added to the set of already684

computed control functions. Therefore, the dimension of the set (Bj)
K
j=1 reduces by685

one at each iteration and the algorithm is stopped if either all the K matrices were686

chosen or as soon none of the remaining ones can be discriminated by the others. This687

idea leads to the OGR Algorithm 6.1.688

In this algorithm, we clearly extended the greedy character of the original GR689

algorithm to the choice of the next basis element. At each iteration, we consider all690

remaining basis elements as the potential next one. We select the one which yields691

the largest function value in the respective discrimination (maximization) step. In692

other words, one computes the basis element for which one can split the observation693

the most from all previous basis elements. It is important to remark that, at each694

iteration one solves several fitting-step problems and several discriminatory-step prob-695

lems. However, their solving can be performed in parallel, since the single problems696

are independent one from another.697

Notice that a selected element Bk+1 will not be linearly dependent on previously698

chosen elements (after multiplication with the observability matrix). This is proven699

in the next theorem, which also motivates the stopping criterion used in the steps 2-4700

and 11-13 of the algorithm.701
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Algorithm 6.1 Optimized Greedy Reconstruction Algorithm (linear-quadratic case)

Require: A set of K linearly independent matrices B = (B1, . . . , BK) and a tolerance
tol > 0.

1: Solve the initialization problem

max
`∈{1,...,K}

max
εεε∈Ead

‖CyyyT (B`, εεε)− CyyyT (0, 0)‖22 ,

which gives the field εεε1 and the index `1.
2: if

∥∥CyyyT (B`1 , εεε
1)− CyyyT (0, 0)

∥∥2
2
< tol then

3: stop and display ”Error: all basis elements have no observable effect.”
4: end if
5: Swap B1 and B`1 in B and set k = 1.
6: while k ≤ K − 1 do
7: for ` = k + 1, . . . ,K do
8: Fitting step: Find (ααα`j)j=1,...,k that solve the problem

(6.1) min
ααα∈Rk

k∑
m=1

∥∥∥CyyyT (B`, εεε
m)− CyyyT (B(k)(ααα), εεεm)

∥∥∥2
2
.

9: end for
10: Extended discriminatory step: Find εεεk+1 and `k+1 that solve the problem

(6.2) max
`∈{k+1,...,K}

max
εεε∈Ead

∥∥∥CyyyT (B`, εεε)− CyyyT (B(k)(ααα`), εεε)
∥∥∥2
2
.

11: if
∥∥∥CyyyT (B`k+1 , εεε

k+1)− CyyyT (B(k)(ααα`k ), εεεk+1)
∥∥∥2
2
< tol then

12: stop and return the selected (Bj)
k
j=1 and the computed (εεεm)km=1.

13: end if
14: Swap Bk+1 and B`k+1 in B and update k ← k + 1.
15: end while

Theorem 6.1 (Linearly independence of selected basis elements). Assume that
the OGR Algorithm 6.1 selected already k linearly independent matrices Bj, j =
1, . . . , k. At iteration k+ 1, the new selected matrix Bk+1 is such that ON (C,A)Bk+1

is linearly independent from the matrices ON (C,A)Bj, j = 1, . . . , k, if and only if∥∥∥CyyyT (B`k+1
, εεεk+1)− CyyyT (B(k)(ααα`k), εεεk+1)

∥∥∥2
2
> 0.

Proof. If the matrix ON (C,A)Bk+1 is linearly independent from the other ma-
trices ON (C,A)Bj , j = 1, . . . , k, then one can show as in the proof of Lemma 5.9
that ∥∥∥CyyyT (B`k+1

, εεεk+1)− CyyyT (B(k)(ααα`k), εεεk+1)
∥∥∥2
2
> 0.

Now, we prove the other implication by contraposition. Assume that there exists702

a vector ααα ∈ Rk such that ON (C,A)(Bk+1 −
∑k
j=1αααjBj) = 0 holds. This vector ααα is703

a solution of the fitting step problem with cost-function value equal to zero. However,704

the corresponding cost function of the discriminatory-step problem (6.2) results to be705

zero for any control function εεε. The result follows by contraposition.706

Notice that, if Algorithm 6.1 stops at Step 3, then the chosen basis does not allow707

one to distinguish the states corresponding to controlled and uncontrolled systems. In708
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this case, entering in the while loop would be useless since the first discriminatory step709

will certainly fail in producing a large enough discrimination value and the algorithm710

will terminate at Steps 11 and 12.711

Theorem 6.1 shows exactly that the OGR algorithm manages to identify among712

the elements of the given set (Bj)
K
j=1 the ones that do not lie in the kernel ofON (C,A).713

For instance, let us consider again the system of Example 5.16, for which we have714

shown that the GR algorithm leads to inconclusive results. If we use instead the OGR715

Algorithm 6.1, this performs two iterations and selects only two basis elements, one716

among B̂1 and B̂2 and the other among B̂3 and B̂4. This can be shown by performing717

calculations similar to the ones of Example 5.16. In particular, in the initialization718

step the four matrices produce the same cost function value. Hence, any of them can719

be selected by the algorithm. Assume that the element B̂1 is picked (hence `1 = 1) and720

consider the first iteration of the algorithm (k = 1). At the fitting step the algorithm721

computes a coefficient ααα2
1 = 1 for B̂2, and some coefficients ααα3

1 and ααα4
1 corresponding722

to B̂3 and B̂4. Now, ααα2
1 = 1 leads to a cost function of the discriminatory step which723

is zero for any control functions, while for ααα3
1 and ααα4

1 there exist a control function724

leading to a non-zero value of the discriminatory cost. Therefore, the algorithm725

selects either B̂3 or B̂4. Let us assume that B̂4 is picked (`2 = 4) and hence the726

two elements B̂2 and B̂4 are swapped. In the fitting step of the second iteration727

(k = 2), the algorithm computes ααα3 = [ 0 , 1 ]> and ααα4 = [ 1 , 0 ]>. Both of these two728

vectors lead to a discriminatory cost that is zero for any control. Hence, since the729

discriminatory step does not find any positive function value, the algorithm stops and730

returns B̂`1 = B̂1 and B̂`2 = B̂4 and the corresponding controls. If one uses the two731

selected basis elements and the corresponding control functions in the online phase,732

then one obtains the result ααα = [ 1 , 1 ]>, which is not the exact solution shown in733

Example 5.16. This is due to the non-full observability of the system, which implies734

that ON (C,A)B̂1 = ON (C,A)B̂2 and ON (C,A)B̂3 = ON (C,A)B̂4. This means that735

the observations generated by the elements B̂1 and B̂3 cannot be distinguished by736

the ones created by B̂2 and B̂4. The non-full observability of the system cannot be737

overcome by any numerical strategy. The OGR algorithm can nevertheless identify738

automatically all the observable degrees of freedom of the considered system.739

Let us now demonstrate the efficiency of our new OGR algorithm by direct nu-740

merical experiments. We consider an experiment with two randomly chosen N × N741

full-rank real matrices A and C with N = 10. The unknown B? is a randomly cho-742

sen real N × N matrix. In this case the system is fully observable, nevertheless we743

construct the basis elements to be used in the GR and OGR algorithm as in (5.13)744

(by an SVD of the observability matrix), but we order the elements randomly. We745

then run the GR Algorithm 4.1 and compute the rank of the matrix Ŵ k at every746

iteration k. This leads to the results shown in Figure 6.1 by the blue curve. The747

rank increases monotonically during the iterations and becomes full after about 30748

iterations. However, the curve is not strictly monotonically increasing since the rank749

does not increase at each iteration. If we repeat the same experiment (with the same750

matrices) using the OGR Algorithm 6.1, we obtain the red curve in Figure 6.1. This751

curve is strictly monotonically increasing in the first part and becomes constant only752

once the rank has become full. In particular, at each iteration the rank increases by753

10 and the OGR algorithm could be in principle stopped much earlier than the orig-754

inal GR algorithm, and much less control functions (hence laboratory experiments)755

are needed to fully reconstruct the unknown operator B?. This experiment clearly756

shows the high potential of the OGR algorithm, which is capable to choose among757
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Fig. 6.1. Rank of the matrix Ŵk corresponding to the GR algorithm (blue curve) and OGR
algorithm (red curve) for a fully observable system. Both algorithms make use of a basis constructed
as in (5.13).

the elements B1, . . . , BK in an optimized fashion.758

Let us conclude this section with two important observations. First, the improve-759

ment proposed in Algorithm 6.1 allows one to even enrich the set (Bj)
K
j=1 used as760

input in Algorithm 6.1 with other new elements that can be linearly dependent on761

B1, . . . , BK . In this case, if we denote by (Bj)
K̃
j=1, for K̃ > K, the enriched set, then762

Theorem 6.1 guarantees that the OGR algorithm will automatically pick some ele-763

ments of the enriched set (Bj)
K̃
j=1, such that ON (C,A)Bj are linearly independent for764

all selected Bj . Hence, the corresponding discriminatory cost-function values will be765

strictly positive. Second, the OGR Algorithm can be extended to more general non-766

linear reconstruction problems, and we propose in Section 6.2 an efficient extension767

for the Hamiltonian reconstruction problem described in Section 3.768

6.2. Optimized greedy reconstruction for non-linear problems. The ex-769

tension of the OGR Algorithm 6.1 to the nonlinear Hamiltonian reconstruction prob-770

lem of Section 3 is formally rather straightforward and given by Algorithm 6.2. How-771

ever, there is one key addition represented by the Steps 7, 8 and 9. In these steps, each772

of the matrices B`, ` = k+ 1, . . . ,K, (that have not been selected in the first k itera-773

tions of the algorithm) is orthogonalized with respect to the already selected matrices774

B`, ` = 1, . . . , k. This can be achieved by a single Gram-Schmidt step for each B`,775

` = k+1, . . . ,K. The orthogonalization is required to avoid that the algorithms picks776

a new matrix Bk+1 such that either the angle between Bk+1 and (B1, . . . , Bk) is very777

small or (in the worst case) Bk+1 is linearly dependent from (B1, . . . , Bk). These two778

situations could lead to numerical problems in the final online identification phase.779

Moreover, by eliminating linearly dependent elements, one avoids the solves of several780

unnecessary fitting and discriminatory problems (even though solvable in parallel).781

A few more computational aspects must be discussed. First, the maximization782

problems characterizing the initialization step and the discriminatory steps are non-783

linear optimal control problems that we solve numerically by the monotonic scheme784

discussed in [15], in the setting described in [14]; see also [5, 14,15,17] and references785

therein. Second, the fitting step problems are highly nonlinear minimization problems786

having generally several local minima. Since not all local minima correspond to an787

effective defect (rank deficiency in the linear-quadratic case) to be compensated, every788

fitting-step problem is solved multiple times using different randomly chosen initial-789

izations. The solution corresponding to the smallest functional value is then chosen.790

Each fitting-step problem is solved by a BFGS descent-direction method. Third, all791
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Algorithm 6.2 Optimized Greedy Reconstruction Algorithm (Hamiltonian case)

Require: A set of K matrices Bµ = (µ`)`=1,...,K and a tolerance tol > 0.
1: Solve the initialization problem

(6.3) max
n∈{1,...,K}

max
ε∈L2

|ϕ(µn, ε)− ϕ(0, 0)|2,

which gives the field ε1 and the index `1.
2: if |ϕ(µ`1 , ε

1)− ϕ(0, 0)|2 < tol then
3: stop and display ”Error: all basis elements have no observable effect.”
4: end if
5: Swap µ1 and µ`1 in Bµ and set k = 1 and K̃ = K.
6: while k ≤ K − 1 do
7: Orthogonalize each matrix µ`, ` = k+ 1, . . . , K̃, with respect to the set (µ1, . . . , µk).
8: Remove the zero elements from Bµ and shift the indices of the remaining elements.
9: Update K̃ ← cardBµ.

10: for ` = k + 1, . . . , K̃ do
11: Fitting step: Find (ααα`j)j=1,...,k that solve the problem

(6.4) min
ααα∈Rk

k∑
m=1

|ϕ(µ`, ε
m)− ϕ(µ(k)(ααα), εm)|2.

12: end for
13: Extended discriminatory step: Find εk+1 and `k+1 that solve the problem

(6.5) max
`∈{k+1,...,K̃}

max
ε∈L2

|ϕ(µ`, ε)− ϕ(µ(k)(ααα`), ε)|2.

14: if |ϕ(µ`k+1 , ε
k+1)− ϕ(µ(k)(ααα`k ), εk+1)|2 < tol then

15: stop and return the selected (µj)
k
j=1 and the computed (εm)km=1.

16: end if
17: Swap µk+1 and µ`k+1 in Bµ and update k ← k + 1.
18: end while

optimization problems that are solved in the fitting steps and in the discriminatory792

steps are independent one from another. Therefore, they can be solved in parallel as793

in the linear case.794

Let us now show the efficiency of the OGR Algorithm 6.2 by direct numerical ex-795

periments. We consider the same test case as in [14], where the unknown Hamiltonian796

and the controlled Hamiltonian µ are assumed to be real-symmetric. More precisely,797

the matrix H and the randomly generated µ? are798

H = 10−2

[
1 0 0
0 2 0
0 0 4

]
, µ? =

[
3.3617 3.4347 0.8416
3.4347 3.7763 4.7552
0.8416 4.7552 4.4226

]
.799

The final time is T = 4000π. The states ψ0 and ψ1 are800

ψ0 =
[
1 0 0

]>
, ψ1 =

[
0 0 1

]>
.801

Now, we perform the following experiment. Since the unknown µ? is a 3 × 3802

symmetric matrix, we choose for the set Bµ the following K = 6 linearly independent803
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canonical matrices804

(6.6)

[
1 0 0
0 0 0
0 0 0

]
,

[
0 0 0
0 1 0
0 0 0

]
,

[
0 0 0
0 0 0
0 0 1

]
,

[
0 1 0
1 0 0
0 0 0

]
,

[
0 0 1
0 0 0
1 0 0

]
,

[
0 0 0
0 0 1
0 1 0

]
,805

which form a basis for the space of 3 × 3 symmetric matrices with real entries, and806

compute 6 control functions by the OGR Algorithm 6.2. Once these functions are807

obtained, one must reconstruct the unknown true dipole matrix by solving the on-808

line nonlinear least-squares problem (3.3). To do so, we use the standard MATLAB809

function fminunc (a BFGS descent-direction minimization algorithm) initialized by810

a randomly chosen vector. To test the robustness of the control functions computed811

by the OGR Algorithm 6.2, we consider a six-dimensional hypercube centered in the812

global minimum point µ? and given radius r, and repeat the minimization for 1000813

initialization vectors randomly chosen in this hypercube. We then count the number814

of times that the optimization algorithm converges to the global solution µ? = µ(ααα?)815

up to a tolerance of Tol = 0.005 (half of the smallest considered radius), meaning816

that ‖µ?−µ(α
αα0)‖F

‖µ?‖F ≤ Tol, where ‖ · ‖F denotes the Frobenius norm. Repeating this817

experiment for different values of the radius r of the hypercube, we obtain the results818

reported in the first row of Table 6.1.819

Hypercube radius r 0.01 0.10 0.50 1.00
GR (canonical basis) 814 0 0 0
GR (random basis) 655 3 0 0
OGR (extended random basis) 1000 134 15 5

Table 6.1
Numbers of runs (over 1000) that converged to the true solution µ?.

These results show clearly the lack of robustness of the controls generated by the GR820

algorithm: for the very small radius r = 0.01 of the hypercube only 80% of the cases821

over the 1000 runs the minimization converged to the true solution, and for r > 0.01822

in none of the cases the minimization converged to the solution.823

Next, to test the effect of the chosen basis Bµ, we repeat the same experiment824

using 6 randomly chosen linearly independent symmetric matrices µ`, ` = 1, . . . , 6.825

The obtained results of this second test are shown in the second row of Table 6.1.826

These are clearly worst and very unsatisfactory.827

Finally, we repeat the experiment using the OGR Algorithm 6.2 with a set of 12828

matrices, namely the 6 unit basis elements shown above and the 6 linearly independent829

random matrices chosen for the second experiment. We obtain the results shown in830

the third row of Table 6.1. These are much better results. For r = 0.01 all the831

1000 runs converged to the solution µ?. Even though, the number of times that the832

optimization algorithm converged to the true solution decays as the radius r increases,833

in the case r = 0.10 more than 100 of runs converged to µ?. These results show the834

improved efficiency of the new proposed OGR algorithm. This improvement is even835

more evident if we consider a more general example where the unknown matrix lies836

in Her(N). In this case, the canonical basis for Her(3) is composed by the matrices837

given (6.6) together with the three matrices838

(6.7)

[
0 −i 0
i 0 0
0 0 0

]
,

[
0 0 −i
0 0 0
i 0 0

]
,

[
0 0 0
0 0 −i
0 i 0

]
.839

Let us now consider two examples. First, we choose an observer vector ψ1 = [0 0 1]>840
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and a (randomly generated) matrix µ? given by841

µ? =

[
−0.3243 −3.4790 + 0.7359i −0.5338 + 1.9254i

−3.4790− 0.7359i −3.8342 −1.1697 + 2.0256i
−0.5338− 1.9254i −1.1697− 2.0256i 1.0551

]
.842

All the other data (namely T , H and ψ0)5 are the same as the ones considered in the843

real-symmetric example. If we repeat the experiments of the real-symmetric case, we844

obtain the results of Table 6.2.

Hypercube radius r 0.01 0.10 0.50 1.00
GR (canonical basis) 908 13 1 0
GR (random basis) 596 4 0 0
OGR (extended random basis) 1000 277 32 7

Table 6.2
Numbers of runs (over 1000) that converged to the true solution µ?.

845 If one repeats the experiments for a different observer vector ψ1 = 1√
3
[1 1 1]>, the846

results shown in Table 6.3 are obtained.

Hypercube radius r 0.01 0.10 0.50 1.00
GR (canonical basis) 1000 757 15 2
GR (random basis) 648 212 49 3
OGR (extended random basis) 1000 992 214 36

Table 6.3
Numbers of runs (over 1000) that converged to the true solution µ?.

847 Table 6.2 and Table 6.3 show very clearly the improved efficiency and robustness848

of control functions generated the OGR algorithm. These allow one to identify the849

solution µ? in a much larger number of statistical runs.850

7. Conclusions. In this work, we provided a novel and detailed convergence851

analysis for the greedy reconstruction algorithm introduced in [14] for Hamiltonian852

reconstruction problems in the field of quantum mechanics. The presented conver-853

gence analysis has considered linear-quadratic (optimization, least-squares) problems854

and revealed the strong dependence of the performance of the greedy reconstruction855

algorithm on the observability properties of the system and on the ansatz of the basis856

elements used to reconstruct the unknown operator. This allowed us to introduce a857

precise (and in some sense optimal) choice of the basis elements for the linear case858

and led to the introduction of an optimized greedy reconstruction algorithm applica-859

ble also to the nonlinear Hamiltonian reconstruction problem. Numerical experiments860

demonstrated the efficiency of the new proposed numerical algorithm.861
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