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ANALYSIS OF A GREEDY RECONSTRUCTION ALGORITHM

S. BUCHWALD*, G. CIARAMELLAT, AND J. SALOMON?

Abstract. A novel and detailed convergence analysis is presented for a greedy algorithm that
was introduced in [14] for operator reconstruction problems in the field of quantum mechanics.
This algorithm is based on an offline/online decomposition of the reconstruction process and on
an ansatz for the unknown operator obtained by an a priori chosen set of linearly independent
matrices. The presented convergence analysis focuses on linear-quadratic (optimization) problems
governed by linear differential systems and reveals the strong dependence of the performance of
the greedy algorithm on the observability properties of the system and on the ansatz of the basis
elements. Moreover, the analysis allows us to use a precise (and in some sense optimal) choice of
basis elements for the linear case and led to the introduction of a new and more robust optimized
greedy reconstruction algorithm. This optimized approach also applies to nonlinear Hamiltonian
reconstruction problems, and its efficiency is demonstrated by numerical experiments.

Key words. Hamiltonian identification, operator reconstruction, optimal control problems,
inverse problems, quantum control problems, greedy reconstruction algorithm.

AMS subject classifications. 65K10, 81Q93, 34A55, 49N10, 49N45

1. Introduction. The identification of Hamiltonian operators plays a funda-
mental role in the fields of quantum physics and quantum chemistry; see, e.g., [7,9-
11,19,21-25] and references therein. Even though the overall literature about Hamil-
tonian identification problems is quite extensive, the mathematical contribution to
this area is rather limited. Important mathematical theoretical contributions can be
found in [2,4] and in [8,13], where uniqueness results for quantum inverse problems
are proved by exploiting controllability arguments. Other techniques, based on the
so-called Carleman’s estimate, are used in [2] to deduce uniqueness results for in-
verse problems governed by Schrodinger-type equations in presence of discontinuous
coefficients. Excluding these few theoretical results, the literature rather focuses on
numerical algorithms.

The term Hamiltonian identification often refers to two distinct problems. On the
one hand, it sometimes indicates the inverse problem associated with the identification
of a Hamiltonian operator obtained by a numerical fitting of simulated and given
experimental data. On the other hand, it occasionally refers to both the problem of
designing experimental parameters (allowing an optimized production of experimental
data) and the subsequent inverse identification problem. In general, the design of
experimental parameters includes the computation of control functions allowing an
efficient numerical solving of the inverse problem.

In the latter problem, the algorithms proposed in the literature often combine
the computation of control functions with the production of new synthetic (simu-
lated) data or experimental data. Mathematically, this framework has given rise to
two different approaches. The first one [13] consists in a procedure that alternately
updates a (shrinking) set of admissible Hamiltonian operators and the trial control
field used to generate new data. The second approach [14] is based on a full of-
fline/online decomposition and is inspired by the greedy strategy emerged in the field
of approximation theory in the 2000s; see, e.g., [1] and references therein. Even though
some mathematical investigations of the first approach can be found in the literature
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2 BUCHWALD, CIARAMELLA, SALOMON

(see [8,13]), much less is known about the second strategy, for which only preliminary
numerical results were presented in [14].

The goal of the present work is to provide a first detailed convergence analysis of
the Hamiltonian reconstruction strategy defined in [14]. As a by-product, this analy-
sis allows us to introduce a new more efficient and robust numerical reconstruction
algorithm.

The numerical strategy presented in [14] is based on the ansatz that the unknown
operator can be written as a linear combination of a priori given linearly independent
matrices. The set of these matrices is denoted by B,,. The reconstruction process
is then decomposed in offline phase and online phase. In the offline phase, a family
of control functions is built iteratively in a greedy manner in order to maximize the
distinguishability of the system. This phase exploits only the quantum model, without
any use of laboratory information. The algorithm proposed in [14] for the offline phase,
that we call in this paper greedy reconstruction (GR) algorithm, consists of a sweep
over the elements of B,,. At every iteration of the GR algorithm, one new element of
B,, is considered and a new control function is computed with the goal of splitting the
states generated by the new element and the ones already considered in the previous
iterations. The computed control functions are experimentally implemented in the
online phase to produce laboratory data. These are in turn used to define and solve
an identification inverse problem, aiming at fitting the numerical simulations with the
corresponding experimental data.

In [14] the heuristic motivation for the offline phase is that this attempts to
produce a set of control functions that make the online identification problem uniquely
solvable (and easier to be solved) in a neighborhood of the true solution. Starting
from this idea we develop a detailed convergence analysis for linear problems (linear-
quadratic in the least-squares sense). The analysis of the algorithm for linear problems
corresponds to a local analysis performed on linearized equations and provides a
first fundamental step toward the study of full non-linear problems. Our analysis
relates very clearly the iterations of the offline phase, and the corresponding computed
control functions, to the solvability of the online identification problem. Moreover, the
obtained theoretical results will reveal the strong dependence of the performance of
the greedy reconstruction algorithm on the observability properties of the system and
on the ansatz of the basis elements used to reconstruct the unknown operator. These
observations allow us to improve the GR algorithm and introduce a new optimized
greedy reconstruction (OGR) algorithm which shows a very robust behavior not only
for the linear-quadratic reconstruction problems, but also for nonlinear Hamiltonian
reconstruction problems.

The paper is organized as follows. In Section 2, the notation used throughout
this paper is fixed. Section 3 describes the Hamiltonian reconstruction problem and
the original GR algorithm introduced in [14]. The GR algorithm is then adapted to
linear-quadratic problems in Section 4 and the corresponding convergence analysis is
presented in Section 5. In Section 6, we introduce some improvements of the GR
algorithm that lead to an optimized greedy reconstruction algorithm. The OGR al-
gorithm is presented first for linear-quadratic problems and then extend to nonlinear
Hamiltonian reconstruction problems. Within Section 6, results of numerical exper-
iments are shown to demonstrate the efficiency and the improved robustness of the
new proposed algorithm. Finally, we present our conclusions in Section 7.

2. Notation. Consider a positive natural number N. We denote by <v,w> =
v'w, for any v,w € CN the usual complex scalar product on CV, and by |- I
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A GREEDY RECONSTRUCTION ALGORITHM 3

the corresponding norm. Further, |z | is the modulus of a complex number z and
i is the imaginary unit. The space of Hermitian matrices in CN*¥ is denoted by
Her(N).! For any A € CN*¥ | [A]; ) denotes the j, k (with j,k < N) entry of A and
the notation A[y.j 1.5 indicates the upper left submatrix of A of size k x j, namely
[Apk,1:1lem = [Alegm for £ =1,... k and m = 1,...,j. Similarly, A}, ; denotes
the column vector in C* corresponding to the first k elements of the column j of
A, namely [Aq.p e := [Ale; for £ = 1,... k. Finally, the usual inner product of

L?(0,T;CY) is denoted by (-, ->L2, and L? := L?(0,T;R).

3. Hamiltonian reconstruction and a greedy reconstruction algorithm.
Consider the finite-dimensional Schrodinger equation

(3.1) () = [H + e(t)uJ9(t), t € (0,T], %(0) = o,

governing the time evolution of the state of a quantum system 9 € CN, N € N*.
The internal Hamiltonian H is assumed to be known and the goal is to identify the
unknown dipole moment operator u, that couples the quantum system to a time-
dependent external laser field € € L?, which acts as a control function on the system.
Both internal Hamiltonian H and dipole operator p, belong to Her(N), and 9(t) lies
in CV. The initial condition is 9o € CV which satisfies [|9o], = 1.

The true dipole operator p, is unknown and assumed to lie in a space spanned by
K linearly independent matrices p1, ..., ik, forming the set B, = (,uj)f=1 C Her(N),
where K € Nt satisfies 1 < K < dimHer(N) = N2. Hence, we write u, = u(ay),
with p(a) = Ejil a;p; for any a € RE.

To identify the true operator p, one uses a set of control fields (e™)K_, c L? to
perform K laboratory experiments and obtain the experimental data

(3.2) Oy, €M) = <1/)1,'1,[)T(M*, em)>, form=1,... K.

Here, Y7 (p«, €) denotes the solution to (3.1) at time T° > 0, corresponding to the
dipole operator p, and a laser field e. The value 9; € CV is a fixed state with
[[¥1]|, = 1 and acts on a state of the quantum system as an observer operator. The
measurements are assumed not to be affected by any type of noise.

Using the set of control fields (€™)X | and the corresponding experimental data
(o(1x, €™))E_, C C, one solves the nonlinear least-squares problem

K
(3.3) min 3 [o(i, ™) — p(ula), e,
=1

acRK
m

where o(u(a),e™) = (¢1,%7r(u(a),e™)), with 7 (u(a),e™) the solution to (3.1)
evaluated at time T corresponding to the dipole operator u(e) and the laser field €.
Clearly a, is a global solution to (3.3).
In the presented reconstruction problem, several variables are used. Let us clarify
their roles in plain words:
e The elements of the basis B, can be arbitrarily chosen as data.
e Given a basis B,,, the true unknown of the problem is a, (or equivalently 1.).

I'Notice that the set of Hermitian matrices forms a (real) vector space if the scalar multiplication
is defined with respect to scalars belonging to R. In fact, if A € Her(N), then cA € Her(N) for
any ¢ € R. However, this is not true for ¢ € C, since choosing, e.g., ¢ = i, the imaginary unit, the
transpose conjugate of 1A is —iA.

This manuscript is for review purposes only.
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4 BUCHWALD, CIARAMELLA, SALOMON

e The control functions are needed to produce the laboratory data (3.2), which
are necessary to assemble the (final) inverse problem (3.3). These control
functions are computed (optimized) by the numerical strategy discussed below
with the goal of optimizing the conditioning of problem (3.3).

If the control functions (¢™)X_,; and the data (¢(ji., €™))X_; are given, problem
(3.3) is a standard parameter-identification inverse problem written in a minimization
form. The choice of the laser fields (¢™)X_, can affect significantly the properties of
(3.3) and the corresponding solutions. To design an optimized set of control functions,
in particular with the goal of improving local convexity properties of (3.3), Maday and
Salomon introduced in [14] a numerical strategy which separates the reconstruction
process of i, in offline and online phases. In the offline phase, a greedy reconstruction
(GR) algorithm computes a set of optimized laser fields (¢™)X _, by exploiting only the
quantum model (3.3) and without using any laboratory data. In the online phase, the
computed control fields (€™)E_, are used experimentally to produce the laboratory
data @(pe, €™) := (11,97 (tix, €™)) and to define the nonlinear problem (3.3).

While the online phase consists (mathematically) in solving a classical parameter-
identification inverse problem, the offline phase requires the GR algorithm introduced
in [14]. The ideal goal of this offline/online framework is to find a good approxima-
tion of the unknown operator for which the difference at time T between observed
experimental data and numerically computed data is the smallest for any control. In

other words, one aims at finding a matrix p that solves

(3-4) min - sup |o(j, €) = p(u €)%,
pEspan By 2

or equivalently an a that solves

(3.5) min  sup |p(u(en),€) — p(u(a), €)*.
a€RK  ccr2

Therefore, the goal of the GR algorithm is to generate a set of K control functions
such that a computed solution to (3.3) is also a solution to (3.4)-(3.5). To do so, the
heuristic argument used in [14] is that the GR algorithm must attempt to distinguish
numerical data for any two p(a),pu(a) € spanB,, p(a) # p(a), without perform-
ing any laboratory experiment. Following this idea, Maday and Salomon defined
the GR algorithm as an iterative procedure that performs a sweep over the linearly
independent matrices (p)5_, and computes a new control field e**! at each itera-
tion. Suppose that the control fields €', ..., €* are already computed, the new control
function €1 is obtained by two sub-steps: one first solves the identification problem

2

)

k k

(3.6) i > ’sﬂ(z a;pj, €)= @1, €™)
m=1 j=1

which gives the coefficients o, . .. ,a’,j, and then computes the new field as

2
(3.7 "1 € argmax, .2

k
P(prt1,€) — @(Z gy, 6)
j=1

The step of solving Problem (3.6) is called fitting step, since one attempts to compute a
vector @ := [a¥,...,af]T that fits the quantities @(Zle alpg, ™) and p(pgy1, €™).
In other words, the new basis element px11 is considered and one identifies an element

This manuscript is for review purposes only.
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A GREEDY RECONSTRUCTION ALGORITHM 5

Algorithm 3.1 Greedy Reconstruction Algorithm

Require: A set of K linearly independent matrices B, = (p1, .. ., fix)-
1: Solve the initialization problem
(3.9) max |11, €) — (0, 0)[,
ecL
which gives the field €' and set k = 1.
2: while k< K —1 do
3: Fitting step: Find (a?)j:L,,,,k that solve the problem

k
(3.9) min Y [p(pri1,€") — o(u™ (@), ™).
aERk m=1
4:  Discriminatory step: Find €*T! that solves the problem
(3.10) max | (a1, €) = (™ (@), ).

5. Update k < k£ + 1.
6: end while

) (aF) = E?Zl afuj such that none of the already computed control functions
€',...,e" is capable of distinguishing the observations o(u*)(a*),€) and p(upi1,€)

(namely o(u® (a®), €™) # o(upy1,€™) form = 1,...,k). The step of solving problem
(3.7) is called discriminatory step, because one computes a control function €1 that
is capable of distinguishing (discriminating) ¢(u® (a®), e*+1) from p(ug 1, €#H1).

The full GR algorithm is stated in Algorithm 3.1.2 Notice how the algorithm
is obtained by a sequence of minimization and maximization problems, mimicking
exactly the structure of the min-max problem (3.4)-(3.5).

Notice also that, since the goal of the GR algorithm is to compute control func-
tions that allow one to distinguish between the states of the system corresponding to
any possible dipole matrix, the algorithm implicitly attempts to compute control func-
tions that make the online identification problem (3.3) locally strictly convex (hence
uniquely solvable). This is an important observation that we will use to begin our
convergence analysis.

A general analysis of the greedy reconstruction algorithm in a full nonlinear set-
ting is a very complicated task. As a first step in this direction, we propose in the next
section to focus on a linear model. On the one hand, this choice allows us to provide
a first detailed analysis of the algorithm. On the other hand, this study corresponds
to a local analysis performed on linearized models. Note that linearizing (3.1) around
€ =0 gives

(3.11) i0(t) = Hop(t) + [De()Ju(t), t € (0,T], 5(0) = 0,

where 1 is a solution of (3.1). Focusing on the case where 9(0) is an eigenvector of
H,ie. Hy(0) = Mp(0). We obtain 9(t) = e~***4)(0) so that the control term reads
as [Se(t) o (t) = [Austp(0)]e "M Fe(t). Tt follows that this framework corresponds to

2Notice that the initialization problem (3.8) is different from the one considered in [14], which
was stated anyway to be arbitrary. The reason for our choice is that (as we will see in the next
sections) this slightly modified initialization problem (3.8) will be essential to obtain convergence.

This manuscript is for review purposes only.
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6 BUCHWALD, CIARAMELLA, SALOMON

a linear model of the form y(t) = Ay(t) + Be(t) (as (4.1) in Section 4) with y = dt,
A = H, B = \M,%(0), yo = 0 and €(t) = e "*de(t). Let us also remark that
this setting is often used to study theoretically the controllability of Schrédinger-type
equations, see e.g. [3], and the references therein. Furtermore, we wish to remark
that it is always possible to rewrite a system of complex differential equations (like
(3.11) and (3.1)) into a real (but augmented) system by separating real and imaginary
components. For this reason, the analysis presented in Section 4 focuses, without loss
of generality, on systems of real differential equations.

We conclude this section with a final remark about the laboratory measurements.
Throughout this paper, these are assumed to be not affected by any type of noise,
even though noise is a significant factor that has to be dealt with; see [13, Remark 1]
and references therein. However, the main goal of the present work is the numerical
and convergence analysis of the computational framework and the GR algorithm
introduced in [14], where noisy effects in taking measurements are also neglected.

4. Linear-quadratic reconstruction problems. Consider a state y whose
time evolution is governed by the (real) ordinary differential equation

(4.1) y(t) = Ay(t) + B.e(t), t € (0,T], y(0) = yo,

where A € RVX¥ ig a given matrix for N € NT, the initial condition is yo € RY, and
€ € F,q4 denotes a control function belonging to F,4, a non-empty and weakly compact
subset of L?(0,T;RM) (e.g., a closed, convex and bounded subset of L%(0,T;RM)).
The control matrix B, € R¥N*M for M € N*, is unknown and assumed to lie in the
space spanned by a set of linearly independent matrices B = {Bj, ..., Bg} C RV*M
1< K < NM, and we write B, = Y1, &, ; B; =: B(ow,).

As in the case of the Hamiltonian reconstruction problem, to identify the un-
known matrix B, one can consider a set of control functions (em)ﬁzl C E,q and use
it experimentally to obtain the data Cyr(By,e™), m = 1,..., K. Here, yr(Bx,€)
denotes the solution of (4.1) at time T" and corresponding to a control function € and
to the control matrix B,. Further, C € RFP*V ig a given observer matrix.

As in Section 3, the reconstruction process is split into online and offline phases.
In the offline phase, the GR algorithm computes the control functions (€™)X_,. These
are then used in the online phase, in which the laboratory data

(4.2) Cyr(Bs,€"), m=1,.... K

are obtained and one solves the identification problem

K
(4.3) min > [|Cyr(B.,€") - Cyr(Bla),e™)]; .

acRK
m

As in Section 3, several variables are used in the presented reconstruction problem:
e The elements of the basis B can be arbitrarily chosen as data.
e Given a basis B, the true unknown of the problem is e, (or equivalently B,).
e The control functions are needed to produce the laboratory data (4.2), which
are necessary to assemble the (final) inverse problem (4.3).
As for the Hamiltonian reconstruction problem, the ideal goal of the offline/online
framework is to find a good approximation of the unknown operator for which the
norm difference at time 7" between observed experimental data and numerically com-
puted data is the smallest for any control function. In other words, we wish to find a

This manuscript is for review purposes only.
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A GREEDY RECONSTRUCTION ALGORITHM 7

Algorithm 4.1 Greedy Reconstruction Algorithm (linear-quadratic case)

Require: A set of K linearly independent matrices B = (Bi,..., Bk).
1: Solve the initialization problem
(4.5) max ||Cyr(Bi,€) — Cyr(0, 0)H§ ,
ecE,q
which gives the field €', and set k = 1.
2: while k< K —1 do
3:  Fitting step: Find (@);=1,...» that solve the problem

.....

(4.6) min i HC’yT(BkH,em) - CyT(B(k)(a),em)H2 ;
m=1

acRk 2

where B® (a) := 25:1 a;B;.
4:  Discriminatory step: Find €*T! that solves the problem

2
(4.7) max || Cyr(By1,€) — Cyr(B® (@"),¢)
€ ad

2

5. Update k + k+ 1.
6: end while

matrix B of the form B(a) := ZjK:1 a;B; that solves

. 2
(4.4) min max |Cyr(Bs,€) — Cyr(Bla),e)ll,-

The GR algorithm generates a set of K controls that attempt to distinguish
numerical data for any two B(@) # B(a), without performing any laboratory exper-
iment. The GR algorithm for linear-quadratic reconstruction problems is given in
Algorithm 4.1.

Since the convergence analysis performed in the next sections focuses on Al-
gorithm 4.1, we wish to explain it in more details. The idea is to generate con-
trols that separate the observations of system (4.1) at time T for the different ele-
ments By,..., Bk, making possible the identification of their respective coefficients
af,...,a% when solving (4.3). The initialization is performed by solving the optimal
control problem (4.5), which aims at maximizing the distance (at time T') between the
observed state of the uncontrolled system (namely y7(0,0) corresponding to € = 0)
and the observed state of the system

y(t) = Ay(t) + Bie(t), y(0) = yo.

The numerical solution of this maximization problem provides the first control func-
tion €.

Assume now that the control functions €', ..., €* are computed. The new element
€"*! is obtained by performing a fitting step (namely solving problem (4.6)) and a
discriminatory step (namely solving problem (4.7)). In the fitting step, one compares
the two systems

k

{y(t) = Ay(t) + Bk_;,_lém(t), y(t) = Ay(t) + (Z?_l aij>e7”(t),
y(0) = o, y(0) = yo,

This manuscript is for review purposes only.
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8 BUCHWALD, CIARAMELLA, SALOMON

with B*) (a) := 25:1 a;Bj and for m € {1,...,k}, and looks for an & € R¥ for which
their observed solutions at time T are as similar as possible (ideally the same, hence
indistinguishable). We denote by a* = [af,. .. ,ozZ]—r the vector computed by solving
(4.6). This vector is used in the subsequent discriminatory step, which consists in
solving the optimal control problem (4.7). Here, we compute a control function €**!

that maximizes the distance (at time T') between the solutions of the two systems

y(t) = Ay(t) + Brie(t), y(t) = Ay(t) + Y5, oFBje(t),
¥(0) = yo, y(0) = yo,

where now a;‘? are fixed coeflicients and the optimization variable is the control func-
tion €. Notice that this maximization problem is well posed, as we will discuss in
Lemma 5.2 in Section 5.

We wish to remark again that, since the goal of the GR algorithm is to compute
control functions that permit to distinguish between the states of the system corre-
sponding to any possible control matrix, the algorithm implicitly attempts to compute
control functions that make the online identification problem locally uniquely solvable.

With these preparations, we are ready to present our convergence analysis.

5. Convergence Analysis. Our analysis is based on a reformulation of the
algorithm that highlights the link between convergence and observability. We present
the reformulation of the algorithm in a matrix-vector form in Section 5.1, where the
main idea of our convergence analysis and its relation with the observability properties
of the system are first presented. Detailed analyses for fully observable and non-fully
observable systems are provided in Section 5.2 and Section 5.3, respectively.

5.1. Matrix-vector formulation and convergence of the algorithm. The
convergence analysis presented in this section begins by recalling that one of the goals
of the GR algorithm is to compute a set of control functions that makes the online
identification problem (4.3) strictly convex in a neighborhood of the solution e, (and
hence locally uniquely solvable). It is then natural to begin with problem (4.3) and
prove the following lemma, which gives us an equivalent matrix-vector formulation.

LEMMA 5.1 (Online identification problem in matrix form). Problem (4.3) is
equivalent to

(5.1) arg%r}( (a, —a,W(a, —a)),
where W € REXK jg defined as

- K
(5.2) W= > W(em),
with W (™) € REXEK given by

(5.3) (W(€™))e,; = (ve(€™),vj(€™)), forb,5=1,..., K,

T
(5.4) Ye(€™) == / CeT=9ABe™ (s)ds, form,l=1,... K.
0

This manuscript is for review purposes only.
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A GREEDY RECONSTRUCTION ALGORITHM 9

Proof. Define J(a) := Zﬁzl |Cyr(By, ™) — C’yT(B(a),em)Hg and notice that
T
yr(B,,e") = yo + / T4 B(a, )e™(s)ds,
0
T
yr(Bla).e) = Myo + [ eI Baen ()i
0

Recalling that B(a) = Zf 1 @;Bj, the function J(a) can be written as

2

1

T K

e(Tfs)A . €™ (s)ds

| e (Yt -apm)erioa
K K K

Z ZZ (ay e — o)y j _a]‘)<'ye(€m),’y]‘(€m)>,

m=1(=1 j=1

where the vectors y,(€™) are defined in (5.4). We can now write

K K K
T@) =YY (s —a)(an; —a;) Y (v "))
=1 j=1 m=1

(a, —a, W(a, — a)),

K
= (a, —a, Z W(e™) (e, —a))
m=1

and the result follows. d

Notice that, the matrices W (e™) defined in (5.3) can be written as W(e™) =
[(e™)"T(e™), where T'(e™) = [y1(€™) - -+ yx (€™)]. Hence, W (e™) are Hermitian and
positive semi-definite. This guarantees that W is also Hermitian and positive semi-
definite. Therefore, problem (5.1) is uniquely solved by @ = a, if and only if W is
positive definite, meaning that the GR algorithm actually aims at computing a set
of control functions (e™)X_, that makes W positive definite. We then need to study

how the positivity of W evolves during the iteration of the algorithm. To do so, the
first step is to rewrite the problems (4.5), (4.6) and (4.7) also in a matrix form.

LEMMA 5.2 (The GR Algorithm 4.1 in matrix form). Consider Algorithm 4.1.
1t holds that:
e The initialization problem (4.5) is equivalent to

(5.5) max [W(e)]1.1.

ecFE,q ?

o The fitting-step problem (4.6) is equivalent to

(5.6) min (@, Wi, ge) = 2Wh, @),

acRk

where Wk = Z;Zl W(e™), and (recalling Section 2) Wﬁ:k,l:k] € R¥** denotes
the k x k upper-left block of W* and Wﬁ:k’kﬂ] € R* is a vector containing the
first k components of the k + 1-th column of Wk,

This manuscript is for review purposes only.
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10 BUCHWALD, CIARAMELLA, SALOMON

o The discriminatory-step problem (4.7) is equivalent to

(57) max <’U, [W(G)][l;k+1,1;k+1]’v>,

€ecFl,q

where W (€) is defined in (5.3) and v := [(a®)T, —1]T.
Moreover, problems (4.5)-(5.5), (4.6)-(5.6), and (4.7)-(5.7) are well posed.

Proof. The equivalences between (4.5), (4.6), (4.7) and (5.5), (5.6), and (5.7),
respectively, can be proved by similar calculations to the one used in the proof of
Lemma 5.1. We omit them for brevity.

Problem (4.6)-(5.6) is a quadratic minimization problem with quadratic function
bounded from below by zero. Hence the existence of a minimizer follows.

Problems (4.5)-(5.5) and (4.7)-(5.7) are two classical optimal control problems.
Since the admissible set E,q is a weakly compact subset of L2(0,T; R ), the existence
of a maximizer follows by standard arguments based on maximizing sequences and
weak compactness; see, e.g., [5] and references therein. O

Using the matrix representation given in Lemma 5.2, we can now sketch the math-
ematical meaning of the iterations of the GR algorlthm Assume that at the k-th
iteration the submatrix W[1 ko 1:K] is positive definite, but W[1 1,1k 1] has a non-
trivial (one-dimensional) kernel. The GR algorithm first tries to identify (by solving
problem (5.6)) the kernel of W[]i:k+1 Lh1]7 and then attempts to compute (by solving

k+1

problem (5.7)) a new control function e such that the matrix Wiy.py1,1:041) (eF+1)

is positive on the kernel Wﬁ 111 If these happen, then the new updated matrix

Wkt = Wk + W (e*+1) has a positive definite upper-left block I/V1 bt 1kp1)- More-
over, if these two steps hold for any k, then the convergence follows since after the
(K — 1)-th iteration the matrix W= WK results to be positive definite. Hence, two
questions clearly arise:
1. Does the fitting step of the algorithm always compute the non-trivial kernel
of W[1 11k 1] (in case it is truly non trivial)?
2. Does the dlscrlmlnatogz step of the algorithm always compute a control func-
tion €**! that makes W[1 hi1,1:1) Positive definite?
The first question can be answered with the help of the following technical lemma.

LEMMA 5.3 (On the kernel of Hermitian positive semi-definite matrices). Con-
sider a symmetric positive semi-definite matriz G € R™ ™ of the form

o-[6 ]

b’ ¢

where G € RO—1x(n=1) 4 symmetric and positive definite, and b € R ! andceR
are such that the kernel of G is non-trivial. Then

ker(G) = Span{ [G_llb] }

Proof. Since the kernel of G is non-trivial, there exists a non-zero vector

u = m € R™\ {0} (with v € R"" and d € R) such that Gu = 0. Moreover,

since G is positive definite, the kernel of G must be one-dimensional and equal to the

This manuscript is for review purposes only.
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A GREEDY RECONSTRUCTION ALGORITHM 11

span of {u}. Using the structure of u, we write Gu = 0 as
Gv+db= O, G inyertible v = 7dG71ba
(5.8) T = T
b'v+de=0, —db'G7'b+dc=0.

Now, suppose that d = 0. This implies that ¥ = —dG~'b = 0, which in turn implies
that u = 0. However, this is a contradiction to the fact that w # 0. Hence d # 0. The
result follows by the right equations in (5.8) (divided by —d). d

Recalling the equivalent form (5.6) of the fitting-step problem (4.6), one can
clearly see that, if Wﬁ:k 1] is positive definite, then the unique solution to (5.6) is

given by o = (/V[?[Ii:k,1;k])_1/w7[]i:k,k+1]' On the other hand, if we set

o~

G= Wﬁ:k+1,1:k+1]a G= W[’i;k,l:k]a b= Wﬁ:k,k-&-l]v c= W[]Z+1,k+1]a

then Lemma 5.3 guarantees that the vector v := [(@*)T, —1]T spans the kernel of
W[]i:k-kl,l:k—irl]’ if this is non-trivial. Therefore, we have

- Wk _ 71Wk. o
ker(W[’i:kJrl,l:kJrl]) — Span{ [( [1.k,1.k])_1 (L:k,k41] }:span{v =% }

This means that, if Wﬁ:kﬂ’l:kﬂ] has a rank defect, then the GR algorithm finds this
defect by the fitting step.

The answer to the second question posed above is more complicated. In order to
formulate it properly, we need to recall the definition of observability of an input/out-
put dynamical system of the form

(5.9) y(t) = Ay(t) + Be(t), y(0) =yo,

with A € RVXN B e RVXM ¢ ¢ RP*N: see, e.g., [18].

DEFINITION 5.4 (Observable input-output linear systems). The input-output lin-
ear system (5.9) is said to be observable if the initial state y(0) = yo can be uniquely
determined from input/output measurements. Equivalently, (5.9) is observable if and
only if the observability matriz

C

CA
(5.10) On(C, A) =

caAN-!

has full column rank.

Notice that the matrix B does not affect the observability of system (5.9).

We now analyze the convergence of the algorithm in the case of fully observ-
able systems (namely rank On(C, A) = N) in Section 5.2 and in case of non-fully
observable systems (namely rank On(C, A) < N) in Section 5.3.
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12 BUCHWALD, CIARAMELLA, SALOMON

5.2. The case of fully observable systems. Let us assume that the system
is observable, namely that rank On(C, A) = N. We show in this section that this is a

sufficient condition for the GR algorithm to make the matrix W positive definite. To
do so, we first prove the following lemma regarding the discriminatory step. Notice
that the proof of this result is inspired by classical Kalmann controllability theory;
see, e.g., [6].

LEMMA 5.5 (Discriminatory-step problem for fully observable systems). Assume
that the matrices A € RN*N and C € REP*N are such that rank On(C, A) = N. Let
Wﬁ:k,hk] be positive definite, a® the solution to the fitting-step problem (4.6), and
v = [(@®)T,—=1]T. Then any solution €1 of the discriminatory-step problem (4.7)
satisfies

2

<'v,W[1:k+171:k+1](ek+1)v> = / CB(T 8)A (Bk;Jrl ZakB ) k+1( )d > 0,
j=1 9

fork=0,1,..., K —1.
Proof. Let us define B = Bi41 — 25:1 a?Bj. Since the matrices By, ..., Bgy1

are assumed to be linearly independent, B is non-zero.
Now, we consider an arbitrary ¢ € (0,7") and define a control function € € E,4 as

&(s) = 0, 0<s<d,
" le, 6<s<T,

where e; € RM is the i-th canonical vector for some index 1 < i < M. Further, we
denote by b; the i-th column of B. Since B is non-zero, we can choose the index i
such that b; # 0. Now, we compute

oo

/ CelT=94 Fe(s)ds = / CoT—94G 4 — / [Z sy A/ T s
0 4

7=0

<*> (T —68)itt 9=
Z/ (i) i) CAJ] [JZO T cAllb,
= i B,(6)C A%b;,
3=0

where §;(0) := % and we used the dominated convergence theorem (see, e.g.,
[16, Theorem 1.34]) to interchange integral and infinite sum and obtain the equality
(*). Since the observability matrix On(C, A) has full rank and b; # 0, there exists
an index 0 < j < N — 1 such that CAJb; # 0. Hence, f(é ) >0 Bi0)C Alb,
is an analytic function for § € (0,7) and such that f # 0. We also know that

3To see it, recall that Bj(8) = %, s
that there exists at least one integer k such that v, # 0. Now, if we pick the minimum integer k such

that v # 0, we have that g(z) =

consider a function g(z) = 3272, (0511)'7]’ and assume

(k+1)"yk + Z;‘;EJA (?.jTJrll)!'yj. For z — 0, the first term behaves as

O(:vk"'l), while the second term as O(z k+2). Hence, there exists a point y > 0 such that g(y) # 0.
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A GREEDY RECONSTRUCTION ALGORITHM 13
(non-constant) analytic functions have isolated roots; see, e.g., [16, Theorem 10.18].

Therefore we can find a § € (0,7) such that Z;io Bj (§)CA3E # 0, and obtain the
existence of an € € F,4 such that

T
/ CeT=94Be(s)ds # 0.
0

This implies that

T k 2
(v, Wiigr 11041 (€T ) = / CelT=9)4 (Bk—H - ZO&:B@)ka(S)@
0 (=1 2
T k 2
> / CelT=9)4 (Bk+1 - ZafBg)E(s)ds
0 (=1 2
- N 2
= / CeT=94Be(s)ds|| >0,
0 2
where we have used that e**1 is a maximizer for problem (4.7). d

Now, we can prove our first main convergence result.

THEOREM 5.6 (Convergence of the GR, algorithm for fully observable systems).
Assume that the matrices A € RV*N and C € RP*N are such that rank Oy (C, A) =
N. Let K € {1,...,MN} be arbitrary and let {€',... e} C E,q be a family of
controls generated by the GR Algorithm 4.1. Then the matriz W defined in (5.2) is
positive definite and online identification problem (4.3) is uniquely solvable by o = av,.

Proof. By Lemma 5.1 it is sufficient to show that the matrix W corresponding to
the controls €',...,eX generated by the algorithm is positive definite. The proof of
this claim proceeds by induction.

Lemma 5.5 guarantees that there exists an €' such that [W(e!)];1 > 0. Now, we
Wkt

assume that Wﬁzk’l:k] is positive definite, and we show that [kt 1,15k

] is positive
definite as well.
If Wﬁ:kH’LkH] is positive definite, then

—

k+1 _ Tk k
Wilert, i1 = Wiiks ey W(€") [1:k41,1:0+1]
is positive definite as well, since W(ek)[lzkﬂ,l:kﬂ] is positive semi-definite.
Assume now that the submatrix Wﬁ:k 1Lk has a non-trivial kernel. Since
Wﬁ: ,1:k] 1S positive definite (induction hypothesis), problem (5.6) is uniquely solvable

with solution a. Then, by Lemma 5.3 the (one-dimensional) kernel of Wﬁ:kH k1]

is the span of the the vector v = [(@®)T, —1]T. Finally, using Lemma 5.5 we obtain
that the solution €t to the discriminatory-step problem satisfies

0< <117 [W(ka)][1:k+1,1;k+1]v>-

Hence, the matrix [V (e*+1)] [1:k+1,1:k+1] 18 positive definite on the span of v. Therefore

—

W[]ijl_cl—&-l,lzk—i-l] - W[]i:k+171:k+l] + (WM )] 1ikr1,1041) I8 positive definite. a

This manuscript is for review purposes only.
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14 BUCHWALD, CIARAMELLA, SALOMON

Remark 5.7 (Uniqueness of solution of the min-max problem (4.4)). Under the
assumption that the system is fully observable, the min-max problem (4.4) is also
uniquely solvable with @ = a,. To see this, we first note that (4.4) can be written in
terms of W(e):

2

ICyz (B..€) - Cyr(B(a),e)||”

K
/ CeT— S)A Z = O i) 7)e(s)ds
Jj=1

= ((a— o), W(e)(a —a.)).

2

Now, similarly as in the proof of Lemma 5.5 and using the full observability of the
system, one can show that for any @ € R¥M with & # a, there exists a control €(@)
such that ((@ — a.), W(e(@))(a — a.)) > 0. Therefore the unique solution to (4.4) is
o= a,.

Notice that, Theorem 5.6 does not require any particular assumption on the ma-
trices Bi,..., Bk, which can be arbitrarily chosen with the only constraint to be
linearly independent. Moreover, the number K € {1,..., M N} can be fixed arbi-
trarily and the GR algorithm will compute control functions that permit the exact
reconstruction of the coefficients of the linear combination of the first K components
of B, in a basis {Bi,...,Bun~}. To be more precise, if the unknown B, belongs to
the span of K the linearly independent matrices By, ..., Bk used by the algorithm,
then, using the control functions generated by the GR algorithm, the unknown B,
can be fully reconstructed. If B, lies in the span of K € {K +1,K +2,...,MN}
linearly independent matrices B, ..., Bz, but only the first K of these are used by
the algorithm (and in the online identification problem), then one reconstructs ex-
actly the K coefficients corresponding to the first elements By, ..., Bx. Furthermore,
the ordering of the K considered matrices does not affect the convergence result of
Theorem 5.6.

5.3. The case of non-fully observable systems. The observations and re-
sults of Section 5.2 are no longer true if the system is non-fully observable, that is
rank O (C, A) = R < N. In this case, the choice of the linearly independent matrices
By, ..., Bi and their ordering become crucial for the algorithm. In particular, we are
going to show that the method can recover at most K = RM components of the
unknown vector o, if appropriate matrices By, ..., Bx are chosen. Moreover, we will
see that an inappropriate choice of matrices B, ..., Bx can lead to completely wrong
results corresponding to an arbitrarily large error.

For our analysis, we begin by choosing a set of K = N M matrices by exploiting
the kernel of the observability matrix. In particular, recalling that rank On(C, A) =
R < N, the rank-nullity theorem allows us to consider a basis {v; }ﬁv:l C RN of RV,
such that

(5.11) v; ¢ ker On(C, A), j=1...,R,
(512) ’UjEkeI' ON(C,A), j=R+1,...,N,
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A GREEDY RECONSTRUCTION ALGORITHM 15

where span{v; } L, .| = ker On(C, A). We now define a basis { B }3{ of RN *M as

o T RO T o T
By =vie;, By =viey, -+, By =viey,,
o T RO T o T
By =vse;, By o =v2ey, -+, By = voey,
(5.13)
A —vyel . BC —vvel o _. T
B(Nfl)MJrl = wye] , B(N71)M+2 =vney, -+, Byy =vney,

where e, € RM for ¢ = 1,..., M, are the canonical vectors in RM. Notice that, since

the vectors (v;)}_, are linearly independent, the set {Bg }N2 is a basis of RY*M.
From a computational point of view, the vectors v; can be obtained by a singular
value decomposition (SVD) of the observability matrix Oy (C,A) = ULV T, where
the columns of V form a basis of RY and the last N — R columns of V span the
kernel of On(C, A); see, e.g., [20, Theorem 5.2]. Therefore, one can set v; = V], 5,
j=1,...,N.
Our first result for non-fully observable systems says that, if the basis {BY}NM

is considered, then we can reduce the reconstruction of B, = Z;Wf o, jB =~ only to
the first RM coefficients a1, ...,ary. This is proved in the next lemma, where we

use the notation
RM

(5.14) BR(CU*) = Za*,jBJO.
=1

LEMMA 5.8 (Online identification problem for non-fully observable systems).
Consider the basis {BS}NM constructed as in (5.13) (with vectors vj, j=1,...,N,
as in (5.11)-(5.12)). The online least-squares problem (4.3) (with K = M N ) is equiv-
alent to

min Y ||Cyr(B.,€™) — Cyr(Br(a),e™)|l5.
m=1

aERRM

Proof. Notice that, for any £ € {1,2,...,NM} and s € [0,T], there exist N
functions 3; such that

CelT=4BP — cz (=) yige ‘*’C[Z Bj(s)47] BY

- [50(5)1N, Bi(s)Iy,. .. ,5N,1(S)IN} On(C, A)BE,

where we have used the Cayley-Hamilton theorem (see, e.g., [12, p.109]) to obtain the
equality (x). If £ € {RM +1,...,NM}, then BY = vje] with j > R + 1, hence
v; € ker On(C, A) and therefore

On(C,A)BY = On(C, A)je] =0.
-0

Hence, CeT=)ABY =0 for all ¢ € {RM +1,...,NM} and s € [0,T]. Thus

T
/ CeT=)4B%%(s)ds = 0,
0
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16 BUCHWALD, CIARAMELLA, SALOMON

for any control function € € E,q. Now, recalling the definition of J(a) from the proof
of Lemma 5.1, our claim follows by writing the least-squares problem (4.3) as

2
NM ||NM

T
Z(ahjfaj)/ Ce(T*S)AB]Oem(s)ds

m=1 || j=1 0

J(a) =

(]

T
S (o —ay) /0 CelT=9ABOem (5)ds|| | 0

m= Jj=1

NM ||RM
! 2

Lemma 5.8 implies that the coefficients agpri1,...,apn do not affect the cost
function to be minimized. Therefore, as shown in Corollary 5.11, any vector a € RM¥

of the form

* * T
a = [ala"' YOR N VRM A1, 7’7MN]

is a global solution to (4.3), for any v; € R, j = RM +1,..., M N. This means that,
one uses really only the first RM elements of the basis. In fact, as we are going to
show in Lemma 5.9 and Theorem 5.10, only their corresponding coefficients can be
reconstructed, while no information can be obtained for the remaining ones. It is
therefore natural, for rank On(C, A) = R < N, to use the GR algorithm with only
the first RM basis elements BY, ..., B% - In this case, the proof of convergence for
the GR algorithm is analogous to what we have done to obtain Theorem 5.6. We first
prove a version of Lemma 5.5 adapted to non-fully observable systems.

LEMMA 5.9 (Discriminatory-step problem for non-fully observable systems). As-
sume that rank Oy (C, A) = R < N and that the GR algorithm is run until the k-th
iteration, with k < RM, using the linearly independent matrices BY, .. .,B%M de-
fined in (5.13). Let W\ﬁ:k,l:k] be positive definite, and let o be the solution to the

k

fitting-step problem (4.6). Then any solution €**1 of the discriminatory-step problem

(4.7) satisfies for k=1,...RM — 1
2
T k
<’U7 W[l:k+1,1:k+1] (6k+1)'l)> = / CG(T_S)A(B/?Jrl — Za?B?)Ck—Fl(S)dS > 07
0 =
2
where v = [(@®)T, —1]7, fork=0,1,..., K — 1.
Proof. Notice that, since the matrices By, ..., Bg s are linearly independent and
defined as in (5.13), we have that On(C, A) (Bl?+1 - Z?Zl a?Bjo) # 0.
With this observation, the result can be proved exactly as Lemma 5.5. 0

Using Lemma 5.9, we can prove convergence for the GR Algorithm 4.1 in case
the matrices BY, ..., B, defined in (5.13) are used.

THEOREM 5.10 (Convergence of the GR alg. for non-fully observable systems).
Let (e™)RM, C E,q be a family of controls generated by the GR Algorithm 4.1

m=1
with K = RM and using the matrices BY,...,BR,, defined in (5.13). Then the
least-squares problem

RM
(5.15) min " ||Cyr(B.,€") — Cyr(Br(a),e™)],
m=1

a€ERRM

where Br () is defined in (5.14), is uniquely solvable witha; = o, j, j=1,...,RM.
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A GREEDY RECONSTRUCTION ALGORITHM 17

Proof. The proof is the same as that of Theorem 5.6, where one should use Lemma
5.9 instead of Lemma 5.5. O

Theorem 5.10 allows us to prove the next corollary, which characterizes the result
of the GR algorithm when more than RM basis elements of (5.13) are used.

COROLLARY 5.11 (More on the convergence for non-fully observable systems).
Let (€™E_, C Euq, with K > RM, be a family of controls generated by the GR

m=1

Algorithm 4.1 using the matrices BY, ..., BS defined in (5.13). Then the set of all
global minimum points for the least-squares problem

K 2
min Z HC’yT(B*,em) — C’yT(B(K)(a),em)H )
m=1

acRK 2

is given by {a eRE 1 aj =a,j, j=1,...,RM}.

Proof. Theorem 5.10 (and Theorem 5.6) and its proof allow us to obtain that,

using the first RM controls generated by the GR algorithm, the matrix WRM ¢
REXK has a positive definite upper-left submatrix Wﬁ%M’LRM] and all the other
entries [WRM], ; are zero. Indeed, recalling the vectors j(€™) defined in (5.4), for
any BY with k > RM + 1, we have that Oy (C, A)BY = 0 and thus

T
Yi(€™) = / Ce(T_S)AB,?em(s)ds =0,
0

for any T'> 0 and any m = 1,...,RM. Similarly, the matrices W (e™) for m > RM
have the same structure, namely that their only nonzero components can be the
upper-left submatrices [W(€™)]j1.rar,1:x 0. Therefore, the matrix W = WK has a
positive definite upper-left submatrix Wii.rar,1:r0), while all its other entries are
zero. Therefore, the result follows by Lemma 5.1. ]

Remark 5.12 (More about the kernel of On(C, A) and identifiability). Corollary
5.11 guarantees that, if the basis (B]O)f:1 is used with K > RM, then one can
reconstruct exactly RM coefficients, while nothing can be said about the coefficients
a;j for j > RM. This is due to the structure of the matrix WRM which has a positive

definite submatrix Wﬁf% M1 and is zero elsewhere (as discussed in the proof of
Corollary 5.11).

Remark 5.13 (A priori error estimate). Let a®P7°" be the solution to (5.15).
Then we get the a priori error estimate

NM
B* _ BR(aCLZDPT‘Om) — z : a*,_]Bf)
J=RM+1

Remark 5.14 (Min-max problem). Following the same arguments of the proof of
Lemma 5.8, one can show that the min-max problem (4.4) is equivalent to

5.16 i Cyr(Bs,€) — Cyr(B >
(5.16) Jlm,  max Cyr(Bs,€) yr(Br(a).€)|;

Analogously to Remark 5.7, we can conclude that, using the matrices BY, ..., BS,,
defined in (5.13), problem (5.16) is uniquely solvable with a; = e, ;, j =1,..., RM.
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18 BUCHWALD, CIARAMELLA, SALOMON

The results proved so far for a non-fully observable system are obtained for the
special basis (BJ)JM:]Y constructed in (5.13). However, it is natural to ask:
e Is there any basis that permits to reconstruct more than RM coefficients?
e Can one reconstruct at least RM coeflicients for any arbitrarily chosen basis?

The answers to both questions are negative. The first one is given by Theorem 5.15.

THEOREM 5.15 (Maximal number of identifiable elements). Let the observability
matric On(C, A) be such that rank On(C,A) = R < N. There exists no basis of
RNXM for which one can exactly recover more than RM coefficients.

Proof. Consider the basis B = {BO},C 1 RVXM constructed as in (5. .13) and
another arbitrarily chosen basis B = {Bk}g M c RV*M | Any element B € B can be
written as a linear combination of the elements of B, that is B = ENM Aj BO for

appropriate \; € R, j =1,..., MN. Multiplying B with On(C,A), we get

R NM NM RM
On(C,A)B = Ox(C, A)[Z)\JBJO] > NON(C,A)BY = X\0n(C, A)BY
j=1 j=1 j=1

where we used that Oy (C, A)BO =0, for j € {R+1,...,N}, to obtain the last
equality. Now define the set D = {D}M as Dy, := ON(C' A)By,, k=1,...,NM.
Hence, we can conclude that at most ’RM elements of D are linearly independent.
Recalling the proof of Lemma 5.5 and Remark 5.12, this means that for NM — RM
elements of B there exists a linear combination of the other RM elements, such that
the observation at final time 7' is identical for any control €. Therefore one can
reconstruct at most RM coeflicients for the basis B. ]

Let us now explain why the answer to the second question is also negative. To
do so, we provide the following examples, which show that a wrong choice of a basis
leads to inconclusive results.

Ezample 5.16 (Wrong bases lead to inconclusive results). Consider a simple

system with
1 0 11 1 0
Sl ORI R

. 2%2 . 1 0 3 _ 0 0 1 .
and the basis of R B [O O}’ By = [1 O]’ B3 = [O 0} B4 [0 J. Notice

that in this case the observability condition does not hold, since one can compute that

1 0 1 0

&
00 0 0} = 1. Clearly we have that

R =rank On(C, A) = rank [

B,=0-By+1-By+0-Bs+1-By, (hencea, =[0101]").
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We can now compute for an arbitrarily chosen control € € E,; that

T T
Cyr(By,e)—Cyr(B(a),€) = C/ eT=5)4B €(s)ds — C/ eT=5)4B(a)e(s)ds
0 0

T
_ T-s9a( |1 1| |oataz az+ay
_/0 e (L 1] [ s o )E(S)ds
T T—s
_ 1 0 e 0 1*(01 +Ct‘2) 17(&34’&4)
_/0 [O 0] [ 0 eTS} [ 1—ay 1—ay €(s)ds

T —s(1 _ et 7%(1 — 4
-/ [eT (- ta) 0 (gaﬁa”}e(s)ds,

which is zero for any @ = [a; as a3 a4’ € R* with a; +as = 1 and a3 + a4 = 1
(for any control €). This means that any @ = [a; @z a3 a4] with a3 + @z = 1 and
a3 + a4 = 1 solves the least-squares problem (4.3), independently on the control
functions €1, ...,€4. Since the online least-square problem has then infinitely many

solutions,* one cannot conclude anything about the quality of a computed solution,
which has the form BerProz — [0} al } , leading to the error
2 4

|B. — Br(a®™")||% = (1 — a)? + (1 — au)?,

which can be arbitrarily large (here || - || denotes the Frobenius norm). Even if one
would by chance guess the right coefficients (in this case as = 1,04 = 1), there would
be no way to verify them, since their effect is not observable. Notice also that, even
if the entries B""*" and B{%"*" are correct, it is not possible to certify this or
to associate these correct entries to some precise elements of the chosen basis. This
example shows that for an arbitrarily chosen basis, one can not conclude anything
about the quality of the computed coefficients or the difference between B(a) and
B,.

Ezample 5.17 (Good bases lead to certified results). Consider the same system of
Example 5.16, but now let us use the SVD of the observability matrix,

vz

10 ¥Zog —¥2 o] [v2 0
oo |0 1 o of|o offt o] T
0:CA) =11 o|=|z 0 sz o]0 0 [O 1}—UEV,
0 0 0 0 0 1/LO O

which gives v1 = [(ﬂ ¢ ker On(C, A), vy = {(1)] € ker Oy (C, A), leading to the basis

1 0 0 1 0 0 0 0
Bl—|:0 0:|7B2_|:0 0:|aB3_|:1 0:|7B4_|:0 1:|7

constructed as in (5.13). In this case, we have a, = [1 11 1]T. Since the GR algorithm

considers only the first two basis elements, one gets the final result B*PP™°% = {(1) (1)] .
Similarly to Example 5.16, the two entries E‘fﬁp "% and E‘fgp "°% are correct, but now
this is guaranteed by Theorem 5.10. Therefore, in this case, the results obtained are
accompanied by precise information on their correctness.

4Notice that these solutions are also solution to the min-max problem (4.4).
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These examples show clearly that without an a priori knowledge about the observ-
ability of the system (and hence about the “quality” of the basis), the GR algorithm
leads to inconclusive results. Even though we have presented in this section a way
to construct a basis which permits a precise analysis of the obtained results, this
is generally not possible for nonlinear problems, like the Hamiltonian reconstruction
problem described in Section 3. Is it then possible to modify the GR algorithm in
order to distinguish automatically between “good” and “bad” elements of a given set
of matrices? The answer is given in Section 6, where we first introduce an improved
GR algorithm for linear-quadratic problems and then extend it to nonlinear problems.

6. Improvements of the algorithm. The previous section ended with two ex-
amples showing clearly that a wrong choice of the basis elements and their ordering
can lead to inconclusive results. Even though this issue can be avoided for linear
problems by using the observability matrix (and constructing a basis as in (5.13)),
this strategy does generally not apply to nonlinear problems. For this reason, we in-
troduce an optimized GR (OGR) algorithm, in which the basis elements are selected
during the iterations (in a greedy fashion) as the ones that maximize the discrimi-
nation functions. In particular, we introduce in Section 6.1 the OGR algorithm for
linear-quadratic problems and show by numerical experiments that this leads to an
automatic appropriate selection of the basis elements, even though the observability
matrix is not considered at all. Once the new algorithm is introduced for linear sys-
tems, it is then natural to extend it to nonlinear problems. We consider this extension
in Section 6.2 for Hamiltonian reconstruction problems and show the efficiency of our
new OGR algorithm by direct numerical experiments.

6.1. Optimized greedy reconstruction for linear-quadratic problems.
Consider an arbitrary set of linearly independent matrices (Bj)f:1 C RVXM We wish
to modify the GR Algorithm 4.1 in order to choose at every iteration one element
B; which leads to a control function capable of improving the rank of the matrix

Wﬁ:k+171:k+1]. The idea is to replace the sweeping process of the GR Algorithm
4.1 with a more robust and parallel testing of all the matrices. At each iteration, the
element associated with the maximal discriminating value is chosen and removed from
the set (Bj)le, while the corresponding control function is added to the set of already
computed control functions. Therefore, the dimension of the set (Bj)JK:1 reduces by
one at each iteration and the algorithm is stopped if either all the K matrices were
chosen or as soon none of the remaining ones can be discriminated by the others. This
idea leads to the OGR Algorithm 6.1.

In this algorithm, we clearly extended the greedy character of the original GR
algorithm to the choice of the next basis element. At each iteration, we consider all
remaining basis elements as the potential next one. We select the one which yields
the largest function value in the respective discrimination (maximization) step. In
other words, one computes the basis element for which one can split the observation
the most from all previous basis elements. It is important to remark that, at each
iteration one solves several fitting-step problems and several discriminatory-step prob-
lems. However, their solving can be performed in parallel, since the single problems
are independent one from another.

Notice that a selected element By will not be linearly dependent on previously
chosen elements (after multiplication with the observability matrix). This is proven
in the next theorem, which also motivates the stopping criterion used in the steps 2-4
and 11-13 of the algorithm.
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Algorithm 6.1 Optimized Greedy Reconstruction Algorithm (linear-quadratic case)

Require: A set of K linearly independent matrices B = (Bi,...,Bk) and a tolerance
tol > 0.
1: Solve the initialization problem

2
pepax,  max [|Cyr(Be,€) — Cyr (0,0,

which gives the field €' and the index /1.

2: if ||Cyr(Be,,€') — Cyr(0,0)[|2 < tol then
3:  stop and display ”Error: all basis elements have no observable effect.”
4: end if
5: Swap B; and By, in B and set k = 1.
6: while k< K -1 do
7. forl{=k+1,...,K do
8: Fitting step: Find (af)jzlw,k that solve the problem
k 2
(6.1) min " HCyT(Bg,em) - C’yT(B(k)(a),em)H .
ackk m=1 2
9: end for

k+1

10:  Extended discriminatory step: Find € and {x4+1 that solve the problem

_ ® (20 oI
(6.2) e (AN max Cyr(Be,€) — Cyr(B™ (a’),€)

2

2
1 if HCyT(BeM,ek“) - CyT(B(M(aZk),ek“)H < tol then
2

12: stop and return the selected (Bj);?:l and the computed (€™)F,_;.
13:  end if

14:  Swap By+1 and By, in B and update k < k + 1.

15: end while

THEOREM 6.1 (Linearly independence of selected basis elements). Assume that
the OGR Algorithm 6.1 selected already k linearly independent matrices Bj, j =
1,..., k. At iteration k+1, the new selected matriz Byy1 is such that On(C, A) Bt
is linearly independent from the matrices On(C,A)B;, j =1,....k, if and only if

2
|Cyr(Bey ) = Cyr(BD(@"),4)|| > 0.
2

Proof. If the matrix On(C, A)By1 is linearly independent from the other ma-
trices On(C,A)B;, j = 1,...,k, then one can show as in the proof of Lemma 5.9
that

2
|Cyr(Bays ) = Cyr(BW(a),41)| > 0.

Now, we prove the other implication by contraposition. Assume that there exists
a vector a € R¥ such that On(C, A)(Bgi1 — Z?Zl a;B;) = 0 holds. This vector a is
a solution of the fitting step problem with cost-function value equal to zero. However,
the corresponding cost function of the discriminatory-step problem (6.2) results to be
zero for any control function €. The result follows by contraposition. ]

Notice that, if Algorithm 6.1 stops at Step 3, then the chosen basis does not allow
one to distinguish the states corresponding to controlled and uncontrolled systems. In
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this case, entering in the while loop would be useless since the first discriminatory step
will certainly fail in producing a large enough discrimination value and the algorithm
will terminate at Steps 11 and 12.

Theorem 6.1 shows exactly that the OGR algorithm manages to identify among
the elements of the given set (Bj)f:1 the ones that do not lie in the kernel of Oy (C, A).
For instance, let us consider again the system of Example 5.16, for which we have
shown that the GR algorithm leads to inconclusive results. If we use instead the OGR
Algorithm 6.1, this performs two iterations and selects only two basis elements, one
among B and By and the other among B3 and By. This can be shown by performing
calculations similar to the ones of Example 5.16. In particular, in the initialization
step the four matrices produce the same cost function value. Hence, any of them can
be selected by the algorithm. Assume that the element By is picked (hence ¢; = 1) and
consider the first iteration of the algorithm (k = 1). At the fitting step the algorithm
computes a coefficient a? = 1 for EQ, and some coefficients a3 and af corresponding
to §3 and §4. Now, a@? = 1 leads to a cost function of the discriminatory step which
is zero for any control functions, while for @} and aj there exist a control function
leading to a non-zero value of the discriminatory cost. Therefore, the algorithm
selects either Bz or By. Let us assume that By is picked (¢ = 4) and hence the
two elements §2 and §4 are swapped. In the fitting step of the second iteration
(k = 2), the algorithm computes @ = [0, 1]T and @* = [1, 0]T. Both of these two
vectors lead to a discriminatory cost that is zero for any control. Hence, since the
discriminatory step does not find any positive function value, the algorithm stops and
returns By, = By and By, = By and the corresponding controls. If one uses the two
selected basis elements and the corresponding control functions in the online phase,
then one obtains the result @ = [1, 1]T, which is not the exact solution shown in
Example 5.16. This is due to the non-full observability of the system, which implies
that On(C,A)B; = On(C, A)Bz and On(C, A)Bs = On(C, A)By. This means that
the observations generated by the elements El and Eg cannot be distinguished by
the ones created by By and Bs. The non-full observability of the system cannot be
overcome by any numerical strategy. The OGR algorithm can nevertheless identify
automatically all the observable degrees of freedom of the considered system.

Let us now demonstrate the efficiency of our new OGR algorithm by direct nu-
merical experiments. We consider an experiment with two randomly chosen N x N
full-rank real matrices A and C' with N = 10. The unknown B, is a randomly cho-
sen real N x N matrix. In this case the system is fully observable, nevertheless we
construct the basis elements to be used in the GR and OGR algorithm as in (5.13)
(by an SVD of the observability matrix), but we order the elements randomly. We
then run the GR Algorithm 4.1 and compute the rank of the matrix Wk at every
iteration k. This leads to the results shown in Figure 6.1 by the blue curve. The
rank increases monotonically during the iterations and becomes full after about 30
iterations. However, the curve is not strictly monotonically increasing since the rank
does not increase at each iteration. If we repeat the same experiment (with the same
matrices) using the OGR Algorithm 6.1, we obtain the red curve in Figure 6.1. This
curve is strictly monotonically increasing in the first part and becomes constant only
once the rank has become full. In particular, at each iteration the rank increases by
10 and the OGR algorithm could be in principle stopped much earlier than the orig-
inal GR algorithm, and much less control functions (hence laboratory experiments)
are needed to fully reconstruct the unknown operator B,. This experiment clearly
shows the high potential of the OGR algorithm, which is capable to choose among
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100

20 —e—GR algorithm
——OGR algorithm

0 50 100

Iteration k

Fic. 6.1. Rank of the matriz wk corresponding to the GR algorithm (blue curve) and OGR
algorithm (red curve) for a fully observable system. Both algorithms make use of a basis constructed
as in (5.13).

the elements By, ..., Bx in an optimized fashion.

Let us conclude this section with two important observations. First, the improve-
ment proposed in Algorithm 6.1 allows one to even enrich the set (Bj)f=1 used as
input in Algorithm 6.1 with other new elements that can be linearly dependent on
By, ..., Bg. In this case, if we denote by (Bj)le, for K > K, the enriched set, then
Theorem 6.1 guarantees that the OGR algorithm will automatically pick some ele-
ments of the enriched set (Bj)1<,, such that Oy (C, A) B; are linearly independent for
all selected B;. Hence, the corresponding discriminatory cost-function values will be
strictly positive. Second, the OGR, Algorithm can be extended to more general non-
linear reconstruction problems, and we propose in Section 6.2 an efficient extension

for the Hamiltonian reconstruction problem described in Section 3.

6.2. Optimized greedy reconstruction for non-linear problems. The ex-
tension of the OGR Algorithm 6.1 to the nonlinear Hamiltonian reconstruction prob-
lem of Section 3 is formally rather straightforward and given by Algorithm 6.2. How-
ever, there is one key addition represented by the Steps 7, 8 and 9. In these steps, each
of the matrices By, £ = k+1,..., K, (that have not been selected in the first k itera-
tions of the algorithm) is orthogonalized with respect to the already selected matrices
By, ¢ =1,... k. This can be achieved by a single Gram-Schmidt step for each By,
{=k+1,..., K. The orthogonalization is required to avoid that the algorithms picks
a new matrix By such that either the angle between By and (By,..., By) is very
small or (in the worst case) By is linearly dependent from (Bj, ..., Bi). These two
situations could lead to numerical problems in the final online identification phase.
Moreover, by eliminating linearly dependent elements, one avoids the solves of several
unnecessary fitting and discriminatory problems (even though solvable in parallel).

A few more computational aspects must be discussed. First, the maximization
problems characterizing the initialization step and the discriminatory steps are non-
linear optimal control problems that we solve numerically by the monotonic scheme
discussed in [15], in the setting described in [14]; see also [5,14,15,17] and references
therein. Second, the fitting step problems are highly nonlinear minimization problems
having generally several local minima. Since not all local minima correspond to an
effective defect (rank deficiency in the linear-quadratic case) to be compensated, every
fitting-step problem is solved multiple times using different randomly chosen initial-
izations. The solution corresponding to the smallest functional value is then chosen.
Each fitting-step problem is solved by a BFGS descent-direction method. Third, all
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Algorithm 6.2 Optimized Greedy Reconstruction Algorithm (Hamiltonian case)

Require: A set of K matrices B, = (ue¢)e=1,...,xk and a tolerance tol > 0.
1: Solve the initialization problem

6.3 s €) — (0,0)]?

(6.3) e pax max|@(un, €) = (0,01

which gives the field ¢! and the index ¢;.

2: if |@(pey, ') — (0,0)]* < tol then

3:  stop and display ”Error: all basis elements have no observable effect.”

4: end if _

5: Swap p1 and pe, in B, and set k=1 and K = K.

6: while k< K —1 do _

7 Orthogonalize each matrix pe, £ = k+1,..., K, with respect to the set (u1, ..., 1xk)-
8 Remove the zero elements from B, and shift the indices of the remaining elements.
9:  Update K < card B,.

10: forl=k+1,...,K do

11: Fitting step: Find (a);—1,....x that solve the problem

k
. my (k) my |2
(6.4) o{glﬂ@f;; (e, €™) = (™ (@), €™) 2.

12:  end for
13:  Extended discriminatory step: Find ¢*™* and ¢4, that solve the problem

(6.5) max _ max |p(pe, €) — o(p™ (@), ).
te{k+1,...,K} e€L?

14: if (e, ,, €)= (™ (o), 1)|? < tol then

15: stop and return the selected (y;)5-; and the computed (e™)F,_;.
16:  end if

17 Swap pig+1 and pg, , in By, and update k < k + 1.

18: end while

optimization problems that are solved in the fitting steps and in the discriminatory
steps are independent one from another. Therefore, they can be solved in parallel as
in the linear case.

Let us now show the efficiency of the OGR Algorithm 6.2 by direct numerical ex-
periments. We consider the same test case as in [14], where the unknown Hamiltonian
and the controlled Hamiltonian p are assumed to be real-symmetric. More precisely,
the matrix H and the randomly generated p, are

100 3.3617 3.4347 0.8416
H=10"2{0 2 0|, u, = |3.4347 3.7763 4.7552] .
0 0 4 0.8416 4.7552 4.4226

The final time is T' = 40007. The states 1y and v are

do=[1 0 0"

=10 0 1]".

Now, we perform the following experiment. Since the unknown p, is a 3 x 3
symmetric matrix, we choose for the set B,, the following K = 6 linearly independent
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which form a basis for the space of 3 x 3 symmetric matrices with real entries, and
compute 6 control functions by the OGR Algorithm 6.2. Once these functions are
obtained, one must reconstruct the unknown true dipole matrix by solving the on-
line nonlinear least-squares problem (3.3). To do so, we use the standard MATLAB
function fminunc (a BFGS descent-direction minimization algorithm) initialized by
a randomly chosen vector. To test the robustness of the control functions computed
by the OGR Algorithm 6.2, we consider a six-dimensional hypercube centered in the
global minimum point u, and given radius r, and repeat the minimization for 1000
initialization vectors randomly chosen in this hypercube. We then count the number
of times that the optimization algorithm converges to the global solution u, = p(a)
up to a tolerance of Tol = 0.005 (half of the smallest considered radius), meaning

0
that W < Tol, where || - || denotes the Frobenius norm. Repeating this

o O O
o O O
—= o O
o = O
o O =
o O O
= o o
o O O
S O =
o O O
= o o
o= O

experiment for different values of the radius r of the hypercube, we obtain the results
reported in the first row of Table 6.1.

Hypercube radius r 0.01 | 0.10 | 0.50 | 1.00

GR (canonical basis) 814 0 0 0

GR (random basis) 655 3 0 0

OGR (extended random basis) | 1000 | 134 | 15 5
TABLE 6.1

Numbers of runs (over 1000) that converged to the true solution fi..

These results show clearly the lack of robustness of the controls generated by the GR
algorithm: for the very small radius » = 0.01 of the hypercube only 80% of the cases
over the 1000 runs the minimization converged to the true solution, and for r > 0.01
in none of the cases the minimization converged to the solution.

Next, to test the effect of the chosen basis B, we repeat the same experiment
using 6 randomly chosen linearly independent symmetric matrices pg, £ = 1,...,6.
The obtained results of this second test are shown in the second row of Table 6.1.
These are clearly worst and very unsatisfactory.

Finally, we repeat the experiment using the OGR Algorithm 6.2 with a set of 12
matrices, namely the 6 unit basis elements shown above and the 6 linearly independent
random matrices chosen for the second experiment. We obtain the results shown in
the third row of Table 6.1. These are much better results. For r = 0.01 all the
1000 runs converged to the solution p,. Even though, the number of times that the
optimization algorithm converged to the true solution decays as the radius r increases,
in the case r = 0.10 more than 100 of runs converged to uy. These results show the
improved efficiency of the new proposed OGR algorithm. This improvement is even
more evident if we consider a more general example where the unknown matrix lies
in Her(N). In this case, the canonical basis for Her(3) is composed by the matrices
given (6.6) together with the three matrices

000
00 —i‘| .

0 —i 0] [00 —i
(6.7) i 0 0[,[00 0],
000 [i00] [0i 0O

Let us now consider two examples. First, we choose an observer vector ¢, = [001]"
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and a (randomly generated) matrix p, given by

—0.3243 —3.4790 4+ 0.7359¢  —0.5338 + 1.92544
My = | —3.4790 — 0.7359¢ —3.8342 —1.1697 + 2.02561
—0.5338 — 1.9254¢ —1.1697 — 2.02561 1.0551

All the other data (namely 7', H and 1)9)° are the same as the ones considered in the
real-symmetric example. If we repeat the experiments of the real-symmetric case, we
obtain the results of Table 6.2.

Hypercube radius r 0.01 | 0.10 | 0.50 | 1.00

GR (canonical basis) 908 13 1 0

GR (random basis) 596 4 0 0

OGR (extended random basis) | 1000 | 277 | 32 7
TABLE 6.2

Numbers of runs (over 1000) that converged to the true solution fi..

If one repeats the experiments for a different observer vector ¥; = %[1 11]7, the
results shown in Table 6.3 are obtained.

Hypercube radius r 0.01 | 0.10 | 0.50 | 1.00

GR (canonical basis) 1000 | 757 | 15 2

GR (random basis) 648 | 212 | 49 3

OGR (extended random basis) | 1000 | 992 | 214 | 36

TABLE 6.3
Numbers of runs (over 1000) that converged to the true solution fi.

Table 6.2 and Table 6.3 show very clearly the improved efficiency and robustness
of control functions generated the OGR algorithm. These allow one to identify the
solution p, in a much larger number of statistical runs.

7. Conclusions. In this work, we provided a novel and detailed convergence
analysis for the greedy reconstruction algorithm introduced in [14] for Hamiltonian
reconstruction problems in the field of quantum mechanics. The presented conver-
gence analysis has considered linear-quadratic (optimization, least-squares) problems
and revealed the strong dependence of the performance of the greedy reconstruction
algorithm on the observability properties of the system and on the ansatz of the basis
elements used to reconstruct the unknown operator. This allowed us to introduce a
precise (and in some sense optimal) choice of the basis elements for the linear case
and led to the introduction of an optimized greedy reconstruction algorithm applica-
ble also to the nonlinear Hamiltonian reconstruction problem. Numerical experiments
demonstrated the efficiency of the new proposed numerical algorithm.
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