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Abstract We develop a mathematical model for the interaction of a three-dimensional reservoir with
the flow through wells, namely narrow cylindrical channels cutting across the reservoir. Leak off or sink
effects are taken into account. To enable the simulation of complex configurations featuring multiple
wells, we apply a model reduction technique that represents the wells as one-dimensional channels.
The challenge in this case is to account for the interaction of the reservoir with the embedded one-
dimensional wells. The resulting problem consists of coupled partial differential equations defined on
manifolds with heterogeneous dimensionality. The existence and regularity of weak solutions of such
problem is thoroughly addressed. Afterwards, we focus on the numerical discretization of the problem
in the framework of the finite element method. We notice that the numerical scheme does not require
conformity between the computational mesh of the reservoir and the one of the wells. From the standpoint
of the solvers, we discuss the application of multilevel algorithms, such as the algebraic multigrid method.
Finally, the reduced mathematical model and the discretization method is applied to a few configurations
of reservoir with wells, with the purpose of verifying the theoretical properties and to assess the generality
of the approach.

Keywords perforated reservoirs · dimensional model reduction · finite elements · multigrid solvers

1 Introduction

The simulation of multiscale, multiphysics, multimodel systems is among the grand challenges in Com-
putational Science & Engineering. In this context, the application of topological (or geometrical) model
reduction techniques plays an essential role. For example, small inclusions of a continuum can be de-
scribed as zero-dimensional (0D) or one-dimensional (1D) concentrated sources in order to reduce the
computational cost of simulations. Many problems in this area are not well investigated yet, such as
the coupling of three-dimensional (3D) continua with embedded (1D) networks, although it arises in
applications of paramount importance such as flow through perforated media.

Despite the literature of computational models for describing fractured reservoirs is extremely rich
and lively (it would be excessively reductive to make some examples here) the analogous problem of the
interaction of reservoirs with wells is much less explored. Indeed, the seminal work by D.W. Peaceman
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[21,23,22] is still widely used by the scientific community. Only recently (with respect to the previous
works) some new approaches have been proposed [1,5,11,28,29].

Our objective is contributing to the development of advanced computational models for the interac-
tion of reservoirs with wells. We aim to develop an approach that is appealing for industrial applications,
involving realistic geological models and real configurations of multiple wells. A simplified sketch of the
applications we aim to address is reported in Figure 1. For this reason, we adopt a geometrical model re-
duction technique that transforms the flow equations in the wells into a 1D model. The resulting problem
consists of coupled partial differential equations (PDEs) on manifolds with heterogeneous dimensional-
ity. This approach was originally proposed in [6,7,8]. It has recently attracted the attention of several
researchers from the perspective of theory and applications. On one hand, it requires particular attention
to prove existence of a solution in the weak (or variational) sense [13,14,12,15,2,19]. On the other hand,
it is relevant for applications to microcirculation [3,4,17,18].

After discussing the model, we discretize the equations using the finite element method (FEM) and we
focus on the computational aspects of the problem. Even though FEM is a well established computational
method and several open-source and commercial numerical solvers are available, the implementation of
general three-dimensional FEM solvers able to efficiently handle one or two-dimensional inclusions is still
a significant challenge for the scientific computing community.

The method proposed here facilitates this task, because it does not require conformity between the
computational mesh of the reservoir and the one of the wells. However, because of the non-standard
coupling of the flow problems in 3D and 1D, the algebraic structure of the discrete problem is modified
with respect to the standard FEM case. For this reason, with a few test cases with increasing complexity,
we present and discuss preliminary results on the application of high performance, multilevel algebraic
solvers to this problem.

This work is organized as follows. In Section 2, we address the full model formulation and we thor-
oughly describe the topological model reduction technique. We also derive the variational formulation
of the reduced problem. Then, in Section 3 we study the well posedness and the regularity of the weak
problem, which can be cast in the framework of the Lax-Milgram lemma. The numerical discretization
is performed and analyzed in Section 4, with particular attention to the application of multigrid solvers.
Finally, in Section 5 we discuss the numerical results in view of the available theory and we apply the
computational model to some simplified configurations of 1D wells embedded into 3D reservoirs.

Fig. 1: A sketch of the problem involving the interaction of a reservoir with wells.
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2 Problem setting for a reservoir with one well

The domain is denoted as Ω and composed by two parts, Ωw and Ωp = Ω \Ωw, where Ωw denotes the
closure of Ωw. We assume that Ωw is the well and Ωp the surrounding reservoir. Let Ωw be a cylinder
swept by a circle of radius ρ along a curve. More precisely, let λ(s) = [ξ(s), ν(s), ζ(s)], s ∈ (0, S) be
a C2-regular curve in the three-dimensional space. Let Λ = {λ(s), s ∈ (0, S)} be the centerline of the
cylinder. For simplicity, let us assume that ‖λ′(s)‖ = 1 such that the arc-length and the coordinate s
coincide. Let T ,N ,B be the Frenet frame related to the curve. Let D = [r cos θ, r sin θ] : [0, ρ)×[0, 2π)→
R2 be a parametrization of the cross section. Let us also define the boundary of the cross section as
∂D = [ρ sin θ, ρ cos θ] : [0, 2π)→ R2. Then, the cylinder Ωw can be defined as follows

Ωw = {λ(s) + r cos θN(s) + r sin θB(s), r ∈ [0, ρ), s ∈ (0, S), θ ∈ [0, 2π)} ,

and the lateral boundary of it, denoted with Γ is,

Γ = {λ(s) + ρ cos θN(s) + ρ sin θB(s), s ∈ (0, S), θ ∈ [0, 2π)} .

We notice that Ωw has top and bottom boundaries, which are ∂Ωw \ Γ = {λ(0) +D} ∪ {λ(S) +D}. To
model wells, without loss of generality, we assume that {λ(0) + D} is the injection section of the well
and for this reason it belongs to the external boundary, namely ∂Ωp. The other well tip, {λ(S) + D}
may be embedded into the reservoir.

Let up, pp be the velocity and pressure in the reservoir Ωp. We assume that the reservoir is described
as a porous medium. By consequence, average velocity and pressure on a representative volume obey to
Darcy’s law. Let uw, pw be the velocity and pressure of fluid injected or extracted through the well. We
model the well by means of pressure-driven flow. More precisely, we assume that the pressure gradient
is the main driving force for the flow motion. This is a fairly general assumption that can be motivated
in different ways. On one hand, it is verified by the Poiseuille flow, that can be seen as a particular
case of Stokes-like flow applied to straight cylinders. On the other hand, it would also be true for a
Darcy-type flow, where the motion is determined by the interaction between pressure and friction. For
the sake of simplicity (homogeneity with the reservoir model) we adopt the second standpoint, but we
remark that the mathematical structure of the final governing equations would be the same in the former
case. However, the coefficients of the equations would differ in the two cases. Let Kp and Kw be the
permeability tensors in the reservoir and in the well, respectively. We assume that these are symmetric
positive definite tensors and that there exist constants Kp, Kw > 0 such that vTK∗v ≥ K∗‖v‖2 with
∗ = p, w. Finally, it is assumed that the interface Γ is permeable, namely it is crossed by a normal flux
proportional to KΓ (pp − pw). The coefficient KΓ ≥ 0 denotes the permeability of the borehole lateral
surface. It can take null values on part of the well.

For the boundary conditions, without loss of generality, we have prescribed that the pressure is fixed to
values pw,0, pw,1 at the endpoints of the well. For the reservoir, we split ∂Ωp \Γ into two complementary
parts, namely ΣN , ΣD such that ΣN ∪ΣD = ∂Ωp \ Γ . On ΣN we set Robin-type boundary conditions,
where the parameter K∂Ω may also vanish and pp,0 stands for a reference pressure outside the reservoir,
e.g. the hydrostatic pressure. On ΣD we set Dirichlet type condition, for a given pressure value pp,1.

As a result of these assumptions, we describe flow and pressure in the system by means of the following
prototype problem, 

∇ · up = 0, up +Kp∇pp = 0 in Ωp,

∇ · uw = 0, uw +Kw∇pw = 0 in Ωw,

up · np = KΓ (pp − pw) on Γ,

uw · nw = KΓ (pw − pp) on Γ,

up · np = K∂Ω (pp − pp,0) on ΣN ,

pp = pp,1 on ΣD,

pw = pw,0 on {λ(0) +D},
pw = pw,1 on {λ(S) +D} .

(1)
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2.1 Topological model reduction & coupled problems with hybrid dimensionality

The objective of this work is to consider a simplified version of problem (1), where the domain Ωw shrinks
to its centerline Λ and the corresponding partial differential equation is averaged on the cylinder cross
section D. This new problem setting will be also called the reduced problem. Form the mathematical
standpoint it is more challenging than (1), because it involves the coupling of 3D/1D elliptic equations.

Before proceeding, let us reformulate (1) as a problem for the pressure variables solely. We obtain
the following equations, 

−∇ · (Kp∇pp) = 0 in Ωp,

−∇ · (Kw∇pw) = 0 in Ωw,

−Kp∇pp · np = KΓ (pp − pw) on Γ,

−Kw∇pw · nw = KΓ (pw − pp) on Γ,

−Kp∇pp · np = K∂Ω (pp − pp,0) on ΣN ,

pp = pp,1 on ΣD,

pw = pw,0 on {λ(0) +D},
pw = pw,1 on {λ(S) +D} .

(2)

Then, let us scale the domains Ωp and Ωw and let us rewrite the equations in dimensionless form. More
precisely, let χΩp(x) = x/L where L = diam(Ωp) be a scaling function and let be Ωpχ = χΩp(Ωp), Ωwχ =

χΩp(Ωw) be the scaled domains. For simplicity of notation, and without loss of generality, form now
on we will implicitly refer to the scaled domains dropping the sub-index χ. For the derivation of the
dimensionless form of the equations, we take L as the characteristic length, pw,0 as the characteristic
pressure and Kp as the reference permeability. The dimensionless pressure is denoted as u∗ = p∗/pw,0,
which represents the unknown of the dimensionless problem. Then, problem (2) is equivalent to find
up, uw such that, 

−∇ · (kp∇up) = 0 in Ωp,

−∇ · (kw∇uw) = 0 in Ωw,

−kp∇up · np = κ (up − uw) on Γ,

−kw∇uw · nw = κ (uw − up) on Γ,

−kp∇up · np = µ
(
up − pp,0

pw,0

)
on ΣN ,

up =
pp,1
pw,0

on ΣD,

uw = 1 on {λ(0) +D},
uw =

pw,1
pw,0

on {λ(S) +D} .

(3)

where we have denoted with k∗ = K∗/Kp the dimensionless permeability tensors, κ = (KΓ L)/Kp is the
dimensionless permeability of the borehole lateral surface and µ = (K∂Ω L)/Kp is the permeability at
the external surface of the reservoir. For notational convenience, but without loss of generality, from now
on we will assume that the external pressures pp,0, pp,1, pw,1 = 0. In this way, all the external forcing
terms of the problem vanish, except from the unit injection pressure.

2.1.1 Topological model reduction of the well

The disadvantage of modelling a narrow borehole in three dimensions is that it requires the resolution of
the geometry, which in many real applications can be difficult to handle in the context of a reservoir model.
Therefore we apply a topological model reduction, namely we go from a 3D-3D to a 3D-1D formulation.
The model reduction approach that we adopt is based on the following fundamental assumption:

A0) The diameter of the well is small compared to the diameter of the reservoir.

The previous assumption implies that for the scaled domains the radius of the borehole R = ρ/L is
such that 0 < R � 1. As a consequence of the previous fundamental assumption we formulate also the
following:
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A1) the function uw has a uniform profile on each cross section D, namely in cylindrical coordinates
uw(r, s, θ) = U(s). We make a similar assumption on the coefficients of the problem. The permeability
tensor in the borehole is isotropic, namely kw = kwI and it is uniform on each cross section of the
hole, that is kw(r, s, θ) = kw(s). The same restriction is enforced on the parameter κ on Γ , precisely
κ(θ, s) = κ(s).

Since the derivation of the reduced model is based on averaging, we introduce the following notation,∫
Λ

∫
D
wdσds =

∫
Λ

πR2w(s)ds ,∫
Λ

∫
∂D

wdγds =

∫
Λ

2πRw(s)ds ,

where w, w denote the following mean values respectively,

w(s) = (πR2)−1
∫
D
wdσ ,

w(s) = (2πR)−1
∫
∂D

wdγ ,

and dω = r dθ dr ds, dσ = r dθ dr, dγ = Rdθ represent volume, surface and curvilinear measures.
We apply the averaging technique to equation (3). In particular, we consider an arbitrary portion P

of the cylinder, bounded by two perpendicular sections to Λ with s1 < s2. We have,∫
P
∇ · (kw∇uw)dΩ =

∫
∂P

kw∇uw · nw = −
∫
D(s1)

kw∂suwdσ +

∫
D(s2)

kw∂suwdσ +

∫
Γ

kw∇uw · nwdσ

By the fundamental theorem of integral calculus we have,

−
∫
D(s1)

kw∂suwdσ +

∫
D(s2)

kw∂suwdσ =

∫ s2

s1

ds

(∫
D

(kw∂suw)dσ

)
ds =

∫ s2

s1

πR2ds(kw∂suw)ds

By means of the interface conditions between the well and the reservoir we obtain,∫
Γ

−kw∇uw · nwdσ =

∫
Γ

κ(uw − up)dσ =

∫ s2

s1

∫
∂D

κ(uw − up)Rdθds =

∫ s2

s1

2πRκ(uw − up)ds .

From the combination of all the above terms with the right hand side, we obtain that the solution uw of
(3) satisfies, ∫ s2

s1

[
−πR2ds(kw∂suw) + 2πRκ(uw − up)

]
ds = 0 .

Since the choice of the points s1, s2 is arbitrary, we conclude that the following equation holds true,

−πR2ds(kw∂suw) + 2πRκ(uw − up) = 0 on Λ . (4)

Using the boundary conditions we conclude that the function uw(r, s, θ) = U(s) satisfies the following
equations on Λ,

−πR2ds(kwdsU) + 2πRκU = 2πRκup on Λ , (5a)

U = 1 on s = 0 (5b)

U = 0 on s = S . (5c)

The weak form of the previous problem consists to find U ∈ H1
0 (Λ) such that

πR2(kwdsU, dsV )Λ + 2πR(κU, V )Λ = 2πR(κ(up −W ), V )Λ, ∀V ∈ H1
0 (Λ) , (6)

where W = 1− s denotes a suitable linear lifting of the Dirichlet boundary conditions of U on Λ.
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2.1.2 Topological model reduction of the interface conditions

Let us now consider the weak formulation of equation (3) that govern the pressure on Ωp. Integrating
by parts and using boundary and interface conditions, we obtain:

0 =

∫
Ωp

∇ · (−kp∇up)v dω =

∫
Ωp

kp∇up · ∇v dω −
∫
∂Ωp

kp∇up · npv dσ =

=

∫
Ωp

kp∇up · ∇v dω +

∫
ΣN

µupv dσ +

∫
Γ

κupv dσ −
∫
Γ

κuwv dσ, ∀v ∈ H1
ΣD (Ω).

(7)

Let us split the solutions and the test functions on Γ , namely u∗|Γ for ∗ = p, w and v|Γ , as their average
plus some fluctuation, namely

u∗ = u∗ + ũ∗, v = v + ṽ,

where ṽ = 0 for any function. Therefore, using the cylindrical coordinates system (s, θ) on Γ , we have∫
Γ

κu∗v dσ =

∫
Λ

κ(s)

∫ 2π

0

(u∗ + ũ∗)(v + ṽ)Rdθds =

∫
Λ

2πRκu∗v ds+

∫
Λ

κ

∫ 2π

0

ũ∗ṽR dθds,

Then, we make the following modelling assumptions:

A2) we identify the domain Ωp with the entire Ω, and we correspondingly omit the subscript p to the
functions defined on Ω, namely ∫

Ωp

vpdω '
∫
Ω

vdω .

A3) we assume that the product of fluctuations is small, namely∫ 2π

0

ũ∗ṽR dθ ' 0 .

By means of the previous calculations, reminding that uw(r, s, θ) = U(s), we obtain that u ∈ H1
ΣD

(Ω)
solves the following problem,

(kp∇u,∇v)Ω + (µu, v)ΣN + 2πR(κu, v)Λ = 2πR(κU, v)Λ , ∀v ∈ H1
ΣD (Ω) , (8)

where H1
ΣD

(Ω) denotes the subspace of H1(Ω) of functions with vanishing traces on ΣD.

3 Mathematical analysis and numerical approximation of the problem

After the model reduction technique, the problem of finding the pressures up, uw in the reservoir and the
well, respectively, has transformed into solving a 3D problem for u in Ω and a 1D problem for U in Λ.
In variational form, it consists of finding u ∈ H1

ΣD
(Ω) and U ∈ H1

0 (Λ) such that{
(kp∇u,∇v)Ω + (µu, v)ΣN + 2πR(κu, v)Λ = 2πR(κU, v)Λ , ∀v ∈ H1

ΣD
(Ω)

πR2(kwdsU, dsV )Λ + 2πR(κU, V )Λ = 2πR(κ(u−W ), V )Λ, ∀V ∈ H1
0 (Λ) .

(9)

For what follows, it is convenient to define the bilinear forms:

aΩ(w, v) = (kp∇w,∇v)Ω + (µw, v)ΣN ,

aΛ(w, v) = πR2(kwdsw, dsv)Λ

bΛ(w, v) = 2πR(κw, v)Λ.

Let us now introduce a compact formulation for problem (9). In particular, we define V = [v, V ] as a
generic function of the space V = H1

ΣD
(Ω) × H1

0 (Λ) and we name U = [u, U ] the couple of unknowns

of problem (9). Any function V ∈ V is endowed with the norm |||V|||2 = ‖v‖2H1(Ω) + ‖V ‖2H1(Λ). Then, we
introduce the following bilinear form in V× V,

A(U ,V) = aΩ(u, v) + aΛ(U, V ) + bΛ(u− U, v − V ) ,
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and the linear functional in V,

F(V) = −bΛ(W,V ).

Then, the compact form of problem (9) consists of finding U ∈ V such that

A(U ,V) = F(V), ∀V ∈ V . (10)

We name the previous problem as the 3D-1D coupled problem. This problem is an extension to 3D of the
one considered in [12]. The analysis can be pursued using the Lax-Milgram lemma. Before addressing
the central result, that is Theorem 1, we present some auxiliary tools.

Lemma 1 If v ∈ H1(Ω) or alternatively v ∈ L2(Γ ), then v ∈ L2(Λ) and the following inequality holds

‖v‖2L2(Λ) ≤
1

2πR
‖v‖2L2(Γ ) ≤

CT (Γ )

2πR
‖v‖2H1(Ω), (11)

being CT (Γ ) the (positive) constant of the trace inequality from L2(Γ ) to H1(Ω).

Proof Let us consider∫
Λ

v2 ds =

∫
Λ

(
1

2πR

∫ 2π

0

vR dθ

)2

ds =
1

4π2R2

∫
Λ

(∫ 2π

0

vR dθ

)2

ds. (12)

Using Jensen’s inequality, we obtain

1

4π2R2

∫
Λ

(∫ 2π

0

vR dθ

)2

ds ≤ 1

2πR

∫
Λ

∫ 2π

0

v2Rdθ ds (13)

and consequently∫
Λ

v2 dγ ≤ 1

2πR

∫
Λ

∫ 2π

0

v2Rdθ ds =
1

2πR

∫
Γ

v2 dσ =
1

2πR
‖v‖2L2(Γ ) ≤

CT (Γ )

2πR
‖v‖2H1(Ω). (14)

If the inequality (11) holds, it follows immediately that v ∈ L2(Λ), since v ∈ H1(Ω).

Lemma 2 (Poincaré inequality) For any v ∈ H1
ΣD

(Ω), there exists a positive constant, CP (Ω), s.t.

‖v‖2L2(Ω) ≤ CP (Ω)‖∇v‖2L2(Ω). (15)

We use the Poincaré inequality to control the H1-norm of the solution by means of the energy of the
problem (10). We can now address the coercivity and the continuity of the bilinear form A.

Lemma 3 Under the assumptions that kpi,j ,∈ [L∞(Ω)]
3,3

, kw ∈ L∞(Λ), κ ∈ L∞(Λ), µ ∈ L∞(ΣN ),
kw is strictly positive with minimum kmin and κ, µ are nonnegative, the operator A is continuous and
coercive. More precisely, there exist constants M,m > 0 such that,

A(U ,V) ≤M |||U||||||V|||, A(V,V) ≥ m|||V|||2 ∀U ,V ∈ V.

Proof The coercivity of A follows from (15) and the ellipticity assumption. Indeed

A(V,V) = aΩ(v, v) + aΛ(V, V ) + bΛ(v − V, v − V )

≥ aΩ(v, v) + aΛ(V, V ),
(16)

being bΛ(v − V, v − V ) nonnegative. For the first term, using (15) we obtain

aΩ(v, v) = (kp∇v,∇v)Ω + (µv, v)ΣN

≥ ‖∇v‖2L2(Ω)

≥ 1

1 + CP (Ω)
‖v‖2H1(Ω).
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For the second term,

aΛ(V, V ) = πR2 (kwdsV, dsV ) ≥
≥ πR2kmin‖dsV ‖2L2(Λ)

≥ πR2kmin
1

1 + Cp(Λ)
‖V ‖2H1(Λ),

where Cp(Λ) denotes the constant in the stantard Poincaré inequality for H1
0 (Λ) functions. As a result,

the coercivity constant is

m = min

(
1

1 + CP (Ω)
, πR2kmin

1

1 + Cp(Λ)

)
.

In order to prove the continuity of the bilinear form A we consider again each term of A(u, v)
separately. For the first bilinear form aΩ(u, v) we have

aΩ(u, v) = (kp∇u,∇v)Ω + (µu, v)ΣN
≤ max

i,j
‖kpi,j‖L∞(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω) + ‖µ‖L∞(ΣN )‖u‖L2(ΣN )‖v‖L2(ΣN )

≤ max
i,j
‖kpi,j‖L∞(Ω)‖u‖H1(Ω)‖v‖H1(Ω) + CT (ΣN ) ‖µ‖L∞(ΣN )‖u‖H1(Ω)‖v‖H1(Ω)

≤
(

max
i,j
‖kpi,j‖L∞(Ω) + CT (ΣN ) ‖µ‖L∞(ΣN )

)
|||U||||||V|||,

where CT (ΣN ) is the constant of the trace inequality from L2(ΣN ) to H1(Ω). For the second term
aΛ(U, V ), we easily obtain

aΛ(U, V ) = πR2 (kwdsU, dsV )Λ ≤ πR
2‖kw‖L∞(Λ)‖U‖H1(Λ)‖V ‖H1(Λ) ≤ πR2‖kw‖L∞(Ω)|||U||||||V|||.

For the last term bΛ(u− U, v − V ) using Lemma 1, we obtain

bΛ(u− U, v − V ) ≤ 2πR‖κ‖L∞(Λ)‖u− U‖L2(Λ)‖v − V ‖L2(Λ)

≤ 2πR‖κ‖L∞(Λ)

(
‖u‖L2(Λ) + ‖U‖L2(Λ)

) (
‖v‖L2(Λ) + ‖V ‖L2(Λ)

)
≤ 2πR‖κ‖L∞(Λ)

(
1 +

√
CT (Γ )

2πR

)2

|||U||||||V |||.

Therefore,

M = max
i,j
‖kpi,j‖L∞(Ω) + CT (ΣN ) ‖µ‖L∞(ΣN ) + πR2‖kw‖L∞(Ω) + 2πR‖κ‖L∞(Λ)

(
1 +

√
CT (Γ )

2πR

)2

.

Lemma 3 shows that the coercivity and continuity constants depend of the boundary conditions and
the parameters of the problem. In particular, they are not robust with respect to R because m → 0 in
the limit R→ 0. In other words, the subproblem on Λ looses coercivity in the limit case.

Lemma 4 The functional F is continuous in V.

Proof Indeed,

F(V) = −bΛ(W,V ) = −2πR (κW, V )Λ ≤ 2πR‖κ‖L∞(Λ)‖W‖L2(Λ)‖V ‖L2(Λ) ≤ 2πR‖κ‖L∞(Λ)‖W‖L2(Λ)|||V|||.

Theorem 1 Problem (10) has a unique solution U ∈ V. Furthermore, the following stability estimate
holds true,

|||U||| ≤ 1

m
2πR‖κ‖L∞(Λ)‖W‖L2(Λ). (17)

Proof Owing to the Lax-Milgram Theorem, the result is a direct consequence of the previous lemmas.
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3.1 Finite element approximation

Let us consider a quasi-uniform partition T hΩ of Ω and an admissible partition T hΛ of Λ with the same
characteristic size h and let Vh = V Ωh × V Λh ⊂ V be continuous k1, k2-order Lagrangian finite element
space defined on T hΩ , T hΛ respectively. The numerical approximation of the variational formulation (10)
consists of finding Uh ∈ Vh solution of

A(Uh,Vh) = F(Vh) ∀Vh ∈ Vh. (18)

We notice that in problem (18) it is implicitly assumed that numerical integration is performed exactly.
In practice, the average operator (·) is approximated by means of numerical quadrature. The effect of
this further approximation shall be analyzed in a future development of this work.

We exploit the conformity of the finite element space combined with Lemma 3, in order to prove that
Uh satisfies a Ceá-type inequality,

|||U − Uh||| ≤
M

m
inf

vh∈V Ωh ,Vh∈V
Λ
h

(
‖u− vh‖H1(Ω) + ‖U − Vh‖H1(Λ)

)
. (19)

The convergence of the finite element method follows from (19) combined with approximation prop-
erties of the finite element space. For the latter property, additional regularity of the solution is required.
The solution U on Λ is in H2(Λ). The regularity of U descends from the standard theory of elliptic
operators in convex domains, [10, Theorem 8.12], being W and u both in L2(Λ). Then, for the solution
U on Λ, the standard finite element approximation estimate ensures that

inf
Vh∈V Λh

‖U − Vh‖H1(Λ) . hr2‖U‖H2(Λ) r2 = min(k2, 1),

where a . b is equivalent to the inequality a ≤ Cb being C is a generic constant, possibly dependent on
Ω but independent of the parameters of the problem.

Conversely, the regularity of u does not descends from standard results, because the right hand side in
the first equation of (9) can be represented as a Dirac measure defined on Λ, the 1D manifold embedded
into Ω. For this reason, we simply state the convergence result provided that u belongs to a suitable
Sobolev space W l,q(Ω). Let πh be the Scott-Zhang interpolation operator from W t,q(Ω) ∩H1

0 (Ω) to Vh
with 1 ≤ q ≤ ∞ and 1 ≤ t ≤ l with the additional constraint l > 1/q when q > 1. Then, the following
interpolation estimate holds true (see for example [9] [Lemma 1.130])

‖v − πhv‖W t,q(Ω) . hr1−t‖v‖W l,q(Ω), r1 = min(l, k1 + 1).

Therefore, combining (19) and the previous inequalities for piecewise affine approximation, we obtain

|||U − Uh||| . hr1−t‖v‖W l,q(Ω) + hr2‖U‖H2(Λ).

4 Numerical solution strategies

In this section we analyze the properties of the matrix A arising from the discretization with linear
finite elements of problem (10). We are particularly interested in investigating the performance of the
Algebraic Multigrid Method (AMG) applied to this problem. For this purpose, we use the AMG library
developed in [25,26,27].

Let us denote with ϕ∗h,i ∈ V ∗h , i = 1, . . . ,dim(V ∗h ) be the Lagrangian basis functions of V ∗h , where the
symbol ∗ denotes either the domain Ω or Λ, and let v∗ = {v∗i } be the vector of the degrees of freedom
relative to the generic finite element function v∗h such that

v∗h =

dim(V ∗h )∑
i=1

v∗i ϕ
∗
h,i .

Let A be the stiffness matrix corresponding to the bilinear form A (·, ·). More precisely, problem (10) is
equivalent to the following algebraic problem,

Au = f ⇔
[
AΩ −B
−BT AΛ

]
·
[
uΩ

uΛ

]
=

[
0
fΛ

]
(20)

9



where the matrices and the right hand side have the following expressions

AΩij =
(
kp∇ϕΩh,j ,∇ϕΩh,i

)
+
(
µϕΩh,j , ϕ

Ω
h,i

)
ΣN

+ 2πR(κϕΩh,j , ϕ
Ω
h,i)Λ ,

AΛij = πR2(kwdsϕ
Λ
h,j , dsϕ

Λ
h,i)Λ + 2πR(κϕΛh,j , ϕ

Λ
h,i)Λ ,

Bij = 2πR(κϕΛh,j , ϕ
Ω
h,i)Λ ,

fΛi = −2πR(κW,ϕΛh,i)Λ .

We aim to study the system (20). We observe that, because of the different dimensionality, usually
the discretization of Ω has many more degrees of freedom than the one of Λ. More precisely we have
dim(V Ωh )� dim(V Λh ). Then, it is convenient to rewrite (20) as follows,

AΛuΛ = fΛ +BTuΩ ,(
AΩ −B

(
AΛ
)−1

BT
)
uΩ = B

(
AΛ
)−1

fΛ .

Since the matrix AΛ can be easily solved and factorized because of the small size, this shows that the
major cost for solving (20) is due to the subproblem on Ω. For this reason, in what follows we focus on
the spectral properties and the solvers for matrix AΩ solely. In this case, the discrete function identified
by uΛ is given a-priori. We name this problem as the 3D problem with 1D inclusions.

4.1 Spectral properties and conditioning of the discrete 3D problem with 1D inclusions

We observe that AΩ can be seen as the sum of a standard stiffness matrix (and possible boundary
terms) with a matrix CΩ relative to the coupling terms, such that CΩij = 2πR(κϕh,j , ϕh,i)Λ. Since the
coupling terms are non local, the sparsity pattern of the matrix will be significantly different than the
one of a standard stiffness matrix. In this case, the rows of AΩ may feature many non-zero entries.
More precisely, Figure 2 shows the pattern of standard finite element stiffness matrix on the left, namely(
kp∇ϕΩh,j ,∇ϕΩh,i

)
, and on the right we show the new matrix modified by the 3D-1D coupling terms,

namely matrix AΩ defined above. We immediately observe that the coupling terms affect significantly
the sparsity pattern of the algebraic problem. This poses some questions about the applicability of state
of art numerical solvers to the problem, which will be directly addressed in the next section.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nz = 76924

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Fig. 2: The pattern of the standard stiffness matrix is reported on the left and compared with the pattern
of the modified stiffness matrix AΩ , on the right. The effect of the nonlocal coupling terms is clearly
visible.
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We proceed here with the analysis of the spectrum of AΩ that is related to the bilinear form

AΩij = AΩ
(
ϕΩh,j , ϕ

Ω
h,i

)
=
(
kp∇ϕΩh,j ,∇ϕΩh,i

)
+
(
µϕΩh,j , ϕ

Ω
h,i

)
ΣN

+ 2πR(κϕΩh,j , ϕ
Ω
h,i)Λ.

The eigenvalues of a self-adjoint operator are real and for the largest and smallest eigenvalues the following
expressions are valid:

λmin = min
vΩh 6=0∈V Ωh

AΩ
(
vΩh , v

Ω
h

)
‖vΩ‖2

, λmax = max
vΩh 6=0∈V Ωh

AΩ
(
vΩh , v

Ω
h

)
‖vΩ‖2

,

where ‖·‖ is the standard Euclidean norm. In the case of Lagrangian finite elements in a three dimensional
space, we have

h3‖vΩ‖2 . ‖vΩh ‖2L2(Ω) . h3‖vΩ‖2.

Using the continuity and the coercivity of AΩ , we obtain

λmin = min
vΩh ∈V

Ω
h

AΩ(vΩh , v
Ω
h )

‖v‖2
≥ mΩ

‖vΩh ‖2H1(Ω)

‖vΩ‖
≥ mΩ

‖vΩh ‖2L2(Ω)

‖vΩ‖
& mΩh3,

λmax = max
vΩh ∈V

Ω
h

AΩ
(
vΩh , v

Ω
h

)
‖vΩ‖2

.MΩ
‖vΩh ‖2H1(Ω)

‖vΩ‖2
.MΩh−2

‖vΩh ‖2L2(Ω)

‖vΩ‖2
.MΩh,

where, according to Lemma 3, constants mΩ , MΩ are the following,

mΩ =
1

1 + CP (Ω)
, MΩ = max

i,j
‖kpi,j‖L∞(Ω) + CT (ΣN ) ‖µ‖L∞(ΣN ) + CT (Γ )‖κ‖L∞(Λ) .

For self-adjoint problems, upper and lower bounds of the spectrum give information about the spectral
condition number K(AΩ). Precisely, in this case we have

K(AΩ) .
MΩ

mΩ
h−2.

From the previous spectral analysis, we deduce that the discretization in Ω is robust with respect to
small inclusion radii, being the continuity and coercivity constants independent of R.

4.2 Application of Algebraic Multigrid to the solution of the 3D problem with 1D inclusions

The adequacy of the Algebraic Multigrid algorithm (AMG) to solve problems such as the one of Figure
2 (right) is an interesting question. On one hand, matrix AΩ is symmetric positive definite, which makes
AMG to be a good solution method. On the other hand, there are concerns about the influence of the
modified sparsity patterns on the algebraic coarsening process. For example, Figure 3, shows how the
sparsity pattern of matrix AΩ changes after three levels of coarsening. The coarsest level (level three)
is almost full and it is solved using a direct algorithm. Then, we aim to investigate how the coarsening
algorithm transforms matrix AΩ and how standard smoothing techniques behave when applied to these
coarse problems. Finally, we will address the question of robustness of the solver with respect to reaction
dominated problems with concentrated sources.

Keeping in mind the previous objectives, we review here some results about AMG. Since the recursive
extension of any two level process to a multi-level process is formally straightforward, we describe the
components of the AMG algorithm only on the basis of two level methods. Indices h and H mark the
fine and the coarse level, respectively. We rewrite the sub-problem related to AΩ as follows,

AΩuΩ = fΩ ⇔ Ahuh = fh . (21)

We remark that Ah in (21) stands for the matrix relative to the subproblem in Ω. It shall not be confused
with the matrix of the coupled problem defined in (20). In this framework the coarse level system is

AHuH = fH , (22)

11



level 0 level 1

level 2 level 3

Fig. 3: Spartity patterns of the fine (level 0) and coarse levels (respectively 1, 2, 3) of the AMG solver.

where the matrix AH is defined as the Galerkin operator

AH := IHh AhI
h
H , (23)

where IhH and IHh denote the interpolation and the restriction operators, respectively.
We now define a smoothing process with a corresponding smoothing operator Sh as

ûh = Shu
h + (Ih − Sh)A−1h f

h , (24)

where Ih denotes the identity operator. We focus our attention on the Gauss-Seidel relaxation scheme,
which implies the following choice of the smother

Sh =
(
Ih −Q−1h Ah

)
, (25)

with Qh being the lower triangular part of Ah.
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We remark that Ah is a symmetric positive definite matrix for which we can define the restriction
(IHh ) as the transpose of interpolation (IhH). As a consequence AH , defined in (23), is also symmetric
and positive definite, regardless of the choice of IhH as long as it has full rank. In [26] the authors show
that for a symmetric positive definite matrix any full rank interpolation operator generate a coarse level
correction operator, which is an orthogonal projector with respect to the scalar product of AΩ . In this
case Galerkin based coarse grid corrections minimize the Euclidean norm of the error. Furthermore, the
smoother iterations converge, because the operator Sh satisfies the smoothing property. More precisely, let
eh be the difference between the exact solution of (21) and the current approximation before smoothing.
In [26] it is proven that for the smoother defined in (25), there exists σ, a strictly positive constant
independent of eh, such that the following inequality holds true,

‖Sheh‖21 ≤ ‖eh‖21 − σ‖eh‖22 ,

where ‖ · ‖0 , ‖ · ‖1 and ‖ · ‖2 are norms induced by the following inner products,

(u,v)0 = (Dhu,v) , (u,v)1 = (Ahu,v) , (u,v)2 =
(
D−1h Ahu, Ahv

)
, Dh = diag(Ah).

This property implies that Sh is efficient in reducing the error eh and more in general the performance
of the AMG solver is good for symmetric positive definite problems such as (21). Moreover, the solver
is not affected by the pattern of the matrix provided that the restriction operator has full rank and the
coarsest problem can be appropriately handled (by a direct method).

We conclude this section with some considerations about the dependence of problem (10) form the
physical parameters. In cases where 2πRκ� 1, problem (10) is (locally) reaction dominated. As it will
be discussed later, this is the case of applications to wells. The numerical experiments addressed in the
next section suggest that the AMG solver is robust with respect to this case. This property can be
justified following the lines of [24] and [20], where the convergence of the finite element method and of
the geometric multigrid solver, respectively, are studied for reaction dominated problems.

The main reason why locally reaction-perturbed elliptic operators do not pose substantial problems at
the level of finite element approximation, can be found in the analysis developed by Schatz and Wahlbin
[24]. There, the authors prove the local uniform convergence of finite elements for singularly perturbed
reaction-diffusion problems with Dirichlet boundary conditions, that is

‖u− uh‖L∞(Ω0) ≤ C ln
3
2 (1/h) min

vh∈Vh
‖u− vh‖L∞(Ω1) + Ch2 ln

1
2 (1/h), (26)

where Ω0 ⊆ Ω1 ⊆ Ω and dist(Ω0, ∂Ω1) > 0 and C denote generic constants uniformly independent
of the parameters of the problem. This estimate confirms that uniform convergence takes place, away
form the region where the singular behavior of the operator appears as a boundary layer. By exploiting
this theory, Olshanskii and Reusken [20] have shown that the geometric multigrid method applied to
reaction diffusion problems converges with a rate that is not affected by the physical parameters, because
the deterioration of the approximation properties in the boundary layer are compensated by improved
smoothing properties.

Even though we can not exhibit a rigorous proof, we observe that the uniform convergence rate of
the multigrid method with respect to parameters applies also to our case, where reaction dominates the
elliptic operator on some very local portions of the domain only. Again, this may be qualitatively justified
by (26), because the effect to the singular perturbation does not affect the approximation away from the
singularity.

5 Numerical experiments and discussion

In this section we support with numerical evidence the claims stated about the properties of the AMG
solver applied to the 3D problem with 1D inclusions. Afterward, we apply the 3D-1D coupled problem to
simulate some simple configurations of perforated reservoir.
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5.1 Numerical experiments for the 3D problem with 1D inclusions

We consider a unit cubic domain Ω = (0, 1)3 with a centered cylindrical inclusion of radius R =
{0.01, 0.2}. The parameter κ is set equal to 1 and the source U varies linearly between 0 and 1. Homoge-
neous Neumann conditions are imposed on the boundary ∂Ω. We use a family of four uniform meshes.
A graphical description of the test case is shown in Figure 4.

Fig. 4: Description of the 3D test case with 1D inclusions.

To solve the linear system deriving from the discrete formulation (18) we use the SAMG library,
which provides both direct and AMG solvers for linear systems. We use the AMG solver on multiple
V-cycle levels as a stand-alone solver (named stand-alone AMG), the AMG solver on multiple levels as
a preconditioner for BiCGstab (accelerated AMG) and Intel’s Pardiso as direct solver (also part of the
library). Despite the name, there isn’t any guarantee that the accelerated AMG outperforms the stand-
alone approach. Indeed, for rather small matrices, the additional cost of initializing the data structures
for the BiCGstab algorithm may offset the computational time of accelerated approach.

The results are reported in Table 1 and in Figure 5. We observe that in all the cases the numerical
results confirm the theoretical expectations. More precisely, the computational cost scales with optimal
complexity. Indeed, it is linearly dependent on the number of degrees of freedom (dof). On the contrary,
as expected, the direct solver complexity is superlinear, in this case approximately quadratic with respect
to the number of dof. This is a fundamental difference in performance, which makes the AMG solver
10 times faster than the direct solvers for systems with (only) 5 × 105 dof. We also observe that the
solver is robust with respect to the main parameters of the problem, precisely R and κ, because the
computational time is almost insensitive to variations of these.

Finally, the last dataset of Table 1 shows that the computational times for solving the standard
stiffness matrix, namely AΩ − CΩ , or the modified matrix AΩ are comparable (surprisingly less in the
latter case). It means that the modified matrix pattern induced by the 3D-1D coupling terms does not
affect the performance of AMG, even though it does modify the systems that are built and solved at the
coarse levels. To sum up, the AMG solver is suitable for the problem at hand.

14



Test with R = 0.01, κ = 1.

Nb. of sub. Nb. of dof Nb. nz entries Stand-alone AMG Accelerated AMG Pardiso
[20, 20, 20] 9261 7289 10,41299 10,62252 8,055254
[40, 40, 40] 68321 506289 16,61915 19,88221 18,01701
[60, 60, 60] 226981 1615081 25,33673 26,62287 123,8901
[80, 80, 80] 531441 3765281 44,91651 45,72543 680,3187

Test with R = 0.2, κ = 1.

Nb. of sub. Nb. of dof Nb. nz entries Stand-alone AMG Accelerated AMG Pardiso
[20, 20, 20] 9261 253997 12,9794 11,07768 8,129677
[40, 40, 40] 68921 1483169 22,4713 24,79993 22,00561
[60, 60, 60] 226981 3298703 40,4724 38,28844 139,3998
[80, 80, 80] 531441 5785529 71,54043 67,63766 722,6398

Test with R = 0.01, κ = 10.

Nb. of sub. Nb. of dof Nb. nz entries Stand-alone AMG Accelerated AMG Pardiso
[20, 20, 20] 9261 70837 10,71116 13,3264 8,448821
[40, 40, 40] 68921 1496781 16,13912 18,72223 21,52432
[60, 60, 60] 226981 1615081 24,45888 27,93736 117,4818
[80, 80, 80] 531441 3765281 47,71254 47,35248 694,8176

Test with R = 0.01, κ = 100.

Nb. of sub. Nb. of dof Nb. nz entries Stand-alone AMG Accelerated AMG Pardiso
[20, 20, 20] 9261 69581 10,9014 14,10448 8,489918
[40, 40, 40] 68921 496013 13,93065 18,26737 20,187
[60, 60, 60] 22698 161508 25,92969 26,54227 116,3273
[80, 80, 80] 531441 3765281 45,92995 46,85656 658,9241

Test with R = 0.01, κ = 1, standard stiffness matrix A− C.

Nb. of sub. Nb. of dof Nb. nz entries Stand-alone AMG Accelerated AMG Pardiso
[20, 20, 20] 9261 66981 10,78995 12,177191 8,389091
[40, 40, 40] 68921 491561 16,55888 17,38915 19,30781
[60, 60, 60] 22698 1609741 27,79404 28,93468 125,8552
[80, 80, 80] 531441 3757521 52,23508 50,62627 667,1364

Table 1: CPU time (seconds) for the solution of the linear system using SAMG library.

5.2 A 3D-1D coupled problem applied to reservoirs with two wells

We consider here data of a field experiment described in [16]. In particular, the computational domain is
a slab located at the surface, of dimension Ω = L[0, 1]× [0, 2/3]× [−0.1, 0] where L=100 m. A sketch of
the domain is shown in Figure 6. In dimensionless coordinates, the wells are located at x = 1/3, y = 1/3
(labelled with B in Figure 6) and in x = 2/3, y = 1/3 (labelled with A) and they extend to the entire
thickness of the domain.

We assume that the material that surrounds the wells is isotropic. As a result, for a given value
of Kp the tensor kp is the identity in problem (3). The wells are much more permeable to flow than
the reservoir. For this reason, we take kw = 1000 in dimensionless form. Finally, we assume that the
permeability of the well surface is larger than the intrinsic one of the rock. More precisely, we assume
that it scales as K = 100Kp/ρ that implies κ = 100L/ρ = 100/R.

We address two test cases, that differ for the boundary conditions enforced at the endpoints of the
wells, while on the external boundary ∂Ω homogeneous Neumann conditions are imposed. In the first
one (named Test 1 ), we assume that the injection well (A) is subject to an overpressure equal to the
atmospheric one. At depth z = −L2 = −0.1 (points A2 and B2) we enforce a pressure equal to 0.7pw,0
and at the top of the production well is open to the atmosphere. The overview of the numerical solution
in both the slab and the wells is shown in Figure 7. The Darcy velocity in the slab is visualized by the
arrows. Also the injection and the extraction wells are marked in the same way. The pressure field is
visualized by means of the color scale in Figure 7. In particular, Figure 7 shows the pressure field together
with the isobaric curve in the middle plane of the domain (z = −0.05). From these results we conclude
that all the expected behaviors of the problem are captured by the proposed scheme. More precisely, the
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Fig. 5: CPU time (seconds) for the solution of the linear sistem using SAMG library.

Fig. 6: Geometrical description of the problem.

injected fluid travels towards the extraction well and a moderate pressure gradient is established inside
the slab. Finally, in Figure 8 we plot the dimensionless pressure in the wells. We notice that the pressure
varies linearly along the wells, matching the prescribed values at the endpoints. As a result, the velocity
is almost constant and each well carries an almost steady flow. Only a small part of it leaks-off to the
exterior from the lateral surface of the wells.

In the other test case (named Test 2 ), the bottom end of the wells is impermeable to flow. More
precisely, an injection pressure equal to pw,0 is set at the surface (point A1), while no-flux condition
is enforced at depth z = −L2 = −0.1 (point A2). For the production well we assume that the surface
endpoint is exposed to the atmospheric pressure (point B1) while no-flux condition is set at depth
z = −L2 = −0.1 (point B2). As shown in Figure 8, pressure is almost constant along each well. This
setting resembles the case with prescribed sources analyzed in section 3.
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Fig. 7: Test 1: (Left panel) Pressure field in the 3D/1D domain, the vectors point in the direction of the
flow. (Right panel) Pressure field in the 3D/1D domain together with the isoline of the pressure field in
the middle plane (z = −0.05).
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Fig. 8: Pressure field in the injection (A) and the extraction (B) well, left panel is Test 1 and right panel
is Test 2, respectively.

The maps of flow and pressure of Test 2 are reported in Figure 9. Comparing these results with the
ones of the previous test, we observe that the pressure gradient in this case is more marked than before.
It means that more flow propagates through the slab. This can be explained noticing that the wells are
closed at the bottom. As a result, all the fluid that enters the injection well at the top must reach the
extraction well.

5.3 A 3D-1D coupled problem applied to reservoirs with multiple wells

Here we test the ability of the model and of the corresponding implementation to handle multiple wells.
In particular, thanks to the generality of the formulation, which does not require any conformity between
the computational meshes and the discretization of the 3D and 1D subdomains, handling several wells
does not poses any additional difficulty than modeling only two of them.

In Figure 10, we show the simulations obtained with two idealized configurations. All the parameters
and boundary conditions are the same than the ones of Test 1. On the top we have multiple production
wells located on the surface of a cone with axis aligned with the injection well. This configuration forms
a sort of pressure cushion around the production well. On the bottom, we have randomly located the
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Fig. 9: Test 2: (Left panel) Pressure field in the 3D/1D domain, the vectors point in the direction of the
flow. (Right panel) Pressure field in the 3D/1D domain tohether with the isoline of the pressure field in
the middle plane.

endpoints of the wells on the top and bottom surfaces of the slab. We notice that the pressure field
reflects the pattern of the wells while the velocity is rather chaotic.

6 Conclusions

We have developed a computational approach to model the interaction of wells with a reservoir. The
problem shows non-standard features: (i) at the level of modeling for the application of topological model
reduction techniques; (ii) at the level of analysis because it consists of coupled PDEs defined on manifolds
of different dimensionality; and (iii) at the level of numerical discretization because it corresponds to a
linear system with an unusual pattern.

A natural development of this work, already in progress, consists of extending the model and the
analysis to the mixed formulation of the flow, where both pressure and velocity fields are modeled and
approximated simultaneously. A preliminary report of this study is available in [19]. More in general,
this approach can be extended to model fractures, fracture tips and wells as two-dimensional (2D) and
one-dimensional (1D) manifolds embedded into a three-dimensional (3D) reservoir. We believe that this
extension would be particularly attractive for subsurface flow applications, because it provides a unified
approach to model the fluid injection and borehole interaction with the surrounding reservoir (using the
3D-1D multiscale coupling) and the formation of the fracture network (using the 3D-2D-1D approach
for the interaction of reservoir, fracture and fracture tip, respectively).
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