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Abstract

In this work, we develop a computational tool to predict the patient-specific evolution of a highly malignant
brain tumour, the glioblastoma multiforme (GBM), and its response to therapy. A diffuse-interface mathematical
model based on mixture theory is fed by clinical neuroimaging data that provide the anatomical and microstructural
characteristics of the patient brain. The model is numerically solved using the finite element method, on the basis
of suitable numerical techniques to deal with the resulting Cahn-Hilliard type equation with degenerate mobility and
single-well potential. We report the results of simulations performed on the real geometry of a patient brain, proving
how the tumour expansion is actually dependent on the local tissue structure. We also report a sensitivity analysis
concerning the effects of the different therapeutic strategies employed in the clinical Stupp protocol. The simulated
results are in qualitative agreement with the observed evolution of GBM during growth, recurrence and response to
treatment. Taken as a proof-of-concept, these results open the way to a novel personalized approach of mathematical
tools in clinical oncology.

1 Introduction
Glioblastoma multiforme (GBM) is the most complex and deadliest brain malignancy. Along with the typical hall-
marks of cancer (e.g. uncontrolled cellular proliferation, intense resistance to apoptosis, rampant genomic instabil-
ity [28]), the GBM has a high invasive potential and peculiarly grows along white matter fibers or along vessels,
following physical structures in the brain extracellular environment [34, 51]. The resulting diffuse infiltration, as well
as the impenetrability of the blood-brain barrier for many conventional drugs, makes the GBM particularly aggressive
and difficult to be treated: even after extensive surgery and therapies, the median patient survival does not exceed 10-
16 months [33, 34] and the five-years survival rate is around 5% [32, 47]. The currently approved treatment schedule
is known as Stupp protocol [59]: it involves a surgical removal of the cancerous mass, without injuring eloquent areas
and structures of the brain whenever possible, followed by radiotherapy and concurrent and adjuvant chemotherapy.
Radiation therapy is used as a treatment because of its precision in targeting the tumour region and its ability to in-
crease the patient survival time, doubling it compared to surgery alone. Since radiotherapy affects both healthy and
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tumorous cells, it is performed in various sessions with the intent of maximizing the effect on cancerous cells and
simultaneously minimizing the toxicity on normal tissue [52]. In order to obtain the best outcomes with minimal ad-
ditional toxicity, the Stupp protocol combines the radiation therapy with concurrent chemotherapy, followed by cycles
of adjuvant chemotherapy with the cytotoxic agent temozolomide (TMZ) [50, 59].

A key step in order to improve the patient survival rate is the early detection of GBM. Several techniques can
be employed for the diagnosis. Nowadays, magnetic resonance imaging (MRI) is the technique of election, since
it is versatile, noninvasive, harmless and it can provide extraordinarily detailed images of the brain at any location
and orientation with sub–millimeter resolution. Although conventional MRI easily permits to identify the functional
centers of the brain and the possible location of a brain tumour, it cannot give any insight on the microscopic structure
of tissues, e.g. the spatial distribution of the fiber network within the brain. An advance in this direction is given by
the diffusion-weighted magnetic resonance imaging (DWI), which is a form of MR imaging used to estimate water
diffusion within the tissue, so that it indirectly provides some information at a microscopic scale [42]. In some areas
of the brain, mostly composed by either grey matter or cerebrospinal fluid, a single scalar diffusion coefficient is
sufficient to characterize the diffusion properties, since the measured apparent diffusivity is largely independent on
the orientation of the applied gradient (i.e. isotropic diffusivity). On the other hand, in areas where the white matter
is dominant, the water mobility is restricted by the tightly packed multiple myelin membranes encompassing the
axons, so that the apparent diffusion values strongly depend on the measurement orientation. Addressing this issue,
DWI has been developed into a new technique, the diffusion tensor imaging (DTI), in which the water diffusivity
within each voxel (i.e. a volumetric element) of the brain is described through a tensor. The diagonal elements of
the tensor are proportional to the apparent diffusivity along the three main axes, whereas the off-diagonal elements
are the covariance terms given by the correlation between molecular displacements in directions perpendicular to
the current measurement direction in a given time. The diffusion tensor is symmetric and positive definite, which
implies that there are six unknown independent tensor components to be estimated by acquiring at least six DWIs
along linearly independent, non-coplanar directions, plus a non-diffusive weighted image giving the reference signal.
The DTI technique is nowadays the only non-invasive method for characterizing the micro-structural architecture of
the brain bundles and for deriving the preferential direction of water diffusion and, consequently, of cell migration.
Indeed it was experimentally proved that glioma cells motion is positively correlated with the white matter fiber tracts,
since the tumour cells tend to migrate whilst attached to a solid support [18, 70]. Nonetheless, we remark that DTI
does not give a direct measurement of the extent of cell motion and growth along the fiber paths, which is regulated
by different chemical and mechanical cues [40, 55].

Mathematical models provide powerful tools to foresee GBM infiltration and progression and foster our under-
standing on new patient-specific therapeutic strategies. Indeed, in the past few decades, a multitude of increasingly
advanced and refined mathematical studies of GBM evolution have been proposed. The models can be gathered
into three main categories, depending on the observation scale at which the phenomenon is studied: discrete mod-
els [13,39,44] keep track of the single cell behaviour and its interactions with other agents, updating the system status
according to a specific set of biophysical rules; hybrid models [16, 25, 26] combine a continuous deterministic model
describing the collective evolution of cancer spreading with a discrete model for single cells behaviour and evolution;
continuous models [10, 14, 27, 33, 63, 64] describe tumour evolution at the tissue macroscopic scale through contin-
uous fields and variables, such as cell densities, volume fractions and biochemical concentrations. The latter class
is the most widely used, due to the high number of cells involved in GBM growth and the necessity to describe the
tumour evolution at the tissue level in order to obtain clinically meaningful results. In particular, the state-of-the-
art focuses on the macroscopic diffusion models of GBM growth developed by Swanson and coworkers [62], which
takes into account for a reaction-diffusion equation describing GBM cells concentration. Despite its simplicity, this
Proliferation-Infiltration (PI) model can account for the augmented tumour motility in white matter as compared with
grey matter thanks to either a heterogeneous diffusion coefficient (i.e. a piecewise-function with two different constant
values for grey and white matter) [62, 63], or the definition of an anisotropic and heterogeneous diffusion tensor [37]
directly computed from DTI images. Nevertheless, these models [37, 62, 63] do not provide insights on the chemi-
cal and mechanical cues that drive cell motion along fibers tracks, lacking a mechanistic connection between water
diffusion, brain geometry and tumour cell invasion. Some efforts in this direction have been done in [22, 48, 61],
where an anisotropic diffusion equation [48,61] or an advection-diffusion model [22] for GBM invasion have been de-
rived through the parabolic scaling limit of mesoscopic transport equations, and by defining a systematic approach for
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connecting DTI data to parameters in the macroscopic model, through a bimodal von Mises-Fisher distribution [48].
However, all these models [22, 37, 48, 61–63] neglect the generation and accumulation of forces between the host and
the malignant tissue and the mechanical interactions occurring within the tumour itself, which should be incorporated
in a continuous mechanical model.

In particular, multiphase models [3], based on the theory of mixtures [8], represent a natural modelling framework
for studying GBM evolution (and, more generally, solid tumour growth) at a macroscopic scale. Indeed, they allow
taking into account mechanical and biochemical interactions among multiple solid cell species and extra- or intra-
cellular liquids [3, 11, 17, 69]. Multiphase models consider the tumour as a saturated medium, comprising at least one
solid phase (e.g. cells, extracellular matrix, etc) and one liquid phase (e.g. water), and incorporate mass, momentum
and energy balances to describe the evolution of the system. A first attempt to study GBM evolution with a multi–
phase model is found in Colombo et al. [15], where clinical neuroimaging patient-specific data have been combined
with a continuous multiphase mechanical model. Specifically, the mass and momentum balance laws of a binary
mixture composed by tumour cells and healthy environment lead are coupled with a reaction-diffusion equation for
the nutrients, guiding the proliferation and the motion of tumour cells.

In this work, we extend the model proposed in [15] by introducing an anisotropic description of the dissipative and
conservative interactions between the phases and we provide a more accurate calculation of the tensor of preferential
directions accounting for the local orientation of the fiber network. Furthermore, we take into account for the tumour
response to the standard therapeutic treatment [58]. The proposed mechanical model introduces nontrivial differences
with respect to the state-of-the-art PI model and the standard examples found in the literature [1]. In particular, in the
present model the resulting degenerate Cahn-Hilliard type equation, describing the tumour phase dynamics, introduces
some analytical and numerical difficulties, such as non-uniqueness of the solution and presence of solutions with
unphysical behaviour [6], which must be properly addressed in order to select the physically meaningful solution and
to avoid the onset of numerical instabilities. Moreover, a naive discretization of the model would lead to discrete
solutions which do not respect the positivity property of the corresponding continuous solution [5]. Following and
extending the analysis introduced in [1], the present model is conveniently discretized in order to select the physical
viable solution, and the positivity property on the discrete solution is imposed as a constraint through a variational
inequality.

The paper is structured as follows. In section 2 the mathematical model of a GBM growth is introduced. In section
3 we describe how the numerical model and the patient-specific data have been obtained from the MRI and DTI
images, kindly provided by the Istituto Neurologico Carlo Besta (Milan , Italy), and we present the discretized model
and the numerical algorithm used to solve it. Finally, the numerical results are illustrated and discussed in section 4.

2 Mathematical model
In this section we derive a continuum multiphase diffuse-interface model [3] of GBM accounting both for its growth
(section 2.1) and its response to therapies, according to the standard Stupp protocol, (in order to study cancer recurrence
(section 2.2)). The biological range of the model parameters is discussed in section 2.3.

2.1 GBM growth model
Following [11, 12, 15], we represent the tumour as a binary, saturated, closed mixture of incompressible constituents,
which is composed by a cellular phase of proliferating tumour cells, with volume fraction φc, and a liquid phase, with
volume fraction φ`, resuming hosts cells, nutrient, water and interstitial fluid. We do not distinguish between dead and
viable tumour cells, the former being considered to belong to the liquid phase. We denote by vi(x, t), i = {c, `}, the
convective velocity of each phase; the true mass densities [8] of each species is constant and equal to the water density
γ (since the cells are mostly composed by water), and the mass balance for each phases reads

∂φi
∂t

+∇ · (φivi) =
Γi
γ

+∇ · ki (1)

where i = {c, `}. Here, Γi represents the volumetric mass production (respectively loss) of the corresponding phase,
ki is the non-convective mass flux of the i-th phase. Being the mixture closed, Γc = −Γ` and kc = −k` in order for
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the mixture to locally satisfy the conservation of mass and fluxes exchanged between the phases.
The growth-loss and the mass flux are modulated by the local concentration of nutrients and possibly other chemi-

cals (e.g. growth factors). Here, we consider oxygen as the main nutrient for tumour cells and we define n(x, t) as the
dimensionless concentration of the diffusing nutrient, normalised with respect to the typical physiological concentra-
tion ns of nutrient in the capillaries. For simplicity, in the following, φc will be replaced by φ. Now, we set

Γc = νγ[n− δ]+φ(1− φ)− νdγ[δ − n]+φ−R(φ, t)−G(φ, t) , (2)

where [·]+ stands for the positive part of its argument, ν and νd are the neoplastic cells proliferation and death rates
respectively and δ is a threshold value for hypoxia. According to the functional form (2), the cells proliferate as long
as the nutrient concentration is above δ times ns and the saturation state is not reached (contact inhibition); in hypoxia
conditions (n < δ) the rate of apoptosis prevails over the mitosic rate and Γc is negative. The loss terms R(φ, t)
and G(φ, t), whose form is to be detailed in section 2.2, represent cell death due to radiotherapy and chemotherapy,
respectively.

The non-convective mass flux describing the chemotactic motion of cells is proportional to the nutrient gradient
[15]

kc = −knφnsT∇n . (3)

Here, kn is a specific chemotactic parameter and T is a positive definite symmetric tensor defining the preferential
directions of the chemotactic movement, obtained from Diffusion Tensor Imaging measurements, (which is a modifi-
cation of the standard equation used to model chemotaxis [17, 29, 35] to take into account the preferential motion of
cells along fibers). Thereby, the term kc is able to describe the tendency of tumour cells to direct their movements
uphill the gradient of nutrients. Note that T , being a positive definite symmetric tensor, does not contain a rotating
component.

In order to close the equations system, we derive the constitutive laws for vi, following the thermodynamically
consistent approach proposed by Doi and Onuki [19] and defining an energy formulation of viscous interactions and
mechanical forces involved in cell-cell and cell-matrix (ECM) adhesion. Differently from [15], we assume that the
viscous interactions due to the relative motion between the cells and the healthy phase, which are the main source of
energy dissipation in the system, have the following anisotropic distribution

W =
1

2

∫
Ω

φ(vc − vl)
TM(vc − vl)dΩ , (4)

where M = M0T
−1, and M0 is a friction parameter. According to energy dissipation (4), the directions of higher

diffusion of water molecules, captured by DTI and encoded in the largest eigenvalues of the tensor T , are also the ones
most easily accessed by the cells in their motion. Here Ω ⊂ R3 is the fixed spatial domain occupied by the mixture
at any time instant and coinciding, in our case, with the whole brain of the patient, which remains unchanged while
the tumour evolves. The introduction of tensor T to account for non-isotropic dissipative and mechanical interactions
inside the mixture is an innovative aspect of this work, in order to mimic the preferential motion of cells along white
matter fiber tracts [31,37,39], whose orientation can be inferred by the diffusion tensor. The Helmholtz free energy of
the system takes into account both the local interactions among cells within each phase and the interactions between
the two phases:

F =

∫
Ω

(
ψ(φ) +

ε2

2
|∇φ|2

)
dΩ . (5)

The first term ψ(φ) is the free energy per unit volume due to cell-cell and cell-matrix adhesion of the two phases,
whereas the second term represents the non-local intermixing and adhesion forces that generate a surface tension
between the tumour and the host tissue, across a diffuse interface of thickness proportional to the value of ε. According
to [19], the minimization of the Rayleighian R = W + dF/dt with respect to vc and vl after the introduction of a
Lagrange multiplier in order to account for the incompressibility constraint of the mixture lead to the following relation
for the relative velocities of the two phases:

vc − vl = −
(

1− φ
M0

)
T∇

(
∂ψ

∂φ
− ε2∆φ

)
. (6)
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Figure 1: When two cells (here represented with blue and red circles) are sufficiently far from each other, they do not
interact; as soon as the distance between them falls below a certain value, e.g. because of an increase in density, they are
affected by the closeness and experience attractive forces (red and blue arrows) until they come in contact (f(φ) < 0);
if the cell volume fraction φ goes beyond the equilibrium value φe, the forces become repulsive (f(φ) > 0) and tend
towards infinity as φ −→ 1, i.e. when cells fill the whole volume. Image adapted from [11].

In the absence of external forces and considering a high viscosity for the mixture, the center of mass of the mixture
does not move, so that (6) reduces to a Darcy-like law for the velocity of the cell phase:

vc = −K(φ)∇Σ . (7)

where

K(φ) :=
(1− φ)2

M0
T , (8a)

Σ :=
∂ψ

∂φ
− ε2∆φ = f(φ)− ε2∆φ . (8b)

K(φ) is a motility tensor depending on the cells volume fraction and motion preferential directions, whereas Σ is
the excess of pressure exerted by the cells. Cell-cell interactions are expected to be attractive at a moderate cell
volume fraction and repulsive at higher densities. Hence it exists a threshold value φe, called state of equilibrium or
undeformed state, corresponding to which no action is exerted on the neighbours, i.e. f(φe) = 0. For φ < φe cells
are attracted to each other and f(φ) < 0, while for φ > φe cells experience a repulsive force and f(φ) > 0 [11]. In
order to obey to the observed physical and biological behaviours, instead of a double-well potential, usually employed
in phase transformations [69], we use a phenomenological form of f(φ) (Fig. 1) as in [3, 11, 12], i.e. a single-well
Lennard-Jones type potential:

f(φ) = E
φ2(φ− φe)

1− φ
, φ > 0 , (9)

where E is the Young modulus of the cancerous phase [11].
Lastly, we have to represent the evolution of the nutrient concentration n inside the brain. We assume that the vas-

culature is homogeneous in the whole domain and no angiogenesis occurs. Nutrients are released from the vasculature
at a rate Sn as long as n < 1, while they are back absorbed by the vasculature when n > 1. The nutrients supply
is also slowed down by the proliferation of the tumorous cells destroying blood vessels. Then the released oxygen
diffuses into the interstitial fluid as described by the diffusion tensor D and is eventually consumed by the neoplastic
cells at a constant rate δn, whereas the net nutrient uptake by the host tissue is negligible since all the oxygen absorbed
by the healthy cells is instantaneously replaced by the vasculature.
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Therefore, the complete system of equations representing GBM growth reads:

∂φ

∂t
=∇ ·

(
φ(1− φ)2

M0
T∇(f(φ)− ε2∆φ)

)
+ νφ[n− δ]+(1− φ)− νdφ[δ − n]+

−∇ · (knφnsT∇n)−R(φ, t)−G(φ, t) ,

(10a)

∂n

∂t
=∇ · (D∇n) + Sn(1− n)(1− φ)− δnφn . (10b)

with proper initial and boundary conditions (see section 4.2). We note that equation (10a) is a degenerate Cahn-Hilliard
type equation with a single well potential and source terms.

2.2 Modeling the therapy effects
In this section, we detail the modeling of the clinical therapy, consisting of surgical resection followed by external beam
radiation therapy (RT) and chemotherapy (CHT), according to the standard Stupp protocol. Radiotherapy consists of
fractionated focal irradiation at a dose of 2 Gy per fraction (1 Gy = 1 J/kg) given once daily, five days per week
(Monday through Friday) over a period of six weeks, for a total dose of 60 Gy. Concomitant chemotherapy consists
of TMZ at a dose of 75 mg/m2 per day, given 7 days per week from the first to the last day of radiotherapy. After
a 4-weeks break, patients receive up to six cycles of adjuvant TMZ according to the standard 5-day schedule, every
28 days. The dose is 150 mg/m2 for the first cycle and is increased to 200 mg/m2 for the remaining cycles [58] (see
Fig. 2).

The loss terms R(φ, t) and G(φ, t) in (10), representing cell death due to radiotherapy and chemotherapy respec-
tively, are considered to be proportional to the tumour population, as in [50]:

R(φ, t) = kR(t)φ, G(φ, t) = kC(t)φ. (11)

We assume that they have different toxicity profiles (toxicity independence) [59], hence they can both be added to the
first equation of the system (10). The functions kR(t) and kC(t) are the temporal profiles of the therapies schedules:
they are zero on rest days, when no therapy is provided, while they are equal to the cell death rate due to the admin-
istration of radiation or drug on treatment days. Therefore, they are represented by the following piecewise constant
functions:

kR(t) =

{
Reff ti ≤ t ≤ ti+1

0 otherwise
kC(t) =


kC1 s0 ≤ t ≤ s1

kC2 s2 ≤ t ≤ s3

kC3 sj ≤ t ≤ sj+1

0 otherwise

(12)

where the coefficients kC1, kC2 and kC3 are estimated from clinical data and reflect the increasing drug dosage (75
mg/m2, 150 mg/m2 and 200 mg/m2 respectively), while ti with i = 0, ..., 10 are, alternately, the days at the beginning
and at the end of radiotherapy administration periods and sj with j = 4, ..., 12 are, alternately, the days at the beginning
and at the end of chemotherapy administration cycles (t0 = s0), according to the standard Stupp protocol (see Fig. 2).

On the other hand, the radiotherapy death rate Reff is modelled via the linear-quadratic (LQ) model, which is
the best description model for the radiation induced damage in the clinically relevant low-dose region (0-3 Gy) [68].
Assuming that the irradiation duration of the single fraction per day is very short, Reff remains constant throughout
the entire period of the treatment and the radiotherapy death rate can be expressed by:

Reff = αmd+ βmd2 , (13)

where d [Gy] is the dose of radiation for every fraction, m is the number of fractions per day (here, n = 1 day−1), α
[Gy−1] and β [Gy−2] are two tissue-dependent parameters, called respectively the linear and quadratic coefficients
for cell kill [52, 54]. We remark that the LQ model takes into account both lethal lesions (i.e. when a single ionizing
particle provokes a double-strand break in DNA) and sublethal lesions (i.e. a single-strand break in DNA that may
be repaired if no further damage occurs): the linear term αd in (13) is related to double-strand breaks, whereas the
term βd2 accounts for the misrepair of repairable damage, which gives rise to superlinear effects. The dose at which
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Figure 2: The standard Stupp protocol: RT (in red) at 2 Gy/day five days per week, for six weeks; concomitant CHT
(in green) with TMZ at a daily dose of 75 mg/m2 from beginning until ending of RT; six cycles of adjuvant CHT at a
dose of 150 mg/m2 (only first cycle) and 200 mg/m2 (remaining cycles). Image adapted from [50].

the contributions from the first and second term, i.e. the probability αd of lethal damages and the probability βd2 of
misrepaired sublethal ionizing events, are equal is given by α/β [Gy], generally called the alpha-beta ratio. This
parameter is an inverse measure of a tissue’s sensitivity to fractionation, i.e. the size of dose given on each treatment,
distinguishing late responding tissues, with low alpha-beta ratios (α/β ' 2 Gy), and early responding tissues, with
high alpha-beta ratios (α/β ' 10 Gy) [24, 46].

2.3 Parameters estimation
A mathematical model is clinically useful and potentially predictive only if its parameters can be measured from
specific and, possibly, patient-specific biological experiments. In principle, each parameter appearing in (10) can be
estimated from in-vitro and in-vivo biological tests or directly extracted from clinical exams; as an example D and T
can be obtained from patient-specific DTI images (see section 3.1). A comprehensive list of reference values for the
introduced parameters and the corresponding source is reported in Table 1. In this section, we discuss the parameters
whose derivation from the literature is not straightforward.

According to [36], M0 can be estimated as the inverse of the hydraulic conductivity found in [60]. The equilibrium
cell volume fraction φe can be estimated as the complementary value of the extra–cellular space (ECS) studied in
[9], which is composed of vascular and interstitial space. Moreover, ε can be inferred by the characteristic distance
for cells interaction ε/

√
χ, which is considered to be equal to the cell size (with radius r). Here, we interpret the

characteristic pressure χ as the interstitial fluid pressure (IFP) [7]: it has been proven that the fluid flowing in the
interstitial compartment, which is the space between blood vessels walls and cellular membranes, exerts a different
pressure depending on the tissue being healthy or neoplastic, namely in cancerous tissues the IFP is far greater than
in normal tissues. The reasons can be multiple: the absence of a well functioning lymphatic system in the tumour,
an increased permeability of tumour vessels or the proliferation of tumour cells in a confined area [36]. Lastly, the
chemotactic coefficient kn is difficult to estimate. In fact, data on the chemotactic coefficient of glioma cells in
response to oxygen concentration are not reported in literature, thus we refer to the order of magnitude found in [23]
for bacterial chemotaxis in response to attractants, as amino acids and sugars.

3 Numerical model
In this section we describe the numerical scheme adopted to approximate numerically the system of partial differential
equations (10) with patient-specific data. In particular, in subsection 3.1 we briefly describe the procedures to generate
a patient-specific mesh and additional meshes containing the values of the independent components of the tensors D
and T, starting from MRI and DTI images. In subsection 3.2 we define the finite element approximation of (10),
reporting the numerical algorithm to solve it. In the following, [0, T ] is the finite time interval in which we are
considering the tumour evolving. The value of T will be specified in section 4 for each considered test case.
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Parameter description Value References
E Brain Young modulus 694 Pa [14]
ν Tumour cells proliferation rate 0.012 – 0.5 day−1 [45, 62]
νd Tumour cells death rate 0.06 – 0.15 day−1 [30]
M0h Healthy tissue inter-phase friction 1753.64 – 5032.2 (Pa day)/mm2 [60]
M0 Tumour inter-phase friction 1377.86 – 3991.06 (Pa day)/mm2 [60]
φe Equilibrium cell volume fraction 0.389 [9]
r Tumour cell radius 0.005 – 0.01 mm [65, 67]
χh Healthy tissue interstitial fluid pressure 106.66 Pa [7]
χ Tumour interstitial fluid pressure 866.7 – 1533.3 Pa [7]
ε Diffuse interface thickness, 2r

√
χ 0.29 – 0.78 Pa1/2mm

kn Chemotactic coefficient 1296 mm2/(mM day) [23]
δ Hypoxia threshold 0.15 – 0.5 [26, 30]
ns Oxygen concentration in vessels 0.07 mM [67]
Sn Oxygen supply rate 104 day−1 [12]
Dn Oxygen diffusion coefficient 86.4 mm2/day [45]
ln Oxygen penetration distance 0.1 mm [26]
δn Oxygen consumption rate, Dn/l

2
n 8640 day−1

m Radiation fractions per day 1 day−1 [58]
Ndays Total radiotherapy treatment days 30 day [58]
Nd Total radiation doses, nNdays 30
d Radiation dose 2 Gy [58]
α Linear coefficient for RT induced cell kill 0.027 Gy−1 [50, 52]
α/β Alpha-beta ratio 10 Gy [24, 50, 53]
β Quadratic coefficient for RT induced cell kill, α(α/β)−1 0.0027 Gy−2

Reff Radiotherapy death rate, αmd+ βmd2 0.0648 day−1

kC1 Concomitant chemotherapy death rate 0.00735 day−1 [50]
kC2 First cycle of adjuvant CHT death rate 0.0147 day−1 [50]
kC3 Remaining cycles of adjuvant CHT death rate 0.0196 day−1 [50]

Table 1: Values or ranges of values for parameters used in the models.

3.1 Mesh creation and preprocessing
We generate patient-specific computational meshes elaborating the actual clinical post-contrast T1-magnetic reso-
nance images of a patient afflicted by GBM, kindly provided by Istituto Neurologico Carlo Besta. Starting from the
greyscale MRI images, we create a computational mesh reproducing the shape of the patient’s brain, conveniently
refined in the area surrounding the tumour. Secondly, we generate several additional meshes: a labelled mesh carrying
the information about the cerebral tissues position; six meshes representing the independent components of the sym-
metric diffusion tensor D, describing water diffusion as given by the DTI images; six meshes associated with each
independent component of the tensor of preferential directions T , created from the components of D as explained
below.

As oxygen is carried by the fluid component, the local values of tensor D, which describes how nutrients diffuse
effectively in a specific point of the brain, can be directly derived from DTI images. On the other hand, the tensor
T , representing the preferential movement directions of cells inside the brain, has the same eigenvectors of the tensor
D but it is parameterised by a tuning parameter which enhances or reduces the anisotropy of DTI, as done in [37].
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Namely, we set:

T̂ = a1(r)λ1e1 ⊗ e1 + a2(r)λ2e2 ⊗ e2 + a3(r)λ3e3 ⊗ e3, (14a)

T =
1

T̂av
T̂ =

3

tr(T̂ )
T̂ =

3

a1(r)λ1 + a2(r)λ2 + a3(r)λ3
T̂ (14b)

where T̂av = 1
3 tr(T̂ ) is the mean diffusivity of T̂ , characterizing the overall intensity of the diffusion process, λi

and ei for i = 1, 2, 3 are the descending ordered eigenvalues and the corresponding eigenvectors of D and ai(r) for
i = 1, 2, 3 are functions of the anisotropy controlling factor r given by:a1(r)

a2(r)
a3(r)

 =

r r 1
1 r 1
1 1 1

c`cp
cs

 (15)

In (15), c`, cp and cs are respectively the linear, planar and spherical anisotropy coefficients, defined as follows:

c` =
λ1 − λ2

λ1 + λ2 + λ3
, cp =

2(λ2 − λ3)

λ1 + λ2 + λ3
, cs =

3λ3

λ1 + λ2 + λ3
. (16)

By construction, c` + cp + cs = 1. If c` ≈ 1 the diffusion is linear, along the main eigenvector e1; if cp ≈ 1, the
diffusion is planar and confined within the plane generated by e1 and e2; lastly, if cs ≈ 1, we have isotropic, spherical
diffusion. As a consequence of (14) and (15), when c` ≈ 1 only the eigenvalue along the main diffusion direction is
multiplied by r, while in the planar case (cp ≈ 1) only the two largest eigenvalues are modified. The tensor is not
changed when the diffusion is isotropic (cs ≈ 1). Therefore, the introduction of the functions ai(r) has the purpose
of controlling the tensor anisotropy without changing its orientation. Moreover, in order to respect the constraint
tr(T ) = 3, the tensor is multiplied by an appropriate scalar factor.

When r equals 1, i.e. when the anisotropy is not emphasized, the tensor is not changed, while r < 1 corresponds
to a decrease in anisotropy and r > 1 to an increase in anisotropy. If r = 1 we have that T̂ = D and the tensor
T = 1

Dav
D is reduced to a simple re–scaling of the diffusion tensor: the existence of a relationship between D and T

is sustained by the fundamental hypothesis that the chemotactic movement of cells is similar to the diffusion of water
measured by DTI since both of them follow the alignment of fibers. Indeed, it has been observed that glioma cells
velocity on aligned fibers is five times greater than on randomly oriented fibers [38]. In the following simulations, we
will set r = 3.

3.2 Finite Element discretization
In this section we introduce the finite element and time discretization of the system (10).

Let Th be a quasi-uniform conforming decomposition of Ω into tetrahedra K, and let us introduce the following
finite element spaces:

Qh := {χ ∈ C(Ω̄) : χ|K ∈ P1(K) ∀K ∈ Th} ⊂ H1(Ω),

Q+
h := {χ ∈ Sh : χ ≥ 0 in Ω}

where P1(K) indicates the space of polynomials of total order one on K.
Let J be the set of nodes of Th and {xj}j∈J be the set of their coordinates. Moreover, let {ϕj}j∈J be the

Lagrangian basis functions associated with each node j ∈ J . Denoting by πh : C(Ω̄)→ Sh the standard Lagrangian
interpolation operator we define the lumped scalar product as

(η1, η2)h =

∫
Ω

πh(η1(x)η2(x))dx ≡
∑
j∈J

(1, χj)η1(xj)η2(xj), (17)

for all η1, η2 ∈ C(Ω̄).
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We set ∆t = T/N for a N ∈ N and tn = n∆t, n = 0, ..., N . Starting from data φ0, n0 ∈ H2(Ω) and φ0
h = πhφ0,

n0
h = πhn0, with 0 ≤ φ0

h < 1, we consider the following fully discretized problem: for n = 1, . . . , N , given
(φn−1
h , nn−1

h ) ∈ Q+
h ×Q

+
h , find (φnh,Σ

n
h, n

n
h) ∈ Q+

h ×Qh ×Q
+
h such that, ∀(vh, wh, qh) ∈ Qh ×Q+

h ×Qh,(
φnh − φ

n−1
h

∆t
, vh

)h
=− 1

M0
(φn−1
h (1− φn−1

h )2T∇Σnh,∇vh) + ν(φn−1
h [nnh − δ]+(1− φn−1

h ), vh)h

− νd(φn−1
h [δ − nnh]+, vh)h + knns(φ

n−1
h T∇nnh,∇vh)− ((kR + kC)φn−1

h , vh)h,

(18a)

ε2(∇φnh,∇(wh − φnh))+(ψ′1(φnh), wh − φnh)h ≥ (Σnh − ψ′2(φn−1
h ), wh − φnh)h, (18b)(

nnh − n
n−1
h

∆t
, qh

)h
=− (D∇nnh,∇qh) + Sn((1− nnh)(1− φn−1

h ), qh)h − δn(φn−1
h nnh, qh)h, (18c)

where (·, ·) denotes the standard L2 inner product over Ω, and the following convex splitting of the potential is con-
sidered:

ψ1(φ) = −E(1− φe) ln(1− φ), ψ2(φ) = −E
[

1

3
φ3 +

1− φe
2

φ2 + (1− φe)φ
]
. (19)

In (18) equation (10a) is discretized starting from its dual mixed weak formulation, introducing the chemical potential
variable Σ, defined in (8b).

The variational inequality (18b) enforces the positivity of the discrete solution since it implies that φnh is projected
onto the space with positive values Q+

h . This projection aims at recovering the analytical properties of the continuous
solution. Indeed, the solution of (10a) can be shown to satisfy a positivity constraint. Entropy estimates which
guarantee the positivity of the continuous solution can be obtained by formally multiplying (10a) by log(φ(x, t)),
integrating on ΩT and using Gronwall arguments. Since these estimates are not straightforwardly available at the
discrete level, as log(φnh) is not available as test function in the space Qh in (18), we impose this property as a
constraint through a variational inequality. In particular, choosing wh ≡ 0 and wh ≡ 2φnh in (18) yields, for all j ∈ J ,
that either φnh(xj) = 0 or φnh(xj) > 0 and ε2(∇φnh,∇φj) + (ψ′1(φnh) +ψ′2(φn−1

h )−Σnh, φj)
h = 0 (see [1] for details).

Moreover, from Energy estimates it is possible to show that the logarithmic singularity of ψ1 guarantees that φnh < 1
∀n if φ0

h < 1.
The lumping approximation of the L2 scalar product is introduced in (18) in order for the discrete solution to be

able to track compactly supported solutions of (10) with a free boundary which moves with a finite speed of velocity,
selecting the physical solutions with compact support and moving boundary from the ones with fixed support. The
presence of these unphysical discrete solutions with fixed support is linked to the non-uniqueness of the solution of
the degenerate Cahn-Hilliard equation, e.g. as described in [6]. Indeed, let us introduce a proper subdivision of J
into a set of passive nodes J0(φn−1

h ) ⊂ J such that (φn−1
h , ϕj) = 0 for j ∈ J0(φn−1

h ) and a set of active nodes
J+(φn−1

h ) = J \ J0(φn−1
h ). A passive node is thus characterized by the fact that φn−1

h ≡ 0 on the support of the
basis function associated to it. Choosing vh ≡ ϕi, i ∈ J0(φn−1

h ), in (18), and noting that the right hand side of the
first equation of (18) is equal to zero, we get that the values of φnh(xi), for each i ∈ J0(φn−1

h ), are set to zero, leaving
the values on the other nodes where φn−1

h = 0 free to take non-zero values. This introduces the property of a moving
support with finite speed for the discrete solution, since the support can expand at most of a length equal to hK , the
diameter of the tetrahedra to which the passive node belongs, at each time step.

In order to solve the system (18) for every time step n, we generalize the iterative procedure introduced in [5]
and [1] and formulate the following algorithm:
Require: µ > 0 (a relaxation parameter), φn−1

h ,Σn−1
h ;

for k ≥ 0 do
Initialization

φn,0h = φn−1
h ,Σn,0h = Σn−1

h ;

Step 1 Find zn,k ∈ Qh such that ∀wh ∈ Qh:

(zn,k, wh)h = (φn,kh , wh)h − µ[ε2(∇φn,kh ,∇wh) + (ψ′2(φn−1
h )− Σn,kh , wh)h];

Step 2 Find φn,k+1/2
h ∈ Q+

h , ∀r ≥ 0, such that:
if j ∈ J0(φn−1

h ) then
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φ
n,k+1/2
h (xj)← φn−1

h (xj)
else

(φ
n,k+1/2
h (xj) + µψ′1(φ

n,k+1/2
h )(xj)− zn,k(xj), r − φn,k+1/2

h (xj)) ≥ 0 (20)

end if
Step 3 Find (φn,k+1

h ,Σn,k+1
h , nnh) ∈ Qh ×Qh ×Qh, ∀(vh, wh, qh) ∈ Qh ×Qh ×Qh, such that:

1

∆t
(φn,k+1
h , vh)h+ 1

M0
(T∇Σn,k+1

h ,∇vh)− knns(φn−1
h T∇nnh,∇vh) =

1
∆t (φ

n−1
h , vh)h + ν(φn−1

h [nnh − δ]+(1− φn−1
h ), vh)h − νd(φn−1

h [δ − nnh]+, vh)h+([
1−φn−1

h (1−φn−1
h )2

M0

]
T∇Σn,kh ,∇vh

)
− ((kR + kC)φn−1

h , vh)h,

(φn,k+1
h , wh)h+ µε2(∇φn,k+1

h ,∇wh)− µ(Σn,k+1
h , wh)h = (2φ

n,k+1/2
h − zn,kh − µψ′2(φn−1

h ), wh)h,
1

∆t
(nnh, qh)h+ (D∇nnh,∇qh) + Sn(nnh(1− φn−1

h ), qh)h + δn(φn−1
h nnh, qh)h =

1
∆t (n

n−1
h , qh)h + Sn(1− φn−1

h , qh)h.

if ||φn,K+1
h − φn,Kh ||∞ < 10−6 then

(φnh,Σ
n
h, n

n
h)← (φn,K+1

h ,Σn,K+1
h , nnh); break.

end if
end for

The variational inequality (20) contains the elliptic terms in the forcing term zn,k only, which is a known term at the
step k+ 1/2, and hence can be solved as a projection problem on each active node independently. In order to solve it,
we solve the following projected gradient method in the index l, l = 0, . . . , L, starting from φ

n,k+1/2,0
h = φn,kh :

φ
n,k+1/2,l+1
h (xj) = max

{
0, φ

n,k+1/2,l
h (xj)− ω[φ

n,k+1/2,l
h (xj) + µψ′1(φ

n,k+1/2,l
h (xj))− zn,kh ]

}
, (21)

where ω is a relaxation parameter. If ‖φn,k+1/2,L+1
h − φn,k+1/2,L

h ‖∞ < 10−6, we stop the cycle and set φn,k+1/2
h =

φ
n,k+1/2,L+1
h . Note that, since the operator acting on φn,k+1/2,l

h in the square bracket in (21) is continuous and strictly
monotone, the projection map defined in (21) has a unique fixed point [21].

4 Results
In this section we present the numerical results obtained solving the GBM growth model (10). The GBM evolution
is simulated without therapies and with therapies after surgical removal. The patient-specific mesh obtained with
the method presented in section 3 is adopted. The numerical algorithm is implemented by means of FEniCS [2], a
computing platform for partial differential equations with high-level Python and C++ interfaces [43].

Throughout the computations we have introduced a numerical analogue of the set J0(φn−1
h ) where φn−1

h < 10−6

is meant for φn−1
h = 0. Furthermore, we implement an adaptive time step in order to avoid numerical errors associated

to an excessively long time interval. Since the support of the discrete solution can move at most for a length hK locally
at each time step, where hK is the diameter of a tetrahedra K which contains a passive node, the CFL-type condition
∆t < hmin/vmax must be guaranteed, being hmin the smallest edge length among the mesh cells and vmax the
maximum on Ω of the infinity norm of the tumour expansion velocity, calculated as the phase velocity of the tumour
cells in (1). Namely, we impose

∆t = min
(

100 · M0

E2
ε2,

hmin
2vmax

)
(22)

where M0ε
2/E2 is the typical time scale for the spinodal decomposition dynamics of φ [12]. The phase velocity of

the tumour cells V is set to zero on the passive nodes and otherwise is calculated by considering both the chemotactic
and the mechanical expansion of the tumour cells, i.e.

V = knnsT∇n−
(1− φ)2

M0
T∇Σ . (23)

11



a) b)

Figure 3: X-normal slices of the cancerous cell volume fraction φ (a) and nutrient n (b) at the initial time step.

Hence,
vmax := maxxj (|Vx(xj)|+ |Vy(xj)|+ |Vz(xj)|), (24)

being Vi the components of the velocity vector V . Thereby, the expansion of the support of the solution is not blocked
by the presence of passive nodes.

Throughout the simulations reported in the next subsections, the values of the following biological and numerical
parameters, established on the basis of Table 1, are kept fixed: E = 694 Pa, ν = 0.08 1/day, νd = 0.04 1/day,
M0 = 5000 (Pa day)/mm2, φe = 0.389, ε = 0.35 Pa1/2mm, δ = 0.3, ns = 0.07 mM, Sn = 104 1/day, Dn = 86.4
mm2/day, δn = 8640 1/day, kn = 2 mm2/(mM day), µ = 0.0046875 and ω = 0.0646. The basic temporal step is
∆t = 100 ·M0ε

2/E2 = 0.1225 day, which is approximately equivalent to 3 hours.

4.1 Boundary and initial conditions in simulations
Since GBM has a high infiltrating nature, it does not exhibit a sharp interface at the tumour-host boundary, hence we
assume that at the initial instant t = 0 the neoplastic volume fraction φ0(x) := φ(x, 0) follows a normal distribution
in space, for suitable coefficients a and b:

φ0(x) = ae−
1
b2

(x−xc)2 . (25)

In particular we choose a = 0.3 and b2 = 20, b ∼
√

20 being the (conventional) radius of the tumour. The initial
datum has thus a maximum, smaller than φe, located in the center xc of the tumour (identified from the medical
images) and decreases smoothly to zero (Fig. 3a). The initial oxygen distribution n0(x) := n(x, 0) is obtained by
solving the steady version of the nutrient governing equation:

−∇ · (D∇n0) = Sn(1− n0)(1− φ0)− δnφ0n0 , (26)

where φ0 is the initial cancerous cells distribution. Thus the oxygen distribution reflects the profile of φ0: outside the
tumour, where the tissue is healthy and φ0 close to 0, the nutrient concentration is equal to 1, whereas it decreases to
its minimum while approaching to the core of the tumour (Fig. 3b).

As the tumour can not grow beyond the cranial skull, we impose a homogeneous Neumann condition on the cell
volume fraction and on the chemical potential, while a non homogeneous Dirichlet condition applies for the nutrient:

∇φ · n = 0 ∀x ∈ ∂Ω , (27a)
∇Σ · n = 0 ∀x ∈ ∂Ω , (27b)

n = 1 ∀x ∈ ∂Ω (27c)

where n is the outward boundary normal.

4.2 Effect of anisotropy and heterogeneity on GBM growth
To study the influence of anisotropy and heterogeneity on tumour evolution, we examine three different cases:

• isotropic homogeneous growth: the GBM grows inside an homogeneous and isotropic environment, i.e. T =
diag(1, 1, 1) and D = DnT ;

12
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Figure 4: Comparison between the expansion of the tumour with isotropic (IS), homogeneous anisotropic
(AH) and heterogeneous anisotropic (AN) diffusion, at t = 180 days, showing the mesh clipped along
yz-plane (view from left), xz-plane (frontal view) and xy-plane (view from the top).

Figure 5: Maximum value of expansion velocity vn of the tumour front over time, monitored in the isotropic homoge-
neous (ISO) and anisotropic heterogeneous (ANISO) simulations. The dots correspond to the numerical values of the
front velocity recorded along the direction orthogonal to the tumour front, i.e. vn := maxxj

V ·n, where V is defined
in (23) and n is the direction orthogonal to the tumour front. The solid lines are the fitting of the numerical data
with a Gompertz curve vn = rck exp

(
−c exp(−rt)

)
exp(−rt), with k = 15.3944 ± 0.0916, c = 3.2626 ± 0.0034,

r = 0.0056 ± 2.52 e-5 in the ISO case, and k = 47.9809 ± 0.3333, c = 3.3060 ± 0.0116, r = 0.0071 ± 4.76 e-5 in
the ANISO case, calculated by a non-linear least-squares fitting method.
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Figure 6: Stages of tumour evolution at t = 0, 45, 90, 135, 180 days considering isotropic, anisotropic
homogeneous and anisotropic heterogeneous diffusion and the absence of therapies.
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• anisotropic homogeneous growth: patient-specific anisotropic diffusion of nutrients and cell motion is con-
sidered, i.e., D and T are obtained from DTI images as explained in section 3.1, whereas the other model
parameters are considered homogeneous inside the brain;

• anisotropic heterogeneous growth: using anisotropic D and T data, we choose the value of the chemotaxis
parameter kn to be four times the basic value inside the white matter, where cells can easily migrate along the
fibers bundles. Thus, kn = 8 mm2/mM day in white matter and kn = 2 mm2/mM day in grey matter and
cerebrospinal fluid.

The results of the simulations reporting GBM growth over a period of nearly six months are compared in Fig. 4.
In the isotropic and homogeneous case, the tumour expands equally in all directions, preserving the initial spherical
shape and nearly doubling its radius (Fig. 4, first column). When the actual anisotropic diffusion is considered, with
chemotactic parameter kn homogeneous, the tumour takes a more sharp-cornered shape, especially in yz- and xz-
planes, whereas in the xy-plane the tumour section appears essentially equal to the isotropic case. The tumour size is
comparable with the isotropic homogeneous simulation, the cell volume fraction reaching almost the same maximum
value φmax = 0.68 (Fig. 4, second column). When considering an heterogeneous chemotactic coefficient kn, the
velocity of growth clearly increases and the tumour is located mainly in the white matter, where the value of kn is
higher. Therefore, the cell volume fraction φ expands more rapidly its support, while its maximum increases more
slowly, with respect to the previous cases. We notice also that the shape is more notched and irregular, reflecting the
same preferential directions in the yz and xz planes highlighted by the homogeneous anisotropic case (Fig. 4, third
column).

In all cases, the maximum value of the expansion velocity of the tumour front follows a Gompertzian profile [41]
(Fig. 5), reaching values in the same order of magnitude of the maximal expansion speed reported in the literature, i.e.
0.09 - 0.11 mm/day [38]. The maximum value of expansion velocity is calculated as vn := maxxjV · n, where V is
defined in (23) and n is the direction orthogonal to the tumour front. Observing the curves in Fig. 5 in the isotropic
homogeneous case, we note a bouncing behaviour in the numerical data when the tumour expands beyond the refined
sub–region of the mesh, which is a numerical effect due to the mesh structure. This behaviour is more pronounced
in the anisotropic heterogeneous simulation, where it depends also on the anisotropy and the heterogeneity of the
transport terms in the model.

In Fig. 6, we report different evolution stages for each simulation in order to compare how the tumour changes
morphology during the growth. From left to right are shown the isotropic homogeneous case, the anisotropic homo-
geneous case and the anisotropic heterogeneous case. The tumour is depicted, from the top row, at t = 0, 45, 90, 135,
180 days. The maximum values of φ grow in time, with the highest value in the anisotropic homogeneous case and
the lowest value in the anisotropic heterogeneous case, at each time step. The differences in shape are visible from the
beginning, but become relevant at earlier stages.

The shape evolution recorded during the anisotropic GBM growth is strongly affected by the underlying fiber
orientation, encoded in the tensor T . In Fig. 7 is plotted the final pattern of φ superimposed onto the plots of the
diagonal components of the tensor T along the xy, xz and yz planes. We observe that, in the yz-plane, the high value
of Tyy in the lower region of the tumour causes an elongation in the y direction when the tumour is extended enough
to reach this zone, whereas the high Tzz on the right-hand side of the tumour in the xz-plane creates a flattened border
along the z direction. On the other hand, the almost isotropic expansion in the xy-plane reflects the moderate values
of Txx and Tyy in the surroundings of the tumour.

These results show how the growth of the tumour is greatly influenced by the diffusion tensor D and the tensor
of preferential directions T . The tumour location largely determines the shape generated during the evolution, as in
the so-called butterfly gliomas [20], a particular type of GBM that extends through both the cerebral hemispheres via
the corpus callosum, creating the image of a bilateral symmetric lesion resembling the wings of a butterfly. Indeed,
the corpus callosum is the largest white matter structure inside the brain, located in its center, and formed by a thick
bundle of aligned neural fibers connecting the two hemispheres so that they can communicate with each other. Within
it, cells are forced to migrate in one specific direction, causing the tumour to spread into both the hemispheres and
gets this particular shape. Even though the tumour considered in our simulations does not originate inside the corpus
callosum, in accordance with medical data, from the first and second row of Fig. 7 it is clear that the presence of this
anatomical structure attracts the tumour infiltration (i.e., the central red zone in the xz-plane of the Txx map).
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Figure 7: Txx, Tyy and Tzz meshes cut along yz, xz and xy planes, with the anisotropic heterogeneous
tumour at 180th day superimposed.

4.3 Effect of therapies on GBM regrowth after resection
Finally, we simulate a GBM treated with surgical resection, chemotherapy and radiotherapy, according to the standard
Stupp protocol explained in section 2.2, by discretizing the system of equations (10). We assume that the removed
region coincides with the tumour visible in the magnetic resonance images analysed in the Appendix. However, due
to the very strong infiltrating attitude of glioblastoma, the removal of the whole cancerous mass is almost impossible,
hence some neoplastic cells generally remain in the peritumoral area. After resection, the cavity is filled by fluid,
forming an edema.

The incomplete removal of malignant cells is represented in the initial datum: small islands of neoplastic cells, with
φ = 0.3, surround the removed tumour. The computational meshes are modified accordingly to reproduce the edema
inside the cavity (Fig. 8). The diffusion tensor in the cavity is given by the isotropic tensor D = dmdiag(1, 1, 1), being
dm the medium diffusion coefficient inside the fluid; then we change the heterogeneous parameter kn accordingly and

a) b) c) d)

Figure 8: (a) Initial datum for therapy simulations, i.e. small islands of neoplastic cells surrounding the resected
tumour; (b) x-normal slice of the cancerous cell volume fraction φ at the initial time step, after tumour resection; (c)
values of Dxx after tumour resection; (d) nutrient source parameter Sn replicating the absence of vasculature inside
the cavity.
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assign the parameter Sn a normal profile going from zero in the center of the cavity up to its former value 104 1/day
in healthy tissue, in order to replicate the absence of vasculature inside the removed region.

We run four types of heterogeneous anisotropic simulations considering the following conditions:

• no therapy: neither chemotherapy nor radiotherapy are administered after resection;

• standard therapy: after resection, the remaining tumour mass is treated accordingly to the standard Stupp pro-
tocol;

• increased CHT: the cytotoxic effect on cancer cells of the chemotherapeutic agent is boosted, maintaining the
same cycles of administration of the Stupp protocol;

• increased RT: the sensitivity of the brain tissue to radiotherapy is enhanced, while keeping the chemotherapy
dose and cycles of administration scheduled by the Stupp protocol.

The evolution of the tumour mass, for the four considered cases, is reported in Fig. 9 at t = 42, 75, 103, 131, 159, 187
days, which correspond to the end of every cycle of chemotherapy (when simulated).

Firstly, we observe the evolution of the islands of cancerous cells when neither chemotherapy nor radiotherapy are
administered (first column of Fig. 9). The islands become increasingly broader in time until blending into a whole
mass, which expands following the same preferential paths of the previous anisotropic heterogeneous simulation. After
187 days, the tumour mass has almost reached the brain border. We remark that, at the center of the cancerous mass,
cells remain separated, forming a hole, since there the source term for the nutrient vanishes. Moreover, although the
maximum of φ constantly grows, it reaches a lower value than the corresponding anisotropic heterogeneous simulation.
Let us notice that the island appearing and growing in the top-left corner of the tumour is due to a little group of
neoplastic cells already present in the initial datum, which is however not visible on the mesh clipped along the yz-
plane (cf. Fig. 8a).

Afterwards, we simulate the tumour treatment according to the standard Stupp protocol, by using the model (10)
and the parameters reported in Table 1. As shown in Fig. 9 (second column), for the set of parameters considered, the
standard Stupp protocol is ineffective in stopping the tumour evolution. Indeed, the tumour islets become broader and
ultimately blend into a single one, assuming a shape analogous to the simulation in absence of treatment. However,
in this case, the cancer front velocity and the maximum tumour cell volume fraction φmax at each time step are lower
than in the simulation without therapy.

Therefore, we present two hypothetical variations of the standard therapeutic treatment, boosting chemotherapy
and radiotherapy separately: in the increased CHT case, we raise ten-fold the effect of the daily doses of chemotherapy,
setting kC1 = 0.0735 1/day, kC2 = 0.147 1/day and kC3 = 0.196 1/day, whereas in the increased RT case we choose
a ten-fold higher sensitivity of the tissue to radiotherapy, namely α = 0.27 Gy−1. The evolution steps are shown in the
second and third columns of Fig. 9, respectively. In both cases the GBM expansion is greatly reduced in comparison
with the standard therapeutic schedule. Particularly, while CHT alone does not prevent tumour regrowth, the boost in
sensitivity to radiotherapy leads to complete regression of the tumour: at the end of the RT treatment φmax reaches
a minimum value that can be approximated by zero. This result is in accordance with clinical evidences [66] that
have demonstrated a statistically significant survival benefit from postoperative radiotherapy compared with different
chemotherapy schedules without radiation. The efficacy of chemotherapy in treating brain tumours is hampered by the
presence of the blood-brain barrier, which notably reduces the dose of drug that actually reaches the tumour region,
and by the non-responsiveness to chemotherapy of some types of cancer. Indeed, GBM is traditionally considered
very refractory to chemotherapy and post-operative external beam radiotherapy has been the standard treatment for
GBM until, in the late 1990s, the addition of TMZ to radiotherapy was proved to add some benefits to radiotherapy
alone [58, 59, 66].

It is interesting to notice that the trend of φmax during each treatment is not monotonic (cf. Fig. 10). Indeed
the tumour strongly regresses during the radiotherapy administration period, specifically during the 5-days cycles,
assuming a nearly exponential profile. After radiotherapy, the tumour resumes to grow, experiencing decrease only
during the chemotherapy administration weeks. In Fig. 10 we report the values of φmax for each considered therapeutic
treatment, at the beginning and at the end of every RT or CHT cycle. We notice that the previously mentioned
oscillatory behaviour is evident in all the simulations besides the last one, in which the tumour is essentially eradicated
after the cycle of radiotherapy with concurrent chemotherapy.
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Figure 9: Stages of anisotropic heterogeneous tumour evolution at t = 42, 75, 103, 131, 159, 187, 215 days with no
therapy and three different therapeutic schemes: standard Stupp protocol, a ten-fold higher CHT dose and a ten-fold
higher sensitivity to RT.
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Figure 10: The curves show the values of φmax at t = 0, 5, 7, 12, 14, 19, 21, 26, 28, 33, 35, 40, 42, 70, 75, 98, 103, 126,
131, 154, 159, 182, 187, 210, 215 days, i.e. at the beginning and at the end of each RT and CHT administration period
(highlighted in the topmost part of the graphic with red and green rectangles, respectively), for the three analysed
therapeutic schemes: standard therapy (STD, blue dashed line), higher CHT dose (green dot-dashed line) and higher
sensitivity to RT (continuous orange line).

5 Discussion and conclusion
In this work we have illustrated a continuous mechanical model and a computational tool for reproducing the person-
alised GBM growth and progression after resection and therapies. The diffuse–interface model consists in a degenerate
Cahn-Hilliard equation with single-well potential for the cancer cells volume fraction, coupled with a reaction diffu-
sion equation for the nutrient. The effects of therapies, such as chemotherapy and radiotherapy, have been included in
the model in order to predict the progression of the disease after the standard clinical protocol.

Due to the complexity of the proposed model, we also developed a stable numerical algorithm to discretize the
system of equations, selecting the physical meaningful solution and enforcing the positivity constraint, generalizing
recently developed algorithms proposed for the degenerate Cahn-Hilliard equation [5] [1]. The numerical code has
been implemented by using the finite element method for a patient-specific 3D geometry, reconstructed from MRI
clinical data, in order to simulate the spatio-temporal evolution of the cancerous mass inside the brain. Moreover,
we included in the model the heterogeneity and the anisotropy of the brain fiber bundles, directly obtained from the
neuroimaging DTI data on the same patient.

This approach represents a remarkable advancement with respect to the state-of-the-art GBM models. Indeed, the
proposed model takes into account not only biochemical factors, such as nutrients availability and the chemotactic
motion of cells, but also mechanical interactions occurring between the local micro-environment and the tumour,
which play a fundamental role in cancer progression and invasion. Another point of strength of this computational
model is the ability of support clinical strategies in a virtual environment using patient-specific data, mainly through
the insertion of the tensor of preferential directions T , which make the cells movements dependent on the brain
architecture of each patient. In particular, in the case of a free growing GBM, the comparison between the fully
anisotropic heterogeneous simulation and the isotropic homogeneous one suggests that the integration of DTI data
in the model is of fundamental importance in order to reproduce patient-specific tumour evolution. In addition, the
expansion velocity of the tumour front has the same order of magnitude of the one reported in clinical studies.

Finally, the model can be used to reproduce both the clinically-relevant case of GBM recurrence after incomplete
surgical resection, where a group of cancerous cells is left into the peritumoral area, and the effect of subsequent cycles
of radiotherapy and chemotherapy treatments. In particular, resection and therapies have been simulated according to
the standard Stupp protocol, which seems to have limited efficacy in preventing GBM regrowth in the numerical
simulations. A sensitivity analysis of the results for a single therapeutic action has been performed. The simulations
have highlighted a high sensitivity to radiotherapy, displaying a strong regression with the increase of the radiation
dose.
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The results presented in this work can be evaluated as a proof–of–concept, a further step towards the ambitious
goal to provide a computational tool that support medical doctors in clinical practice in a patient-specific manner.
Nonetheless, these results need to be quantitatively validated by comparing the predicted evolution with the real
progression of the disease inside the patient brain, directly measured from neuro–imaging data. Future developments
of the model should investigate the role of mechanical stress exerted by the healthy brain on the growing GBM, e.g.
by considering more complex mechanical constitutive equations of the cancer cell phase. Finally, one should consider
a heterogeneous, time–dependent source term for nutrients, as blood vessels lie mostly in grey matter and can be
dynamically formed by tumour-induced angiogenesis.

In conclusion, this work represents one more step towards the definition of a computational tool combining clin-
ical data with a mathematical model that is able to capture both chemical and mechanical phenomena driving GBM
evolution. This multidisciplinary approach has the potential to aid clinicians in the definition of therapeutic strategies
in personalised oncology.
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