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Abstract

In this paper we analyze the convergence properties of two-level and W-cycle multigrid
solvers for the numerical solution of the linear system of equations arising from hp-version
symmetric interior penalty discontinuous Galerkin discretizations of second-order elliptic par-
tial differential equations on polygonal/polyhedral meshes. We prove that the two-level method
converges uniformly with respect to the granularity of the grid and the polynomial approxi-
mation degree p, provided that the number of smoothing steps, which depends on p, is chosen
sufficiently large. An analogous result is obtained for the W-cycle multigrid algorithm, which
is proved to be uniformly convergent with respect to the mesh size, the polynomial approxi-
mation degree, and the number of levels, provided the latter remains bounded and the number
of smoothing steps is chosen sufficiently large. Numerical experiments are presented which
underpin the theoretical predictions; moreover, the proposed multilevel solvers are shown to be
convergent in practice, even when some of the theoretical assumptions are not fully satisfied.

1 Introduction

The original articles concerned with the construction and mathematical analysis of Discontinuous
Galerkin (DG) methods date back over 50 years ago. For hyperbolic partial differential equations, in
1973 Reed & Hill, cf. [RH73], developed the first DG discretization of the neutron transport equa-
tion. Independently, DG methods were constructed for elliptic problems based on weakly enforcing
Dirichlet boundary conditions; see, for example, [Aub70, Bab73, Lio68, Nit71]. In particular, we
highlight the works of Nitsche [Nit71] and Baker [Bak77], which form the basis of the class of inte-
rior penalty DG methods, cf. also [Arn82, Whe78]. Since the very early work, DG methods were
partially abandoned, in part due to the increase in the number of degrees of freedom compared,
for instance, with their conforming counterparts. However, in the last two decades there has been
a renewed interest in the field of discontinuous discretizations both from a theoretical and compu-
tational viewpoint, cf. [CKS00, HW07, Riv08, DPE12], for example. This resurgence is due to the
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inherent advantages offered by DG schemes, such as, for example, the limited interelement commu-
nication, which is restricted only to neighbouring elements, the local conservativity property, the
simplicity in treating meshes with hanging nodes, and the development of efficient hp-adaptivity re-
finement strategies. Moreover, recently in [BBC+14, BBC+12, BBCR12, CGH14] it has been shown
that the underlying DG polynomial bases may be efficiently constructed in the physical frame, with-
out needing to map local polynomial spaces defined in a given reference/canonical frame. In this
way, DG methods can easily deal with general-shaped elements, including polygonal/polyhedral el-
ements, cf. [AGH13, BBC+14, CGH14]. The flexibility of DG methods in handling general meshes
has no immediate counterpart in the conforming framework, where the design of suitable finite
element spaces for meshes of polygons/polyhedra is far from being a trivial task. Several exam-
ples include the Composite Finite Element Method [HS97b, HS97a], the Polygonal Finite Element
Method [ST04, TS08], the Extended Finite Element Method [FB10] and the most recent Virtual
Element Method [BaDVBC+13].

At present, the design of solvers and preconditioners for DG discretizations on nonstandard
grids lends itself to huge developments in the field of numerical analysis. Indeed, to the best of
our knowledge, the only study regarding solution techniques for this class of problems is reported
in [AGH14], where a non-overlapping Schwarz preconditioner for composite DG finite element
methods on complicated domains is analyzed. In the current article we exploit the theoretical
framework developed in [CGH14] to study the performance of a two-level and W-cycle multigrid
solver. The possibility to employ general-shaped elements in the physical framework makes the
choice of multilevel schemes natural. The flexibility afforded by this approach allows us to define
the set of grids needed in the multigrid algorithm by agglomeration; thereby, the definition of
the associated subspaces is straightforward, since inter-element continuity is not required. This
property overcomes the usual difficulties encountered in the construction of agglomeration multigrid
schemes in the conforming framework, where the agglomeration strategy must be followed by a
proper definition of the conforming subspaces. In [CXZ98], for example, the sublevels are obtained
by combining a graph based agglomeration algorithm and re-triangulations, thus resulting in a
set of non-nested grids, while the associated nested subspaces are defined by introducing suitable
interpolation operators. The resulting V-cycle multigrid algorithm converges uniformly with respect
to the meshsize h provided that the number of levels is kept fixed.

In this paper we analyze the convergence of a two-level scheme and W-cycle multigrid method
for the solution of the linear system of equations arising from the hp-version of the interior penalty
DG scheme on polygonal/polyhedral meshes [CGH14], thereby, extending the theoretical framework
developed in [ASV] for standard quasi-uniform meshes. Our analysis is based on the smoothing
and approximation properties associated with the proposed method: the former corresponds to a
Richardson iteration, whose study requires a result concerning the spectral properties of the stiff-
ness matrix, while the latter is inherent to the interior penalty DG scheme itself and exploits the
error estimates derived in [CGH14]. We show that, under suitable assumptions on the agglomerated
coarse grid, the two-level method converges uniformly with respect to the granularity of the under-
lying partition and the polynomial approximation degree p, provided that the number of smoothing
steps is chosen of order C(p)p2, where C(p) is a constant, which in general depends on p and the
geometric properties of the grids. This implies that the generation of good quality agglomerated
meshes is fundamental for the performance of the solver. We prove an analogous result for the case
of W-cycle multigrid scheme. However, we remark that, in addition to the geometric assumptions
on the agglomerated grids, we also require that the maximum number of element faces remains
bounded. Due to the agglomeration process, the latter assumption is critical in the case of mul-
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tilevel methods, which implies that our analysis is only valid if the number of levels is reasonably
small. Throughout the analysis, we also track the dependence of the error reduction factor of the
two solvers on the polynomial approximation order p, thereby recovering a similar result to the
case when standard quasi-uniform meshes are employed, as well as the geometrical properties of
the agglomerated grids.

The rest of this paper is organized as follows. In Section 2 we introduce the interior penalty
DG scheme for the discretization of second-order elliptic problems on general meshes consisting of
polygonal/polyhedral elements. Then in Section 3, we recall some preliminary analytical results
concerning this class of schemes. In Section 4 we define the multilevel framework and introduce
several technical results. We then focus first on the analysis of two-level method, followed by the
extension to the W-cycle multigrid solver, where we assume that the number of levels obtained
by agglomeration is kept limited. The main theoretical results are investigated through a series of
numerical experiments presented in Section 5. In particular, we show that, in general, the limitation
on the number of levels employed in the W-cycle multigrid solver does not seem to be restrictive
in practice.

2 Model problem and discretization

We consider the weak formulation of the Poisson problem, subject to a homogeneous Dirichlet
boundary condition: find u ∈ V = H2(Ω) ∩H1

0 (Ω) such that

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V, (1)

with Ω ∈ R
d, d = 2, 3, a convex polygonal/polyhedral domain with Lipschitz boundary and f a

given function in L2(Ω).

For the sake of brevity, throughout this article, we write x . y and x & y in lieu of x ≤ Cy
and x ≥ Cy, respectively, for a positive constant C independent of the discretization parameters.
Moreover, x ≈ y means that there exist constants C1, C2 > 0 such that C1y ≤ x ≤ C2y. When
required, the constants will be written explicitly.

In view of the forthcoming multigrid analysis, we denote by {Tj}
J
j=1 a sequence of partitions of

the domain Ω, each of which consists of disjoint open polygonal/polyhedral elements κ of diameter
hκ, such that Ω =

⋃
κ∈Tj

κ̄, j = 1, . . . , J . We denote the mesh size of Tj , j = 1, . . . , J , by
hj = maxκ∈Tj

hκ. To each Tj , j = 1, . . . , J , we associate the corresponding discontinuous finite
element space Vj , j = 1, . . . , J , defined as

Vj = {v ∈ L2(Ω) : v|κ ∈ Ppj
(κ), κ ∈ Tj},

where Ppj
(κ) denotes the space of polynomials of total degree at most pj ≥ 1 on κ ∈ Tj . A suitable

choice of the sequences {Tj}
J
j=1 and {Vj}

J
j=1 leads to the so-called h-, p-, and hp-multigrid schemes.

In particular, the h−multigrid method is based on employing a constant polynomial approximation
degree for each j, j = 1, . . . , J , (i.e., pj = p), on a set of nested partitions {Tj}

J
j=1, such that the

coarse level Tj−1, j = 2, . . . , J , is obtained by agglomeration from Tj in such a way that

hj−1 . hj ≤ hj−1 ∀j = 2, . . . , J, (2)

3



i.e., we consider a bounded variation hypothesis between subsequent levels. In the p-multigrid
method, the partition is kept fixed for any j, j = 1, . . . , J , while we assume that the polynomial
degrees vary moderately from one level to another, i.e.,

pj−1 ≤ pj . pj−1 ∀j = 2, . . . , J. (3)

The hp-multigrid method is obtained by combining these two strategies. Note that with the above
choices we obtain nested finite element spaces Vj , j = 1, . . . , J , i.e., V1 ⊆ V2 ⊆ · · · ⊆ VJ .

2.1 Grid assumptions

In this section, we introduce some additional notation from [CGH14], and outline some key defi-
nitions and assumptions. For any Tj , j = 1, . . . , J , when no hanging nodes/edges are included in
the partition, we define the interfaces of the mesh Tj as the set of (d − 1)-dimensional facets of
the elements κ ∈ Tj . The presence of hanging nodes/edges, on the other hand, can be handled
by defining the interfaces of Tj as the intersection of the (d− 1)-dimensional facets of neighboring
elements. This implies that, for d = 2, an interface will always consist of a line segment. For d = 3,
we assume that for each interface of an element κ ∈ Tj , a sub-triangulation into co-planar triangles
is given. We then denote by “face” a (d − 1)-dimensional simplex (i.e., a line segment for d = 2),
which is part of the boundary of κ ∈ Tj . As a consequence, in the two dimensional case, the face
and interface of an element κ ∈ Tj coincide. With this notation in mind, we denote by Fj the set
of all mesh interfaces if d = 2 and the set of all open triangles belonging to the sub-partition of all
mesh interfaces if d = 3. Moreover, we have that Fj = FI

j ∪ FB
j , where FI

j is the set of interior

element faces of Tj , such that F ⊆ ∂κ+ ∩∂κ− for any F ∈ FI
j , where κ

± are two adjacent elements

in Tj . The set FB
j contains the boundary element faces, i.e., F ⊂ ∂Ω for F ∈ FB

j .
With this notation, we introduce the following assumptions on the partitions Tj , j = 1, . . . , J ;

in the case of the h- and hp-multigrid schemes, these assumptions must be satisfied for the meshes
generated by the underlying agglomeration process.

Assumption 1. The number of faces Nκ of any κ ∈ Tj, j = 1, . . . , J , is uniformly bounded, i.e.,
there exists a constant CF such that

Nκ ≤ CF ∀κ ∈ Tj .

Assumption 1 is critical in our multilevel framework, because the number of faces Nκ grows
with the number of levels due to the agglomeration process. As a consequence, this assumption is
only satisfied if the number of levels is kept limited. However, it will be demonstrated in Section 5,
that this assumption does not seem to be a limitation in practice.

Assumption 2. For any κ ∈ Tj, j = 1, . . . , J , we assume that

hd
κ ≥ |κ| & hd

κ,

with d = 2, 3.

Assumption 3. Let T ♯
j = {K}, j = 1, . . . , J , denote a covering of Ω consisting of shape-regular

d-dimensional simplices K. We assume that, for any κ ∈ Tj, j = 1, . . . , J , there exists K ∈ T ♯
j such

that κ ⊂ K and

card
{
κ′ ∈ Tj : κ

′ ∩ K 6= ∅, K ∈ T ♯
j such that κ ⊂ K

}
. 1.
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Consequently, for each pair κ, K ∈ T ♯
j , with κ ⊂ K,

diam(K) . hκ.

To keep the notation as simple as possible we will assume that our decompositions are quasi-
uniform.

Assumption 4. We assume that the mesh size hj, j = 1, . . . , J , is such that

hj ≈ min
κ∈Tj

hκ.

We remark that the above assumption can be weakened and, according to [CGH14], only a local
bounded variation property is needed for our theoretical analysis; see Remark 23 below for details.
We will also need the following definitions.

Definition 5. For each κ ∈ Tj, j = 1, . . . , J , we denote by F ♭
κ the set of all possible d-simplices

contained in κ and having at least one face in common with κ. Moreover, we denote by κ♭
F , an

element in F ♭
κ sharing a face F with κ ∈ Tj.

Definition 6. For any κ ∈ Tj, j = 1, . . . , J , we denote by Tκ the family of all possible sub-
tessellations Tκ of κ consisting of d-simplices τ , such that κ̄ =

⋃
τ∈Tκ

τ̄ , and write hτ to denote the
diameter of τ ∈ Tκ.

2.2 DG formulation

The definition of the proceeding DG method is based on employing suitable jump and average oper-
ators. To this end, for (sufficiently smooth) vector-valued and scalar functions τ and v, respectively,
we define jumps and averages across F ∈ Fj , j = 1, . . . , J , as follows:

Jτ K = τ
+ · n+ + τ

− · n−, {{τ}} =
τ
+ + τ

−

2
, F ∈ FI

j ,

JvK = v+n+ + v−n−, {{v}} =
v+ + v−

2
, F ∈ FI

j ,

JvK = v+n+, {{τ}} = τ
+, F ∈ FB

j ,

where v± and τ
± denote the traces of v and τ on F taken from the interior of κ±, respectively,

and n± the outward unit normal vectors to ∂κ±, respectively, cf. [ABCM02].

On any level j, j = 1, . . . , J , we consider the bilinear form Aj(·, ·) : Vj ×Vj → R, corresponding
to the symmetric interior penalty DG method, defined by

Aj(u, v) =
∑

κ∈Tj

∫

κ

∇u · ∇v dx−
∑

F∈Fj

∫

F

({{∇u}} · JvK + JuK · {{∇v}}) ds

+
∑

F∈Fj

∫

F

σjJuK · JvK ds, (4)

where σj ∈ L∞(Fj) denotes the interior penalty stabilization function. To define the stabilization
function σj , j = 1, . . . , J , we first introduce an inverse inequality for polygonal/polyhedral elements;
to this end, we recall the following definition.
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Definition 7. Let T̃j, j = 1, . . . , J , denote the subset of elements κ ∈ Tj, such that each polyg-

onal/polyhedral element κ ∈ T̃j can be covered by at most mTj
shape-regular d-simplices Ki,

i = 1, . . . ,mTj
, such that

dist(κ, ∂Ki) .
diam(Ki)

p2j
,

and
|Ki| & cas|κ|,

for all i = 1, . . . ,mTj
.

The following inverse inequality for general-shaped elements is derived in [CGH14, Lemma 4.4].

Lemma 8. Let κ ∈ Tj, j = 1, . . . , J , be a polygonal/polyhedral element, and let F ⊂ ∂κ be one of

its faces, and T̃j be defined according to Definition 7. Then, for each v ∈ Ppj
(κ), we have

‖v‖2L2(F ) ≤ CINV (pj , κ, F )
p2j |F |

|κ|
‖v‖2L2(κ), (5)

with

CINV (pj , κ, F ) = Cinv





min

{
|κ|

supκ♭
F⊂κ |κ

♭
F |

, p2dj

}
, if κ ∈ T̃j ,

|κ|

supκ♭
F⊂κ |κ

♭
F |

, if κ ∈ Tj \ T̃j ,

and κ♭
F ∈ F ♭

κ as in Definition 5. The positive constant Cinv is independent of |κ|/ supκ♭
F∈κ |κ

♭
F |, pj

and v.

The interior penalty stabilization function σj : Fj → R
+ is then given by

σj(x) =





Cj
σ max

κ∈{κ+,κ−}

{
CINV (pj , κ, F )

p2j |F |

|κ|

}
, x ∈ F, F ∈ FI

j , F ⊂ ∂κ+ ∩ ∂κ−,

Cj
σCINV (pj , κ, F )

p2j |F |

|κ|
, x ∈ F, F ∈ FB

j , F ⊂ ∂κ+ ∩ ∂Ω,

with Cj
σ > 0 independent of pj , |F | and |κ|, cf. [CGH14].

In this article, we develop two-level and W-cycle multigrid schemes to compute the solution of
the following problem on the finest level J : find uJ ∈ VJ such that

AJ(uJ , vJ) =

∫

Ω

fvJ dx ∀vJ ∈ VJ . (6)

3 Preliminary results

We first endow the finite element spaces Vj , j = 1, . . . , J , with the following DG norm:

‖w‖2DG,j =
∑

κ∈Tj

∫

κ

|∇w|2 dx+
∑

F∈Fj

∫

F

σj |JwK|2 ds.

The well–posed of the DG formulation is established in the following lemma.
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Lemma 9. The following continuity and coercivity bounds, respectively, hold

Aj(u, v) ≤ Ccont‖u‖DG,j‖v‖DG,j ∀u, v ∈ Vj ,

Aj(u, u) ≥ Ccoerc‖u‖
2
DG,j ∀u ∈ Vj , (7)

where Ccont and Ccoerc are positive constants, independent of the discretization parameters, provided
that Cj

σ > CF , j = 1, . . . , J .

Proof. See [CGH14].

The proceeding error estimates are based on the following approximation result, which is a
simplified version of the analogous bound presented in [CGH14, Proof of Theorem 5.2]. To this
end, we define E : Hs(Ω) → Hs(Rd), s ∈ N0, such that Ev|Ω = v to denote the extension operator
presented in Stein [Ste70].

Lemma 10. Assuming Assumptions 1, 2, 3, and 4 hold, let v|κ ∈ Hk(κ), k > d/2, such that

Ev|K ∈ Hk(K), for each κ ∈ Tj, j = 1, . . . , J , where κ ⊂ K, K ∈ T ♯
j . Then there exists a projection

operator Π̃j : L
2(Ω) → Vj such that

‖v − Π̃jv‖DG,j . Cinterp(pj)
hs−1
j

pk−1
j

‖v‖Hk(Ω), (8)

where

C
2
interp(pj) = max

κ∈Tj

(
1 + pj

∑

F⊂∂κ

CINV (pj , F )Cm(pj , F )

)
,

with s = min{pj + 1, k}, and

CINV (pj , F ) =





max
κ∈{κ+,κ−}

CINV (pj , κ, F ), F ∈ FI
j , F ⊂ ∂κ+ ∩ ∂κ−,

CINV (pj , κ, F ), F ∈ FB
j , F ⊂ ∂Ω ∩ ∂κ.

Analogously,

Cm(pj , F ) =





max
κ∈{κ+,κ−}

Cm(pj , κ, F ), F ∈ FI
j , F ⊂ ∂κ+ ∩ ∂κ−,

Cm(pj , κ, F ), F ∈ FB
j , F ⊂ ∂Ω ∩ ∂κ,

with

Cm(pj , κ, F ) = min

{
hd
κ

supκ♭
F⊂κ |κ

♭
F |

,
1

p1−d
j

}
.

We point that, as for Lemma 10 stated above, any bound derived under the validity of Assump-
tion 1 will necessarily lead to a dependence on CF in the resulting constant. Next, we state error
bounds for the underlying interior penalty DG scheme in terms of both the DG and L2(Ω)-norms,
cf. [CGH14].
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Theorem 11. Assume Assumptions 1, 2, 3, and 4 hold. We denote by uj ∈ Vj, j = 1, . . . , J , the
DG solution of problem (6) posed on level j, i.e.,

Aj(uj , vj) =

∫

Ω

fvj dx ∀vj ∈ Vj .

If the solution u of (1) satisfies u|κ ∈ Hk(κ), k > 1+d/2, such that Eu|K ∈ Hk(K), for each κ ∈ Tj,

j = 1, . . . , J , where κ ⊂ K, K ∈ T ♯
j , then the following results hold

‖u− uj‖DG,j . G(pj)
h
(s−1)
j

p
(k−1)
j

‖u‖Hk(Ω), (9)

‖u− uj‖L2(Ω) . CL2(pj)
hs
j

pkj
‖u‖Hk(Ω), (10)

where
G
2(pj) = 1 +max

κ∈Tj

Gκ(F,CINV , Cm, pj), CL2(pj) = G(pj)Cinterp(pj),

and

Gκ(F,CINV , Cm, pj) =
1

pj

∑

F⊂∂κ

Cm(pj , F )

CINV (pJ , F )

+ pj
∑

F⊂∂κ

CINV (pj , F )Cm(pj , F ),

with s = min{pj+1, k}, pj ≥ 1, and Cinterp(pj), Cm(pj , F ) and CINV (pj , F ) defined as in Lemma 10.

Proof. The error bound (9) stems from the general result derived in [CGH14, Theorem 5.2]. We
now proceed with the proof of the bound on the L2(Ω)-norm of the error, cf. (10). To this end, we
employ a standard duality argument: let w ∈ V , be the solution of the problem

∫

Ω

∇w · ∇v dx =

∫

Ω

(u− uj)v dx ∀v ∈ V,

j = 1, . . . , J . Exploiting a standard elliptic regularity assumption, we note that

‖w‖H2(Ω) . ‖u− uj‖L2(Ω).

According to Galerkin orthogonality, we immediately obtain

‖u− uj‖
2
L2(Ω) = Aj(u− uj , w)

= Aj(u− uj , w − wI)

. ‖u− uj‖DG,j‖w − wI‖DG,j

for all wI ∈ Vj . Hence, selecting wI = Π̃jw, by (8) we get

‖w − wI‖DG,j . Cinterp(pj)
hj

pj
‖w‖H2(Ω) . Cinterp(pj)

hj

pj
‖u− uj‖L2(Ω),

which together with (9) gives the desired result.
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We also need to introduce an appropriate inverse inequality; to this end, we first recall the
following result, cf. [Geo08, Lemma 3.7].

Lemma 12. Let K be a shape-regular simplex. Then for any v ∈ Pp(K) there exists a simplex
κ̂ ⊂ K, with the same shape as K and faces parallel to the faces of K, with dist(∂κ̂, ∂K) < Casdiam(K)/p2,
for some constant Cas > 0, independent of v, K and p, such that

‖v‖L2(κ̂) ≥
1

2
‖v‖L2(K).

With the above result we now prove the following lemma.

Lemma 13. For any v ∈ Vj, j = 1, . . . , J , the following inverse estimate holds

‖∇u‖2L2(κ) . CI(pj , κ)p
4
jh

−2
κ ‖u‖2L2(κ),

with

CI(pj , κ) =





min

{
h2
κ

supTκ∈Tκ
minτ∈Tκ

h2
τ

, p2dj

}
, if κ ∈ T̃j ,

h2
κ

supTκ∈Tκ
minτ∈Tκ

h2
τ

, if κ ∈ Tj \ T̃j ,

Proof. For κ ∈ Tj \ T̃j , we recall the family Tκ of sub-tessellations Tκ of κ defined in Definition 6.
We then have, by standard inverse estimates on simplicial elements, that

‖∇u‖2L2(κ) =
∑

τ∈Tκ

‖∇u‖2L2(τ) . p4j
∑

τ∈Tκ

h−2
τ ‖u‖2L2(τ) .

p4j
minτ∈Tκ

h2
τ

‖u‖2L2(κ).

In order to obtain a sharp bound, we take the supremum over all Tκ ∈ Tκ, namely,

‖∇u‖2L2(κ) . p4jh
−2
κ

h2
κ

supTκ∈Tκ
minτ∈Tκ

h2
τ

‖u‖2L2(κ). (11)

For κ ∈ T̃j , we consider the covering of κ by shape-regular simplices Ki, i = 1, . . . ,mTj
, such that

|Ki| & |κ|, (12)

see Definition 7. We recall the following inverse estimates on the simplex Ki, cf. [Sch98, Geo08],

‖∇u‖2L∞(Ki)
. p4jh

−2
Ki

‖u‖2L∞(Ki)
, (13)

‖u‖2L∞(Ki)
. p2dj |Ki|

−1‖u‖2L2(Ki)
, (14)

for any u ∈ Ppj
(Ki). By exploiting the covering of κ ⊂

⋃mTj

i=1 Ki and the bounds (13) and (14), we
obtain

‖∇u‖2L2(κ) . |κ|‖∇u‖2L∞(κ) . |κ|

mTj∑

i=1

‖∇u‖2L∞(Ki)

. |κ|p4j

mTj∑

i=1

h−2
Ki

‖u‖2L∞(Ki)
. |κ|p4+2d

j

mTj∑

i=1

h−2
Ki

|Ki|
‖u‖2L2(Ki)

. (15)
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We now define κ̂i ⊂ Ki to denote the simplex relative to Ki as outlined in Lemma 12. Hence,
utilizing Lemma 12 and Definition 7, gives

1

4
‖u‖2L2(Ki)

≤ ‖u‖2L2(κ̂i)
≤ ‖u‖2L2(Kj∩κ), (16)

since κ̂i ⊂ κ, and hence κ̂i ⊂ Ki∩κ ⊂ Ki, cf. [CGH14]. Substituting (16) into (15), and employing
inequality (12) gives

‖∇u‖2L2(κ) . p4+2d
j

mTj∑

i=1

h−2
Ki

‖u‖2L2(Ki∩κ) . p4+2d
j h−2

κ ‖u‖2L2(κ), (17)

where, given (12), we assume that hKi
& hκ. We then take the minimum between (11) and (17) to

deduce the desired result.

The inverse estimate presented in Lemma 13 is fundamental to the proof of the following upper
bound on the maximum eigenvalue of Aj(·, ·). We remind that the analogous result on standard
grids can be found in [AH11].

Theorem 14. Given that Assumptions 1, 2 and 4 hold, then for any u ∈ Vj, j = 1, . . . , J , we have
that

Aj(u, u) . Ceig(pj)
p4j
h2
j

‖u‖2L2(Ω),

where Ceig(pj) = CI(pj)+Cj
σC

2
INV (pj), CINV (pj) = maxκ∈Tj

CINV (pj , κ, F ), and CI(pj) = maxκ∈Tj
CI(pj , κ).

Proof. Given the continuity of the bilinear forms Aj(·, ·) stated in Lemma 9, we restrict ourselves
to estimate the two terms involved in the DG norm. The local contributions of the H1 seminorm
can be simply bounded by applying Lemma 13 and the quasi-uniformity of the partition, i.e.,

∑

κ∈Tj

|u|2H1(κ) .
∑

κ∈Tj

CI(pj , κ)p
4
jh

−2
κ ‖u‖2L2(κ) . CI(pj)

p4j
h2
j

‖u‖2L2(Ω).

For the norm of the jump across F ∈ FI
j , with F ⊂ ∂κ+ ∩ ∂κ−, we employ the inverse inequality

(5); thereby,

‖σ
1/2
j JuK‖2L2(F ) =

∫

F

σj |JuK|2 ds .

∫

F

σj |u
+|2 ds+

∫

F

σj |u
−|2 ds

. σj

(
CINV (pj , κ

+, F )
|F |

|κ+|
p2j‖u‖

2
L2(κ+)

+CINV (pj , κ
−, F )

|F |

|κ−|
p2j‖u‖

2
L2(κ−)

)

. Cj
σp

4
j

(
max

κ∈{κ+,κ−}
CINV (pj , κ, F )

|F |

|κ|

)2

(‖u‖2L2(κ+) + ‖u‖2L2(κ−)).

10



Summing over the internal faces and employing Assumptions 1, 2, and 4 gives

∑

F∈FI
j

‖σ
1/2
j JuK‖2L2(F ) .

∑

κ∈Tj

∑

F⊂∂κ

Cj
σp

4
j

(
max

κ∈{κ+,κ−}
CINV (pj , κ, F )

|F |

|κ|

)2

‖u‖2L2(κ)

. Cj
σC

2
INV (pj)p

4
j

∑

κ∈Tj

h
2(d−1)
κ

h2d
κ

‖u‖2L2(κ)

. Cj
σC

2
INV (pj)

p4j
h2
j

‖u‖2L2(Ω).

An analogous result also holds for boundary faces; the statement of the theorem now follows
immediately.

The theoretical results derived in this section form the basis of the analysis of the proposed
multigrid algorithms presented in the following section.

4 Two-level and W-cycle multigrid algorithms

The forthcoming analysis is based on the classical multigrid theoretical framework already employed
in [ASV] for high-order DG schemes on standard quasi-uniform meshes. The two key ingredients
in the construction of our proposed multigrid schemes are the inter-grid transfer operators and the
smoothing scheme. The prolongation operator connecting the space Vj−1 to Vj , j = 2, . . . , J , is

denoted by Ijj−1 : Vj−1 → Vj , while its adjoint with respect to the L2(Ω)-inner product (·, ·) is the

restriction operator Ij−1
j : Vj → Vj−1:

(Ijj−1v, w) = (v, Ij−1
j w) ∀v ∈ Vj−1, w ∈ Vj .

As a smoothing scheme, we choose a Richardson iteration, whose operator is defined as:

Bj = ΛjIdj , (18)

with Idj the identity operator on level Vj , and Λj ∈ R is an upper bound for the spectral radius of
the operator Aj : Vj → Vj , defined as

(Aju, v) = Aj(u, v) ∀u, v ∈ Vj , j = 1, . . . , J. (19)

For the definition of the solvers, we first address the two-level method. Given the following problem

AJuJ = fJ ,

with AJ : VJ → VJ defined according to (19), and fJ ∈ VJ such that

(fJ , v) =

∫

Ω

fv dx ∀v ∈ VJ ,

in Algorithm 1 we outline the two-level cycle, where MG2lvl(z0,m1,m2) denotes the approximate
solution obtained after one iteration, with initial guess z0 and m1, m2 pre- and post-smoothing
steps, respectively.

11



Algorithm 1 Two-level scheme

Pre-smoothing:
for i = 1, . . . ,m1 do

z(i) = z(i−1) +B−1
J (fJ −AJz

(i−1));
end for

Coarse grid correction:

rJ−1 = IJ−1
J (fJ −AJz

(m1));
eJ−1 = A−1

J−1rJ−1;

z(m1+1) = z(m1) + IJJ−1eJ−1;

Post-smoothing:
for i = m1 + 2, . . . ,m1 +m2 + 1 do

z(i) = z(i−1) +B−1
J (fJ −AJz

(i−1));
end for

MG2lvl(z0,m1,m2) = z(m1+m2+1).

As a multilevel extension of Algorithm 1, we consider a standard W-cycle scheme. On level j,
we consider

Ajz = g,

for a given g ∈ Vj . The approximate solution obtained by applying the j-th level iteration to the
above linear system, with initial guess z0 and m1, m2 number of pre- and post-smoothing steps,
respectively, is denoted by MGW(j, g, z0,m1,m2). On the coarsest level j = 1, the corresponding
subproblem is solved based on employing a direct method, i.e.,

MGW(1, g, z0,m1,m2) = A−1
1 g,

while for j > 1 we apply the recursive procedure outlined in Algorithm 2. We observe that
Algorithm 1 can be considered as a special case of Algorithm 2, corresponding to J = 2.

4.1 Convergence analysis of the two-level method

We first define the following norms based on the operator Aj , j = 1, . . . , J ,

|||v|||s,j =
√

(As
jv, v)j ∀s ∈ R, v ∈ Vj , j = 1, . . . , J.

Hence,
|||v|||21,j = (Ajv, v)j = Aj(v, v), |||v|||20,j = (v, v)j = ‖v‖2L2(Ω) ∀v ∈ Vj .

For the proceeding analysis, we need to introduce some additional hypotheses on the agglomerated
meshes employed both within the two-level method studied in this section, as well as the W-cycle
multigrid algorithm analyzed in Section 4.2. To this end, for any F ∈ Fj ∩ Fj−1, j = 2, . . . , J , we
denote by κ±

j and κ±
j−1 the neighboring elements sharing the face F in Tj and Tj−1, respectively.

It is trivial to see that κ±
j ⊂ κ±

j−1, since the grids are nested. We then assume that, there exists

12



Algorithm 2 Multigrid W-cycle scheme

Pre-smoothing:
for i = 1, . . . ,m1 do

z(i) = z(i−1) +B−1
j (g −Ajz

(i−1));
end for

Coarse grid correction:

rk−1 = Ij−1
j (g −Ajz

(m1));
ej−1 = MGW(j − 1, rj−1, 0,m1,m2);
ej−1 = MGW(j − 1, rj−1, ej−1,m1,m2);

z(m1+1) = z(m1) + Ijj−1ej−1;

Post-smoothing:
for i = m1 + 2, . . . ,m1 +m2 + 1 do

z(i) = z(i−1) +B−1
j (g −Ajz

(i−1));
end for

MGW(j, g, z0,m1,m2) = z(m1+m2+1).

Θ > 0 such that

1 <
|κ±

j−1|

|κ±
j |

≤ Θ ∀F ∈ Fj ∩ Fj−1, (20)

and
|κ±

j |

supκ♭
F∈κ±

j
|κ♭

F |
≈

|κ±
j−1|

supκ♭
F∈κ±

j−1

|κ♭
F |

, (21)

which implies, together with (3), that

CINV (pj , κ
±
j , F ) ≈ CINV,j−1(pj−1, κ

±
j−1, F ),

for any F ∈ Fj ∩ Fj−1, j = 2, . . . , J .

Remark 15. The above assumption is satisfied if the agglomeration algorithm preserves the shape-
regularity of the elements. In Figure 1, we show two examples of possible macroelements: the ag-
glomerate on the left is not suitable to guarantee assumption (21) due to the presence of a dominant
dimension, while the element on the right can be considered appropriate. Moreover, we note that
the fulfilment of the above geometric assumptions (20) and (21) can be considered a good criterion
in evaluating the quality of the agglomerated grids employed in the multigrid algorithm.

In order to undertake the convergence analysis of the two-level solver outlined in Algorithm 1,
we follow the approach developed in [ASV]. We then provide an estimate based on the error
propagation operator, which is defined as

E
2lvl
m1,m2

v = Gm2

J (IdJ − IJJ−1P
J−1
J )Gm1

J , (22)

with GJ = IdJ −B−1
J AJ , and the operator P J−1

J : VJ → VJ−1 defined as

AJ−1(P
J−1
J v, w) = AJ(v, I

J
J−1w) ∀v ∈ VJ , w ∈ VJ−1. (23)
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Figure 1: Examples of agglomerated elements.

We now study separately the smoothing property and the approximation property. Before proceeding
with the analysis, we first observe that by Theorem 14, we can bound Λj , j = 1, . . . , J , in (18) as
follows

Λj . Ceig(pj)
p4j
h2
j

.

The last result is employed to prove the smoothing property in the next lemma; see [ASV,
Lemma 4.3] for the proof.

Lemma 16 (Smoothing property). For any v ∈ Vj, j = 1, . . . , J , we have

|||Gm
j v|||1,j ≤ |||v|||1,j ,

|||Gm
j v|||s,j . Ceig(pj)

(s−t)/2p
2(s−t)
j ht−s

j (1 +m)(t−s)/2|||v|||t,j
(24)

for 0 ≤ t < s ≤ 2 and m ∈ N \ {0}.

The approximation property results by exploiting the L2(Ω) error estimates stated in (10) on
levels J and J − 1.

Lemma 17 (Approximation property). For any v ∈ VJ , the following inequality holds

|||(IdJ − IJJ−1P
J−1
J )v|||0,J . CL2(pJ)

h2
J−1

p2J−1

|||v|||2,J . (25)

Proof. For any v ∈ VJ , we consider the following equality

|||(IdJ − IJJ−1P
J−1
J )v|||0,J = ‖(IdJ − IJJ−1P

J−1
J )v‖L2(Ω)

= sup
0 6=φ∈L2(Ω)

∫
Ω
φ(IdJ − IJJ−1P

J−1
J )v dx

‖φ‖L2(Ω)
. (26)

Next, we consider the solution η of the following problem
∫

Ω

∇η · ∇v dx =

∫

Ω

φv dx ∀v ∈ V,

for φ ∈ L2(Ω), and let ηJ ∈ VJ and ηJ−1 ∈ VJ−1 be the corresponding DG approximations in VJ

and VJ−1, respectively, given by

AJ(ηJ , v) =

∫

Ω

φv dx ∀v ∈ VJ ,

AJ−1(ηJ−1, v) =

∫

Ω

φv dx ∀v ∈ VJ−1.

(27)
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By Theorem 11 and the hypotheses (2) and (3), we deduce that

‖η − ηJ‖L2(Ω) . CL2(pJ)
h2
J−1

p2J−1

‖η‖H2(Ω),

‖η − ηJ−1‖L2(Ω) . CL2(pJ−1)
h2
J−1

p2J−1

‖η‖H2(Ω),

and from a standard elliptic regularity assumption, it follows that

‖η − ηJ‖L2(Ω) . CL2(pJ)
h2
J−1

p2J−1

‖φ‖L2(Ω),

‖η − ηJ−1‖L2(Ω) . CL2(pJ−1)
h2
J−1

p2J−1

‖φ‖L2(Ω),

(28)

Recalling the definition of P J−1
J , cf. (23), and (27), for any w ∈ VJ−1, we get

AJ−1(P
J−1
J ηJ , w) = AJ(ηJ , I

J
J−1w) = AJ(ηJ , w) =

∫

Ω

φw dx = AJ−1(ηJ−1, w).

Hence,
ηJ−1 = P J−1

J ηJ . (29)

According to [ASV, Lemma 4.1], the following generalized Cauchy-Schwarz inequality holds

AJ(v, w) ≤ |||v|||0,J |||w|||2,J , (30)

for any v, w ∈ VJ . Next, we observe that by Assumption 2, hypothesis (21) and (3) we can state
the following results for any F ∈ FJ ∩ FJ−1

Cm(pJ , F ) ≈ Cm(pJ−1, F ), CINV (pJ , F ) ≈ CINV (pJ−1, F ),

Cinterp(pJ) ≈ Cinterp(pJ−1), G(pJ) ≈ G(pJ−1),

which implies that
CL2(pJ) ≈ CL2(pJ−1).

We now employ (27) and the definition of P J−1
J in (23), followed by (29), the Cauchy-Schwarz

inequality (30) and the error estimates (28), to get
∫

Ω

φ(IdJ − IJJ−1P
J−1
J )v dx = AJ(ηJ , v)−AJ(ηJ , I

J
J−1P

J−1
J v)

= AJ(ηJ , v)−AJ−1(P
J−1
J ηJ , P

J−1
J v)

= AJ(ηJ , v)−AJ−1(ηJ−1, P
J−1
J v)

= AJ(ηJ − IJJ−1ηJ−1, v)

≤ |||ηJ − ηJ−1|||0,J |||v|||2,J

≤ (‖ηJ − η‖L2(Ω) + ‖ηJ−1 − η‖L2(Ω))|||v|||2,J

. (CL2(pJ) + CL2(pJ−1))
h2
J−1

p2J−1

‖φ‖L2(Ω)|||v|||2,J

. CL2(pJ)
h2
J−1

p2J−1

‖φ‖L2(Ω)|||v|||2,J . (31)
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Substituting (31) into (26) gives the desired result.

The convergence result for the two-level method, involving the error propagation operator
E
2lvl
m1,m2

defined in (22), is obtained by combining Lemma 16 and Lemma 17.

Theorem 18. There exists a positive constant C2lvl independent of the mesh size and the polynomial
approximation degree, such that

|||E2lvl
m1,m2

v|||1,J ≤ C2lvlΣJ |||v|||1,J , (32)

for any v ∈ VJ , with

ΣJ = C̃(pJ)
p2J

(1 +m1)1/2(1 +m2)1/2
,

where C̃(pJ) = Ceig(pJ)CL2(pJ). Therefore, the two-level method converges uniformly provided the
number of pre- and post-smoothing steps satisfy

(1 +m1)
1/2(1 +m2)

1/2 ≥ χC̃(pJ)p
2
J ,

for a positive constant χ > C2lvl.

Proof. The statement of the theorem follows in a straightforward manner by applying the smooth-
ing property (24) twice, the approximation property (25) and exploiting the bounded variation
assumptions (2) and (3).

We observe that the rate of convergence is independent of the mesh size, but depends on pJ ,
as in the case of standard quasi-uniform meshes. Moreover, a dependence on pJ is also hidden in
C̃(pJ), which also involves the geometric properties of the partitions. As a consequence, a good
quality agglomerated coarse grid is fundamental to guarantee the uniformity of the solver.

4.2 Convergence of the W-cycle multigrid algorithm

As mentioned at the beginning of Section 2, we recall that in the multilevel case, Assumption 1
represents a critical issue. In the following analysis, we then assume that the number of levels is
limited, in such a way that the number of interfaces on each level can be bounded by a constant
CF that does not lead to an excessive over-penalization due to the penalization parameter Cj

σ,
j = 1, . . . , J .

To proceed, we first need to establish the equivalence between DG norms on subsequent grid
levels. We point out that, in contrast to the case of standard quasi-uniform grids presented in [ASV],
such an equivalence result does not follow in a straightforward manner; indeed, here we need to
exploit the hypotheses (20) and (21) introduced in the previous section. Under these assumptions,
the proof of the following result follows immediately.

Lemma 19. Assuming (21) holds, then for any v ∈ Vj−1, j = 2, . . . , J , we have that

‖v‖DG,j ≤ Cequiv‖v‖DG,j−1, (33)

where Cequiv = Cequiv(Θ), in general, depends on the quality of the agglomerated grids.
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Lemma 19 is essential to deduce the stability of the operators Ijj−1 and P j−1
j , j = 2, . . . , J . In

particular, we state the following bounds.

Lemma 20. There exists a positive constant Cstab, independent of the mesh size, the polynomial
approximation degree and the level j, j = 2, . . . , J , such that

|||Ijj−1v|||1,j ≤ Cstab|||v|||1,j−1 ∀v ∈ Vj−1, (34)

|||P j−1
j v|||1,j−1 ≤ Cstab|||v|||1,j ∀v ∈ Vj . (35)

The proof of Lemma 20 is based on employing inequality (33); for details, see [ASV, Lemma 4.6].

Remark 21. We stress that the constant Cstab depends on Cequiv in (33), which means that the qual-
ity of the agglomerated meshes plays a crucial role in keeping this constant bounded, thus resulting
in the uniformity with respect to the mesh size and the number of levels as shown in Theorem 22
below.

The error propagation operator associated to Algorithm 2 is defined as
{
E1,m1,m2

v = 0

Ej,m1,m2
v = Gm2

j (Idj − Ijj−1(Idj − E
2
j−1,m1,m2

)P j−1
j )Gm1

j v, j = 2, . . . , J,
(36)

where Gj = Idj − B−1
j Aj and P j−1

j is defined analogously to (23), cf. [Hac85, Bra93]. Then the
convergence estimate for the W-cycle multigrid scheme follows from Theorem 18 and the stability
estimates (34) and (35).

Theorem 22. Let C2lvl and Cstab be defined as in Theorem 18 and Lemma 20, respectively. Then,
there exists a constant Ĉ > C2lvl, independent of the mesh size, the polynomial approximation degree
and the level j, j = 1, . . . , J , such that, if the number of pre- and post-smoothing steps satisfy

(m1 + 1)1/2(m2 + 1)1/2 ≥





p2j C̃(pj)
C2

stabĈ
2

Ĉ− C2lvl

if C̃(pj−1) ≤ C̃(pj),

p2j
C̃(pj−1)

2

C̃(pj)

C2
stabĈ

2

Ĉ− C2lvl

otherwise,

(37)

then
|||Ej,m1,m2

v|||1,j ≤ ĈΣj |||v|||1,j ∀v ∈ Vj , (38)

with

Σj = C̃(pj)
p2j

(1 +m1)1/2(1 +m2)1/2
. (39)

Proof. The proof follows the derivation of the analogous result presented in [ASV, Theorem 4.7].
For j = 1, the statement of the theorem trivially holds. For j > 1, by an induction hypothesis, we
assume that (38) holds for j − 1. By the definition of the error propagation operator Ej,m1,m2

v in
(36), it follows that

|||Ej,m1,m2
v|||1,j ≤ |||Gm2

j (Idj − Ijj−1P
j−1
j )Gm1

j v|||1,j

+ |||Gm2

j Ijj−1E
2
j−1,m1,m2

P j−1
j Gm1

j v|||1,j .
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The first term corresponds to a two-level method between level j and j−1. We now observe that the
smoothing property of Lemma 16 and the approximation property of Lemma 17 can be extended
to any level Vj , j = 2, . . . , J , and we therefore have, by Theorem 18, that

|||Gm2

j (Idj − Ijj−1P
j−1
j )Gm1

j v|||1,j ≤ C2lvlΣj |||v|||1,j .

The bound on the second term is obtained by applying the smoothing property (24) for j = 2, . . . , J ,
the stability estimates (34) and (35) and the induction hypothesis; thereby, we get

|||Gm2

j Ijj−1E
2
j−1,m1,m2

P j−1
j Gm1

j v|||1,j ≤C
2
stabĈ

2Σ2
j−1|||v|||1,j .

We then obtain
|||Ej,m1,m2

v|||1,j ≤
(
C2lvlΣj + C

2
stabĈ

2Σ2
j−1

)
|||v|||1,j .

We now bound Σj−1 with Σj as follows: if C̃(pj−1) ≤ C̃(pj), then

Σ2
j−1 = C̃(pj−1)

2
p4j−1

(1 +m1)(1 +m2)
≤ C̃(pj)

2
p4j

(1 +m1)(1 +m2)
(40)

= C̃(pj)
p2j

(1 +m1)1/2(1 +m2)1/2
Σj .

Otherwise,

Σ2
j−1 = C̃(pj−1)

2
p4j−1

(1 +m1)(1 +m2)
≤

C̃(pj−1)
2

C̃(pj)

p4j
(1 +m1)(1 +m2)

(41)

≤
C̃(pj−1)

2

C̃(pj)

p2j
(1 +m1)1/2(1 +m2)1/2

Σj .

For C̃(pj−1) ≤ C̃(pj) by (40), we have that

C2lvlΣj + C
2
stabĈ

2Σ2
j−1 ≤

(
C2lvl + C

2
stabĈ

2
C̃(pj)

p2j
(1 +m1)1/2(1 +m2)1/2

)
Σj .

We then observe that if m1 and m2 are such that

(1 +m1)
1/2(1 +m2)

1/2 ≥ p2j C̃(pj)
C2

stabĈ
2

Ĉ− C2lvl

,

it follows that

C2lvlΣj + C
2
stabĈ

2Σ2
j−1 ≤ ĈΣj .

For C̃(pj−1) > C̃(pj), starting from (41) and following the same steps, we deduce the statement of
the theorem, provided m1 and m2 are such that

(1 +m1)
1/2(1 +m2)

1/2 ≥ p2j
C̃(pj−1)

2

C̃(pj)

C2
stabĈ

2

Ĉ− C2lvl

.
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As in the two-level case, inequality (38) implies that the convergence of the method is guaranteed
if the number of smoothing steps is chosen sufficiently large, cf. (37). Moreover, compared to the
case of standard quasi-uniform grids, cf. [ASV], the bound (37) on the number of smoothing steps
involves a strong dependence on the geometrical properties of the underlying agglomerated meshes,
which in principle, could lead to restrictive conditions on the hierarchy of grids employed. How-
ever, we remark that, in practice, the numerical simulations indicate that the proposed multigrid
algorithms converge uniformly, even when low quality agglomerated grids are employed; moreover,
an increase in the polynomial order does not seem to require a higher number of smoothing steps
to obtain a convergent iteration, cf. Section 5 for details.

Remark 23. Whenever the agglomerated grids are not quasi-uniform, i.e., Assumption 4 is not
satisfied, Theorem 18 and Theorem 22 still hold. More precisely, we need to introduce the ratio θj
between the maximum and minimum element size on level j

θj =
maxκ∈Tj

hκ

minκ∈Tj
hκ

, j = 1, . . . , J.

Moreover, we assume that there exists a constant Cmesh, independent of the granularity of the mesh,
such that

θj ≤ Cmesh, j = 1, . . . , J.

Then the results in Theorem 18 and Theorem 22 hold with

Σj = θ2j C̃(pj)
p2j

(1 +m1)1/2(1 +m2)1/2
,

cf. (39), and the bound (37) is modified as follows

(1 +m1)
1/2(1 +m2)

1/2 ≥





C
2
stabĈ

2

Ĉ− C2lvl

C
4
mesh

θ2j
C̃(pj)p

2
j if C̃(pj−1) ≤ C̃(pj),

C2
stabĈ

2

Ĉ− C2lvl

C
4
mesh

θ2j

C̃(pj−1)
2

C̃(pj)
p2j otherwise.

(42)

Remark 24. We recall that in Theorem 22 and Remark 23, in order to guarantee the convergence
of the method, we require a lower bound on the number of smoothing steps, cf. (37) and (42). In
fact, for C̃(pj−1) ≤ C̃(pj), we obtain

ĈΣj = Ĉθ2j C̃(pj)
p2j

(1 +m1)1/2(1 +m2)1/2
≤

Ĉ− C2lvl

C2
stabĈ

θ4j
C4
mesh

C̃(pj)p
2
j

C̃(pj)p2j

≤
Ĉ− C2lvl

C2
stabĈ

C
4
mesh

C4
mesh

< 1.

An analogous result can be obtained for C̃(pj−1) > C̃(pj). Moreover, we note that we have considered
the general case of (42), since (37) can be regarded as a particular case.
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Set 1 Set 2 Set 3 Set 4

G1

G2

G3

G4

Figure 2: Sets of nested grids employed for numerical simulations.

5 Numerical results

In this section we present several numerical simulations to verify the theoretical estimates provided
in Theorem 18 and Theorem 22 in the case of a two dimensional problem on the unit square
Ω = (0, 1)2. For the numerical tests, we consider the sets of meshes shown in Figure 2. The initial
polygonal element meshes are generated using the software package PolyMesher [TPPM12], and
consist of 512 (Set 1), 1024 (Set 2), 2048 (Set 3) and 4096 (Set 4) elements. Each initial grid is
then subsequently coarsened in order to obtain a sequence of nested partitions by employing the
software package MGridGen [MK01a, MK01b]. Before testing the performance of the two-level and
W-cycle multigrid solvers presented in Algorithm 1 and Algorithm 2, respectively, we first address
the issue of the choice of the penalization coefficient Cj

σ in (4). According to Lemma 9, the bilinear
form Aj(·, ·) is coercive provided that Cj

σ > CF , with CF an upper bound for the maximum number
of element interfaces in the partition Tj ; see Assumption 1. In Table 1, we report the coercivity
constant Ccoerc of (7) for a fixed value of Cj

σ ≡ Cσ = 10 for j = 1, . . . , 4. We observe that, despite
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Set 1 Set 2 Set 3 Set4
G1 0.7385 0.7375 0.7370 0.7364
G2 0.7624 0.7564 0.7559 0.7545
G3 0.7827 0.7818 0.7720 0.7611
G4 0.8153 0.8054 0.8001 0.7827

Table 1: Value of the coercivity constant Ccoerc for the sets of grids considered in Figure 2 with
Cj

σ = Cσ = 10, j = 1, . . . ,4.

1 2 3 4 5 6
0.6

0.7

0.8

0.9

1

p

Two-level

W-cycle, 3 levels

Figure 3: Estimates of C2lvlΣJ and ĈΣ3 in (32) and (38), respectively, as a function of p, and
m1 = m2 = m = 2p2.

the increase in the value of CF from grid G1 to grid G4, the bilinear form is uniformly coercive
for a constant value of the penalization coefficient, which in general does not satisfy the theoretical
assumption. As a consequence, in the following, we set Cj

σ ≡ Cσ = 10 for j = 1, . . . , 4.
We now consider the grids in Set 1, and numerically evaluate the constant C2lvlΣJ , J = 2, in

Theorem 18 and the constant ĈΣ3 in Theorem 22, for the h-version of the two solvers, based on
selecting m1 = m2 = m = 2p2, cf. Figure 3. Here, we observe that C2lvlΣ2 and ĈΣ3 are roughly
(asymptotically) constant, as the polynomial degree p increases; thereby, this implies that C̃(pJ),
J = 2, 3, respectively, is approximately O(1), as p increases.

Next, we investigate the performance of the two-level and W-cycle multigrid schemes in terms
of the convergence factor

ρ = exp

(
1

N
ln

‖rN‖2
‖r0‖2

)
,

where N denotes the number of iterations required to attain convergence up to a (relative) tolerance
of 10−8 and rN and r0 are the final and initial residual vectors, respectively. In Table 2, we report
the iteration counts and the convergence factor (in parenthesis), needed to attain convergence of
the h-version of the two-level (TL) method and W-cycle multigrid scheme (with 3 and 4 levels), as
a function of the number of elements (given by the choice of different grid sets), and the number
of smoothing steps (m1 = m2 = m). Here, we have fixed the polynomial approximation order on
each level pj ≡ p = 1. We first observe that, although the agglomerated grids, in general, do not
necessarily strictly satisfy Assumptions 1 and 2, the number of iterations, for fixed m, does not
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Set 1 Set 2

TL
W-cycle

TL
W-cycle

3 lvl 4 lvl 3 lvl 4 lvl

m = 3 133 (0.87) 160 (0.89) 167 (0.90) 121 (0.86) 191 (0.91) 188 (0.91)

m = 5 95 (0.82) 113 (0.85) 113 (0.85) 88 (0.81) 121 (0.86) 125 (0.86)

m = 8 72 (0.77) 82 (0.80) 81 (0.80) 67 (0.76) 86 (0.81) 88 (0.81)

m = 12 57 (0.72) 63 (0.74) 62 (0.74) 54 (0.71) 65 (0.75) 67 (0.76)

m = 16 49 (0.68) 52 (0.70) 51 (0.69) 46 (0.67) 55 (0.71) 56 (0.72)

m = 20 44 (0.65) 45 (0.66) 44 (0.66) 40 (0.63) 48 (0.68) 49 (0.68)

NCG
iter

= 445 NCG
iter

= 633

Set 3 Set 4

TL
W-cycle

TL
W-cycle

3 lvl 4 lvl 3 lvl 4 lvl

m = 3 140 (0.88) 188 (0.91) 192 (0.91) 162 (0.89) 198 (0.91) 198 (0.91)

m = 5 99 (0.83) 124 (0.86) 128 (0.87) 112 (0.85) 131 (0.87) 131 (0.87)

m = 8 74 (0.78) 89 (0.81) 91 (0.82) 83 (0.80) 94 (0.82) 94 (0.82)

m = 12 58 (0.73) 68 (0.76) 69 (0.76) 65 (0.75) 73 (0.77) 72 (0.77)

m = 16 49 (0.68) 56 (0.72) 57 (0.72) 55 (0.71) 61 (0.74) 61 (0.74)

m = 20 43 (0.65) 48 (0.68) 49 (0.68) 49 (0.68) 53 (0.71) 53 (0.70)

NCG
iter

= 946 NCG
iter

= 1234

Table 2: Iteration counts and converge factor (in parenthesis) of the h-version of the two-level and
W-cycle solvers and iteration counts of the CG method as a function of m (Cj

σ ≡ Cσ = 10, p = 1).

Set 1 Set 2 Set 3

TL
W-cycle

TL
W-cycle

TL
W-cycle

3 lvl 4 lvl 3 lvl 4 lvl 3 lvl 4 lvl

m = 3 1281 1334 1342 1168 1272 1362 1230 1379 1391

m = 5 816 832 839 737 790 844 774 852 860

m = 8 546 551 561 487 517 551 513 555 557

m = 12 388 394 400 343 363 385 362 387 384

m = 16 305 312 316 268 284 299 284 301 296

m = 20 254 261 263 222 235 246 235 249 242

NCG
iter

= 1954 NCG
iter

= 2809 NCG
iter

= 4174

Table 3: Iteration counts of the h-version of the two-level and W-cycle solvers and the CG method
as a function of m and the number of levels (Cj

σ ≡ Cσ = 10, p = 3).

significantly increase with the number of elements in the underlying mesh; moreover, for the W-
cycle solver, the number of iterations remains bounded with the number of levels. As expected, the
convergence is faster for larger values of m and the solvers are convergent provided the number of
smoothing steps is sufficiently large. For each grid, we have also reported the iteration counts NCG

iter

for the Conjugate Gradient (CG) method, which shows that the two proposed solvers outperform
the CG scheme in terms of the number of iterations required to attain convergence, even when a
small number of smoothing steps are employed. Table 3 presents analogous results for the first three
sets of meshes, in the case when p = 3. Here, we observe that, as expected, the convergence factor
increases, but the increase in p does not require an increase in the minimal number of smoothing
steps needed to ensure that the underlying multilevel solvers are convergent.
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TL
W-cycle

NCG
iter3 lvl 4 lvl

p = 1 88 121 125 633

p = 2 357 434 443 1701

p = 3 737 790 844 2809

p = 4 958 1093 1184 4574

p = 5 876 1096 1201 6796

Table 4: Iteration counts of the h-version of the two-level and W-cycle solvers and the CG method
as a function of p and the number of levels (Cj

σ ≡ Cσ = 10, m = 5).

p = 2 p = 3 p = 4 p = 5

TL TL
W-cycle

TL
W-cycle

TL
W-cycle

3 lvl 3 lvl 4 lvl 3 lvl 4 lvl

m = 12 334 631 1528 860 1028 1051 890 1197 1418

m = 14 292 550 607 748 889 908 772 1033 1220

m = 16 261 489 538 663 784 800 683 910 1071

m = 18 236 441 483 597 703 716 614 814 955

m = 20 216 402 439 543 637 649 558 737 862

NCG
iter

= 1701 NCG
iter

= 2809 NCG
iter

= 4574 NCG
iter

= 6796

Table 5: Iteration counts of the hp-version of the two-level and W-cycle solvers and the CG method
as a function of m and the number of levels (Cj

σ ≡ Cσ = 10).

A more exhaustive investigation of the effect of increasing p is reported in Table 4, where
we consider a fine grid of 1024 elements and the corresponding agglomerated meshes (Set 2 in
Figure 2). We observe that, even though both multilevel solvers converge for a fixed value of m,
with increasing p, the number of iterations required to attain convergence increases as p grows.
However, the two-level and W-cycle multigrid solvers still employ less iterations, than the number
required by the CG method. In Table 5, we report the number of iterations of the hp-version of the
two solvers as a function of the number of smoothing steps and the number of levels for varying p.
Here, p = pJ denotes the polynomial approximation degree on the finest level VJ , while, because of
the hp-approach, the polynomial order is decreased from the finest level to the coarser ones in such
a way that pj−1 = pj − 1. We observe that the introduction of the hp-multigrid is detrimental for
the convergence of the method, since the minimum number of smoothing steps needed to obtain
a convergent method increases with respect to the h-version. Then, we can conclude that, as
the p-version of the method does not exhibit uniform convergence with respect to the polynomial
order, the hp-approach turns out to be not very effective for problems resulting from high-order
discretizations.

As a second numerical test, we consider the same problem discretized by the interior penalty
DG method of Section 2 on an initial mesh of triangles, thus reproducing a more common scenario
in the framework of finite element discretizations. In analogy to the case of polygonal meshes, we
consider four sets of nested grids obtained by agglomeration, cf. Figure 4. The sets considered
derive from initial meshes of 528 (Triangle Set 1), 1086 (Triangle Set 2), 2198 (Triangle Set 3)
and 4318 (Triangle Set 4) elements. In Table 6, we show the iteration counts needed to attain
convergence with respect to a fixed tolerance of 10−8 as a function of the set (i.e., the number of
elements) and the number of smoothing steps of the h-version of the two-level and W-cycle multigrid
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Triangle Set 1 Triangle Set 2 Triangle Set 3 Triangle Set 4

Figure 4: Sets of nested grids employed for numerical simulations.

solvers, with pj = p = 1. We recall that, as in the previous numerical test, we have considered
Cj

σ ≡ Cσ = 10, for each j. The results are similar to the case of initial polygonal meshes, with
uniform convergence with respect to the granularity of the mesh, and in the case of the W-cycle
solver, also with respect to the number of levels. We again attain improved performance, compared
to the standard CG method, in terms of the number of iterations required to attain convergence.
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Triangle Set 1 Triangle Set 2

TL
W-cycle

TL
W-cycle

3 lvl 4 lvl 3 lvl 4 lvl

m = 4 246 (0.90) 258 (0.90) 262 (0.90) 282 (0.89) 291 (0.90) 292 (0.90)

m = 6 177 (0.87) 185 (0.87) 188 (0.87) 199 (0.86) 205 (0.87) 204 (0.87)

m = 10 120 (0.81) 125 (0.82) 127 (0.82) 133 (0.81) 136 (0.82) 136 (0.82)

m = 14 94 (0.77) 98 (0.78) 99 (0.78) 104 (0.77) 106 (0.78) 106 (0.78)

m = 18 79 (0.74) 82 (0.74) 83 (0.74) 87 (0.74) 89 (0.75) 89 (0.75)

NCG
iter

= 551 NCG
iter

= 771

Triangle Set 3 Triangle Set 4

TL
W-cycle

TL
W-cycle

3 lvl 4 lvl 3 lvl 4 lvl

m = 4 328 (0.90) 333 (0.91) 329 (0.90) 421 (0.91) 425 (0.91) 422 (0.91)

m = 6 231 (0.87) 234 (0.88) 232 (0.87) 292 (0.88) 293 (0.89) 292 (0.89)

m = 10 153 (0.82) 154 (0.83) 153 (0.82) 190 (0.83) 191 (0.84) 189 (0.84)

m = 14 118 (0.78) 119 (0.79) 118 (0.78) 145 (0.79) 148 (0.80) 146 (0.80)

m = 18 98 (0.75) 99 (0.75) 98 (0.75) 120 (0.76) 123 (0.77) 122 (0.77)

NCG
iter

= 1145 NCG
iter

= 1630

Table 6: Iteration counts and converge factor (in parenthesis) of the h-version of the two-level and
W-cycle solvers and iteration counts of the CG method as a function of m (Cj

σ ≡ Cσ = 10, p = 1).
Starting mesh of triangles.
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