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Abstract. This work aims to construct and analyze a discontinuous Galerkin method on poly-
topal grids (PolydG) to solve the pseudo-stress formulation of the unsteady Stokes problem. The
pseudo-stress variable is introduced due to the growing interest in non-Newtonian flows and coupled
interface problems, where stress assumes a fundamental role. The space-time discretization of the
problem is achieved by combining the PolydG approach with the implicit θ-method time integra-
tion scheme. For both the semi- and fully-discrete problems we present a detailed stability analysis.
Moreover, we derive convergence estimates for the fully discrete space-time discretization. A set of
verification tests is presented to verify the theoretical estimates and the application of the method
to cases of engineering interest.
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1. Introduction. The interaction between a fluid and a poroelastic structure
is a complex problem that couples the Stokes equations with the poroelasticity sys-
tem describing the motion of flows in deformable saturated porous mediums (see,
e.g. [30, 46]). Numerical modeling of this problem finds important applications, for
example, in the simulation of the groundwater flow in fractured aquifers, oil and gas
extraction, and biological flows. In this work, we will focus on the Stokes problem,
which models incompressible viscous free flows, formulating it in the pseudo-stress
unknown rather than in its classical expression. Due to the recent growing interest in
non-Newtonian fluid flow models (see e.g. [14, 39]), which are crucial for the under-
standing of real fluids and have significant applications in the biological, medical, and
industrial fields, the stress-velocity-pressure formulation for incompressible flows has
garnered attention (see e.g. [36, 38, 44]). Indeed, for complex nonlinear flow prob-
lems, the use of a formulation where stress serves as a primal unknown can facilitate
the design of approximation methods and its numerical solution [42]. In addition, an
accurate approximation of the stress is crucial for determining traction on a fluid-solid
interface. Although stress can be a posteriori reconstructed in the velocity-pressure
formulation through velocity differentiation, this compromises the accuracy. Note
that a drawback associated with employing the stress-velocity-pressure formulation is
the additional challenge introduced by the symmetry constraint of the stress tensor
during the discretization process [12, 13]. One possible approach to overcome such a
difficulty is based on employing the concept of pseudo-stress [22]. The pseudostress-
velocity formulation for the time-dependent Stokes problem has been suggested in
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[24], where only the implicit time discretization is mentioned, without providing the
weak formulation and the theoretical analysis of the problem.

The pseudo-stress variable is defined as σ(u, p) = µ∇u − pId, where u is the
flow velocity and p its pressure. The pseudo-stress, being nonsymmetric, allows for
the adaptation of stable pairs designed for Darcy flows to the pseudostress-velocity
formulation of the Stokes’ equations [23]. For this reason, in this paper, we formulate
the unsteady Stokes problem as a single equation in the pseudo-stress variable. For
the resulting problem, we propose and analyze a discontinuous Galerkin method on
polytopal grids (PolydG). For previous results in the field of discontinuous Galerkin
methods on polytopal grids, see e.g. [15, 7, 29, 28, 26, 31] addressing second-order
elliptic problems, [25] focusing on parabolic differential equations, [6] modeling flows
in fractured porous media, and [11] addressing fluid-structure interaction problems.
Additionally, we refer to [27] for a comprehensive monograph. More recent dG dis-
cretizations on polytopal meshes can be found in [8] for elastodynamics problems,
in [10] for nonlinear sound waves, in [1, 9] for coupled elasto-acoustic problems, in
[2, 18] for thermo-elasticity, in [5, 4] for poroelasto-acustics, and in [32, 33, 35] for
multiphysics brain modeling. Moreover, dG methods for a pure-stress formulation of
the elasticity eigenproblem are proposed in [43, 40, 37], while in [41] dG methods for
a pseudo-stress formulation of the Stokes eigenvalue problem are presented.

This work introduces a new contribution by presenting a comprehensive analysis
of the proposed PolydG approximation of the Stokes problem in its pseudo-stress for-
mulation. We first provide rigorous proof of the well-posedness and stability of the
pseudo-stress weak formulation of the continuous problem, which is both novel and
original. We then design and analyze both the semi-discrete and fully-discrete formu-
lations based on the PolydG spatial discretization and the θ-method time integration,
carrying out a detailed stability analysis for both, and obtaining a priori estimates.
Finally, we present a convergence analysis for the fully-discrete problem, establishing
error estimates in a suitable discrete norm.

The structure of the paper is as follows. In Section 2 we present the unsteady
Stokes model problem in the pseudo-stress formulation, discuss the analogy with its
classical velocity-pressure formulation, and prove the well-posedness of the weak for-
mulation. In Section 3, we introduce the semi-discrete setting and present the PolydG
discretization of our problem. Next, we prove the stability of the discrete solution in
the semi-discrete and fully-discrete setting, the latter obtained by coupling the Crank-
Nicolson time integration scheme with the PolydG space discretization. Finally, in
Section 4 we prove a convergence result for the fully discrete problem. Numerical
tests that confirm the theoretical estimates are reported in Section 5 together with
an application of engineering interest, namely the flow around a cylinder. Finally, in
Section 6 we draw some conclusions and an outlook of possible extension of this work.

2. The model problem.

2.1. Notation. Let Ω ⊂ Rd, d = 2, 3, be an open, convex polygonal/polyhedral
domain with Lipschitz boundary ∂Ω. In what follows, for X ⊆ Ω, the notation
L2(X) is adopted in place of [L2(X)]d and [L2(X)]d×d, d = 2, 3. The scalar product
in L2(X) is denoted by (·, ·)X , with the associated norm ∥ ·∥X . Similarly, the Sobolev
spaces Hℓ(X) are defined as [Hℓ(X)]d, with ℓ ≥ 0, equipped with the norm ∥ · ∥ℓ,X ,
assuming conventionally that H0(X) ≡ L2(X). In addition, we will use H(div, X)
to denote the space of L2(X) vector fields with square-integrable divergence. Then,
the notation H(div, X) is used for the space of tensor fields with rows belonging to
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H(div, X), that is, H(div, X) = [H(div, X)]d, equipped with the norm

∥σ∥2div,X = ∥σ∥2L2(X) + ∥∇ · σ∥2L2(X) ∀σ ∈ H(div, X).

Finally, for Γ ⊂ ∂Ω, we consider the space H
1
2 (Γ) = {v ∈ L2(Γ) | ∃u ∈ H1(Ω) : u|Γ =

v} and its dual space H− 1
2 (Γ). The duality product between two functions v ∈ H

1
2 (Γ)

and w ∈ H− 1
2 (Γ) is denoted by ⟨v, w⟩Γ.

For a given final time T > 0, k ∈ N, and a Hilbert space H, the usual notation
Ck([0, T ];H) is adopted for the space of H-valued functions, k-times continuously
differentiable in [0, T ]. For the sake of readability, we will use the notation σ̇ to
denote the time derivative of σ. The notation x ≲ y stands for x ≤ Cy, with C > 0,
independent of the discretization parameters, but possibly dependent on the physical
coefficients, the final time T , the domain Ω, and the dimension d.

2.2. Unsteady Stokes problem. We start from the unsteady Stokes problem
written in the classical velocity-pressure formulation: Find (u, p) such that

(2.1)



∂u

∂t
− µ∆u+∇p = f , in Ω× (0, T ],

∇ · u = 0, in Ω× (0, T ],

u = uD, on ΓD × (0, T ],

(µ∇u− p)n = gN , on ΓN × (0, T ],

u(·, t = 0) = u0, in Ω,

where u is the flow velocity, p is the fluid pressure, µ > 0 is the fluid viscosity and
T > 0 is the final simulation time. The boundary of Ω is partitioned as ΓD∪ΓN = ∂Ω,
with ΓD ∩ ΓN = ∅. For simplicity, we assume both |ΓD| > 0 and |ΓN | > 0, with | · |
denoting the Hausdorff measure.

Setting H1
0,ΓD

(Ω) = {v ∈ H1(Ω)d | v = 0 on ΓD} and assuming for simplicity

that uD = 0 and the forcing term f and traction gN are regular, i.e. f ∈ L2(Ω) and
gN ∈ L2(ΓN ), the weak formulation of (2.1) reads as: for any time t ∈ (0, T ] find
(u, p)(t) ∈ H1

0,ΓD
(Ω)× L2(Ω) such that(

∂u

∂t
,v

)
Ω

+ (µ∇u,∇v)Ω − (∇ · v, p)Ω = (f ,v)Ω + (gN ,v)ΓN
,

(∇ · u, q)Ω = 0,

for any (v, q) ∈ H1
0,ΓD

(Ω)× L2(Ω).

2.3. Pseudo-stress weak formulation. We rewrite the Stokes problem (2.1)
in a different form by introducing the pseudo-stress σ(u, p) = µ∇u − pId variable,
where Id is the identity matrix in Rd×d. Then, (2.1) can be rewritten as

(2.2)



∂u

∂t
−∇ · σ = f , in Ω× (0, T ],

µ−1dev(σ)−∇u = 0, in Ω× (0, T ],

u = uD, on ΓD × (0, T ],

σ n = gN , on ΓN × (0, T ],

u(·, t = 0) = u0, in Ω,
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where the deviatoric operator is defined such that dev(τ ) = τ − 1
d tr(τ )Id, and tr(·) is

the trace operator. Notice that the incompressibility constraint ∇ ·u = 0 is enforced
through the second equation of the previous system that yields tr(∇u) = ∇ · u = 0.

Assuming enough regularity of the problem’s data and solution, we can derive in
time the second and third equations in (2.2) and plug the expression of ∂u

∂t that we
get from the first equation into the second one. Thus, we obtain:

(2.3)


1
µ

∂dev(σ)
∂t −∇ (∇ · σ) = F , in Ω× (0, T ],

∇ · σ = gD, on ΓD × (0, T ],

σ n = gN , on ΓN × (0, T ],

dev(σ)(·, t = 0) = σ0, in Ω,

with F = ∇f and gD = ∂uD

∂t − f|ΓD
. In this way, we reformulate problem (2.1) only

in the pseudo-stress variable σ. We remark that we have also replaced the initial
condition on u(·, t = 0) with a condition on dev(σ)(·, t = 0). This can be done under
the assumption that the velocity solution is sufficiently regular.

In order to strongly enforce the essential traction condition on ΓN , we define the
subspace

H0,ΓN
(div,Ω) = {η ∈ H(div,Ω) | ⟨η n,v⟩∂Ω = 0 ∀v ∈ H1

0,ΓD
(Ω)}.

For simplicity, in this case, we assume that gN = 0. The general case of a non-
homogeneous condition can be obtained by minor modifications. Then, testing the
first equation with τ ∈ H0,ΓN

(div,Ω) and integrating by parts, we obtain the following
weak formulation: for any t ∈ (0, T ], find σ(t) ∈ H0,ΓN

(div,Ω) such that

(2.4) (µ−1∂tdev(σ),dev(τ ))Ω + (∇ · σ,∇ · τ )Ω = (F , τ )Ω + ⟨gD, τ n⟩ΓD

for any τ ∈ H0,ΓN
(div,Ω).

Remark 2.1 (Data regularity). For the terms appearing in the right-hand side
of (2.4) to be well-defined, for all t ∈ (0, T ] we would require F (t) ∈ L2(Ω) and

gD(t) ∈ H
1
2 (ΓD), that imply f(t) ∈ H1(Ω). This assumption can be weakened by

using an integration by parts to rewrite to right-hand side of (2.4) as

(F , τ )Ω + ⟨gD, τ n⟩ΓD
= −(f ,∇ · τ )Ω + ⟨∂tuD, τ n⟩ΓD

.

Remark 2.2 (Pressure and velocity recovery). It is possible to compute the
pressure and velocity fields from the solution of (2.4). The pressure can be easily
obtained from the relation p = − 1

d tr(σ), while to recover the velocity u, we use the
fundamental theorem of calculus and the first equation in (2.2) to obtain

u(t) = u0 +

∫ t

0

∇ · σ(s) + f(s) ds.

2.4. Well-posedness of the continuous problem. The existence and unique-
ness of the solution to problem (2.4) can be inferred in the framework of degenerate
implicit evolution equations. In particular, we hinge on the following result; its proof
along with examples and further details, is provided in [45, Chapter V, Theorem 4.1].

Proposition 2.3. Let Vm be a seminorm space obtained from a symmetric and
non-negative bilinear form m(·, ·) and let M : Vm → V ′

m be the linear operator defined
by Mx(y) = m(x, y) for any x, y ∈ Vm. Let D be a dense subspace of Vm and
L : D → V ′

m be linear and monotone. Let K(M) and K(L) denote the kernels of the
operators M and L, respectively. It holds:
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(a) if K(M) ∩ D ⊆ K(L) and if M + L : D → V ′
m is onto, then for every

f ∈ C1([0, T ], V ′
m) and u0 ∈ D there exists a solution of ∂t(Mu)(t)+Lu(t) =

f(t), t > 0, with (Mu)(0) = Mu0;
(b) if K(M) ∩K(L) = ∅, then there is at most one solution.

We rewrite the initial boundary value problem (2.4) in the notation of the previous
proposition assuming for simplicity ΓN = ∂Ω. Therefore, we define the operators
M = µ−1dev(·) : Vm → V ′

m and L = −∇ (∇ · (·)) : D → V ′
m, with

Vm = L2(Ω), V ′
m = {τ ∈ L2(Ω) | tr(τ ) = 0},

D = {τ ∈ H0,ΓN
(div,Ω) | ∇ · τ ∈ H1(Ω) and ∇ · (∇ · τ ) = 0}.

Then, D is dense in Vm and L is continuous and strongly monotone. We remark that
K(M) ∩ D = {ψId ∈ Vm | ∆ψ = 0 and ψ = 0 on ΓN} = ∅. As a result, it holds
K(M) ∩D ⊆ K(L). It also holds that K(M) ∩K(L) = ∅. Therefore the hypotheses
of Proposition 2.3 are satisfied and, as a result, the existence and uniqueness of the
solution are guaranteed.

2.5. Stability analysis of the continuous problem. In this section, before
proving the stability estimate for the solution of the weak problem (2.4), we introduce
the following preliminary results. For the sake of presentation, we postpone the proof
in Appendix A.

Lemma 2.4. (dev − div and trace inequalities). Let σ ∈ H0,ΓN
(div,Ω), with

|ΓN | > 0. Then, there exists two positive constants Cdd and Ctr such that

∥σ∥L2(Ω) ≤ Cdd

(
∥dev(σ)∥L2(Ω) + ∥∇ · σ∥L2(Ω)

)
,(2.5)

∥σn∥H−1/2(ΓD) ≤ Ctr

(
∥dev(σ)∥L2(Ω) + ∥∇ · σ∥L2(Ω)

)
.(2.6)

As a result of the previous lemma, we get that ∥µ− 1
2dev(σ)∥L2(Ω)+∥∇ · σ∥L2(Ω)

defines a (weighted) norm on the spaceH0,ΓN
(div,Ω). Hinging on the previous results,

we establish a stability estimate for the pseudo-stress solution.

Theorem 2.5 (Stability estimate). Let σ(t) ∈ H0,ΓN
(div,Ω) be the solution of

(2.4) for any time t ∈ (0, T ]. Then, it holds∥∥∥µ− 1
2dev(σ)

∥∥∥2
L∞(0,T ;L2(Ω))

+

∫ T

0

∥∇ · σ(t)∥2L2(Ω) dt

≲ (1 + 2µT )

∫ T

0

∥F (t)∥2L2(Ω) + ∥gD(t)∥2
H

1
2 (ΓD)

dt+
∥∥∥µ− 1

2dev(σ0)
∥∥∥2
L2(Ω)

,

with hidden constant independent of the viscosity µ and the final time T .

Proof. Taking τ = σ(t) in (2.4), yields

(µ−1∂tdev(σ),dev(σ))Ω + (∇ · σ,∇ · σ)Ω = (F ,σ)Ω + ⟨gD,σn⟩ΓD
.

The previous identity can be rewritten as

∂

∂t

∥∥∥µ− 1
2dev(σ)

∥∥∥2
L2(Ω)

+ 2 ∥∇ · σ∥2L2(Ω) = 2(F ,σ)Ω + 2⟨gD,σn⟩ΓD
.
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Now, on the right-hand side, we use the CauchySchwarz inequality, Lemma 2.4 and
Young’s inequality, to get

(F ,σ)Ω + ⟨gD,σn⟩ΓD

≤
(
Cdd ∥F ∥L2(Ω) + Ctr ∥gD∥

H
1
2 (ΓD)

) (
∥dev(σ)∥L2(Ω) + ∥∇ · σ∥L2(Ω)

)

≤ R2

2
+

∥∥∥µ− 1
2dev(σ)

∥∥∥2
L2(Ω)

4T
+

∥∇ · σ∥2L2(Ω)

2
,

where we have introduced R =
√
1 + 2µT

(
Cdd ∥F ∥L2(Ω) +Ctr ∥gD∥

H
1
2 (ΓD)

)
. There-

fore, it is inferred that

∂

∂t

∥∥∥µ− 1
2dev(σ)

∥∥∥2
L2(Ω)

+ ∥∇ · σ∥2L2(Ω) ≤ R2 +
1

2T

∥∥∥µ− 1
2dev(σ)

∥∥∥2
L2(Ω)

.

We now integrate the previous bound over the time interval (0, t), obtaining∥∥∥µ− 1
2dev(σ)(t)

∥∥∥2
L2(Ω)

+

∫ t

0

∥∇ · σ(s)∥2L2(Ω) ds

≤
∥∥∥µ− 1

2dev(σ0)
∥∥∥2
L2(Ω)

+

∫ t

0

R2(s) +
1

2T

∥∥∥µ− 1
2dev(σ)(s)

∥∥∥2
L2(Ω)

ds.(2.7)

Then, taking the supremum in (0, T ] on both sides of (2.7), we get

sup
t∈(0,T ]

∥∥∥µ− 1
2dev(σ)(t)

∥∥∥2
L2(Ω)

+

∫ T

0

∥∇ · σ(t)∥2L2(Ω) dt

≤
∥∥∥µ− 1

2dev(σ0)
∥∥∥2
L2(Ω)

+

∫ T

0

R2(t) dt+
1

2
sup

t∈(0,T ]

∥∥∥µ− 1
2dev(σ)(t)

∥∥∥2
L2(Ω)

.

Rearranging the previous inequality we get the conclusion.

3. Numerical discretization.

3.1. PolydG semi-discrete formulation. In this section, we introduce the
PolydG semi-discrete formulation of (2.4). Let Th be a polytopal mesh of the domain
Ω, i.e., Th =

⋃
k κ, being κ a general polygon (d = 2) or polyhedron (d = 3). Given

a polytopal element κ, we define by |κ| its measure and by hk its diameter, and set
h = maxκ∈Th

hk. We let a polynomial degree pk ≥ 1 be associated with each element
κ ∈ Th and we denote by ph : Th → N∗ = {n ∈ N : n ≥ 1} the piecewise constant
function such that (ph)|κ = pk. Then, we define the discrete space Vh = [Pph

(Th)]d×d,
where Pph

(Th) = Πκ∈Th
Ppk

(κ) and Pℓ(κ) is the space of piecewise polynomials in κ
of total degree less than or equal to ℓ ≥ 1. We define an interface as the intersection
of the (d− 1) - dimensional faces of any two neighboring elements of Th. If d = 2, an
interface/face is a line segment and the set of all interfaces/faces is denoted by Fh.
When d = 3, an interface can be a general polygon that we assume could be further
decomposed into a set of planar triangles collected in the set Fh. We also decompose
the set of faces as F = FI

h ∪FD
h ∪FN

h , where FI
h contains the internal faces and FD

h

and FN
h the faces of the Dirichlet and Neumann boundary, respectively. Following

[27], we next introduce the main assumption on Th.
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Definition 3.1. A mesh Th is said to be polytopic-regular if for any κ ∈ Th,
there exists a set of non-overlapping d-dimensional simplices contained in κ, denoted
by {SF

κ }F⊂∂κ, such that for any face F ⊂ ∂κ, it holds hκ ≲ d|SF
κ | |F |−1.

Assumption 1. The sequence of meshes {Th}h is assumed to be uniformly poly-
topic regular in the sense of Definition 3.1.

As pointed out in [27], this assumption does not impose any restriction on either the
number of faces per element or their measure relative to the diameter of the element
they belong to. In order to avoid technicalities, we also assume that Th satisfies a
hp-local bounded variation property:

Assumption 2. For any pair of neighboring elements κ± ∈ Th, it holds hκ+ ≲
hκ− ≲ hκ+ , pκ+ ≲ pκ− ≲ pκ+ .

Finally, for sufficiently piecewise smooth vector- and tensor-valued fields v and τ ,
respectively, and for any pair of neighboring elements κ+ and κ− sharing a face
F ∈ FI

h , we introduce the jump and average operators

[[v]] = v+ ⊗ n+ + v− ⊗ n−, [[τ ]] = τ+n+ + τ−n−,

{{v}} =
v+ + v−

2
, {{τ}} =

τ+ + τ−

2
,

where ⊗ is the tensor product in Rd, ·± denotes the trace on F taken within κ±, and
n± is the outer normal vector to ∂κ±. Accordingly, on boundary faces F ∈ FD

h ∪FN
h ,

we set [[u]] = u ⊗ n, [[τ ]] = τn, and {{u}} = u, {{τ}} = τ . In the following, we
use ∇h· to denote the element-wise divergence operator, and we use the short-hand
notation (·, ·)Th

=
∑

κ∈Th

∫
κ
· and < ·, · >Fh

=
∑

F∈Fh

∫
F
·. We consider the following

semi-discrete PolydG approximation to (2.4): for any t ∈ (0, T ], find σh(t) ∈ Vh s.t.

(3.1)

{
M(∂tσh, τh) +A(σh, τh) = F (τh) ∀ τh ∈ Vh,

(σh(0), τh) = (σ0, τh) ∀ τh ∈ Vh,

where for any σ, τ ∈ Vh we have defined

M(σ, τ ) = (µ−1dev(σ),dev(τ ))Th
,

A(σ, τ ) = (∇h · σ,∇h · τ )Th
− ⟨{{∇h · σ}}, [[τn]]⟩FI,N

h

−⟨{{∇h · τ}}, [[σn]]⟩FI,N
h

+ ⟨γe[[σn]], [[τn]]⟩FI,N
h

,

F (τ ) = (F , τ )Th
+ ⟨gD, τn⟩FD

h
+ ⟨gN , γeτn+ (∇h · τ )⟩FN

h
.

Here, FI,N
h = FI

h ∪ FN
h and the stabilization function γe : FI,N

h → R+ is defined as

(3.2) γe(x) =

{
αmaxκ∈{κ+,κ−}

p2
κ

hκ
, x ∈ e, e ∈ FI

h , e ⊂ ∂κ+ ∩ ∂κ−,
α

p2
κ

hκ
, x ∈ e, e ∈ FN

h , e ⊂ ∂κ+ ∩ ∂ΓN ,

being α > 0 the penalty coefficient at our disposal.

3.2. Fully-discrete formulation. We introduce a basis for the space Vh and
express σh as a linear combination of these basis functions, where the unknown co-
efficients are functions of time. We collect the latter in the vector σh, denote by M
(resp. A) the matrix representation of the bilinear form M(·, ·) (resp. A(·, ·)), and by
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f the vector representation of the linear functional F (·). The algebraic formulation
of (3.1) reduces to: for any time t ∈ (0, T ], find σh(t) ∈ Vh s.t.

(3.3) M σ̇h(t) +Aσh(t) = f(t) ∀t ∈ (0, T ],

with initial condition σh(0) = σ0,h, being the latter the vector representation of the

L2-projection of σ0 onto Vh. In the following, to integrate in time (3.3) we use the
θ-method: for any n = 1, ..., NT find σn+1

h such that

(3.4) (M + θ∆tA) σn+1
h = [M − (1− θ)∆tA] σn

h +∆t[θfn+1 + (1− θ)fn]

with NT = ∆t/T , θ ∈ [0, 1] and where the superscript n means the approxima-
tion/evaluation of the given quantity at time tn = n∆t, n = 0, ..., NT .

3.3. Stability analysis for the semi- and fully-discrete formulations. In
the following, we present the stability analysis for both the semi- and fully-discrete
problem as well as the a priori error analysis. For the sake of presentation, we consider
the case in which gN = gD = 0.

3.3.1. Stability analysis of the semi-discrete problem. Before stating the
main result of this section we recall that

|σ|2dG = ∥∇h · σ∥2Ω +
∥∥∥ γ1/2[[σn]] ∥∥∥2

FI,N
h

∀σ ∈ Vh,

|||σ|||2dG = |σ|2dG +
∥∥∥ γ−1/2{{∇h · σ}}

∥∥∥2
Fh

∀σ ∈ H2(Th).

Theorem 3.2. For any time t ∈ (0, T ], let σh(t) ∈ Vh be the solution of (3.1).
Then, for α in (3.2) sufficiently large, it holds∥∥∥µ− 1

2dev(σh)
∥∥∥2
L∞(0,T ;L2(Ω))

+

∫ T

0

|σh|2dG dt

≲
∫ T

0

∥F ∥2L2(Ω) dt+
∥∥∥µ− 1

2dev(σ0,h)
∥∥∥2
L2(Ω)

.

Proof. We choose τh = σh(t) in (3.1) and apply Lemma (A.1), Cauchy-Schwarz
and Young inequalities to obtain

∂t

∥∥∥µ− 1
2dev(σh)

∥∥∥2
L2(Ω)

+ |σh|2dG ≲
1

ϵ
∥F ∥2L2(Ω) + ϵ ∥σh∥2L2(Ω) .

Then, the proof is obtained by applying the same arguments as the ones in the proof
of Theorem 2.5 and using the results in Lemma A.2.

The well-posedness of the semi-discrete problem (3.1) can be inferred in the frame-
work of differential-algebraic equations (DAEs). The DAEs theory states that, if the
matrix pencil sM + A is nonsingular for some s ̸= 0, then problem (3.3) admits a
solution [21]. Thus, to establish existence it is enough to take s = 1 and apply Lem-
mas (A.1) and A.2 to obtain that M +A is positive definite. Finally, uniqueness and
well-posedness follow from the linearity and the a priori stability estimate.
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3.3.2. Stability analysis of the fully-discrete problem. In this section, we
present the stability analysis for the fully discrete problem (3.4). For the sake of
presentation, here and in the following, we consider the implicit Euler method (i.e.,
θ = 1) to integrate in time the system (3.1). A similar proof can be obtained for the
general case where θ ∈ [ 12 , 1), see Remark 3.4. We start by considering (3.4) with
θ = 1: for any time tn, for n = 1, ..., NT find σn

h ∈ Vh s.t.

(3.5)

{
M(σn

h − σn−1
h , τh) + ∆tA(σn

h , τh) = ∆t(F n, τh) ∀τh ∈ Vh,

σ0
h = σ0,h.

Theorem 3.3. Let σn
h ∈ Vh be the solution of (3.5) for n = 1, ..., NT . Then, it

holds

max
n∈{1,,..,NT }

∥∥∥µ− 1
2 dev(σn

h)
∥∥∥2
L2(Ω)

+∆t

N∑
ℓ=1

|σℓ
h|2dG

≲
∥∥∥µ− 1

2dev(σ0,h)
∥∥∥2
L2(Ω)

+∆t

N∑
ℓ=1

∥∥F ℓ
∥∥2
L2(Ω)

.

Proof. We consider τh = σn
h in (3.5) and sum over 1 ≤ ℓ ≤ k to obtain

k∑
ℓ=1

M(σℓ
h − σℓ−1

h ,σℓ
h) + ∆t

k∑
ℓ=1

A(σℓ
h,σ

ℓ
h) = ∆t

k∑
ℓ=1

(F ℓ,σℓ
h).(3.6)

For the first term on the left-hand side, we use that A(A−B) = 1
2 (A

2+(A−B)2−B2)
to get

k∑
ℓ=1

M(σℓ
h − σℓ−1

h ,σℓ
h) ≥

1

2
M(σk

h,σ
k
h)−

1

2
M(σ0,h,σ0,h).

Next, we use the above inequality together with the Cauchy-Schwarz and Young
inequalities on the right-hand side of (3.6) to obtain

1

2

∥∥∥µ− 1
2dev(σk

h)
∥∥∥2
L2(Ω)

+∆t

k∑
ℓ=1

A(σℓ
h,σ

ℓ
h)

≲
1

2

∥∥∥µ− 1
2dev(σ0,h)

∥∥∥2
L2(Ω)

+
∆t

2ϵ

k∑
ℓ=1

∥∥F ℓ
∥∥2
L2(Ω)

+
ϵ∆t

2

k∑
ℓ=1

∥∥σℓ
h

∥∥2
L2(Ω)

,

for ϵ > 0. Then, by using the coercivity of A(·, ·) in (A.1) it holds

∥∥∥µ− 1
2dev(σk

h)
∥∥∥2
L2(Ω)

+∆t

k∑
ℓ=1

|σℓ
h|2dG

≲
∥∥∥µ− 1

2dev(σ0,h)
∥∥∥2
L2(Ω)

+
∆t

ϵ

k∑
ℓ=1

∥∥F ℓ
∥∥2
L2(Ω)

+ ϵ∆t

k∑
ℓ=1

∥∥σℓ
h

∥∥2
L2(Ω)

.

(3.7)
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Next, we apply Lemma A.2 to estimate the last term on the right-hand side, recalling
that k∆t = tk, and we obtain:

k∑
ℓ=1

∥∥σℓ
h

∥∥2
L2(Ω)

≲
k∑

ℓ=1

(∥∥∥µ− 1
2dev(σℓ

h)
∥∥∥2
L2(Ω)

+ |σℓ
h|2dG

)
≤

(
k max

ℓ∈{1,...,k}

∥∥∥µ− 1
2dev(σℓ

h)
∥∥∥2
L2(Ω)

+

k∑
ℓ=1

|σℓ
h|2dG

)
,

so that

∆t

k∑
ℓ=1

∥∥σℓ
h

∥∥2
L2(Ω)

≲ T max
ℓ∈{1,...,k}

∥∥∥µ− 1
2dev(σℓ

h)
∥∥∥2
L2(Ω)

+∆t

k∑
ℓ=1

|σℓ
h|2dG.

Coming back to (3.7), we have

∥∥∥µ− 1
2dev(σk

h)
∥∥∥2
L2(Ω)

+∆t

k∑
ℓ=1

|σℓ
h|2dG ≲

∥∥∥µ− 1
2dev(σ0,h)

∥∥∥2
L2(Ω)

+
∆t

ϵ

k∑
ℓ=1

∥∥F ℓ
∥∥2
L2(Ω)

+ ϵ
(
T max

ℓ∈{1,...,k}

∥∥∥µ− 1
2dev(σℓ

h)
∥∥∥2
L2(Ω)

+∆t

k∑
ℓ=1

|σℓ
h|2dG

)
.

The thesis follows by taking the maximum over k ∈ {1, ..., NT } and ϵ small enough.

Remark 3.4. To obtain the stability estimate as in Theorem 3.3 for the general
case θ ∈ [ 12 , 1), one has to consider the following equation

M(σn
h − σn−1

h , τh) + ∆tA(θσn
h + (1− θ)σn−1

h , τh)

= ∆t(θF n + (1− θ)F n−1, τh),

for n = 1, ..., NT . Taking τh = θσn
h + (1− θ)σn−1

h , we observe that

M(σn
h − σn−1

h , θσn
h + (1− θ)σn−1

h ) =
1

2
M(σn

h ,σ
n
h)−

1

2
M(σn−1

h ,σn−1
h )

+ (θ − 1

2
)M(σn

h − σn−1
h ,σn

h − σn−1
h )

≥ 1

2
M(σn

h ,σ
n
h)−

1

2
M(σn−1

h ,σn−1
h ),

for θ ≥ 1
2 , use the coercivity of A(·, ·), and proceed as in the proof of Theorem 3.3.

4. Error analysis of the fully-discrete problem. Before presenting the main
results of this section, we introduce some preliminary results that are instrumental
for the proof of the a priori error estimates [5, 19]. Let E : Hm(κ) → Hm(Rd)
be the Stein extension operator s.t. for any κ ∈ Th and m ∈ N0, Eσ|κ = σ and
∥Eσ∥Hm(Rd×d) ≲ ∥σ∥Hm(κ). Then, for any σ ∈ Hm(Th), with m ≥ 2, there exists
πσ ∈ Vh such that

(4.1) ∥σ − πσ∥2L2(Ω) ≲
∑
κ∈Th

h2skk

p2mk
∥Eσ∥2Hm(κ) ,
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(4.2) |||σ − πσ|||2dG ≲
∑
κ∈Th

h2sk−2
k

p2m−3
k

∥Eσ∥2Hm(κ) ,

where sk = min{pk + 1,m}.
Lemma 4.1. Under Assumptions 1-2 we suppose that the solution σ to (2.3) is

regular enough, i.e. σ ∈ C1((0, T ];Hm(Th)) ∩ C2((0, T ];L2(Ω)), with m ≥ 2. Then,
for any tn = n∆t with n = 1, ..., NT , it holds∥∥∥µ− 1

2dev(σ̇n − πσ̇n)
∥∥∥2
L2(Ω)

≲
∑
κ∈Th

h2skk

p2mk
∥Eσ̇n∥2Hm(κ)∥∥∥∥µ− 1

2dev

(
πσ̇n − πσn − πσn−1

∆t

)∥∥∥∥2
L2(Ω)

≲ ∆t2 ∥σ∥2C2((0,T ];L2(Ω)) ,

where π is defined as before.

Proof. The first inequality follows from the definition of the dev operator and
(4.1), i.e., ∥∥∥µ− 1

2 (dev(σ̇n)− dev(πσ̇n))
∥∥∥2
L2(Ω)

≲
∥∥∥µ− 1

2 (σ̇n − πσ̇n)
∥∥∥2
L2(Ω)

.

For the second inequality, we employ again the definition of dev and twice the La-
grange theorem to obtain the existence of ξ, ζ ∈ (tn−1, tn) such that∥∥∥∥µ− 1

2dev

(
πσ̇n − πσn − πσn−1

∆t

)∥∥∥∥2
L2(Ω)

≲
∥∥∥µ− 1

2 (πσ̇(tn)− πσ̇(ξ))
∥∥∥2
L2(Ω)

≲ ∆t2
∥∥∥µ− 1

2πσ̈(ζ)
∥∥∥2
L2(Ω)

.

Owing to the regularity assumption on the exact solution σ, this concludes the proof.

We observe that for any n = 1, ..., NT , σ
n ∈ H(div,Ω) solves the following problem:

(4.3) M(σ̇n, τh) +A(σn, τh) = (F n, τh)Ω τh ∈ Vh.

Then, we consider the error equation obtained by subtracting (4.3) from (3.5):

M(σn
h − σn−1

h , τh)−∆tM(σ̇n, τh) + ∆tA(en, τh) = 0,

where we have set en = σn
h − σn. By adding and subtracting the term M(σn −

σn−1, τh), we can rewrite the above equation as

M(en − en−1, τh) + ∆tA(en, τh) = ∆tM(σ̇n, τh)−M(σn − σn−1, τh),(4.4)

for all τh ∈ Vh. In the following, we use the notation

∥e∥2E = max
n={1,...,NT }

∥∥∥µ− 1
2dev(en)

∥∥∥2
L2(Ω)

+∆t

NT∑
n=1

|en|2dG,

with e(t) = σ(t)−σh(t) and en = σ(tn)−σn
h . We next state the main result of this

section.
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Theorem 4.2. Let σ ∈ C1((0, T ];Hm(Th)) ∩ C2((0, T ];L2(Ω)), with m ≥ 2, be
the solution of (4.3), and let σn

h ∈ Vh, for n = 1, ..., NT , be the solution of (3.5) for
a sufficiently large α. Then, under Assumptions 1-2 it holds

∥σ − σh∥2E ≲ max
n∈{1,...,NT }

( ∑
κ∈Th

h2sk−2
k

p2m−3
k

∥Eσn∥2Hm(κ) +
∑
κ∈Th

h2skk

p2mk

∥∥Eσ̇n
∥∥2
Hm(κ)

+
∑
κ∈Th

h2skk

p2mk
∥Eσn∥2Hm(κ)

)
+∆t2 ∥σ∥2C2((0,T ];L2(Ω)) .

Proof. For any n = 1, ..., NT we split the error in the following way: en = enh−enI ,
where enh = σn

h − πσn and enI = σn − πσn. Next, by Young’s inequality we get

(4.5) ∥σ − σh∥2E ≲ ∥σ − πσ∥2E + ∥σh − πσ∥2E .

To bound the first term above we use both (4.1) and (4.2), obtaining

∥σ − πσ∥2E ≲ max
n∈{1,...,NT }

( ∑
κ∈Th

h2skk

p2mk
∥Eσn∥2Hm(κ) +

∑
κ∈Th

h2sk−2
k

p2m−3
k

∥Eσn∥2Hm(κ)

)
.

(4.6)

For the second term in (4.5) we choose τh = enh in (4.4) and obtain:

M(enh − en−1
h , enh) + ∆tA(enh, e

n
h) = ∆tM(σ̇n, enh)−M(σn − σn−1, enh)

+M(enI − en−1
I , enh) + ∆tA(enI , e

n
h)

that is

M(enh − en−1
h , enh) + ∆tA(enh, e

n
h) = ∆tM(σ̇n, enh)−M(πσn − πσn−1, enh)

+ ∆tA(enI , e
n
h).

Next, we add and subtract the term ∆tM(πσ̇n, enh) and sum over 1 ≤ ℓ ≤ k, to get

k∑
ℓ=1

(
M(eℓh − eℓ−1

h , eℓh) + ∆tA(eℓh, e
ℓ
h)
)
=

k∑
ℓ=1

(
∆tA(eℓI , e

ℓ
h) + ∆tM(ėℓI , e

ℓ
h)

+M(∆tπσ̇ℓ − (πσℓ − πσℓ−1), eℓh)
)
.

As in the proof of Theorem 2.5 we use that A(A − B) = 1
2 (A

2 + (A − B)2 − B2),
together with the coercivity of A(·, ·) in (A.1) with α large enough, obtaining:

∥∥∥µ− 1
2dev(ekh)

∥∥∥2
L2(Ω)

+∆t

k∑
ℓ=1

|eℓh|2dG

≲ ∆t

k∑
ℓ=1

(
A(eℓI , e

ℓ
h) +M(ėℓI , e

ℓ
h) +M(πσ̇ℓ − (πσℓ − πσℓ−1)

∆t
, eℓh)

)
noticing that e0h = 0. We employ now (A.2) together with CauchySchwarz and Young
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inequalities to obtain:∥∥∥µ− 1
2dev(ekh)

∥∥∥2
L2(Ω)

+∆t

k∑
ℓ=1

|eℓh|2dG

≲ ∆t

k∑
ℓ=1

( 1

ϵ1
∥|eℓI |∥2dG + ϵ1|eℓh|2dG +

1

ϵ2
∥µ− 1

2dev(ėℓI)∥2 + ϵ2∥µ− 1
2dev(eℓh)∥2

+
1

ϵ3
∥µ− 1

2dev(πσ̇ℓ − πσℓ − πσℓ−1

∆t
)∥2 + ϵ3∥µ− 1

2dev(eℓh)∥2
)

≲ ∆t

k∑
ℓ=1

( 1

ϵ1
∥|eℓI |∥2dG +

1

ϵ2
∥µ− 1

2dev(ėℓI)∥2 +
1

ϵ3
∥µ− 1

2dev(πσ̇ℓ − πσℓ − πσℓ−1

∆t
)∥2

+ ϵ1|eℓh|2dG
)
+ (ϵ2 + ϵ3)k∆t max

ℓ∈{1,...,n}
∥µ− 1

2dev(eℓh)∥2

Next, by taking ϵ1 small enough, noticing that k∆t = tk ≤ T , choosing ϵ2 and ϵ3
small enough, and taking the maximun for k ∈ {1, ..., NT } we have

max
k={1,...,NT }

∥∥∥µ− 1
2dev(ekh)

∥∥∥2
L2(Ω)

+∆t

NT∑
ℓ=1

|eℓh|2dG

≲ ∆t

NT∑
ℓ=1

(
∥|eℓI |∥2dG + ∥µ− 1

2dev(ėℓI)∥2 + ∥µ− 1
2dev(πσ̇ℓ − πσℓ − πσℓ−1

∆t
)∥2

)
≲ T max

ℓ∈{1,...,NT }

(
∥|eℓI |∥2dG + ∥µ− 1

2dev(ėℓI)∥2 + ∥µ− 1
2dev(πσ̇ℓ − πσℓ − πσℓ−1

∆t
)∥2

)
.

Finally, we use the result in Lemma 4.1 and the estimates (4.1), (4.2), and we obtain

max
k={1,...,NT }

∥∥∥µ− 1
2dev(ekh)

∥∥∥2
L2(Ω)

+

NT∑
ℓ=1

∆t|eℓh|2dG

≲ T max
ℓ∈{1,...,NT }

( ∑
κ∈Th

h
2(sk−1)
k

p
2(m−3/2)
k

∥∥Eσℓ
∥∥2
Hm(κ)

+
∑
κ∈Th

h2skk

p2mk
∥Eσ̇∥2Hm(κ)

+∆t2 ∥σ∥2C2((0,T ];L2(Ω))

)
.

By combining the last inequality to (4.6) we conclude the proof.

5. Numerical results. In this section, we present the results of the numerical
simulations obtained through the discretization in Section 3 implemented in lymph

(https://bitbucket.org/lymph/lymph/src/StokesPS), an open source MATLAB
library [3]. First, we consider a test case to demonstrate the theoretical error bounds.
Next, we investigate the capability of the proposed approach to recover the pressure
and the velocity fields of the velocity-pressure Stokes formulation, as explained in
Remark 2.2. Finally, we solve a test case of engineering interest, namely, the flow
around a circular cylinder.

5.1. Verification test case. In the following simulations, we consider the do-
main Ω = (0, 1)2, and four different polygonal meshes having different granularity,
cf. Figure 1. Dirichlet boundary conditions are imposed on the top and right bound-
aries (blue lines), while Neumann conditions are applied on the remaining part of the
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(a) (b) (c) (d)

Fig. 1: Test case of Section 5.1. Considered Polytopal meshes: (a) 100 elements (h ≈
0.1759), (b) 200 elements (h ≈ 0.1260), (c) 400 elements (h ≈ 0.0909), and (d) 800 elements
(h ≈ 0.0637). Boundary edges are highlighted in blue for Dirichlet conditions, and red for
Neumann conditions.

10−1.2 10−1 10−0.8

10−7

10−5

10−3

10−1

1

2

3

4

h

∥σ
−

σ
h
∥ E

p = 1
p = 2
p = 3
p = 4

10−2 10−1

10−7

10−5

10−3

10−1

1

2

∆t

Impicit Euler
Crank-Nicolson

Fig. 2: Test case of Section 5.1. Left: log-log plot of the computed error ∥σ − σh∥E as a
function of the mesh size h for p = 1, ..., 4, by fixing T = 0.25 and ∆t = 1.e−3. Right: log-log
plot of the computed error ∥σ − σh∥E as a function of time step ∆t fixing the polynomial
degree p = 4, and h ≈ 0.0909.

boundary (red lines). We also set µ = 1. We consider the following exact solution of
problem (2.3):

σ(x, t) = sin(2t)

[
sin(πx) sin(πy) 0

0 − sin(πx) sin(πy)

]
.

F (x, t) and the boundary data are computed accordingly. In Figure 2 we report
the computed error ∥σ − σh∥E as a function of the discretization parameters. In
particular, on the left, we show the log-log plot of the error as a function of the mesh
size h for different values of the polynomial degree p = 1, ..., 4, while on the right, the
same quantity is computed versus the time step ∆t with θ = 1 (Implicit Euler) and
θ = 1

2 (Crank-Nicolson) in (3.4), by fixing the mesh elements equal to 400 and p = 4.
It is possible to observe that the results confirm the theoretical bound in Theorem
4.2. Finally, in Figure 3a we plot the computed error as a function of the polynomial
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1 2 3 4 5 6

10−7

10−5

10−3

10−1

p

∥σ
−

σ
h
∥ E

(a) Test case of Section 5.1. (b) Test case of Section 5.3.

Fig. 3: Left: Test case of Section 5.1. Semi-logy plot of the computed error ∥σ − σh∥E as a
function of the polynomial degree p = 1, ..., 6, by fixing T = 0.25 and ∆t = 1.e− 3 and 100
mesh elements. Right: Test case of Section 5.3. Polygonal mesh with 2000 elements of the
rectangular domain Ω with a circular hole. Dirichlet boundary is highlighted in blue (up,
left, bottom), while the Neumann boundary is in red (right).

Fig. 4: Test case of Section 5.2. Computed velocity field (ux and uy) and computed pressure
field (p) at final time T = 1.

degree p. We can observe that the method attains exponential convergence, even this
is not covered by our theoretical analysis.

5.2. Pressure and velocity data recovery. This test case aims to check the
capability of the proposed approach to recover the pressure p and the velocity field u
of the velocity-pressure Stokes formulation, as explained in Remark 2.2. We consider
Ω = (0, 1)2 and set Dirichlet boundary conditions on all the boundary, except for the
right edge where we impose Neumann conditions. Then, we consider

u(x, y) = t2
[
(1− x)y

1
2y

2

]
, p(x, y) = −µt2,
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Fig. 5: Test case of Section 5.3. Computed stress tensor field σh at final time T = 1.

as solution of (2.1), that lead to the following stress tensor

σ(x, y) = µt2
[
1− y 1− x
0 1 + y

]
,

as solution of (2.2). We consider µ = 1, a mesh with 200 polygonal elements, the
polynomial degree p = 3, the final time T = 1, and the time integration step ∆t =
1.e − 2 with θ = 1

2 in (3.4). To recover the velocity field u a composite trapezoidal
quadrature rule has been applied. As one can see from Figure 4, the reconstructed
solution at time T perfectly matches with the analytical one.

5.3. Flow around a cylinder. In this last example, we consider problem (2.3)
in a rectangular domain having a circular hole as depicted in Figure 3b. In particular,
we set Ω = (−1, 4)×(−1, 1)\B0.2(0, 0), being Br(xc, yc) the circle of center (xc, yc) and
radius r, cf. Figure 3b. We set σn = 0 on Γout = {4}× (−1, 1), ∇ ·σ = ((1−y2), 0)⊤
on Γin = {−1} × (−1, 1), and use ∇ · σ = 0 in the remaining part of the boundary.
The medium is supposed to be at rest at the initial time, i.e., σ0 = 0, and we also
consider f = 0. For the numerical simulation, we set µ = 2 in (2.3), employ a mesh
made by 2000 elements, fix the polynomial degree pκ = 3 for any κ ∈ Th, choose the
final time T = 1 and the time step ∆t = 1.e − 2 for the Crank-Nicolson scheme in
(3.4). In Figure 5 we report the computed stress tensor σh at the final time T = 1,
while in Figure 6, resp. Figure 7, we plot the pressure, resp. velocity field, computed
according to Remark 2.2. As in the previous example, to recover the velocity field u
a composite trapezoidal quadrature rule has been applied. We compare our results to
those obtained with the FEniCS https://fenicsproject.org/ software, by solving
the problem with a dG method on triangular meshes made by 7581 elements and
fixing the polynomial degree equal to 2 for both velocity and pressure variables. It is
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Fig. 6: Left: computed pressure field ph at final time T = 1 by means of the relation
ph = − 1

2
tr(σh). Right: computed pressure field ph obtained with FEniCS.

Fig. 7: Left: computed velocity field uh at the final time T = 1 by means of the relation
uh = u0,h +

∫ T

0
∇ · σh(s) ds. Right: computed velocity field uh obtained with FEniCS.

possible to see that the proposed PolydG method is able to reproduce correctly the
physics of the system, at a much lower computational cost.

6. Conclusions. In this work we have presented a theoretical and numerical
analysis for a PolydG approximation of the unsteady Stokes problem written in its
pseudo-stress formulation. We have proved stability results for both the continuous
problem as well as for the semi- and fully-discrete schemes. We established an er-
ror estimate for the fully-discrete problem, where the PolydG scheme is combined
with the θ-method time integration. Numerical tests demonstrated the theoretical
estimates, as well as shown that the method can be effectively employed to solve
problems of physical interest. Possible further developments may include the analysis
of the coupling between the Stokes and the Biot system, through appropriate interface
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conditions and the generalization to non-Newtonian fluid flow.

Appendix A. Proofs of the theoretical Lemmas.
Proof of Lemma 2.4 Let σ ∈ H0,ΓN

(div,Ω) assuming |ΓN | > 0.
1. We start by establishing (2.5). There exists v ∈ H1

0,ΓD
(Ω) such that ∇ · v =

tr(σ) and ∥v∥H1(Ω) ≲ ∥tr(σ)∥L2(Ω) (cf. [16, 20]). Then, it holds

∥tr(σ)∥2L2(Ω) = (tr(σ),∇ · v)Ω = (σ, tr(∇v)Id)Ω
= (σ, d ∇v − d dev(∇v))Ω

= −d(dev(σ),∇v)Ω − d(∇ · σ,v)Ω + d(σn,v)∂Ω

= −d(dev(σ),∇v)Ω − d(∇ · σ,v)Ω,

where we first employed the definition of the trace of a tensor, and subse-
quently the relationship between the trace and the deviatoric operator, along
with integration by parts. We also exploited the fact that σ ∈ H0,ΓN

(div,Ω)
and, as a result, ⟨σn,v⟩∂Ω = 0 since v vanishes on ΓD. Then, using the
Cauchy-Schwarz inequality, we have

∥tr(σ)∥2L2(Ω) ≲ ∥dev(σ)∥L2(Ω) ∥∇v∥L2(Ω) + ∥∇ · σ∥L2(Ω) ∥v∥L2(Ω)

≲
(
∥dev(σ)∥L2(Ω) + ∥∇ · σ∥L2(Ω)

)
∥v∥H1(Ω)

≲
(
∥dev(σ)∥L2(Ω) + ∥∇ · σ∥L2(Ω)

)
∥tr(σ)∥L2(Ω) ,

from which we get the conclusion, i.e.,

∥σ∥L2(Ω) ≤ ∥dev(σ)∥L2(Ω) + ∥tr(σ)∥L2(Ω)

≲ ∥dev(σ)∥L2(Ω) + ∥∇ · σ∥L2(Ω) .

2. We now move to the proof of the trace inequality (2.6). First, we recall that

the trace operator γ : H1(Ω) → H
1
2 (∂Ω) is onto and has a continuous lifting.

Therefore, by definition of the dual norm, we have

∥σn∥H−1/2(ΓD) = ∥σn∥H−1/2(∂Ω)

= sup
v∈H1/2(∂Ω)

⟨σn,v⟩∂Ω
∥v∥ 1

2 ,∂Ω

≲ sup
w∈H1(Ω)

⟨σn, γ(w)⟩∂Ω
∥w∥1,Ω

.

Applying the Green formula of [17, Lemma 2.1.1] followed by the Cauchy–
Schwarz inequality we obtain

∥σn∥H−1/2(ΓD) ≲ sup
w∈H1(Ω)

∫
Ω
∇ · σ ·w +

∫
Ω
σ : ∇w

∥w∥1,Ω
≲ ∥σ∥L2(Ω) + ∥∇ · σ∥L2(Ω) .

The thesis follows by bounding the L2-norm of σ with the dev-div inequality.

Lemma A.1. Coercivity and continuity of A(·, ·).

A(σh,σh) ≳ |σh|2dG ∀σh ∈ Vh,(A.1)

A(σ, τh) ≲ |||σ|||dG|τh|dG ∀σ ∈ H2(Th),∀τh ∈ Vh.(A.2)
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The coercivity bound holds provided the stability parameter α appearing in (3.2) is
chosen sufficiently large.

Proof. See [5, Lemma A.3].

Lemma A.2. Let σh ∈ Vh. Then, it holds

∥σh∥2L2(Ω) ≲
∥∥∥µ− 1

2dev(σh)
∥∥∥2
L2(Ω)

+ |σh|2dG.

Proof. Similarly to the proof of Lemma 2.4, we start by observing that there is
v ∈ H1

0,ΓD
(Ω) such that ∇ · v = tr(σh) and ∥v∥H1(Ω) ≲ ∥tr(σh)∥L2(Ω) . Then, we

infer

∥tr(σh)∥2L2(Ω) = d(σh,∇v)Th
− d(dev(σh),∇v)Th

.(A.3)

We focus on the first term on the right-hand side, we integrate it by parts, recall that
v ∈ H1

0,ΓD
(Ω) implies [[v]] = 0 on FI,D

h , and apply the Cauchy-Schwarz inequality to
get

(σh,∇v)Th
= −(∇ · σh,v)Th

+ ⟨[[σhn]],v⟩FI,N
h

≲ ∥∇h · σh∥L2(Ω) ∥v∥L2(Ω) +
∥∥∥ γ 1

2 [[σhn]]
∥∥∥
FI,N

h

∥∥∥ γ− 1
2v

∥∥∥
FI,N

h

.

Recalling the continuous local trace inequality (see [34, Lemma 1.49.]), which gives∑
F∈FI,N

h

∥∥∥ γ− 1
2v

∥∥∥2
L2(F )

≲
∑
κ∈Th

∥∥∥ γ− 1
2v

∥∥∥2
L2(∂κ)

≲
∑
κ∈Th

(
∥v∥2L2(κ) + h2κ ∥∇v∥2L2(κ)

)
,

it is inferred that

(σh,∇v)Th
≲

(
∥∇h · σh∥L2(Ω) +

∥∥∥ γ 1
2 [[σhn]]

∥∥∥
FI,N

h

)
∥v∥H1(Ω) .

Plugging the above estimate into (A.3), we obtain

∥tr(σh)∥L2(Ω) ≲
∥∥∥µ− 1

2dev(σh)
∥∥∥
L2(Ω)

+ ∥∇h · σh∥L2(Ω) +
∥∥∥ γ 1

2 [[σhn]]
∥∥∥
FI,N

h

and, as a result of σh = dev(σh) + d−1tr(σh)Id and the definition of the | · |dG
seminorm, the thesis follows.
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